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Abstract

In this dissertation we use string diagrams and categorical quantum mechanics to study
the models for quantum time travel developed by Deutsch (D-CTC) and Lloyd (P-CTC).
We show that the P-CTC formalism can be described in a process theoretical fashion
using the time symmetric formalism for quantum theory developed by Oreshkov and
Cerf, and that among other properties has the drawback of allowing superluminal sig-
nalling. We provide a compositional extension of the D-CTC model and show that such
a theory generates a symmetric monoidal category of processes DMix. In addition, we
analyse some properties of DMix underlying that contrary to the P-CTCs it satisfies
the causality principle thus preventing signalling trough space-like correlations. Finally
we construct a framework that encodes the causal structure of a discretised version of
spacetime and show that the D-CTCs have the potential to describe a specific class of
cyclic causal diagrams while the P-CTCs allow more flexibility in the description of the
allowed interactions with closed timelike curves (CTCs). In this thesis we also underline
the parallelism between models explaining quantum time travel and abstract traces in
symmetric monoidal categories.



1 Introduction

“L’univers est vrai pour nous tous et
dissemblable pour chacun.”

Marcel Proust, La Prisonnière

According to general relativity spacetime is a dynamic variable dependent on the dis-
tribution of mass and energy. Quantum mechanics in its process theoretical presentation
assumes a predefined direction of time and explains how preparations, quantum maps
and effects relate to each other in order to assign probabilities for physical events. A fun-
damental contrast in the treatment of time between the two theories is therefore revealed.
What happens in the process theoretical formulation if we loosen the rigidity implied by
a predefined “arrow” of time?

In this dissertation we will try to provide a partial answer to this question by observing
the implications of the assumption of the existence of localised closed time-like curves
(CTCs); therefore to understand how is chronology-violating (CV) quantum information
allowed to interact with a chronology-respecting (CR) region of spacetime which preserves
the one-way global time asymmetry.

The genealogy of the ideas in this dissertation traces back to the talk about the
Physics of Time-travel given by Seth Lloyd at the Foundations Discussions at Wolfson
College about his work on CTCs (LMG`11; LMGP`11), it then appeared clear how the
intuition related to his model is deeply connected to the graphical interpretation of quan-
tum protocols; effectively one could speculatively compare quantum retrocausality with
nonlocal correlations and entanglement. For example, in the compact dagger category
FdHilb, the usual trace operation for matrices is graphically defined by:

Tr

»

– f

fi

fl “ f

If we take these diagrams to represent processes in the spacetime, the analogy with
chronology violation is crystalline, an output of a process becomes at the same time its
own input.

Our first thought was therefore that the ideas behind the Lloyd’s model must, from a
categorical perspective, be related to the introduction of a generalised concept of trace in
the formalism of density matrices. In this work we want to discover to what extent is this
intuition true and physically justified. There are two main alternative theories aimed at
describing the interaction with a closed time-like curve; is it true that, using a categorical
description of quantum mechanics, a structural fill rouge in both constructions can be
given by traced monoidal categories? We will see however that from a process theoretical
perspective there are some fundamental issues with Lloyd’s model and mainly decided to
narrow the scope of the thesis on the seminal work by Deutsch (Deu91) which culminated
with the model known in the literature as D-CTC.

Chapter 2 provides a general and brief introduction to some of the main concepts
and tools used throughout this dissertation. In Chapter 3, we formalise the description
of the interaction with a CTC, we find that the best way to convey the essence of the
problems associated with time travel is by appealing to the classical paradoxes which are
well known to science fiction. All the models explaining the “time travel” of quantum
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information are in fact receipts to systematically resolve these troublesome conceptual
obstacles. In Chapter 4 we present from an innovative diagrammatic perspective the
peculiarities and consequences of the Deutsch model. We anticipate that trough the de-
velopment of this dissertation we found the graphical approach to quantum circuits to be
particularly useful in finding examples and in shedding light on the mechanisms at play
in the often cumbersome calculations. Chapter 5 briefly discusses the solution exposed
by Lloyd (known in the literature as P-CTC), where we show that this prescription can
already be integrated in an entirely process theoretical framework developed by Oreshkov
et al. (OC16; OC15). In Chapter 6 we design a process theoretical model for D-CTCs
and in Chapter 6.4 discover that the analogy with traces can be recovered in Deutsch’s
formalism. In Chapter 7 we then provide a possible physical interpretation of this obser-
vation: we show that some properties of abstract traces have to be imposed if we want
to preserve a relativistic covariance on the interpretations of cyclic graphs representing
causal connections.

In the final part, the discussion focuses around the different types of CR-CV inter-
actions that can arise from a causal graph and compare the D-CTCs and P-CTCs to
observe a trade-off between the expressive flexibility of the model and the compliance to
the principle of causality.
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2 Background knowledge

In this section we will review some elementary concepts about density matrices, categori-
cal quantum mechanics and process theories. It is not a comprehensive tutorial, its scope
is mainly to set some of the basic definition of concepts. we invite the reader with a lim-
ited knowledge on the matter to address the comprehensive and complete account of the
diagrammatic approach provided in (CK17). A discussion about the graphical calculus
for monoidal categories can be found in (Sel11). We will start by explaining the concep-
tual ideas that relate to the mathematical notion of mixed states, the understanding of
which plays a fundamental role in this dissertation.

2.1 The Density Matrix

This dissertation presupposes an elementary background knowledge in quantum mechan-
ics, however we will review some elementary properties of the density matrix formalism.
For an in-depth introduction to the subject we refer to (NC11) or to the entirely dia-
grammatic approach presented in (CK17). We can formulate quantum mechanics using
the language of states and state vectors, rays of Hilbert spaces associated to the quantum
states of a system. However, it soon becomes clear that this is insufficient to describe in
a more general way quantum evolutions.

While Schrödinger equation imposes unitary evolution on closed systems, how can we
characterise the evolution of subsystems and of open systems where the interaction with
the environment plays a fundamental part? In particular, it becomes sometimes problem-
atic to describe states of subsystems using the state-vector analogy. We now provide an
example which will helpfully explain the importance of density matrices. Suppose that
we have an ensemble of identically prepared entangled EPR states:

|Φy “
1
?

2
p|0yA b |0yB ` |1yA b |1yBq

assume also that an observer in the location B doesn’t have access to the state at A. How
can B describe the state of the single particle which is to him accessible? He can answer
this question by performing state tomography, i.e by trying to experimentally determine
the state. If we only have a unique copy of the state ρ there is no hope to determine
what the state of the qubit is; to overcome this problem suppose that the observer at
B has an entire ensemble of identically prepared EPR states. By measuring multiple
states he can therefore obtain statistics from which determine the global state describing
the particles in the ensemble. Suppose now that the ensemble gets divided three equal
parts in order to perform three different measurements. First we perform on the first
third of the ensamble a measurement in the computational basis t|1y , |0yu. Assume that
B observes that the measured qubits collapse to either |1y or |0y with equal probability.
We already know a class of pure state which entails these probabilities: the equator of
the Bloch sphere, (highlighted in black in Figure (1)), the observer may be therefore
tempted to conclude that the quantum state which describes the ensemble is an equal
superposition of the states |0y and |1y:

|ΦAy “
1
?

2
|0y `

eωiπ
?

2
|1y
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Figure 1: Bloch sphere from (CK17)

To determine with more accuracy the vector on the Bloch sphere representing the state,
the observer can now measure the second third of the ensemble with respect to the ONB:

"

|`y “
|1y ` |0y
?

2
, |´y “

|1y ´ |0y
?

2

*

we still observe that half of the particles in the ensemble are in the state |`y and half in
the state |´y. With this knowledge the observer concludes that there are only two pure
states that can describe the state of the spin of the particle (recall that each particle must
be in the same quantum state as they are identically prepared), the so called Y basis,
given by:

"

|ψ1y “
|1y ` i |0y
?

2
, |ψ2y “

|1y ´ i |0y
?

2

*

Suppose B takes the third part of the ensemble and measures it with respect to the basis
t|ψ1y , |ψ2yu we find out that the statistics of either of the two states is again split in
half, |ψ1y and |ψ2y are obtained with equal probability. How is it possible? If the state
was represented by vector living on the surface of the Bloch sphere the outcomes of the
experiment that we obtained would simply be inconsistent.

It turns out in fact that the best way to describe a single part of the EPR pair, a
single subsystem while ignoring the other one is by taking a probabilistic mixture of the
states |0y and |1y. However we note that this is not a consequence of a lack of knowledge
of the individual part of the system, it is just the best possible physical description of a
class of particles which are subsystems of a bigger identically prepared physical system
and is therefore not representing an ambiguity in the state derived from an ignorance of
the local state. In order to describe those probabilistic mixtures we need to expand the
vector-state notation:

Definition 2.1 (Density Matrix, (NC11)). Suppose a quantum system is in one of the
number of states t|ψiyui with respective probabilities pi, the density operator or density
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matrix for the system is defined by the equation

ρ ”
ÿ

i

pi |ψiy xψi| .

The density matrix associated to a pure state |ψy is therefore given by the outer
product

|ψy xψ|

Suppose the state evolves according to a unitary evolution, then this can be represented
in the language of density matrices

ρ “
ÿ

i

pi |ψiy xψi|
U
ÞÑ

ÿ

i

piU |ψiy xψi|U
:
“ UρU :

we can also restate the measurement postulate in terms of density matrices:

Definition 2.2 (Measurement). Quantum measurements are described by a collection
tMmu of measurement operators. The probability that the result m occurs is given by

ppmq “ Tr
“

MmρM
:
m

‰

and the state after the measurement is given by

MmρM
:
m

Tr
”

MmρM
:
m

ı

where the measurement operators satisfy the completness equation,

ÿ

m

M :
mMm “ 1

The quantum mechanics of closed system is characterised by the unitary evolution,
what happens when we introduce the environment, how can we describe all the allowed
transformation of a density matrix? The class of allowed deterministic evolutions for
open systems is significantly larger and it is described by the completely positive trace
preserving maps(CPTP maps).

Definition 2.3 (CPTP maps). A general quantum map E is an operator taking density
matrices to density matrices, it therefore has to satisfy the following properties:

• Trace-preserving For any density matrix ρ we have that TrrEpρqs “ 1.

• E is a convex-linear map on the set of density matrices.

• E is a completely positive maps, i.e it maps density operators to density operators.

In the framework of categorical quantum mechanics these transformations have a
particularly intuitive description. Before sketching the ideas behind categorical quantum
mechanics it is useful to define the last concept which will be needed in defining D-CTCs,
a generalisation of Shannon entropy for quantum states:
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Definition 2.4 (Von Neumann Entropy, (NC11)). Let ρ be a density matrix associated
to a quantum mechanical system, the Von Neumann entropy of the state is defined to be

Spρq ” ´
ÿ

x

λx log λx

where λx are the eigenvalues of ρ.

It is clear by definition that the entropy of an operator in a d-dimensional system is
between 0 and logpdq. Pure states have entropy 0 and the maximally mixed state has
entropy given by log d.

2.2 Categorical Quantum Mechanics

In describing the quantum phenomena that arise in this dissertation we will make exten-
sive use of the framework provided by categorical quantum mechanics (CQM). Initiated
by Coecke and Abramsky (AC09; AC04), the approach describes the quantum phenom-
ena and quantum processes as symmetric monoidal categories and allows us to deduce
equational relationships between morphisms by performing graphical calculations. For
a beautiful and self-contained survey on the graphical calculus we refer to (Sel11). We
will only briefly define the object of interest which models physical theories in a process
theoretical way, symmetric monoidal categories (SMC). Category theory brings the no-
tion of processes to the forefront (CP11) and it can be used to provide a rigorous and
universal language for defining the fundamental backbone of a physical theory, in (CP11)
the authors provide a general example which captures the essential connections between
physics and category theory, we reproduce the definition of this general setting provided
in (CP11):

Example 2.5 (The category PhysProc). The category of PhysProc can be defined as
follows:

• All physical systems A,B,C . . . as objects

• Physical processes that take place between the physical systems of type A and of
type B are considered to be the morphisms AÑ B

• Sequential composition of the process as the composition of morphism

• The process IdA which leaves the physical system A invariant

The authors in (CP11) then underline that the only additional axiom, associativity
has in fact a straightforward physical intepretation. If we first apply the process f and
then the processes g and h, it is irrelevant if we consider g ˝f as a single process to whom
we later apply h or if we instead consider h ˝ g as a single process applied to f .

In a physical theory it is however often necessary to distinguish between two types of
compositions, the sequential composition which expresses a time-like separation of two
processes and a space-like composition. The framework of a category accommodates for
the first notion, to introduce a parallel, space-like composition we need the define on the
category an additional structural layer:

Definition 2.6 (Monoidal Categories). A monoidal category is a category C equipped
with the following data:
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• a tensor product bifunctor b : CˆC Ñ C;

• a unit object I

• an associator natural isomoprhism αA,B,C : pAbBq b C Ñ Ab pB b Cq;

• a left unitor natural isomorphims λA : I b AÑ A;

• a right unitor natural isomoprhism ρA : Ab I Ñ A;

This data must satisfy the triangle and pentagon equations, for all objects A,B,C and
D:

pAb Iq bB Ab pI bBq

AbB

αA,I,B

ρAbIdB IdAbλB

pAb pB b Cqq bD Ab ppB b Cq bDq

ppAbBq b Cq bD Ab pB b pC bDqq

pAbBq b pC bDq

αA,BbC,D

IdAbαB,C,DαA,B,CbD

αAbB,C,D αA,B,CbD

Any free morphism in a monoidal structure can be represented graphically, for mor-
phisms f P CpA,Bq, g P CpB,Cq we can represent the composition g ˝ f as:

f

g

for f P CpA,Bq, g P CpC,Dq, the monoidal f b g product of the morphisms is given by

f g

The identities are just straight lines:

The unit object is defined by the empty diagram:
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The states and effects are morphisms of the type ρ : I Ñ A and ε : A Ñ I, they can be
graphically represented with upwards and downwards directed triangles

ρ

A

ε

A

It is worth noticing that all the coherency conditions are implicit in the graphical defini-
tion of the morphisms, a SMC in fact satisfies the following powerful property:

Theorem 2.7 (Correctness of the graphical calculus (HV12)). A well-typed equation
between morphisms in a monoidal category follows from the axioms if and only if it holds
in the graphical language up to planar isotopy.

The categories that we will be interested on will all be symmetric monoidal categories,
i.e. monoidal categories which encompass the idea of a symmetric braiding of objects:

Definition 2.8 (Symmetric Monoidal Category). A symmetric monoidal category is a
monoidal category equipped with an additional natural isomorphism σA,B

σA,B : AbB Ñ B b A

which can be graphically denoted as

A B

B A

satisfying the following hexagon identity :

Ab pB b Cq

pAbBq b C pB b Cq b A

pB b Aq b C B b pC b Aq

B b pAb Cq

σA,BbCαA,B,C

σA,BbIdC αB,C,A

αB,A,C IdB bσA,C

and such that σA,B “ σ´1
B,A.

Symmetric monoidal categories (SMC) have a sound and complete graphical calculus
where the wires are therefore allowed to cross themselves as if the diagrams where objects
living in a 4-dimensional space.
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Theorem 2.9 (Correctness of the graphical calculus for symmetric monoidal categories
(HV12)). A well-typed equation between morphisms in a symmetric monoidal category
follows from the axioms is and only if it holds in the graphical calculus up to four-
dimensional isotopy.

The leitmotif of this dissertation is certainly given by symmetric monoidal categories,
we will impose on them a last additional structure which is an abstract generalisation of
the usual concept of partial traces for linear maps. We now provide the definition of this
categorical structure taken from (Sel11):

Definition 2.10 (Right Trace). Let C be a monoisal category, a right trace is a family
functions:

TrXA,B : CpAbX,B bXq Ñ CpA,Bq

which are natural in A and B and dinatural in X. Satisfying the following three axioms:

• Strength: For all f : AbX Ñ B bX and g : C Ñ D we have that

g b TrXA,Bpfq “ TrXAbC,BbDpg b fq.

fg “ fg

• Vanishing I: For all f : Ab I Ñ B b I,

f “ TrIA,Bpfq.

f “ f

• Vanishing II For all f : AbX b Y Ñ B bX b Y ,

TrUA,BpTrVAbU,BbUpfqq “ TrUbVA,B pfq.

9



f “ f

We also explicitly state the meaning of naturality in A,B and dinaturality in X in
order to stress their intuitive graphical interpretation

Definition 2.11 (Naturality in A,B). For all f : A b U Ñ B b U , h : C Ñ A and
p : B Ñ D we have that

p ˝ TrUA,Bpfq ˝ h “ TrUC,Dpppb 1Uq ˝ f ˝ phb 1Uqq (1)

h

f

p

“

p

h

f (2)

Definition 2.12 (Dinaturality in X). For all f : A b X Ñ B b Y , h : X Ñ Y the
following equation holds:

TrXA,Bpf ˝ p1A b hq “ TrYA,Bpp1A b hq ˝ fq (3)

f

h
“

h

f
(4)

Definition 2.13 (symmetric traced category). A symmetric traced categroy is a sym-
metric monoidal category with a right trace Tr satisfying the symmetric yanking axiom:

TrXpσX , Xq “ IdX (5)

or graphically:

“

10



The category of finite-dimensional Hilbert spaces and linear maps will be denoted
by FdHilb, the composition of morphisms is given by matrix multiplication, the tensor
product is the usual tensor product of vector spaces. We will denote morphisms in this
category using the undoubled boxes

f g

The symmetric monoidal category that we will treat as a framework for quantum theory
is the category Mix (CL13), whose objects are finite dimensional Hilbert spaces and
whose morphisms are completely positive maps:

MixpHA,HBq :“ tf P LpHAq Ñ LpHBq | f is completely positive u

where the set of linear operators on H is denoted by LpHq. The morphisms of this
category will be denoted as doubled boxes. A justification for this use of notation is given
in (CK17; CHK14)

f g

The category Mix, contrary to FdHilb allows us to define a family ofdiscarding
morphisms JA : AÑ I for every object A satisfying the following properties (KHC17):

JAbB “ “ b “ JA b JB

and
JI “ “ IdI

Using this discarding map we can define the normalised subcategory of Mix, denoted by
MixJ. This is the category generated by processes obeying the causality principle:

f “

The principle is therefore a formal process theoretical version of the following concept:
“when the output of a process is discarded, then the process itself may also be discarded”
(KHC17) or alternatively: “the only influence a causal process has is on its output” (KS).

In (CD11) Coecke and Duncan proposed an alternative high-level language with a
powerful graphical calculus: the ZX-calculus. The calculus is now a widely used technique
to reason about qubits and quantum citcuits (CK17; CD13) and it has been shown not
only to be a rigorous replacement for the Hilbert space formalism but to have the same
deductive power (Bac16).

In the dissertation we are going to deal with models of time travel applied to finite
dimensional quantum systems, those systems can be always simulated in terms of 2-
dimensional qubits. We are therefore going to make use of the power of the ZX-calculus
to construct counterexamples. It is in fact quite easier to construct a quantum circuit
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satisfying a certain property if you can keep in mind the graphical transformations that
would be needed to prove it. We will not provide an introduction to the calculus, this
can be found in (CK17), however we would like to clarify certain notational aspects.

We will associate to the computational Z-basis t|0y , |1yu the white states

0 1

the X-basis states t|`y , |´yu will be denoted in grey, we therefore have that

|`y “ 0 |´y “
1

It is worth noticing that each state in one of the two basis can be written as a phase or
“spider” of the other color, therefore we have:

0
“

0

and:

1
“

π

and similarly for the X basis states. We depict Z spiders and X spiders (CK17) as
follows:

α α

. . . . . .

. . . . . .

using this graphical language we can represent the CNOT gate as:

CNOT “

control qubittarget qubit

d

the NOT gate, or the Pauli-X gate as

NOT “ π

The gate above applies a rotation of the Bloch sphere by π around the X axis sending
the state |0y to |1y and viceversa.

We will also make use of the classical diagram notation. Note that for formatting
reasons we have decided to stick to the standard formalism, quantum circuits in the
standard notation will be drawn from left to right. For ZX diagrams and other instances
of the diagrammatic calculus we instead used the alternative convention of drawing the
diagrams from bottom to top in line with the standard notation for spacetime diagrams
in relativity. This is a summary of the notation used within standard quantum circuit:

Hadamard gate H

12



Pauli-X gate (not) ‘

Fredking gate (swap)
ˆ

ˆ

controlled not
‚

‘

control swap

ˆ

‚

ˆ

13



3 A Brief Introduction to Time Travel Paradoxes

When thinking about time travel, it immediately comes to mind as something disturbingly
unphysical, often contradictory, meant to be exclusively relegated to the realm of science
fiction. Too often in natural sciences and in mathematics, our intuitions leads to a misuse
of the term impossible, labelling with it many phenomena on the ground of an apparent
inconsistency with our conscious experience of the world.

Philosophy however has not been afraid to touch and study the subject, for many
years metaphysics has been concerned with the notion of time, trying to reconcile it
with the everyday conscious experience. In (Was18) Wasserman distinguishes between
the notions of logical, technological, physical and metaphysical impossibility, reaching the
conclusion that the paradoxes that populate science fiction books are related to the notion
of a metaphysical impossibility as they imply a tension between the physical description
of the word and the metaphysics of subjective experience. This doesn’t make vain the
study of the subject from an inherently physical or even computational perspective. The
theory of general relativity itself is as widely accepted by the scientific community as it
is indigestible for metaphysicians. In particular, the all encompassing nature of quantum
mechanics has often allowed in the study of its foundations to break the adamant barriers
between the domains of physics and metaphysics.

Looking at the time travel paradoxes from a macroscopical, human perspective they
often invoke notions of free will or the problem of identity, it would be foolish and
useless to dig in the depths of quantum theory in order to speak about those inherently
philosophical questions. If we take a rigorous information theoretical approach many of
those puzzling metaphysical paradoxes cease to exist or to be well defined problem at
all. The entire literature on quantum solution to time travel paradoxes focuses on two
main categories which continue to reveal formal inconsistencies between the evolution of
quantum states in a chronology-violating setting and standard quantum theory. In this
chapter we describe and analyse those two classes and describe the solution provided by
David Deutsch in 1991 (Deu91) and Seth Lloyd in 2010 (LMG`11; LMGP`11).

We warn the reader that all those paradoxes can potentially all be described by charm-
ing science fiction scenarios, but to appreciate their fundamentality and generality we will
approach them in their simplified circuit form. Following the conventions described in
(Deu91) we will consider circuits in spacetime, bounded by an initial Si and final Sf
Cauchy hypersurface. Moreover, in accordance to (Deu91) we will denote the region of
the spacetime containing the closed time-like curve chronology-violating (CV) and its
complement will be denoted as a chronology-respecting (CR) region. The requirement on
the existence of a chronology-respecting region assumes that we can talk about an am-
bient spacetime, containing the CTCs and we can therefore define an asymptotic notion
of unambiguous past and unambiguous future (Deu91). Note that a paradox may arise
only if there is the possibility of an interaction between a chronology-respecting and a
chronology-violating region, a CR-CV interaction.

During the development and analysis of Einstein’s theory of general relativity, there
have been discoveries of solutions to its equations containing closed time-like curves (G4̈9;
vS38). As such CTC’s are not in contrast with the rules of general relativity. However,
many physicists still reject the idea of the physical possibility of time travel. Most
notoriously, Stephen Hawkings (Haw92) is a firm believer on the chronology-respecting
conjecture, i.e that the law of physics must act in order to prevent the possibility of
existence of chronology-violating regions. In this dissertation we will assume the existence
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of such regions and assume that the CV-CR interaction is allowed. We will not discuss
the physicality of this assumption, we therefore warn the reader that this is an open
physical debate.

3.1 The Grandfather Paradox

Often journeys into the depths of time travel start with the grandfather paradox. The
standard description of the paradox is the following:

Example 3.1 (The Grandfather Paradox). A time traveller enters a wormhole
at a location of the spacetime A, pops out at the other mouth of the wormhole
in a spacetime region associated with its own grandfather’s past and somehow
menages to kill his grandfather before the conception of his father or mother and
thus preventing his own birth.

We have clearly invoked notions that are unsuitable for a rigorous analysis, if we
forget about grandchildren and grandfather, the paradox can be rephrased using physical
system that are conceptually simpler and more amenable to an information theoretical
analysis: bits, gates and circuits.

Consider the following classical circuit

‘

‚ ˆ

ˆ

Initial conditions, Si

Output, Sf

Bit emerging from the past

(6)

the initial condition is given by the value assigned to the bit on the open end on the left
side of the circuit. Assume the initial bit is set to be equal to 1, it then interacts via a
CNOT with a control bit emerging from the future, afterward the two bits exchange their
values before the chronology-violating bit “returns” to the CTC. If we follow the closed
path made by the information, we see that it makes a closed loop in spacetime.

The bit initially set to be equal to 1 is therefore sent in the past to flip its own value
by activating the CNOT. This is not exactly the grandfather paradox but there is a clear
logical analogy. The situation becomes paradoxical if we impose the requirement that
the state of a bit entering the CTC must be equal to the state of the bit leaving the
CTC, if the classical bit emerges from the CTC in the state 1 then it menages to kill
itself, flipping the value of its past version to 0, if the classical bit emerges in the state
0 it doesn’t change the value of the initial bit, which therefore enters the CTC in the
state 1. Both cases are in contradiction with the consistency condition mentioned above.
However we note that not all the initial values are contradictory, if we start with a qubit
in the state 0, independently on the value of the classical bit emerging from the future
we get a consistent event. We will address this phenomenon in the next subsection.

Of course there are many diagrams which present the same pathological behaviour. A
contradiction is also obtained when considering the following simpler diagram, in partic-
ular this is the circuit that Lloyd (LMGP`11) uses to describe the grandfather paradox.
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‘ (7)

The main difference here is that the diagram leads to a contradictory evolution inde-
pendently on the state of the chronology-respecting bit, any of the classically admissible
states t0, 1u entails a contradiction.

3.2 The Unwritten Poem

Consider again the Circuit (6), we have shown that if the bit enters in the state 1 it
always leads to a contradictory timeline. Feeding the circuit with the input state ρA “ 0
is however to certain extents even more worrying; when the bit initialised at 0 meets
it’s future self ρB travelling to the past, both values ρB “ 0 and ρB “ 1 are allowed
and entirely consistent. The situation therefore may appear not to be paradoxical at
all, as such there is no logical inconsistency. What is however the principle that made
nature decide in which state to set the bit emerging from the mouth of the CTC? Any
solution would seem to emerge arbitrarily and independently from the initial data defined
on the Cauchy surface, we are witnessing a case of what Deutsch (Deu91) describes as a
“knowledge creation paradox”.

Usually in the literature the unwritten paradox is explained using the following circuit
(LMG`11; All14):

‘

‚

‘

‚|0y

|ψy
(8)

The diagram faithfully reproduces the following story, which may help us to grasp the
“paradoxical” nature of those logically consistent solutions:

Example 3.2 (The Unwritten Poem). Suppose that A meets a charming time-
traveller B who uninhibited by too much liquor loudly declaims a marvellous poem.
Unaware of the origin of the mysterious stranger, A becames impressed by his lyrical
virtues and decides to anonymously publish the poem. At a later time, the past
version of B – Bold – reads the poem on a book written by A containing the poem
just before entering the mouth of the CTC.

‘

‚

‘

‚|0y

|ψy

A hears the poem Bold reads the poem before travelling back in time

The story is therefore logically consistent, what has happened is that the interaction with
a CTC created a cyclic causal relationship, there is information (in our case the poem)
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which arises from nowhere, without a well defined beginning, a creation which is confined
to a circular and closed chain of events causally connected.

The information flowing in closed time-like curve without an apparent beginning has
been extensively described in the work by Novikov and Lossev, in (LN92) they describe
this phenomenon denoting it as a Jinn of the second type. In (Deu91) the author is
particularly worried by the case described by our story defining it as violation of the evo-
lutionary principle, which he informally states in the following statement: “Knowledge
comes into existence only by evolutionary processes” (Deu91).

A satisfactory theory describing the way information behaves if we are allowing inter-
action with closed time-like regions of the spacetime would have to provide an explanation
which minimises nature’s ability to impose exotic and creative fixed points in such sce-
narios.

As David Deutsch explains in (Deu91), there is an extremely fascinating reason to
believe that there are only those two distinct classes of “paradoxical behaviours”. The
existence of closed time-like curves in fact, creates regions of the spacetime which are
both under-specified and over-specified by the initial conditions. Under-specified because
for certain initial data there is still some nonitial supplementary data to be chosen, over-
specified as certain initial solutions are retrospectively prohibited. In the next section
we discuss a possible solution provided by Deutsch. We will see how shifting the domain
from quantum to classical information gives more flexibility and allows us to find solutions
which are always self-consistent.

4 Deutsch Closed Time-like Curves

4.1 Description of the D-CTC Model

Deutsch in the seminal paper (Deu91) started to use an informational theoretical approach
to deal with the interaction with CTCs, this approach is clearly confined to the description
of finite quantum systems which can always be simulated by qubits (NBD`02). Deutsch
starts by assuming that we are dealing only with the internal finite degrees of freedom
of particles and that the carrier particles can be represented as localised wavepackets
with well defined worldlines. Deutsch therefore neglects the dynamics of the particles
which is assumed to be classical and given. It may seems limiting to consider situations
involving this class of classical particles with finite internal degrees of freedom but Deutsch
justifies this choice by saying that the class of such models can simulate and represent
the behaviour of any finite quantum system.

In (Deu91) the D-CTC protocol aims at describing situations where there is a single
and localised interaction between chronology-respecting and chronology-violating qubits.
We can always rewrite any physical situation in the following way: no particle actually
enters in the closed time-like curve, information gets exchanged in a localised region of
the spacetime. The network has therefore a well defined output and a well defined input
lying two separate space-like hypersurfaces Si and Sf . Moreover we can always enlarge
the interaction such that the local evolution of the chronology-violating and chronology
preserving qubits will by unitary. The situation can therefore be schematically described
as follows, where the evolution is represented by a reversible unitary gate applied in the
area denoted by the black rectangle:
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. . .

. . .

ρCR

. . .

Unambiguous future

Unambiguous past

(9)

In the digram above ρCR represents the state of the chronology-respecting qubits and the
closed curves on the right represents the chronology-violating qubits ρCV . We assume
that the unambiguous time flows from the bottom to the top. Finding a solution to the
paradoxes is therefore equivalent to prescribing a recipe which assigns a consistent state
to the chronology-violating qubits for any given unitary interaction and any initial state
of the CR the qubits define an unambiguous dynamic for the inputs ρCR.

From here the generalisation to the process theoretical and informational approach
to quantum theory is straightforward, we simply denote the region of interaction as a
blackbox and the separate carriers are just representing the “wires” connecting those
boxes. Such a digram is in fact no more than a quantum circuit and nothing prevents us
to rewrite it using the diagrammatic calculus for quantum circuit described in (CD13), in
fact we will see that finding fixed point and determining the evolution of the CR region,
which is an essential part of the method that we are about to describe turns out to be
particularly intuitive when rewritten in graphical terms. We will denote the graphical
description of the interaction as follows:

U

ρ

(10)

The construction starts by imposing a consistency that is a straightforward generalisation
of the kinematical consistency condition on classical bits, i.e imposing that the state of
the bit entering the CTC is equal to the state of the bit leaving the CTC. We want
that the overall evolution leaves the state in the CTC unchanged, we therefore require a
normalised fixed point such that:

τ “ TrCRrU
:
pρb τqU s

Where the partial trace is taken over the subspaces of the chronology respecting systems.
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Graphically:

ρ

U

τ

“
τ

(11)

The evolution of the state ρCR is then given tracing out the content of the CTC:

ρCR ÞÑ TrCV rU
:
pρCR b τqU s (12)

ρ
ÞÑ

ρ

U

τ

(13)

The state τ is therefore a fixed point of the superoperator given by

Sp‹q “ TrCRrU
:
pρb ‹qU s

Deutsch proved analytically the existence of at least one fixed point for each such opera-
tors, we however underline that this is in fact a corollary of a well known result:

Theorem 4.1 (Existence of fixed points). Let Ψ be a quantum operation, a completely
positive trace preserving map acting on an N dimensional system, therefore there exists
state such that Ψpρq “ ρ.

Proof. This is an immediate consequence of the Brouwer fixed point theorem,

Theorem 4.2 (Brouwer fixed-point theorem). Let K be a convex compact subset of
Euclidean space. Then every continuous function f : K Ñ K has a fixed point.

It is clearly that the set of density operators with trace equals to 1 is convex. A completely
positive trace preserving map sends the set of normalised density operators to itself and
must be continuous by definition.

We will now see how this consistency condition provides a coherent quantum mechan-
ical solution to the two different paradoxes that we have described above

4.1.1 The Quantum Grandfather

Let us reconsider the circuit (6) but now in its quantum version, the generalised CNOT
gate is therefore given by the unitary

CNOT “

control qubittarget qubit

d
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where the choice of basis and form a complementary pair and d is the dimension of
the Hilbert space (CK17, p. 612). In our case we are considering qubits, two dimensional
quantum systems. The complementary basis are given by Z( ) and X( ) and d “ 2.
In the CNOT gate above the Hilbert space of the control bit is on the right hand side
and the target is on the left. Circuit (6) can therefore be reconstructed by setting the
unitary map to be equal to U “ SWAP ˝ CNOT . Suppose that we are evaluating the
circuit for the density matrix ρCR “ |1y x1|; The normalised state |1y can be written in
the vector-state formalism as a superposition of the elements of the X basis,

|1y “ 1{
?

2 |`y ´ 1{
?

2 |´y

“
1
?

2

`

|`y ` eiπ |´y
˘

since we also have that |0y “ 1{
?

2 |`y ` 1{
?

2 |´y, we can write

0
“

0

1

2
“

1

2
and

π

1

2
“

1
(14)

therefore we have that:

1

“

π

2

We can now recreate the contradiction for the classical paradox, assume that the density
matrix entering the CTC needs to be equal to the density matrix leaving the CTC. Let
|1y x1| be the quantum state of the system travelling in the CTC then:
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this is a contradiction as the qubit enters the CTC in the state represented by the density
matrix |0y x0| and it exits the CTC with density matrix |1y x1|. Similarly for τ “ |0y x0|
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(16)

However the formalism of density matrices gives rise to possible consistent quantum
stories. Let us apply the condition imposed by Deutsch, suppose we want to find the
fixed point τ , we can perform the following diagrammatic calculations to show that it
must satisfy:

1

“

τ

π

τ

τ
“

2

(17)

The state ρ has therefore to be invariant under decoherence and the subsequent action
of the Pauli-X gate. The only state satisfying those conditions is given by the maximally
mixed density matrix:

ρ “
1

2
|0y x0| `

1

2
|1y x1|

this is because decoherence would send any pure state which is not either |1y x1| or |0y x0|
to a mixed state and the action of the Pauli-X gate sends |1y x1| to |0y x0| and viceversa,
imposing that the state must be an equal mixture of the two. The solution is this case
unique, to calculate the evolution of the chronology-respecting qubit we need to apply
the unitary on the density matrix

ρCR b p
1

2
|0y x0| `

1

2
|1y x1|q “

ρ

and trace out the Hilbert spaces of the chronology-violating qubit. To show the solution
of the paradox let

ρ
“

1
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then we have

1

“ “

2

“

π

note that we can therefore observe a first peculiarity of the model: pure states can be sent
to mixed states and the evolution is therefore certainly not unitary. In standard Quantum
Mechanics, systems that are initially in a pure state remain pure when evolving in isolation
from everything else, moreover one can always find a larger pure system containing any
mixed state as a subsystem (Deu91). Could it therefore be possible that the theory of
D-CTC allows to transform a mixed state into a pure one and by this reduce the entropy
of the Universe contradicting the laws of thermodynamics? An answer to this question
has been provided by Deutsch (Deu91), we present the simple proof provided in that
paper:

Theorem 4.3. Let ρCR be the input to the region which interacts with a CTC undergoing
the evolution

ρCR ÞÑ ρ1CR

then SpρCRq ď Spρ1CRq.

Proof. This will guarantee that for closed systems the entropy always increases or stays
constant. To prove this we will need two well known lemmas about entropy (AL70):

Lemma 4.4. Let U be a unitary transformation, therefore:

SpUρU :q “ Spρq

Lemma 4.5 (Subadditivity of entropy, (AL70)). Let ρAB be the density matrix of a sys-
tem with two subsystems with density matrices ρA and ρB and SpρAq be the von Neumann
entropy of the quantum mechanical system ρA, then the entropy satisfies subadditivity:

SpρABq ď SpρAq ` SpρBq (18)

if ρAB “ ρA b ρB then
SpρABq “ SpρAq ` SpρBq

Consider the case when the chronology-respecting qubit ρCR evolves interacting with a
CTC into the density matrix ρ1CR.

ρCR ÞÑ ρ1CR

The consistency condition and the definition of the evolution imply that

TrCV rUpρCR b τqU
:
s “ ρ1CR

and
TrCRrUpρCR b τqU

:
s “ τ
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According to Lemma (4.5) we get that

SpUpρCR b τqU
:
q ď Spρ1CRq ` Spτq. (19)

However, before interacting with U the two systems are independent by assumption and
the unitary evolution does not increase entropy, Lemma (4.5) and Lemma (4.4) imply
that

SpUpρCR b τqU
:
q “ SpρCR b τq “ SpρCRq ` Spτq (20)

therefore from (19) and (20) we obtain that

SpρCRq ` Spτq ď Spρ1CRq ` Spτq

SpρCRq ď Spρ1CRq

We derive the following observation as a simple corollary to the theorem:

Corollary 4.6. The evolution described by the D-CTC model cannot map mixed state
into pure states.

Proof. Follows directly from the Theorem (4.3) and the fact that ρ is pure if and only if
Spρq “ 0.

4.1.2 The Unwritten Poem of Maximal Entropy

If we set the initial value to be equal to |0y x0| b |0y x0|, the fixed point must satisfy the
equation:

“

0 τ τ

“

τ

“

τ
0

2

2

we are therefore looking to a fixed point which is invariant under decoherence with respect
to the computational basis, this is given by the mixed states with density matrix

τ “ α |0y x0| ` p1´ αq |1y x1|q

For 0 ď α ď 1, we see that there is an entire continuous spectrum of possible fixed points;
in order to define a deterministic dynamic we need to introduce a criterion that allows to
uniquely select the CV state that leads to the evolution. Deutsch introduces the following
maximum entropy rule:

The state of the supplementary data (i.e., data required elsewhere than at the past
boundary of spacetime for fixing a global solution of the dynamical equations) is the state
of greatest entropy compatible with the initial data.

Going back to the “unwritten poem circuit”, the state of maximal entropy is given by
setting α “ p1{2q1 and the evolution of the chronology-respecting qubit is then expressed
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as:

00
1

2

2

2

“

1

2

“
1

2
(21)

We have seen that two classes of paradoxes can arise, the physical process can to be
both underdetermined –unwritten poem– and overdetermined –grandfather paradox– by
the initial data. In the case of the grandfather paradox the initial state ρ “ |1y x1| ex-
cluded any classical solutions but allowed the solution to be a quantum mechanical ‘ontic
mixture’. In the second paradox, the physical process necessitates additional data, we
therefore require nature itself to provide this missing data in a way that is as much com-
patible as possible with an exclusive knowledge of the initial conditions. We have shown
how the D-CTC model works, now we present some of its peculiarities and drawbacks.

4.2 Properties of the D-CTC model

The first question that one may want to answer is wether the new maps can be define
inside the already existent theory, i.e. if there exists trace preserving completely pos-
itive maps that can substitute the effect of a chronology-violating region on ρCR. We
now see that in fact this is in fact far from being the case, in particular we provide ex-
amples showing that the Deutsch’s model can produce maps which are non-linear and
discontinuous.

4.2.1 Nonlinearity and Discontinuity

The non linearity of the Deutsch’s model is hinted at from its definition, we see that for
every chronology-respecting input ρCR the receipt produces a completely positive trace
preserving operator DpρCRq that gets applied to ρCR, the output of the interaction, given
by Equation (12) clearly depends on the input ρCR but there is also another degree of
dependency given by the influence of the fixed point τpρCRq.

We now provide an example of graphical calculations witnessing nonlinearity. Con-
sider the quantum circuit

‚ ˆ

‘ ˆ

(22)

To find the fixed point:

τ
“

τ1

2

“

τπ

“
1

4
π

τπ

“
1

τ

(23)
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and the fixed point is therefore given by τ “ |1y x1|. Similarly for ρ “ |0y x0|:

τ0

“

0

τ0

“

τ

0
(24)

Therefore the respective evolutions are given by

1
ÞÑ

11

“
π π

“
0

(25)

0
ÞÑ

00

“

00

“
0

(26)

(27)

however if we consider adding an arbitrary small amount of noise to the input state
ρ “ |0y x0|

ρ1 “
ε

2
1` p1´ εq |0y x0| “ p1´

ε

2
q |0y x0| `

ε

2
|1y x1|

the fixed point has to satisfy the equation:

τ “ p1´
ε

2
q

1

τ

`
ε

2

0

τ

“ p1´
ε

2
q

1
`
ε

2 0

the evolution of ρ1 is the equal to:

ρ1 ÞÑ p1´
ε

2
q
τ
`
ε

2
τ

π

“ εp1´
ε

2
q

1
` p1´ ε`

ε2

2
q

0
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We see that the state ρ1 evolves into

εp1´
ε

2
q |1y x1| ` p1´ ε`

ε2

2
q |0y x0| ‰ |0y x0|

for all ε ą 0 and the map is therefore nonlinear. What about continuity? In this case we
have that for εÑ 0

εp1´
ε

2
q |1y x1| ` p1´ ε`

ε2

2
q |0y x0| Ñ |0y x0|

and for εÑ 1

εp1´
ε

2
q |1y x1| ` p1´ ε`

ε2

2
q |0y x0| Ñ

1

2

in this case this is the same behaviour expected from a continuous map. In order to
demonstrate discontinuity we therefore have to appeal to a different example. The ex-
istence of discontinuous solutions has already been shown in (DFI10), we provide the
example of a different circuit which is witnessing the discontinuity.

‘

‚

‚

ˆ

ˆ

CR1

CR2

CV

(28)

The circuit above has three carriers and we denote the gate on the left to be a controlled
SWAP, a quantum gate swapping the qubits on CR2 and CV if the control qubit CR1 is
in the state |1y x1|. Consider the first chronology-respecting qubit CR1 to be initially in
the state |0y x0| while the second qubit CR2 is allowed to be in any state ρ. Rewriting
the circuit using the graphical calculus we see that it can be simplified to:

ρ

(29)

the fixed point therefore satisfies the following equation

τ
“

ρ τ

“

τ

(30)

and its therefore invariant under decoherence, to get the state with maximal entropy, we
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set it to be the maximally mixed state:

τ
“

1

2
(31)

the evolution of ρCR “ |0y x0| b ρ is therefore given by:

0 ρ
ÞÑ

1

2

ρ

“
1

2

ρ

(32)

We now calculate the evolution and the fixed point given by using the state ρCR “

|1y x1| b ρ, in this case the fixed point is always equal to the decoherence of ρ:

τ
“

ρ τ

π

“

ρ

τ

“

ρ

(33)

therefore:

1 ρ
ÞÑ

ρ ρ

π

“

π

ρρ

(34)

we now consider the evolution of the state

ρCR “ rp1´ εq |0y x0| ` ε |1y x1|s b ρ

τ
“ p1´ εq

τ

` ε

ρ

τ

(35)

To solve this equation we first notice that such a fixed point would be invariant under
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decoherence:

τ

“ p1´ εq

τ

` ε

ρ

“ p1´ εq

τ

` ε

ρ

τ

“
τ

(36)

We can rewrite Equation (35) considering the invariance under decoherence to get:

τ
“ p1´ εq

τ
` ε

ρ

(37)

ε
τ
“ ε

ρ

(38)

τ
“

ρ

(39)

The first hint of a discontinuous behaviour is in the fact that an arbitrary small influence
of the state |1y x1|bρ forces us to consider a completely different τ . With this fixed point
we can calculate the evolution of the state ρCR for ε in the range 0 ă ε ă 1 which is given
by:

p1´ εq

ρ ρ

` ε
π

ρρ

(40)

If we let ε go to 0 we see that the limiting value of the evolution is therefore:

ρ ρ

“

ρρ

which, for a density matrix representing a state which is not mutually unbiased to ,
is different from the evolution of the limiting state ρCR Ñ |0y x0| b ρ given by Equation
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(32).

4.2.2 Breaking entanglement

Deutsch model is originally defined on the unitary evolution of system, it is therefore
defined for closed systems. If we consider the scenario where we have two entangled
qubits A and B forming a Bell state:

ρAB “
1

2
|00y x00| `

1

2
|11y x11| `

1

2
|11y x00| `

1

2
|00y x11|

the states of the single qubit B (see the discussion at the beginning of Section (2.1)) is
given by

TrA

ˆ

1

2
|00y x00| `

1

2
|11y x11| `

1

2
|11y x00| `

1

2
|00y x11|

˙

“
1

2
|0y x0| `

1

2
|1y x1|

The single qubits are therefore mixed states, the evolution of one of the entangled sub-
systems is a marginalisation of a global unitary evolution.

Suppose that ρAB is the input to the following quantum circuit:

ˆ

ˆ

CR

CV

(41)

The gate on which we apply the consistency condition is given by the dotted rectangle.
Using the graphical calculus, we can find the fixed point by marginalising both chronology
preserving qubits:

τ
“

τ

“

τ

“

τ

“

The fixed point is therefore given by the maximally mixed τ “ p1{2q1. In this case the
evolution of the Bell state breaks the entanglement.

1

2
ÞÑ (42)

We can more generally show that in this way entanglement is broken for all bipartite
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states:

Ψ

“

Ψ

Ψ

“

Ψ Ψ

In the presence of CTC we can therefore realise the nonlinear map entanglement breaking
map:

ρAB ÞÑ TrApρABq b TrBpρABq

The D-CTCs allow to send a pure state into a mixed one considering the entire evolution
of the closed system; we have already presented the proof in (Deu91) to show that the
opposite unphysical behaviour is in fact impossible. However this picture still runs, as
noticed by Bennet (BLSS09) in contradiction with the principle of the “church of the
larger Hilbert space”, the idea that it is always possible to “purify” a mixed state in
the universe. In our case we produce mixed states which are not subsystems of pure
states. This an upsetting consequence, however Bennet et al. in (BLSS09) explain how
one can recover the principle by invoking, Deutsch’ ontological belief on the Everettian
multiverse.

To understand Bennet’s argument we have to present Deutsch’s description in terms
of multiple universes, according to Deutsch the mixed states represents ensembles of
identically prepared states across different branches of the multiverse. Let us see what
are the implication of this ontological assumption, consider the following circuit:

‘ (43)

It rapresents a qubit travelling back in time to negate itself, Deutsch’s consistency condi-
tion resolves the contradiction by prescribing the CV qubit to be in the maximally mixed
state. In the multiverse prescription, does the qubit manage to negate itself? To answer
this question we can try to actually observe the value of the chronology-violating qubit
before and after the action of the CNOT. We modify the circuit accordingly to obtain

‘
‘
‚

‘

‚

|0y

|0y
(44)

The presence of the CNOTs do not change the value of the fixed point as the addition
of the new gates only add additional decohering maps in the process of finding the fixed
point and therefore the CNOT gates do not significantly alter the picture; the chronology-
violating qubit is still in the maximally mixed state. We now calculate the state of the
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qubits which measure the effect of the gate using the graphical calculus:

0 0

π

1

2

“

π

1

2 (45)

The obtained quantum state is therefore the mixed state

ρ1CR “
1

2
|01y x01| `

1

2
|10y x10|

The two measurements are anticorrelated, if measure one qubit to be |0y we will be in
the state |1y and viceversa. It appears that the qubit always manages to negate itself,
what happend therefore to the contradiction? A possible interpretation can be derived
using the multiverse description given by Deutsch, in this case the maximally mixed state
represents the fact that in half of the universes the qubit has value |1y and in the other half
it has value |0y. The consistency condition is therefore applied to the global state of this
ensemble over all universes What happens in the example of Diagram (43) is that the CV

. . . . . .

Ensamble of identically prepared particles

Figure 2: Closed time-like curves allow different branches of the multiverse to interact.

qubit is not emerging from the future of its current universe, it emerges from the future
of a different branch of the multiverse, menages to negate itself disappears into another
branch. The circular movement of a closed time-like curve gets therefore interpreted to
represent a way to communicate between different universes. In Deutsch’ words, “closed
time-like lines would provide gateways between Everett universes” (Deu91).

After the interaction has occurred, the chronology-violating system remains in the
same overall state but the particular state in each universe gets always swapped by the
NOT gate before disappearing by entering the future mouth of the CTC.

We underline that Figure (2) can be misleading as Deutsch also specifies that the time
travelling information never encounters barriers between the different universes, those dis-
tinct realities “form part of a larger object which has yet to be given a proper geometrical
description but which, according to quantum theory, is the real arena in which things
happen”. It is an essential simplification to depict the multiple branches of the universe
to be two-dimensional surfaces topologically disconnected.

According to this interpretation, what happens if we make part of an entangled EPR
pair interact with a CTC? If we stick to the Deutsch multiple universes interpretation
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each half of the EPR state stays entangled with its other half but accesses a different
branch of the multiverse. In each separated universe a pure state evolves into a maximally
mixed state because we only have access to a part of the entangled pair. The purification
can be preserved if we take enlarge the system across the multiple universes and not
within a single universe.

A CTC can break the correlations with the enviroment, what happens if we send a pure
bipartite state which is uncorrelated with the environment inside a CTC?

Ψ

“

τ

Ψ

“

τ

Recall that the find the fixed point τ we have to marginalise the chronology-respecting
region:

τ
“

Ψ

and the fixed point must therefore be the bipartite state itself. We observe that entan-
glement is preserved inside the CTC but it is broken between the system entering the
CTC and the rest of the universe.

4.2.3 Violation of No-Cloning?

No-cloning is one of the most fundamental results in quantum information theory, it
points at a very profound difference between the behaviour of classical and quantum
information. In works by Abramsky and Coecke (Abr09; CK17) it is shown that an
equivalent form of the theorem generalises for a wide class of process theories, in (Abr09)
the author explains that no-cloning is in fact incompatible with basic structural features
of quantum entanglement.

The classical formulation of the theorem states that it is impossible to provide a
unitary operation that would take unknown pure quantum states to copies of themselves.
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This can be eventually generalised to mixed states and CPTP maps entailing a stronger
result, the no-broadcasting theorem which according to (CK17) discriminates between
classical probabilistic theories and quantum theories.

Definition 4.7 (broadcasting). A broadcaster is a map βA that takes all states of the
form ρ : CÑ A to a state ρ1 : CÑ Ab A1 such that TrApρ

1q “ ρ and TrA1pρ1q “ ρ.

Clearly the non-broadcasting theorem implies no-cloning. Even though the classical
proof of the no-cloning theorem provided in textbooks is an elementary result about
Hilbert spaces, the categorical perspective on quantum mechanics shed light on the the
physical meaning of the theorem. In (Abr09) the author provides a more general no-
cloning principle which underlines the impossibility of combining basic properties of en-
tanglement with the notion of cloning, cloning itself is prohibited by a deeper structural
property of entanglement. Does the D-CTC model allow for the possibility of cloning
arbitrary states? A standard proof of the no-cloning theorem would clearly not apply in
this case as we are not confined to linear maps. In fact we will see that D-CTCs give us
some more flexibility regarding the ability of cloning.

The no-cloning theorem is not a peculiarity of quantum data, it can be applied also
to a theory with the states representing finite dimensional probability distribution and
maps between states given by finite stochastic matrices. To avoid confusions with the ket
notation we introduce a way to describe probability distributions of classical states

Definition 4.8. Let tδiui a set of complete classical states, then a probability distribution
over the states is denoted as

ÿ

j

pjδj

where
ÿ

j

pj “ 1

Consider the following gedankenexperiment: suppose that we have a bag of unknown
envelopes containing either two blue δb or two red cards δr. We randomly pick one, the
general state of an envelope can now by denoted by

ρE “ pbδb ` prδr

where pb and pr represent respectively the ration of the envelopes containing blue cards
and the envelopes containing red cards. This means that the best description of the
contents of an envelope is described by a statistical mixture of pure states. The act of
preparing a state is therefore equivalent to randomly select an envelope from the bag.

We can open the envelope, take one of the two card without looking at its colour,
reseal it and create another envelope ρE1 “ pbδb ` prδr which has the same statistics of
ρE however the joint state of ρEE1 ‰ ρE b ρE1 . In fact

ρEE1 “ pbδbδb ` prδrδr ‰ ppbδb ` prδrqppbδb ` prδrq “ ρE b ρE1

The system of the two envelopes, a statistical mixture describing the possible colours
of the cards contained in the two envelopes is now “entangled”, the knowledge of the
content of one of the envelopes implies knowledge about the colour of the other one. We
heaven’t therefore managed to copy the state of the envelope, we haven’t created two
different envelopes with the same independent statistic but we managed to broadcast the
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state of the system. Destroying either of the envelops would leave us with a statistically
identical copy of the original one.

A quantum mixed state is a quantum encoding of a probability distribution, such a
state is obtained by performing a quantum encoding, with respect to a particular ONB,
of a probabilistic distribution, in accordance to the graphical calculus we denote such a
state as:

δi

(46)

Where the classical states are now described by the thin-wire notation in accordance to
(CK17):

δi “ δi

For example, the maximally mixed state is obtained encoding the discrete uniform distri-
bution on a qubit using an arbitrary basis. We will prove that the D-CTC model allows to
copy those unknown probabilistic distributions encoded as quantum states provided that
we know which was the ONB used to encode it. The result is an unavoidable consequence
of the fact that such states can be first broadcasted and then, using the entanglement
breaking map, we can break the correlation:

Theorem 4.9. We say that ρ is invariant under -decoherence if for a fixed choice of
basis :

ρ
“

ρ

There exists a a map ∆ which uniformly clones all the states ρ that are invariant under
decoherence.

Proof. First we note that there exists a map

β “

β “
ÿ

i

|iy |iy xi|

which is a broadcasting map for the state ρ:

ρ
“

ρ
“

ρ

If we then apply the entanglement breaking map:

ρ

∆
“

ρ ρ
“

ρ ρ
(47)
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So there exists maps cloning entire families of states which cannot be normally uni-
formly cloned in quantum theories and in theories representing classical probabilistic
mixing. What about the cloning of an arbitrary state? In the literature there is a general
confusion in assessing the cloning properties of the Deutsch model. To clear the fog we
want a cloner which provides two copies of a given state ρ in the chronology-respecting
part of the spacetime, unconstrained by additional consistency condition and that can e
freely reused and manipulated. We provide the standard definition of cloning for pure
quantum states:

Definition 4.10 (Cloning map). In (NC11, p. 532) cloning is defined to be the a unitary
evolution which overwrites an ancillary state |sy with a perfect copy of the state pure
state |ψy:

|ψy b |sy ÞÑ |ψy b |ψy (48)

In the paper by A. Brun et al. (BWW13) it is argued that the fact itself of sending a
state inside an open CTC can be seen as a cloner, however they also specify that “the N
in the CTC systems are not available after this system enter in the future mouth of the
wormhole”. One could for example naively consider the following circuit to be a cloner:

ρ N

The fixed point is uniquely given by ρbN , the circuit therefore creates N virtual copies
of the state ρ, however they are merely virtual, they disappear after the interaction has
taken place and this is not in accordance to definition of cloning. In the same paper how-
ever, they point at a solution which generalises the method to clone discrete probability
distribution that we have described earlier. Another way to copy a quantum state is to
perform a complete state tomography, i.e to completely identify a state by performing
measurements (NC11, p. 389), is it possible to access and extract some information about
the virtual clones? We know that the fixed point itself depends on the applied map, we
therefore have to be careful to prepare the interaction in a way that doesn’t disturb too
much the chronology-violating qubits. One could for example try to perform multiple
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measurements of ρ by simply performing a series of CNOTs:

ρ N

0 0 0 0

“

ρ N

However the CNOTS affect the selection of the fixed point, which is now given by ρ1bN

where ρ1 is
ÿ

j

Trr|jy xj| ρ |jy xj|s |jy xj| “
ÿ

j

xj| ρ |jy |jy xj|

where in the case of qubits t|jyuj is the Z basis, t|0y , |1yu. The state gets decohered with
respect to this ONB. Substituting ρ1:

ρ

0 0

ρ

00

ρ ρ

“

ρρ ρ ρ

The ancillary bits became copies of the decohered version of ρ1, they can be used to
tomograph the state. However in reading off the state of a decohered version we still loose
a lot of information about ρ. In the work by Brun et al. (BWW13) they appealing to
informationally complete measurements (BWW13; FSC05), those are measurements for
which “the probability of the outcomes are in one-to-one correspondence with a classical
density operator description of a quantum state”(BWW13).

This is a CPTP map which maps the state ρ in a mixture of possible outcomes of the
informationally complete measurement.

ρ ÞÑ
d´1
ÿ

x“0

TrrMxρs |xy xx| :“ ρ1

This state is clearly invariant to decoherence with respect to the basis t|xy xx|ud´1
x“0, we

can therefore replace the CNOT used above with a d dimensional generalisation of such
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a gate and a large number of CV qubit to estimate arbitrarily the state ρ1 and thus to
completely determine ρ. Once we determine the statistics with arbitrary precision of ρ1

–we suppose we can copy arbitrary many versions of the outcome using the CTC– we can
reproduce as many approximate copies of ρ as we like.

While we can show that we can produce clones with arbitrary fidelity increasing
the dimension of the chronology-violating space, the question whether there exists a a
circuit rapresenting a CR-CV interaction which is an exact cloner has, to the best of our
knowledge, not been answered. There is a published paper claiming that perfect cloning
of an arbitrary state is possible with finite resources (KCP`18), we however underline
that their results are based on a misconception of the consistency condition, they assume
that once the consistency condition determine the CTC states we have afterwards the
freedom to apply additional unitary transformation on the CTC state as long as we
“assume that the Deutsch condition has to be applied every time we consider a dynamics
including a CTC.” (KCP`18). The consistency condition has to be applied considering
the entire interaction between the CR and CV qubits only once. After that the “virtual”
content of the CTC is not anymore available. It is useful to think about the content of
the CTC as something that can only be instrumental in selecting the TPCP map leading
to a consistent evolution of the input throughout the entire circuit.
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5 Postselected Closed Time-like Curves

One of the main reactions to the various problems posed by the D-CTC model was the
proposal of alternative descriptions of the CV-CR interaction. Seth Lloyd in (LMG`11)
proposes a model which is based on postselection. The concept of postselection refers to
the ability to deterministically force the outcome of a particular experiment.

A fundamental asymmetry of quantum theory is that preparations are deterministic
while tests are of an inherently probabilistic nature, reversing the arrow of time trivi-
alises any causal theory as shown in (CGS17). The idea of introducing post-selection is
coeherent with the fact that closed time-like curves may require to break this fundamental
asymmetry at least locally.

Even though the model is normally attributed to Lloyd, the idea of using a teleportation-
like protocol to simulate circuits with backward-in-time connections should be attributed
by Svetlichny (Sve11), inspired by the graphical treatment of quantum protocols provided
by Coecke and Ambramsky in (AC04).

ρ

A B

Backaction = Backward-in-time connection

ÞÑ

A B

ρ

Figure 3: Graphical abstraction of quantum teleportation

Suppose that the interaction between the two regions, is given by the map f : AbC Ñ
BbC, Lloyd proposes to obtain a map representing the interaction with a CTC as follows:

f

Φ:

Φ

“ f (49)

where Φ : CÑ Ab A is the completely positive map associated with the state:

1
?
d

d
ÿ

i

|iy |iy

In MixJ, a unitary transformation acts on a density matrix by mapping ρ ÞÑ UρU :, the
undoubled version of the diagram, refers to the category FdHilb where a unitary matrix
acts on pure states v by matrix multiplication, v ÞÑ Cv. We can provide a description of
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the evolution implied by the model, by considering the diagram given by its undoubled
version. Recall that the undoubled notation represents matrices in FdHilb where the
composition is defined by matrix multiplication

f “
ÿ

i

f
i

i

“
ÿ

i

f

i

i

“ TrCrf s (50)

Where the first equation is a consequence of the resolution of the identity : let t|iyui be
an arbitrary orthonormal basis for the Hilbert space Ha, therefore we have that:

1Ha “
ÿ

i

|iy xi| (51)

So the evolution in FdHilb sends pure states |Φy to TrCrf s |Φy, or in its doubled version
acting on density matrices: ρ ÞÑ TrCV rU sρTrCV rU s

:.
The map Φ: in Diagram (49) is not a completely positive trace preserving map as it

doesn’t satisfy the causality principle, there is no guarantee that the map sends normalised
states to normalised states, we therefore complete the definition of the action by applying
a further nonlinear renormalisation:

Definition 5.1 (P-CTC interaction (LMG`11)). Let f : A b C Ñ B b C be the mor-
phism representing the interaction of the state ρ with a CTC to which we associate finite
dimensional Hilbert space C. Therefore the evolution ρ ÞÑ ρ1 is given by:

ρ1 “
EρE:

TrrEρE:s
(52)

where E :“ TrCV rf s and C ‰ 0. If E gives the zero process (we will denote it by 0) then
we suppose that the evolution doesn’t happen.

Lloyd’s model therefore allows to post-select outcomes for certain experiments. The
question that now naturally arises is whether we can use this feature to deterministically
reproduce any postselected effect, i.e does there exists an interaction between CR and
CV qubits which has the consequence of deterministically forcing the outcome of a mea-
surement? We can show that this is in fact the case and a straightforward consequence
of the definition:

Theorem 5.2. Let tπjuj be the POVM elements associated to a projective measurement.
We therefore require that in the FdHilb formalism:

ÿ

j

πj “ 1
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and

πi

πj

“ δij πi

Assume thast we have access to an ancillary qubit travelling along a CTC, therefore Lloyd
prescription for P-CTCs allows us to deterministically realise any projector πi.

Proof. Consider the unitary evolution represented by the matrix

U “ πi b 1`
ÿ

j‰i

πj bX

diagrammatically in FdHilb:

U “ πi `
ÿ

i‰j

πj π

the map acts on HCRbC2 where the first Hilbert space is associated with the CR system,
the second space is associated to the ancillary CV qubit. We first notice that U is self
adjoint as projectors are Hermitian operators. Straightforward algebraic manipulations
imply that:

U2
“

¨

˝ πi `
ÿ

i‰j

πj π

˛

‚

2

“ πi ` 2
ÿ

i‰j πi

πj

π `
ÿ

j‰i

ÿ

k‰i πk

πj

“ πi `
ÿ

j‰i πj

πj

“ πi `
ÿ

j‰i

πj

“ 1b 1

from which we conclude that U ˝U : “ U : ˝U “ 1 and U is unitary unitary operator. The
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completely positive map associated to the evolution ρ ÞÑ TrCV rU sρTrCV rU s
: is given by:

U “ πi `
ÿ

i‰j

πj π

“ d πi `
ÿ

i‰j

πj b

¨

˚

˝

0

0

π `

1

1

π

˛

‹

‚

“ d πi `
ÿ

i‰j

πj b p0` 0q

“ d πi

which concludes the proof.

We can therefore force the outcome of any projective measurement. However it is
possible to show (NC11) that unitary dynamics, projective measurements, and the ability
to introduce ancillary systems, together allow the realisation of any general measurement.

This hints at the fact that the Lloyd theory may be particularly troublesome, with
P-CTCs we are also automatically inducing the ability to perform arbitrary postselection.

5.1 Lloyd’s Solutions to Paradoxes

The graphical treatment allows us to see in a particularly clear way that the principle
behind Lloyd’s idea is to force the information entering the CTC to be in the same state
as the information emerging from it. Renormalising the evolution we simply eliminate,
get rid of all the inconsistent branches.

Returning to the grandfather paradox, let us calculate the evolution of the qubit |1y:

1

?
2 “

π
“

1

1

π

`

π

0

0

“ 0 (53)

The P-CTCs do not provide an evolution for all the initial conditions, it merely tells us
certain inputs lead to impossible evolutions. This might seem an incomplete description
of reality, Lloyd’s defense lies in the fact that all physical realisable gates come with
an inherent amount of noise, for example we can choose to represent the noise as a
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depolarising gate acting on the CV qubit just before the postselection:

1

N

2

A depolarising gate N is a completely positive trace preserving map which act on a
density matrix ρ as follows:

N pρq “ λρ`
1´ λ

d
1

graphically the gate can be represented as

N “ λ `
1´ λ

d

Repeating the calculations in Equation (53) with the additional gate we see that the
non-normalised evolution is now given by:

1

N

2

“
1´ λ

d
π ` λ π “

1´ λ

d
π ` 0 “

1´ λ

d
(54)

Renormalising the result we get an equal mixture of |0y x0| and |1y x1|, the maximally
mixed state. We see that a randomly small noise guarantees that a solution always
exists at the costs of amplifying the probability of a very improbable, even though still
theoretically possible, outcome. This is independent on the value of λ, any arbitrarily
small amount of noise would generate a consistent evolution.

To find out Lloyd’s resolution of the informational paradox we apply the P-CTC
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formalism to Circuit (8) evaluating it using the thin-wire formalism:

0 ρ

?
2

?
2

“

0ρ

`

ρ 1

π
“

1

2

ρ

`
1

2

ρ

π π

π “

“
1

4
?

2
ρ

`
1

4
?

2
ρ

ππ
“

1

2

ρ

0

0

0
`

1

2 0

ρ

11
“

0

ρ

(55)

which after renormalisation equals to

ρ1 “

$

’

’

’

&

’

’

’

%

0 if
ρ
“

1

1

2
otherwise

If ρ is equal to |1y x1| then the evolution simply does not happen (in fact it would take us
back to the grandfather paradox), in all other cases the solution of the evolution is the
maximally entangled state:

ρ1 “
1
?

2
|00y `

1
?

2
|11y

There are fundamental differences between D-CTCs and P-CTCs, according to the
P-CTCs prescription certain evolutions are simply not allowed. The difference is not only
in the existence of a class of “impossible” processes, do the two different models lead to
observably different evolutions? We now consider Circuit (44). In order to present the
multiverse interpretation provided by Deutsch we have calculated:

0 0

π

2

2

ÞÑ

π

1

2

Under the P-CTC prescription it is easy to see that independently on the chronology-
respecting region the circuit represents an “impossible” evolution:

0 0

π

2

2

ÞÑ 0
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If we add a depolarising channel after the NOT gate, independently on the degree of
noisiness, we get the following behaviour:

0 0

2

2

G
ÞÑ

1

2 0 0
`

1

2 1 1

We can interpret this result by saying that in D-CTCs the time traveller manages to kill
its own grandfather, the two qubits are either measured to be |0y |1y or |1y |0y. According
to the P-CTCs, the NOT gate itself cannot be implemented as it always leads to an
“impossible” evolution. If we assume the presence of an arbitrary small amount of noise,
the random fluctuations get amplified and they prevent the time traveller to kill his own
grandfather, we always measure the two qubits to have the same value, the grandfather
either remains dead or remains alive after the action of the gate.

Lloyd provides this model in order to describe a local interaction, it doesn’t talk
about the possibility of extending the model compositionally, in the next subsection we
will try to describe the categorical framework that describes the operational aspects of
the P-CTC model.

5.2 The SMC of P-CTCs

The operational framework that describes postselected quantum theory has been de-
scribed by Oreshkov et al. in (OC16; OC15), they attempt to provide a more symmetric
characterisation of the operational quantum theory that doesn’t assume a predetermined
direction of time. The formalism aims at removing the duality between the deterministic
nature of states and the indeterminism implicit in the effects.

To realise this time-symmetric formulation it is therefore necessary to construct a
theory were both pre- and post- selection are allowed. Clearly this formulation will contain
the category modelling standard time-asymmetric quantum theory as a subcategory.

Definition 5.3 (Time Symmetric Quantum Theory). We will call the denote the category
by Mixsym. The objects of the category are as usual given by the finite dimension Hilbert
spaces. The morphisms f : A Ñ B are given by the completely positive maps satisfying
the condition

Tr

„

f

ˆ

1

dA

˙

“ 1 (56)

which is equivalent to the diagrammatic formulation

1

dA
f “ (57)

now we define the composition, two morphisms f : A Ñ B and g : B Ñ C will compose
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according to the following rule

f ˝ g “
f ˝Mix g

Tr

„

pf ˝Mix gq

ˆ

1

dA

˙ (58)

where f ˝Mix g denotes the composition in the category of completely positive operators.

This definition is however incomplete as it is not closed under composition, it may
happen in fact that

Tr

„

pf ˝Mix gq

ˆ

1

dA

˙

“ 0

in this case the composition equals to the zero process between A and C, 0A,C we therefore
need to add such a process for every couple of objects. The zero process satisfies the
following conditions:

Definition 5.4 (Zero Process). the zero process is a morphism for every pair of objects
A,B such that

• 0A,B ˝ g “ 0D,B for all g : D Ñ A;

• f ˝ 0A,B “ 0A,C for all f : B Ñ C;

• 0A,B b f “ 0AbC,BbD for all f : C Ñ D;

• f b 0A,B “ 0CbA,DbB for all f : C Ñ D;

This shows that any collection of morphism that are connected by sequential or parallel
composition to the zero object are equal to the zero object.

To show that the structure defined is a category we need to prove associativity of
morphisms but this follows from straightforward algebraic manipulation:

ph ˝ gq ˝ f “

f

˝Mixsym

g

h

λ

“

˝Mixsym

f

h

g

λ1

“ h ˝ pg ˝ fq (59)

Where

λ “
1

Tr

„

ph ˝Mix gq

ˆ

1

dA

˙ λ1 “
1

Tr

„

pg ˝Mix fq

ˆ

1

dA

˙
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when we apply the second composition we have to “renormalise” it and add the scalars
µ and µ1

g

h

λ

f

µ

“

λ1

h

g

µ1

f

such that

1

dA
g

h

λ

f

µ

“ “
1

dA

λ1

h

g

µ1

f

but every scalar is invertible, from which we conclude that λµ “ 1 “ λ1µ1.
In fact the category modelling evolution of time asymmetrical quantum mechanics is

consistent with Lloyd model, in fact given a completely positive map f : AbC Ñ BbC
the composition Mixsym is equivalent to the prescription given by Lloyd:

ρ1
“ f

ρ

˝

˝

˝

(60)

This is because the trace in Mix is equal to the evolution ρ ÞÑ TrCV rU sρTrCV rU s
:, the

composition of the map with a normalised state ρ in Mixsym introduces the normalising
constant 1{TrrTrCV rU sρTrCV rU s

:s. In particular we see that the P-CTCs can be realised
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in a theory with postselection. Aaronson proved in (Aar05) that quantum mechanics with
the ability of postselect is able to solve computational problems in the class PP, LLoyd
in (LMG`11) claims that P-CTCs allows to solve problems in the same class.

Clearly the ability to postselect makes Lloyd’s theory technically extremely powerful
but it also implies some fundamental conceptual weaknesses. For example, consider that
there are two space-like separated regions of the spacetime A,B which are both in the
lightcone of the region O.

O

A B induced by entanglement

Spacelike separated events

Superluminal signalling

Furthermore we assume that in the region A there is a local interaction with a P-CTCs.
This can allow an observer in that region of spacetime to send an instantaneous message
to the space-like separated observer at B.

A has access to a CTC system

Assume in fact that at the event O we prepare an entangled system ρAB which subsystem
TrBrρABs is accessible by A and subsystem TrArρABs is accessible by B, we have shown
in 5.2 that P-CTCs allows to deterministically create any projector, therefore:

Φ

Φ

Φ

We see that the theory implies the emergence of other causal correlations and that P-
CTCs allow superluminal signalling.
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A B

We have managed to embed the P-CTCs into a compositional framework. It turns out
to be more difficult and less clear how can this be done with the interactions described
by Deutsch. In particular it is certainly not guaranteed that Deutsch’s peculiar con-
struction can be categorised at all. We devote the next section of the dissertation to the
categorification of Deutsch’s model.
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6 The SMC of DMix

6.1 Introduction

We have shown the working mechanisms of the Deutsch’s model, the next step is to join
the two aspects and from the local construction proposed by Deutsch create a theory
that might be used to interpret causal structures described by cyclic directed graphs. We
therefore want to be able to provide a coherent compositional theory of morphisms which
can help us to model situations where we are in presence of multiple closed time-like
curves.

The maps constructed by Deutsch can have a very hectic behaviour, first they are
strongly nonlinear, secondly and even more worryingly, they can even produce disconti-
nuities. However, we may hope that we can still describe at a more fundamental level
the way such morphisms interact and the structure of this interaction. In fact in this
chapter we show that it is quite surprisingly possible to extend the Deutsch model to
a category of processes which is furthermore symmetric monoidal. The D-CTC model
can therefore be extended to describe the physical evolutions of mixed and pure states –
described categorically as morphisms MixpC,HAq – in a compositional way where there
are notions of parallel composition, space-like composition and sequential, time-like com-
position. Before defining the category we have to comment on a interesting property of
D-CTC maps:

6.1.1 Failure of Process Tomography

In standard quantum mechanics, a quantum channel can be totally described by per-
forming local measurement. This limits the degree of holism of the standard theory, if it
is true that the total is more than the “sum” of its parts, we also have that any process
can be reconstructed by the statistics of local measurements on its subsystems. Is this
a fundamental requirement of a physical theory? As it is argued by Hardy and Wooters
(HW12) the local tomography captures the idea that a reductionist science can meet
up with a holistic theory. It is therefore a fundamental principle if we want to retain
the notion of a reductionist science, the standard scientific method in which one studies
smaller, simpler and more fundamental parts in order to infer the behaviour of more
complex systems. There are fundamental issues mining a physical theory that ceases to
be locally tomographic.

We will see that the entanglement breaking property of the Deutsch’s maps poses
certain problems regarding quantum tomography, however we will design the composi-
tional properties of the maps to avoid to endanger local tomography. To do so, we need
to distinguish between two different concepts: local tomography and process tomogra-
phy (CK17). Local tomography is the property that guarantees that we can identify a
bipartite state

ρ

by collecting statistics for each system individually, in fact we have that according to the
Mix formalism:

¨

˝@i, j :
i j

ρ “

i j

ρ1

˛

‚ ùñ ρ “ ρ1
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process tomography on the other hand refers to the property of univocally identifying a
quantum map AÑ B by describing it effect on all the states ρ : CÑ A.

In MixJ however those two distinct tomographic notions concide. And this equiva-
lence is established by one of the most interesting features of the formalism for quantum
processes, the Choi-Jamilowkowski isomorphism (JLF13):

Definition 6.1 (CJ-isomorphism). Let M : Ha Ñ Hb be a completely positive trace
preserving map, therefore we can find a bijective correspondence between states and
channels by defining:

M ÞÑ ρM :“ p1bMqp|φy xφ|q (61)

where |φy is the canonical maximally entangled state in Ha bHa

Graphically, we map a causal morphism f : AÑ B into a normalised state I Ñ AbB
in the following way:

f ÞÑ
1

2
f

Interestingly this is not the case when we introduce the maps described by Deutsch. In
the first chapter we have explained that the model has the ability to break entanglement,
as such we expect the category DMix describing Deutsch’s processes ceases to be process
tomographic, in particular we have that the following two morphisms are not equal

‰ (62)

The two maps above have exactly the same behaviour for all product bipartite states,
however:

1

4
“

1

2
‰

1

2
(63)

When constructing our process theory D, which models the interaction between
chronology-respecting and chronology-violating regions, we will require it to satisfy cer-
tain properties. First we require the standard quantum mechanics formalism to be in-
cluded in the theory, that the process theory describing any CR evolution directly embeds
in D. Moreover we also impose D to have the same states as the original chronology-
respecting C, i.e for every A P obpDq,

DpI, Aq “ CpI, Aq

In our case we will take C “ MixJ, and construct a bigger category D “ DMix. Clearly
the most important requirement is the full compatibility with the D-CTC model.
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6.2 Constructing a New Category

In order to define the category DMix we need to be particularly careful in defining the
morphisms, this will be done in several steps. To start we formalise the notion of an
elementary box (EB), the building block of our morphisms:

Definition 6.2 (Elementary Box). An elementary box is a morphism of the form:

f

it therefore represents a choice of a completely positive map and an object pf, Cq such
that f : A b C Ñ B b C and the Hilbert space C is assigned to denote the degrees of
freedom of the chronology-violating region. We will also denote the elementary boxes
symbolically by using the notation Dpf, Cq.

The elementary boxes by themselves don’t form a category, they are not closed under
composition. It is therefore strictly speaking meaningless to define a tensor product
structure on the elementary boxes. However, with an abuse of notation which will be
later justified, we can say that “tensoring” an EB with an arbitrary CPTP we obtain
another EB in the following way, let f and g be CPTP maps, then we can obtain an
elementary box from their parallel composition by saying that f bDpg, Cq “ Dpf b g, Cq

f g (64)

This has to be thought of as a straightforward extensions of the rules provided by Deutsch,
we know how an object of the form Dpf, Cq where f : Ab C Ñ B b C, acts on states of
type A according to Deutsch’s consistency rule. We can also define a notion of equivalence
between two elementary boxes, we say that two EBs are equal if they have the same effect
on all multipartite states when tensored by identities representing the environment, let
f : AÑ B and g : AÑ B be given as:

f “ Φ
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g “ Ψ

we have that

¨

˚

˚

˚

˚

˚

˝

Φ “ Ψ

˛

‹

‹

‹

‹

‹

‚

ðñ

¨

˚

˚

˚

˚

˚

˚

˚

˝

Ψ

ρ

“
Φ

ρ

˛

‹

‹

‹

‹

‹

‹

‹

‚

(65)

for all ρ : C Ñ E b A where E is the space representing the environment. This way
of defining the equivalence is a consequence of the discussion developed in the previous
section. Two D-CTC maps can act analogously on all the state of their domain but
have different actions on the correlations with the environment. Now we prove a lemma
which will be used to guarantee that we can find a well defined notion of the parallel
composition for all EBs and all the morphisms of the category that we will soon define.

Lemma 6.3 (Switching property). Let f : AÑ C and g : B Ñ D be two arbitrary TPCP
maps, therefore for all ψ : CÑ E b AbB we have that:

Ψ

f

g

“

Ψ

g

f

(66)

where the composition of the maps acting on the states is simply given by composition
of functions.

Proof. Starting with the left hand side diagram, by definition the evolution of Ψ can be
described by:

Ψ

f

g

“

τ

σ

Ψ

f

g

(67)
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where the state τ satisfies the following equation:

Ψ

τ

f

“
τ

(68)

and the state σ satisfies:

σ
“

Ψ

τ

σ

f

g

“

Ψ

σ

g

(69)

where the second equation is a consequence of causality of CPTP map. For the right
hand side:

Ψ

g

f

“

Ψ

g

f

τ 1

σ1

(70)

Now we have that τ 1 and σ1 must be solutions of the same equation, for example for σ1:

Ψ

σ1

g

“
σ1

(71)

we therefore necessarily have that σ and σ1 represent precisely the same fixed point. For
τ the diagrammatic equation is analogous, we therefore conclude using the monoidal
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structure of CPTP maps that the sliding property is satisfied:

g

τ 1

σ1

Ψ

f

“

g

σ

Ψ

τ

f

“

g

σ

Ψ

τ

f
(72)

The theorem allows us to define what we mean by the tensor of two D-CTC maps, so
what it means to apply the Deutsch’s condition in parallel:

b “ ˝ (73)

Moreover a straightforward inductive extension tells us that it is possible to define a space-
like composition for multiple EBs, i.e to define what it means to compose in parallel more
than two EBs in a way that is independent on the order of the bracketing.

b . . .b b “ . . . (74)

We have described an ideal notion of parallel composition for maps acting on the states
by the Deutsch consistency condition. Now we need to construct a category which will
encompass this notion of space like composition and in which we can make sense of
arbitrary sequential composition of EBs.

Definition 6.4 (DMix). The category DMix has finite dimensional Hilbert spaces as
its objects and the morphisms f : HA Ñ HB are all the diagrams obtained by composing
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a finite number of elementary boxes, all the diagrams that can be subdivided into finite
slices of the type Dpf, Cq.

We can more formally therefore represent every morphism DMixpA,Bq as an ordered
sequence of elementary boxes tDpfi, Ciqun´1

i“0 where

f0 P MixJpAb C0, A1 b C0q

fi P MixJpAi b Ci, Ai`1 b Ciq

and
fn´1 P MixJpAn´1 b Cn´1, B b Cn´1q

The composition of two morphisms is therefore given by the composition of the two
diagrams, let χ “ tDpfi, Ciqun´1

i“0 P DMixpA,Bq and ξ “ tDpfj, Cjqum´1
j“0 P DMixpB,Cq

therefore:
ξ ˝ χ “ tDpfk, Ckqun`m´1

k“0

where Dpfk, Ckq “ Dpfi, Ciq for all k ď n ´ 1 and Dpfk, Ckq “ Dpfj´n, Cj´nq for all
k ą n ´ 1. The composition is clearly as associative as the graphical composition of
diagrams is associative.

To conclude the definition of the category, we need to impose an additional equivalence
equation on morphisms: we denote the set of normalised states of a given Hilbert space H
to be SpHq, the functions between the set of normalised states of Ha and Hb is therefore
SetpSpHaq, SpHbqq. We say that for f P MixJpA b C,B b Cq an interpretation of
an elementary box JDpf, CqK P SetpSpAq, SpBqq is the function sending each normalised
state of A to a normalised state in B according to the D-CTC’s prescription. We therefore
say that two elementary boxes are equivalent if:

Dpf, C1q „ Dpg, C2q ðñ @H P obpDMixq : JDp1H b f, C1qK “ JDp1H b g, C2qK

This equivalence relation can be extended to arbitrary morphisms ξ, χ P DMixpA,Bq,
where ξ “ tDpfj, Cjqun´1

j“0 and χ “ tDpgi, Diqu
m´1
i“0 as follows: ξ „ χ if and only if:

@H P obpDMixq : J1H b ξK “ J1H b χK

where
J1H b ξK ” JDp1H b fn´1, Cn´1qK ˝ . . . ˝ JDp1H b f0, C0qK

and
J1H b χK ” JDp1H b gm´1, Cm´1qK ˝ . . . ˝ JDp1H b g0, C0qK

We can therefore informally say say that two diagrams are equal if they act in the same
way on any state when tensored by an arbitrary identity. For example we see that the
definition of the equivalence relation incorporates the D-CTC’s evolution as part of this
equivalence relation: consider for example a state in MixJ, ρ : CÑ A then we can clearly
think of it as the elementary box given by Dpρ,Cq. Let us now postcompose ρ with a
morphism in Φ P DMixpA,Bq, and let ρ1 be given by

ρ1 ” J1C b ΦKpρq P SpBq

therefore ρ1 is a normalised state C Ñ B we can show that Φ ˝ Dpρ,Cq „ Dpρ1,Cq. Fix
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an arbitrary identity 1H, we need to show the following equality between functions

J1H b ΦK ˝ JDp1H b ρ,CqK “ JDp1H b ρ
1,CqK

starting from the left hand side, the domain of definition is given by H, any normalised
state in mathcalH bC is of the form hb 1 “ h P H and gets mapped to hb ρ, moreover
by definition of ρ1, applying J1H b ΦK to h b ρ always returns h b ρ1, which is therefore
equal to the application of the function on the right hand side on an arbitrary normalised
vector in H.

This shows that we can always substitute and replace diagrams obtained by applying
the D-CTC condition on states:

Φ

. . .

ρ

. . .

“
ρ1

. . .
(75)

The category can be endowed with the symmetric monoidal structure pDMix,b,C, σq.
On objects it inherits the monoidal structure given by the usual tensor product of finite di-
mensional Hilbert spaces, in particular the monoidal unit is given by the one-dimensional
vector space C, On morphisms we define the product as follows: take Φ: A Ñ B and
Ψ: C Ñ D be two morphisms, we will graphically represent general morphisms as follows:

Φ “

. . .

. . .

Φ

Ψ “

. . .

. . .

Ψ

compatibly to the notion of product between EBs we define the tensor product between
morphisms to be equal to

. . .

. . .

Φ b

. . .

. . .

Ψ “

. . .

. . .

Φ

Ψ

. . .

. . .

(76)

Let Φ P DMixpA,Bq and Ψ P DMixpC,Dq with Φ “ tDpfj, Pjqun´1
j“0 and Ψ “ tDpgi, Qiqu

m´1
i“0 .
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Then we denote the tensor product ΦbΨ to be equal to

ΦbΨ “ tDphk, Rkqu
m`n´1
k“0

where hk “ 1A b gi and Rk “ Qk for all k ď m´ 1 and hk “ fk´m b 1D and Rk “ Pk´m
for k ą m´ 1.

We still need to check that the definition in the Equation (76) satisfies bifunctoriality,
i.e that the the following two diagrams are equivalent:

. . .

. . .

. . .

A

∆Γ

. . .

B

. . . . . .

. . .

. . .

b

b

˝ “

A

. . .

. . .

˝

. . .

. . .

Γ

b ˝

. . .

. . .

B

∆

. . .

. . .

Bifunctoriality is thereforore in this case a direct consequence of the switching property
for diagrams, which generalises the switching property for elementary boxes of Theorem
(6.3). The generalisation can be proved by a straightforward inductive extension of
Theorem (6.3).

Theorem 6.5.
. . .

Γ

. . .

∆

. . .

. . .

“

Γ

. . .. . .

∆

. . .

. . .

(77)

Proof. We can prove the theorem by induction on the sum of the finite number of ele-
mentary boxes composing the morphisms. The base case, one elementary box for each
morphism, is proved in Theorem (6.5). Assume that the Equation (77) hold for all
∆ “ tDpfj, Pjqun´1

j“0 and Γ “ tDpgi, Qiqu
m´1
i“0 such that n ` m ď N . Now consider an

arbitrary ∆1 “ Dpf, Cq ˝∆ such that the sum of all elementary boxes now equals N ` 1.
By inductive hypothesis we can slide Γ and Dpf, Cq, moreover we see that applying the
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inductive hypothesis twice, we can also slide ∆ and Gamma obtaining:

. . .

. . .

Γ

∆1

. . .

. . .

“

. . .

Γ

. . .

∆

. . .

. . .

Dpf, Cq
. . .

“

. . .

Γ

Dpf, Cq

. . .. . .

∆

“

. . .

. . .

Γ

∆1

. . .

. . .

The category DMix is therefore a monoidal category, moreover it inherits the self-
invertible braiding from MixJ, the braiding automatically satisfies the two hexagonal
equation defining braided monoidal categories (Sel11) and it is straightforward to show
that the equation

g

“

g

(78)

induces by induction, similarly to the proof of Theorem (6.5), the naturality condition
for all diagrams:

Ψ Φ

“

Ψ Φ

(79)

Now that we have defined our symmetric monoidal category we can interpret any acyclic
diagram connecting morphisms as representing a unique and well defined morphism of
the category (Sel11), moreover diagrams that are equivalent by exclusively applying the
axioms of the monoidal category will be equal up to 4-dimensional framed isotopy (Sel11).

Now we present certain properties of the newly defined category, first we formalise
the intuitively clear fact that MixJ embeds in DMix:

Definition 6.6. We say that a category D can be embedded in C if there exists a functor
F : D Ñ C which is faithful and injective on objects.

Next we show that it is possible to embed the category MixJ into the category DMix,
in fact:
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Theorem 6.7 (Standard Quantum mechanics can be embedded in DMix). Consider
the functor F defined to be the identity on objects and

F pfq “ Dpf,Cq

so the functor that sends an arbitrary morphism in MixJ into an elementary boxes where
the monoidal unit is the chronology-violating part, clearly there cannot be any meaningful
interaction with the unit object.

Proof. We check that F is a functor, i.e that

F pfq ˝DMix F pgq “ F pf ˝ gq

in fact F pfq ˝DMix F pgq is just the graphical composition of the two elementary boxes,
therefore

F pfq ˝DMix F pgq “

f

g

while for the right hand side

F pf ˝ gq “

f

g

to show that the two morphisms are equal we need to show that they are both in the
same equivalence class, i.e that for an arbitrary identity IdE and state ρ : CÑ E bA we
have that under the Deutsch prescription:

f

g

Ψ

“

f

g

Ψ

This is however clearly implied by the fact that the only normalised state in MixpC,Cq
is the identity CÑ C, the identity scalar. All the fixed points are therefore equal to the
scalar 1, which leaves the diagram unchanged.

To show that the morphism is faithful, suppose f ‰ g, clearly if the domains or the
codomains are different F pfq ‰ F pgq, suppose therefore that dompfq “ dompgq and
codpfq “ codpgq, by the process tomography properties of MixJ, there exists ρ : I Ñ A
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such that fpρq ‰ gpρq in MixJ. In particular by definition of our category we have that

F pg ˝ ρq “

ρ

g ‰ f

ρ

“ F pf ˝ ρq (80)

This embedding allows us to ignore the notationally trivial tracing out of the monoidal
unit, we will therefore simple make use of the following graphical convention:

g “ g (81)

Therefore the morphisms and the states of MixJ can be treated as elementary boxes.
The functor F is a bijection on objects but is clearly not full, however the fulness holds
for morphisms of the type ρ : I Ñ A, i.e. if the states of the category DMix are precisely
given by the image under the functor F of the states of the category MixJ.

6.3 DMix is a Normalised Category

We note that the morphism JA : A Ñ I is inherited in DMix since JA P MixJpA, Iq,
we have F pJAq P DMix. We need to check that in the category DMix the unit object
is terminal. In this section we will simply denote F pJAq by JA.

Lemma 6.8. In the category DMix the elementary boxes satisfy the causality axiom.
Ignoring the output of a process is equivalent to discarding the entire process, intuitively
this tells us that a process doesn’t have an influence on anything else which is not directly
part of the input of that process.

f “ (82)

We start by showing that the elementary boxesDpf, Cq satisfy causality, takeDpf, Cq :
AÑ B then JB ˝Dpf, Cq is given by

f
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which is equal to JA:

f

ρ

“ f

τ

ρ

“

τ

ρ

“

ρ

(83)

By the definition of the category any morphism can be obtained by sequential composition
of finitely many elementary boxes, a simple induction on the number of elementary boxes
therefore allows us to conclude that:

Theorem 6.9. The category DMix is terminal.

The terminality of the category guarantees that the non signalling principles are pre-
served, consider two space-like separated points A and B and assume that they share
a bipartite entangled state. The correlation cannot be used to perform superluminal
signalling, no matter what operation is performed at the location B, when its output is
not accessible by A no information can be transferred by the entanglement. In fact if we
ignore the output of B:

ρ

Ψ
“

ρ

In this regard we need to confront our result with the proposal by Bub and Stairs that
“one might conclude that D-CTCs are inconsistent” (BS13) because they would allow
superluminal signalling and do not respect the relativistic covariance. What are the
arguments that they provide and why it is so radically different from our approach?

We now summarise their argument show how the apparent incompatibility with our
no-signalling argument derives from a misconception of the D-CTC model. In (BHW09)
the authors propose a circuit (Figure (4)) based on the D-CTC model, which allows to
perfectly distinguish between orthogonal states: they show that the input |Ψy |0y gets

Figure 4: Figure taken from (BHW09) representing the circuit used to perfectly discrimi-
nate orthogonal states. The unitary gates Uij is activated if the two qubits are in the state
|iy |jy, U00 ” SWAP,U01 ” X bX,U10 ” pX b Iq ˝ pH b Iq, U11 ” pX bHq ˝ pSWAP q
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mapped to:

|0y |0y ÞÑ |0y |0y , |`y |0y ÞÑ |1y |0y

|1y |0y ÞÑ |0y |1y , |´y |0y ÞÑ |1y |1y

Measuring both qubit we know exactly in which of the states t|0y , |1y , |´y , |`yu the qubit
|Ψy has been prepared. We denote the map representing this circuit as a box χ:

0

χ

The argument by Bub et al. considers the following scenario:

χ

0

A B

They argue that there are in fact two possibilities, one is the case in which A measures
its qubit in either the Z ( ) or X ( ) basis before B measures its qubits, alternatively B
can perform χ before the measurement at A has been carried out. If the regions A and B
are space-like separated, then there exists a frame of reference where the measurement at
A happens before the measurement at B and viceversa, in both cases the evolution that
they describe must coincide. The monoidal structure of a category incorporates already
incorporates this principle, it is an easy consequence of therminality that ”local states do
not depend on the choice of foliation of the diagram” (CL13).

Let us start assuming that from the frame of reference of the observer B the mea-
surement at A happened first, graphically:

BA χ

0

Bχ

0

A

In this case the paper argues that if A takes a measurement in the Z basis then from the

62



perspective of B one of the following scenarios happen with equal probability

0

Bχ

1

A or A B

00

χ

this implies that the observed state at B is with probability a half in |0y |1y and half in
|0y |0y the state is therefore in an equiprobable mixture of the two. Alternatively if we
perform a measurement in the X basis we obtain that the result at B is a state which
is an equiprobable mixture of |1y |1y or |1y |0y. The observer at B can therefore perfectly
distinguish between the two cases measuring its the first qubit, if he obtains |0y he knows
that A has chosen the Z basis, alternatively he can infer that the chosen basis is X.
According to this way of thinking, the presence of CTC would allow for signalling, an
observer at A would be able to transmit a bit of information by selecting one of the two
basis.

In (BS13) they also claim that this scenario is worrying for yet another reason. Assume
that B measures the state before A’s measurement, then B has only access to a maximally
mixed state and ignoring the observer at A we obtain the following evolution:

Bχ

0

A . ÞÑ A

Those two ambiguities are a consequence of the fact that in the paper by Bub et al. they
fell into what (BLSS09) calls a linearity trap. The essence of the problem can be easily
seen diagrammatically, we can denote the controlled measurement as follows:

Φ

i

“
0

0

i

0

1

i

0 1
`

´

i

1 ´
`

`

`
`

i

1

Depending on the choice of |iy xi|, A choses the X or the Z basis (The bit of information
that (BS13) claims to be transferrable is the value i of |iy xi|).The diagram representing
the situation is therefore given by

0
Φ

i

χ
“

i

Φ
0

χ

0 1`

The idea that the sums distributes over the other parts of the diagram implies that we
assume to be dealing with linear “boxes”. The introduction of a non linear part of the

63



diagram makes the apparently intuitive argument not justified:

Φ

i

1`0

0

χ

nonlinear box

‰

0

i

Φ

0
χ

`

0

i

Φ

1
χ

What happens to the dependence on the order of events? If we follow our categorical
construction the covariance is preserved by the properties of the monoidal structure and
the terminality of the category. In fact if we calculate the evolution of the maximally
entangled state between A and B and we intepret it as morphisms in DMix we observe
that no communication is possible, the regions A and B get even disentangled after the
application of p1 b χq, this can be shown by calculating to state which is equivalent to
the following diagram in DMix, recall that χ is an elementary box:

χ

0

A B

the fixed point of the chronology-violating qubit is the same fixed point obtained when
feeding the maximally mixed state as input, this is alreaddy calculated in (BS13) where
they show that fixed point is in this case given by

τ “ 1{2b 1{2

The maps Uij (see Figure (4)) are all unitaries and the CTC qubits need to be discarded,
if we unpack the definition of χ (see Figure (4)) we gat that the evolution is given by

χ

0

A B

ÞÑ

A B

0

“

BA

Clearly this doesn’t allow any type of communication, independently on the kind of
measurement performed at A, the correlation gets destroyed and the information on the
ancilla bit gets cancelled, in total accordance to the no-signalling theorem proved in this
section.
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6.3.1 A Note on Composition And a Postcard From the Future

We may now ask whether a CTC could allow us to communicate to the past, consider
now the example of two time-like separated events A and B which share a CTC in the
following way:

g

f

B

A

(84)

Where we assume that A and B are time-like separated events, setting g :“ SWAP ,
f :“ 1 and feeding as input at the location A an arbitrary state π and at B the state ρ,
the evolution is:

ρ

π

A

B

ÞÑ

π

ρ

B

A

is this an actual communication to the past? At first sight it may appear to be such, it
seems that Deutsch’s consistency condition has forced ρ to be teleported to A. However
the scenario described above while it is a well defined morphism in the category DMix,
cannot be used two describe two time-like separated events, it is not factorable into a
“time-like” composition of two morphisms. As such, it is a fallacy to assume that an
experimenter at B is in the future of the experimenter at A and no one is free to perform
a morphism

ρ

for an arbitrary state ρ chosen at its own discretion independently of what happens
at A. Every morphism in the category assumes an entirely localised interaction with
a CTC and “sharing” the same CTC is an indication that all those interaction occur
locally. It is therefore not possible to send a message back in the future as Diagram (84)
does not represent to spacelike separated events. In particular, similarly to the standard
prescription of quantum mechanics this is prevented by the causality principle (KHC17).
It is easy to show that if we assign to every different region of the spacetime a different
morphism in DMix, as it is prescribed by the model, causality will prevent any possible
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communication to the past:

g

f

B

A

if we ignore the output at the location B:

g

f

B

A

“

f

B

A

According to the observer at A no information can be extracted from the future. This is
not the case for P-CTCs, if B has access to a P-CTC he can postselect an outcome and
retrospectively communicate with the past:

ρ
B

A

ÞÑ

ρ
A

B

6.4 CTCs as Superoperators

In the next parts of the dissertation we will abstract the Deutsch model in order to under-
stand what are the properties that a compositional theory modelling chronology violations
should satisfy. A first move would be to consider the following graphical ornament

as representing a superoperator taking the maps in MixJ to other morphisms, living in
a suitably large category. The method that we will use will therefore be similar in spirit
to the introduction of the notion of discarding into the framework of FdHilb and thus
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allowing for the definition of the interaction with the environment and the appearance of
mixed states.

In fact, we can consider the transformation of CPTP map into Deutsch maps to be a
particular way of discarding an input with an output of the same type.

This also underlines the fact that we do not have an effective and direct control over
what happens in the CTC, no preparation nor direct test is possible in the CV region.
We treat the CTC’s as a resource to produce other types of transformation which are
otherwise not allowed in the linear theory MixJ in the same way the environment is a
resource that allows to discard parts of an unitary evolution otherwise representable in
FdHilb. To make this conceptual point more clear we can refer to the language of second
order processes (see for example (KS)) in fact, the classical discarding can be represented
as a second order process using the comb notation (KS):

where the comb represents a second order process taking process to process. For example
the comb describing the discarding map may take morphisms of the type

AÑ B b C

to morphisms of the type
AÑ B

by sending f : AÑ B b C to the morphism pidB b JCq ˝ f ˝ idA : AÑ B.

Similarly we may wish to consider the effect of the CTC as being a second order
process taking morphisms of the type AbC Ñ BbC to morphisms of the type AÑ B.
It is important to underline however, that the operator “discarding by CTC” is not defined
on the entire category DMix but only on the subcategory MixJ.

“ (85)

6.4.1 Properties of the D-CTC super-operator

We now observe that the D-CTC operator satisfies certain properties which make its
structure similar to a symmetric monoidal trace define on the subcategory MixJ for this
reason we invite the reader to have a look at the definition of symmetric traced monoidal
categories in Definition 2.10.
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Theorem 6.10 (Naturality in the CR region). Let f : AbC Ñ BbC and g : D Ñ A be
CPTP maps, therefore we have that Dpphb1Cq ˝ f ˝ pgb1Cq, Cq “ phb1Cq ˝Dpf, Cq ˝
pg b 1Cq, or graphically:

f

g

h

“

g

f

h

(86)

Proof. Starting from the left hand side:

f

g

h

ψ

“

g

ψ

h

f

τ

where τ satisfies:

τ
“

g

ψ

f

τ

68



For the right hand side:

f

g

h

ψ

“

g

ψ

h

f

τ 1

But τ 1 satisfies the same condition as τ :

τ 1
“ g

ψ

h

f

τ 1

“ g

ψ

f

τ 1

Therefore τ “ τ 1 and the lead to the same evolution for all ψ : CÑ E b A

Theorem 6.11 (Strength). Let g be any CPTP map therefore:

g bDpf, Cq “ Dpg b f, Cq

fg bDMix “ g fbMix (87)

Proof. Interestingly, the strength property is in this case a consequence of the definition
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of the tensor product in DMix and of the Theorem (6.10):

f

g

Thmp6.10q
“

g

f

“ fg

Theorem 6.12 (Sliding). Let g : C Ñ D and f : AbD Ñ BbC be completely positive
trace preserving maps, we have that Dppidb b gq ˝ f,Dq “ Dpf ˝ pidA b gq, Cq, this is
graphically represented by the sliding of the map g along the CTC:

f

g

“

f

g

(88)

Proof. First we introduce a metric which defines a concept of distance on density matrices:

Definition 6.13 (Trace Distance, (NC11)). The trace distance between two density
matrices is

T pρ, σq :“
1

2
Trr

a

pρ´ σq:pρ´ σqs

The density matrices are Hermitian and the trace distance can be therefore expressed as

T pρ, σq “ 1

2

ÿ

i

|λi|

where tλiui are the eigenvalues of the difference pρ´ σq.

It can also be shown that the trace distance gives a measure of how distinguishable are
two states with an optimal measurement (NC11), for a proof we refer to the exhaustive
discussion in (NC11). For example, the maximally mixed state for d “ 2 is at the center
of the Bloch sphere, it is the only point which is equally indistinguishable from any other
pure state (recall that pure state are represented on the surface of the sphere). The
following lemma shows that the trace distance is well behaved under the action of CPTP
maps:
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Lemma 6.14. Trace preserving completely positive maps are contractive. Let f be a
CPTP map, therefore for arbitrary density matrices ρ, σ:

T pfpρq, fpσqq ď T pρ, σq

Proof. We omit the proof, a simple and concise argument can be found in (NC11) pp.406-
407.

Let f and g be arbitrary CPTP maps. We now establish a strong similarity between the
sets of fixed points of the compositions f ˝ g and g ˝ f :

Lemma 6.15. Let f : AÑ B and g : B Ñ A be completely positive maps, therefore the
set of fixed density matrices P of g ˝ f is isometric to the set of fixed density matrices of
f ˝ g, denoted by Q.

Proof. In Theorem 4.1 we have shown that all completely positive trace preserving have
at least a fixed point. The restriction of the CPTP map f on the set P is entirely
contained in Q: let x P P be a fixed point

x

f

g
“

x

Applying f to the both side of the equation we obtain:

x

f

g “

x

f

f

similarly, g applied to the fixed points of f ˝ g gives:

y

g

f g“

g
y
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Moreover the following two triangles necessarily commute by definition of P and Q:

P Q

P

f

idP
g

Q P

Q

g

idP f

The sets of fixed points are convex subsets of the real vector space of density matrices,
if we define on them the trace metric we get the metric spaces pP,Lq and pQ,Lq and the
maps between them are therefore isometric isomorphisms by virtue of Lemma (6.14).

Lemma 6.16. Let χ be a completely positive trace preserving map and let K be the
convex set of density matrices fixed by χ, let G ă Updq{Up1q be the subgroup fixing K
in the unitary action given by:

upρq :“ uρu:

Let τ P K such that for all u P G:
upτq “ τ

then τ is the density matrix of K with greatest entropy.

Proof. Let σ P K such that σ ‰ τ . If we take the orbital integral, the average over the
orbit of σ we see that it is fixed by an arbitrary element g P G:

g

ˆ
ż

G

hpσq dh

˙

“

ż

G

ghpσq dh “

ż

G

h1pσq dh1

therefore
ş

G
hpσq dh “ τ , the unique point fixed by the action of the elements of G. The

Von Neumann entropy S is convex (NC11):

Spτq “ S

ˆ
ż

G

hpσq dh

˙

ě

ż

G

Sphpσqq dh

and it is invariant under the action of the unitary elements of G:

ż

G

Sphpσqq dh “

ż

G

Spσq dh “ Spσq

ż

G

dh “ Spσq

We get that Spτq ě Spσq. Since σ was arbitrary, τ is the point of maximal entropy.

To continue the proof of the sliding theorem, we use the fact that every metric induces a
measure in the space of mixed quantum quantum states (ZS01), let τP be:

τP “

ż

P

ρ dρ

and

τQ “

ż

Q

σ dσ
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by linearity and continuity of f :

fpτP q “ f

ˆ
ż

P

ρ dρ

˙

“

ż

P

fpρq dρ

but f is an isometry therefore

ż

P

fpρq dρ “

ż

Q

ρ1 dρ1 “ τQ

we therefore conclude that
fpτP q “ τQ

analogously we can show that:
gpτQq “ τP

It can be shown (see (BKNPV08) for a characterisation of the set of fixed points
of quantum channels) that for the sets of fixed density matrices, such as P and Q, the
average obtained by taking the integral above is the only fixed point of the group formed
by those unitaries sending the set of fixed points into itself. By this observation, as a
consequence of Lemma 6.16, we can conclude that τP and τQ are indeed the fixed point
of maximal entropy. And that therefore f maps the point of maximal entropy of P to
the point of maximal entropy of Q.

Now can finalise the proof of the sliding theorem, consider the two completely positive
trace preserving maps to be r and s given by:

f

ρ

g s

r

Let τ1 be the fixed point with maximal entropy of r ˝ s, therefore the fixed point with
maximal entropy of s ˝ r is given by τ2 “ s ˝ τ1 “ g ˝ τ1 we conclude:

f

ρ

τ1

g

“

τ2

f

ρ

“

ρ

f

τ2

g
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Which concludes the proof of the sliding theorem.

The sliding theorem is a property with a particular physical relevance. It shows that
it doesn’t matter where we impose the beginning of the chronology-violating region, for
example if a completely positive map χ is applied on the chronology-violating region and
χ can be factorised into two maps χ1 and χ2, it doesn’t matter what we consider to be
the starting point of the chronology violation:

f

χ

“ f

χ2

χ1

“ f

χ2

χ1

“ f

χ1

χ2

(89)

There are however two properties holding in symmetric traced monoidal categories
which are not satisfied by our theory. First of all the Vanishing II axiom fails for a very
simple reason, the action of the super-operator D is not defined on morphisms which are
not in MixJ, therefore the statement of the axiom is completely vacuous as the following
diagram is not well defined:

f

moreover, another axiom that ceases to be true is the Unitality, or the Yanking axiom,
Equation (5). We have shown in Chapter 4.2.2 that the following map

even though it acts as a unit on the states it is most definitely not equal to a unit as
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witnessed by the entanglement breaking map:

The fact that the theory satisfies those axioms is not simply fortuitous, we will discover
in the next section that those properties – even the unsatisfiability of unitality– are
related to the capability of a model to describe certain discrete graphs representing causal
relationships. The beginning of such an analysis will be developed in the next section of
this dissertation.
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7 Causal Graphs, a Discrete Spacetime

In the category that we have crafted to contain the special maps defined by Deutsch
we were able to preserve all the main elements that are needed to describe interaction
of processes in spacetime. For example we have seen that the maps themselves satisfy
the important constraint of causality, discarding the output of a process is equivalent to
discarding the process itself. We also observed that Deutsch’s consistency condition can
be augmented with a well define notion of space-like composition, the tensor product.
We stress that both results are in fact not at all foregone and they show that there is a
undercovered compositional potential in the theory described by Deutsch.

Analysing the properties of the construction D : C Ñ G we have also seen that it
satisfies certain properties derived from the definition of abstract traces in symmetric
monoidal categories.

We can therefore go one step further and try to understand what are the properties
that have to be satisfied by a general theory representing chronology violation. We will see
that the presence of this trace-like structure can be used to describe and model networks
that represent a discretised version of the spacetime, where we drop the usual assumption
that such a model must be an acyclic graph. At the end of this chapter we will see why
the DMix category is fully mature to describe spacetimes where the loops of information
have a local interaction with the chronology-respecting part of the directed graph.

7.1 Framed Causal Sets

7.1.1 Causal Sets

Spacetime is the setting stage of all physical phenomena, several results have shown that
it is possible for temporally oriented spacetimes to recover the metric from the class of
time-like curves, see for example Malament’s theorem (Mal77), moreover as described in
(CL13), for an important class of spacetimes the Martin-Panangaden theorem allows to
conclude that there is “no need to use information about smoothness and continuity of
curves connecting points of the spacetime” (CL13; MP06). This discrete representation of
the fabric of spacetime is also amenable to a categorical description, where the space-like
and time-like interactions can be described between discrete events.

Each discrete location of the spacetime can be seen as a local laboratory where an
observer physically realises a quantum process. The strings of the diagram tell us how
are the events causally interlinked, the flow of information between those localised lab-
oratories. The rules of standard quantum theory therefore describe in which way can
information spread in this net of related spacetime events when there are no closed cy-
cles.

Before we continue, a brief comment on the notation. For a directed graph Γ we will
consider the set of vertices or nodes to be V pΓq, the set of directed edges to be given by
EpΓq. For two nodes u and v we denote the directed edge connecting u to v by pu, vq.

Definition 7.1 (Causalset). A causal set pC,ăq is a set C endowed with a binary relation
ă possessing the following properties:

• transitivity : For all x, y, z P C, x ă y, y ă z implies that x ă z.

• reflexivity : For all x P C, x ă x.
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• local finiteness : Between any two events in C, there are finitely many elements y
such that x ă y ă z.

• non-circularity : if x ă y and y ă x then x “ y;

The local finiteness condition means that causal sets can be equivalently represented
by non-transitive acyclic directed graphs, i.e a graph satisfying the property that if px, yq
and py, zq are directed edges in the digraph, then px, zq is not a directed edge in the
digraph.

The construction establishing the equivalence works by setting V pΓq :“ C and pv0, v1q P

EpΓq if and only if v0 ă v1 and there is no z P C such that v0 ă z ă v1. We note that
the converse is also true as every acyclic directed graph uniquely defines a cusalset: let
Γ be an acyclic directed graph, then C “ V pΓq and for a, b P C we say that a ă b if and
only if there exists a directed path joining a to b.

As anticipated we do not want to focus exclusively in acyclic graphs, we will need to
formalise a more flexible and compositional setting by introducing the category of framed
causal graphs :

7.2 Framed Causal Graphs

We use the directed graph perspective to extend this framework to chronology-violating
(CV) scenarios.

Definition 7.2 (Framed Causal Graphs). We define a framed causal graph Γ to be a
non-transitive digraph equipped with:

• a sub-set inpΓq of nodes of Γ—the input nodes—such that each i P inpΓq zero
incoming edges and a single outgoing edge;

• a sub-set outpΓq of nodes of Γ—the output nodes—such that each o P outpΓq has
zero outgoing edges and a single incoming edge;

• a framing for Γ, which consists of the following data:

– a total order on inpΓq;

– a total order on outpΓq;

– for each node x P Γ, a total order on the edges outgoing from x, compatible
with the total order on outpΓq, where relevant.;

– for each node x P Γ, a total order on the edges incoming to x,compatible with
the total order on inpΓq, where relevant.

The inputs and outputs should be thought of as “open ends” in the digraphs: because of
the way they are defined, it is always true that inpΓq and outpΓq are disjoint subsets of
the nodes in G.

Because we allow cycles, framed causal graphs can be used to described chronology-
violating scenarios: we refer to framed causal graphs with cycles as chronology-violating,
and to acyclic framed causal graphs as chronology-respecting.
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‚

‚

‚

‚‚

‚

‚

‚

‚ outpΓq

inpΓq

Figure 5: Example of a framed causal graph, we underline that the graphical notation
implies a chosen order of the edges if we read the diagram of the graph from left to right.

7.2.1 The SMC of Framed Causal Graphs

Definition 7.3 (The SMC of Framed Causal Graphs). The category of framed causal
graphs CausGraphs has the natural numbers as its objects and morphisms nÑ m the
framed causal graphs G with #inpGq “ n and #outpGq “ m. Using the framing, we can
canonically identify inpGq with the total order t0, ..., n ´ 1u, and inpGq with the total
order t0, ...,m´ 1u.

Composition H ˝G of morphisms G : nÑ m and H : mÑ r in the category is given
by gluing the intermediate “open ends” outpGq and inpHq, i.e. the graph H ˝G has set
of nodes pV pHqzinpHqq \ pV pGqzoutpGqq, input nodes inpGq, output nodes outpHq, and the
following edges:

px, yq in H ˝G iff either

$

’

&

’

%

px, yq in EpGq and y R outpGq

px, yq in EpHq and x R inpHq

Db P t0, ...,m´ 1u s.t. px, bq in EpGq and pb, yq in EpHq

where in the last case we have identified both outpGq and inpHq with the total order
t0, ...,m´ 1u. The identity idA : AÑ A on a total order A is given by the digraph with
Aˆ t0u \ Aˆ t1u as set of nodes and ppa, 0q, pa, 1qq for all a P A as edges.

‚ ‚

‚‚

‚

‚

. . .

‚

‚

Figure 6: Identity on CausGraphs

The category CausGraphs can be endowed with the following symmetric monoidal
structure pCausGraphs,‘,H, σq:

• on objects, A‘B is the sum total order A`B, where all elements of A are taken
to come before all elements of B;

• on morphisms, G ‘ H is the disjoint union G \ H of digraphs G and H, with
inpG‘Hq :“ inpGq \ inpHq and outpG‘Hq :“ outpGq \ outpHq;

• the tensor unit H is the empty digraph, with inpHq “ H “ outpHq;

• the symmetry isomorphism σA,B : A ‘ B Ñ B ‘ A is the digraph with pA ` Bq ˆ
t0u \ pB ` Aq ˆ t1u as its set of nodes, and edges ppa, 0q, pa, 1qq and ppb, 0q, pb, 1qq
for all a P A and all b P B.
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‚

‚

‚ ‚ ‚

‚ ‚‚

‚

‚‚

‚

. . .

. . .

. . .

. . .

A

A

B

B

Figure 7: The symmetry isomorphism σA,B

Because of the way composition is defined in CausGraphs, framed causal graphs
cannot be used to describe scenarios in which inputs/outputs live in a chronology-violating
region: no new cycles can ever be created by sequential or parallel composition.

From a physical perspective, this means that framed causal graphs can be used to
describe chronology-violating regions of space-time with CTCs, but with boundaries
constrained to live in the chronology-respecting sector. We refer to acyclic framed
causal graphs as chronology-respecting, and we write CausGraphsCR for the sub-SMC
of CausGraphs which they span.

7.2.2 CV-local Framed Causal Graphs

For now we will be interested in a sub-class of framed causal graphs, which we will refer
to as “CV-local”, we want the CTC to appear in our graphs, but we want the interaction
with the CR part to remain “local”, in a suitable sense which we describe below.

Definition 7.4 (CV-local Framed Causal Graph). A framed causal graph G is said to be
CV-local if the following conditions holds: every simple cycle, by which we mean a cycle
which is both edge-disjoint and vertex-disjoint, has at most one node of degree higher
than 2. Simple cycles are then identified to be CTCs, and to the node of degree higher
than 2 as the interaction node for the CTC.

CV-local framed causal graphs are closed under the composition and tensor product
of the SMC CausGraphs defined above: they form a sub-SMC, which we refer to as
CausGraphsCV-Loc. In particular, CausGraphsCV-Loc contains CausGraphsCR as a
sub-SMC.

We refer to the sub-graph of G obtained by removing all edges in all CTCs and all
nodes in all CTCs except for the interaction nodes as the CR region: by definition, the
CR region is a CR framed causal graph with the same input and output nodes as G. We
refer to the collection of all edges and nodes on all CTCs of G as the CV region. The CV
separability requirement can then be re-stated to say that the intersection between the
CR region and the CV region is a discrete sub-graph of G, which we take to capture the
intuition that CTCs interact with the CR region in a fully localised way. The following
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is a CV-local graph:

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

which decomposes in the following chronology-violating and chronology-respecting re-
gions:

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

CR

CV

while in the following diagram the intersection between the CR and the CV region is not
a discrete subgraph and the graph is not CV-local.

‚

‚

‚

‚

‚

‚

‚ ‚

‚

‚

‚

We can assign morphisms to acyclic framed causal graphs G to obtain a morphism of the
type

Â

inpGq Ñ
Â

outpGq, we will formalise this assignment introducing the following
definition:

Definition 7.5 (Diagrams over Causal Graphs). Let G be a causal graph and C a
symmetric monoidal category. We say that that a diagram of C over the graph G is
a pair of functions pα, βq with α : V pGqzinpGq\outpGq Ñ hompCq, β : EpGq Ñ obpCq such
that for every node v in G, αpvq is a morphism of the type

â

i

βpeiq Ñ
â

j

βpfjq

where pe1, . . . , enq are the ordered incoming edges and pf1, . . . , fmq the ordered outgoing
edges of v.

An acyclic framed causal graph uniquely defines a morphism, any acyclic diagram
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‚

‚

‚

‚

‚‚

‚

ÞÑ

ρ

D

C

B

A

Figure 8: Diagram over an acyclic causal graph

of morphisms can itself be interpreted as a well defined morphism by the virtue of the
graphical calculus for symmetric monoidal categories (Sel11). However, when we are in
presence of loops, the definition ceases to be meaningful and the following diagram is not
a well defined morphism in a symmetric monoidal category:

‚ ‚

‚

‚

‚

‚

‚

‚

‚
ÞÑ

C

A

B

D

E (90)

How can we interpret diagram with loops? If we cut the edges of the loops, so if cut edges
in the chronology-violating part of the diagram we can transform a cyclic graph into an
acyclic one:

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

!

ù

‚

‚

‚

‚ ‚

‚
‚

‚

‚

‚

‚

(91)

Note that while performing the cut we want to preserve the ordering relations imposed
by framing, in particular the total order defined for edges incoming and outgoing for
each node. We will call such a cut a sequenceable interpretation of a CV-local graph,
we underline that the relative position of the double lines representing the application of
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the operator is irrelevant the only thing that matters is the combinatorial structure of
the graph, including the total orders of the edges. If we now impose on the sequenceable
interpretation a choice of morphisms and objects pα, βq and the additional constraint
that the same object must get mapped to the two cuts of the original edge, we obtain
a well defined morphism in C. After that, applying the superoperator on the object
associated to the cut embeds the morphism defined on the acyclic graph of a sequenceable
interpretation into the bigger category D.

However we see that there is a fundamental ambiguity in constructing the sequenceable
interpretations of CV-local graph: when “cutting” the chronology-violating diagrams it
should not matter where we open the CTC, each different sequenceable interpretation
must lead to the same global morphisms provided that we stick to the same choice of
pα, βq. Returning to the framed causal graph in Diagram (90), we can open up the CTC
in three different ways and we would like to impose all the resultant morphisms to be
equivalent:

‚

‚

‚

‚

‚

‚

‚
‚

‚
‚

‚
‚

‚

‚
‚

‚

‚
‚

‚

‚
‚

‚

‚
‚

“

“

“

A

B C

D

E

B

DA

C

E

B

C

A

E

D

Original CV-local graph morphism in D associated to

the ways we can cut the CTC

In particular the two different cuts of the causal graph in Figure (9) imply that the super-
operator must satisfy the sliding property for all the morphisms living in the subcategory
C. To finish the analysis we also have to consider that we allow multiple CTC interacting

‚

‚

‚ ‚

Figure 9: CV-local graph proving the necessity of the sliding property

with the CV region, for example in the following causal graph, there are two closed single
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cycles meeting at the same point:

‚

‚

‚

‚‚

‚

‚

‚‚

‚

ù ‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

(92)

However we will see that this consistency can be recovered from the sliding property if
we define the interaction of two chronology-violating curves to be simply given by:

f

1st CTC

2nd CTC

(93)

The notation defines a physical situation describing a local interaction with two CTCs
intersecting at the same chronology-respecting region of the spacetime. The discussion
that we have introduced above can be synthesised in the following theorem:

Theorem 7.6 (Interpretations of CV-local graphs). Let C be a symmetric monoidal
category describing the chronology-respecting evolution. Let Γ be a CV-local connected
graph, let peiqi be the ordered edges connecting the nodes in inpΓq to the rest of the
graph and pfjqj the ordered edges connected to a node in outpΓq. Every sequenceable
interpretation of Γ, gives rise to the same morphism:

â

iPinpΓq

βpeiq Ñ
â

jPoutpΓq

βpfjq

for any choice of pα, βq, if and only if there exists a superoperator D : C Ñ G satisfying
the sliding property and the naturality in the CR region. The category G can then be
used to univocally describe CV-local causal graphs.

Proof. We have already shown that the sliding property is implied by the equivalence
between different chronology respecting interpretations (using the CV-local graph in Fig-
ure 9). Similarly, the naturality in the CR respecting region is a consequence of the
fact that it doesn’t matter, once we open the cycles, where we define the starting and
the ending point of the CTC. The sequenceable interpretations are combinatorial notions
even though their topological representations is a powerful visualising aid. The following
two graphs must lead, once we assign morphisms to the vertices, to the same evolution:

‚

‚

‚

« ‚

‚

‚

from which we can easily read off the naturality property with respect to the CR region.
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Now we show that the two properties are also sufficient to establish the equivalence
for every chronology respecting interpretation of a CV-Local graph. We will proceed by
induction on the number of interaction points, for the base case we consider CV-local
graphs with a unique interaction point. Every chronology respecting interpretation of
such a CV-Local graph is of the following form

. . .. . .

. . . . . .
Recall that we admit the possibility

of multiple CTCs interacting
at the same point.

Where the dashed area contains an acyclic framed causal graph. When assigning fixed
morphisms to the vertices, the general morphism associated to that acylic framed causal
graph can clearly depend on the choice of the cut. However, every diagram over the cut
CV-local graph must be of the following normal form

χ

A B

C 1 D1

B1A1

DC

where the map χ is fixed by every cut cut and includes all the morphism living in the
chronology-respecting region: when assigning morphisms to such a graph we can by the
assumption of naturality, gather all the maps with inputs and outputs in the the CR part
of the diagram, including the morphism αpvq (v is the point where the CTCs interact
with the chronology-respecting region) under the same label. The map χ will be therefore
be invariant under any cut performed on the CV region as it is exclusively defined on the
CR region.

To prove that any cut is equivalent we need to show that it is possible to independently
slide the boxes, this is an easy consequence of the monoidal structure of the category C
and the sliding property. Assume without loss of generality that pC 1bD1q˝pCbDq “ Id,
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therefore:

A B

A1 B1

χ

“ A

A1

χ

B

B1

“

A

A1

χ

B

B1

It is clear that distinct cuts can only differ by a cyclic permutation of the boxes lying in
the CV region, and all such combinations will lead to the same morphism in D after we
apply D. Consider now the case where we have N ` 1 interaction nodes, we can always
isolate a subgraph with a single interaction point:

. . .

. . . . . .
CV local graph with

with N interaction points

by the inductive hypothesis this is just a composition of well defined morphism indepen-
dent on the cut choices.
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7.3 Extending the Interaction with the CV region

In the previous discussion we have explicitly not allowed framed causal graphs where
the intersection between the CR and the CV region was not a discrete subgraph. We
have seen that the trace-like properties identified in Deutsch’s method are sufficient and
necessary conditions to model causal graphs which are CV-local, what happens if we
relax this requirement? Is the Deutsch model able to simulate situations where at least
an edge is both part of the chronology violating and chronology respecting region? It is
not entirely straightforward to provide a physical interpretation of such causal graph but
it would also be a pity to surrender to the dryness of the formalism without fighting such
an uphill battle.

If the CV-CR interaction is a single point we are basically only producing local maps,
local gates that are broadly speaking aware of the value of its output given any input.
We have described in great length the fact that such maps are able to simulate many
well known paradoxes but can it be considered to be real time travel? In the various
interviews and explanations of the model given by Deutsch he seems to argue that this
is indeed the case, that the microscopic quantum reality that he is describing could be
potentially translated into the macroscopic realm.

If we allow the interaction to be more complex and we lift the assumption of CV-
locality, the picture changes quite radically and the conceptual difference between chronol-
ogy respecting and chronology violating timelines gets blurred. Let us what happens when
we try to cut such a cyclic graph, we will see that in this case the D-CTC description
doesn’t respect this covariance; and there is also a fascinating physical idea that suggests
that the Deutsch model has to imply a distinction between the chronology respecting
and the chronology violating region of spacetime. We will start by analysing the simplest
example of a non CV-local framed causal graph:

Example 7.7.

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

A

B

A

B

A

B

(94)

In this case the subgraph modelling the intersection between the CR and the CV region
is an entire edge and there are two ways to transform the cyclic graph into an acyclic
graph, two possible cuts. To preserve the equivalence of those physical scenarios we need
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the following equivalence to hold for any f, g associated to the vertices:

f

g

«

g

f

The first thing we notice is that in Example (7.7), the order of morphisms in what we
might have considered the chronology-respecting region has been upset by a cut. If we
consider the direction of time to flow from the bottom to the top of the diagram, one cut
keeps fixed the global ordering of events of the original graph: A before the event B.

A

‚

B

‚

‚

‚
(95)

The other one inevitably reverses this order:

B

A

‚

‚

‚

‚

(96)

Suppose that event at A represents the birth of the father of an hypothetical time traveller
and the event B the birth of the traveller itself. We can consider the scenarios obtained by
considering in accordance to the traveller’s and the father’s internal clocks. If we assume
that the clock of the father is aligned to the asymptotic time flow, we get the ordinary
description, its clock starts at A and he witnesses all the strange phenomena related to the
emergence of a visitor from another time. If we take a different perspective and describe
the scneario from the perspective of the time traveller, he then just enters in a loophole
at a certain point of his existence and finds itself in another time, it is the rest of the
universe that somehow ”travelled in time”, the birth of his father appears in its future,
while he is just following his timeline aligned to the asymptotic direction. In Diagram
(96), the birth of the time traveller and its influence to the past event is not considered
part of a CTC but it is the standard chronology of events, the order of the chapters that
an hypothetical time-traveller would choose while writing his autobiography.

Clearly this narration is of a mythological kind, we ask the reader to read in it the
fragile and thin skeleton of an idea. Returning to causal graphs, it is straightforward to
show that those different scenarios lead to different evolutions in the case of D-CTCs, if
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we assign f “ g “ IdAbA we get the following equation between morphisms

“ (97)

which as we have shown before is not a valid equation in DMix, the morphism on
the right hand side of Equation (97) breaks the correlation with the environment while
the morphism on the left is simply the identity.

The failure of this equivalence is however clearly in line with the philosophy of the
model. Deutsch distinguishes two different ways of “travelling” trough spacetime, a
wordline which is confined to its universe and rapresents the standard chronology of
events and a “time-travelling” wordline which defines a movement trough the different
branches of the multiverse. The quantum evolution in the timeline of the time traveller is
allowed to be different from the global picture, the evolution obtained by evaluating the
diagram in DMix which takes in consideration the ensembles of states spread across the
multiverses. If we recall the discussion about breaking entanglement and violating the
principle of the “Church of the Larger Hilbert Space” the entanglement can be thought
to be preserved across the multiverses, however it is broken it is global description.

What about Lloyd’s model? We reiterate that Lloyd is unknowingly introducing a
trace in the time symmetric formalism introduced by Oreshkov (OC16).

Lemma 7.8. Let LXA,B : Mixsym Ñ Mixsym be the family of functions

MixsympAbX,B bXq Ñ MixsympA,Bq

given by:

f

A X

B X

ÞÑ f

Then L defines a trace in the category Mixsym.

Proof. Recall the properties of the trace (Definition (2.10)), in our case the proofs are
all straightforward, almost trivial when approached diagrammatically. To be concise we
only prove strength, unitality and sliding. We start by proving strength. Recall that in
the category Mixsym we always need to renormalise after a composition requiring that
every morphism satisfies

1

dA
f “ (98)
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Let g : A1 Ñ B1 and f : Ab C Ñ B b C. Consider LCA,Bpfq, we get:

LCA,Bpfq “ f µ

where µ is a normalising factor which makes the composition satisfy Equation (98).
Tensoring with g gives:

g b LCA,Bpfq “ f µg

since g is already in Mixsym no renormalisation is needed. Now we start with g b f and
apply L to the tensor product:

LCA1bA,B1bBpg b fq “ f λg

A possibly different factor λ appears, however the following property of the maximally
mixed state

1

dA1

1

dA

“ 1

dA1dA

implies that as an straightforward consequence of testing the requirement given by Equa-
tion (eqn:normalisation) that λ “ µ and

g b LCA,Bpfq “ f µg “ f λg “ LCA1bA,B1bBpg b fq

An analogous argument applies to the proof of vanishing II while vanishing I is entirely
trivial. To show unitality, we first recall that IdA P Mixsym as every completely positive
trace preserving map satisfies Equation (98). We can show that in FdHilb the identity
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can be written as:

“
ÿ

i

i

i

“
ÿ

i
i

i

“
ÿ

i i

i

“

therefore in Mix:

IdA “ “ “ LAA,ApσAq

All the equations valid in Mix are therefore valid in Mixsym and unitality is satisfied.
The sliding property is an immediate consequence of the fact that the standard partial
trace of linear maps is invariant under cyclic permutation, for U : B Ñ C and f :

TrCrpIdAbUq ˝ fqs “ TrCrf ˝ pIdAbUqs

therefore the map ρ ÞÑ EρE: of Equation (52) is unchanged by sliding and so id the
renormalisation constant.

We have established that precomposing and postcomposing with a cup and a cap does
indeed describe a trace and Mixsym and it is therefore a symmetric traced category. To
explain what is the relationship between traces and non CV-local causal graph we quote
verbatim the following theorem from (Sel11):

Theorem 7.9 (Coherence for symmetric traced categories, (Sel11)). A well formed equa-
tion betweeen morphisms in the language of symmetric traced categories follows from the
axioms of symmetric traced categories if and only if it holds in the graphical language up
to isomorphism of diagrams.

Two diagrams are meant to be isomorphic if there is a bijective correspondence be-
tween boxes and wires preserving the connections (Sel11). If we consider the superopera-
tor D to be the restriction of L acting on the subcategory Mix then clearly the different
cuts produce isomorphic diagrams and the equivalence is always preserved independently
on the type of CV-CR interaction.

In this context it is interesting to compare our observation with Kissinger’s No Time-
tavel theorem (KS). Kissinger proves that for precausal categories, i.e compact closed
categories with a discarding map and satisfying certain other reasonable physical as-
sumptions, the superoperator described above, obtained using the cups and caps of the
compact closed structure, cannot send all causal processes to causal processes.

Theorem 7.10 (No Time-travel, (KS)). No non-trivial system A in a precausal category
C admits time travel. That is, if there exists systems B and C such that for all processes
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Φ we have:

Φ

A C

A B

causal ùñ causalA Φ

C

B

then A » I.

The category MixJ is a causal subcategory of Mixsym, Theorem (5.2) is a witness of
the type of failure described by the No Time-Travel theorem since we have shown that the
Lloyd model can send a causal process into a non-causal projector. Kissinger’s theorem
shows that a trace operator satisfying causality cannot be defined using the canonical
trace arising from a compact closed structure.

We have analysed two different models. The D-CTC model entails a structure which
is similar but not entirely equivalent to a trace, there is therefore an ambiguity in inter-
preting certain non CV-local causal graph. The second model, provided by Lloyd allows
more flexibility in interpreting causal graphs but it deeply upsets the causal relationships
of events by producing non causal morphisms, leading to signalling and retrocausality.
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8 Conclusions and Future Works

Hopefully the reader is now convinced of the importance of category theoretical consider-
ations in theory building. In particular, if we want to consider time asymmetric quantum
theory as a restriction of a bigger physical theory without a predetermined time-flowing
asymmetry, then the categorical approach may be particularly fruitful in defining the non
negotiable and fundamental structural properties that such a theory must satisfy.

We have also seen how categorisation may be convenient in assessing the peculiar-
ities of existing models and be able to study their differences. Often the approaches
on quantum time-travel lack the necessary maturity for a very simple reason, there is a
fundamental impossibility of testing hypothesis empirically. It is precisely here that the
structuralist approach provided by category theory manifests its biggest potential. In
requiring that a class of physical transformations must interact with each other in line
with the framework of process-theories, the use of category theory is particularly useful
in order to assess what could be the structural consequences of certain physical assump-
tions and thus tailor the model accordingly. Bringing into play category theory allows to
access a standardised vocabulary and an abstract intuitive framework with the potential
to connect and unify the realm of physical theories.

To provide an example which valorises our claims, we recall that in Theorem 6.12
we have shown that the choice of the fixed point with maximal entropy is not only in
accordance to the principle invoked by Deutsch: knowledge comes into existence only
by evolutionary processes, but it is also connected to the sliding property and therefore
to fundamental aspects of the interpretive power of the model. An attempt to derive
the maximal entropy rule has been made by the development of the “equivalent circuit
model” (RM10) but it has been shown to be incorrect in (All14). This has recently led
to question this rule as “there is no physical principle for making such a choice and the
maximum entropy rule may not be an essential component of the D-CTCs” (DCZ17); on
the contrary, we have shown that there reasons to believe that the maximal entropy rule
is a fundamental requirement of the model.

Deutsch’s model can only unambiguously describe a particular class of causal graphs
which do not entail what is commonly considered to be time travel. P-CTCs offer more
flexibility but at the expense of a violation of the causality principle. We have made some
additional progress in the direction of characterising with greater precision the sufficient
and necessary conditions that a theory should satisfy in order to be able to uniquely
interpret all the morphisms of CausGraphs, however the work was not mature enough
to be included in this dissertation and we had to postpone its presentation. By performing
a categorisation of the D-CTCs we have identified certain common core properties that
must be shared by all models describing time travel at a quantum mechanical level. The
natural progression of the work would be to use those considerations to create a theory
which satisfies causality and at the same time describes a broad class of causal graph or
–perhaps even more interestingly– show that such a model is impossible by constructing
a No-go theorem in the spirit of Theorem (7.10).

This dissertation may be seen as the beginning of a journey, as there are many ques-
tions to be answered. While one can construct a model such us DMix, the mathematical
nature of Deutsch’s map has not been explored in this work, where we only showed the
non-linear and discontinuous behaviour. We have shown that the model allows more
flexibility regarding the clonability of states. However, we conjecture that it is not pow-
erful enough to produce an exact CTC assisted cloner. Applying the No-cloning theorem
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(Abr09) to the context of DMix is however not possible as the theory cannot be embed-
ded in a compact structure such us FdHilb, we cannot recover an isomorphisms between
channels and states a la Choi-Jami lowkowski. Another important direction would be to
try to characterise the categories for which a trace-like operator exists. In this area there
might be an interesting analogy to be uncovered. It has been independently observed
by Hyland and Hasegawa (PS14; HHP08) that in a cartesian closed category giving the
notion of a trace is equivalent to assigning to each morphism A ˆX Ñ X a fixed point
AÑ X such that

f

P

A

A

A
X “

A

P

X

Interestingly D-CTCs are based on the selection of a fixed point while the P-CTC model,
acts on a different principle, requiring the probabilistic amplification of the projections
which are consistent with the chronology violating scenario. In (BWW13) the authors
comments on the possibility of cloning a quantum state with arbitrary fidelity as a witness
of the fact that ”Deutsch’s model turns quantum theory into a classical theory, in the
sense that each density operator becomes a distinct, distinguishable point in a classical
phase space”. Quantum theory is in its fundamental constituent aspects a non-cartesian
theory, it would be interesting to understand, also in the light of the Hasegawa analogy
between fixed points and traces in cartesian categories, to what extent is the claim in
(BWW13) justified.
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