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A. Abate

1 Motivations and Objective

In order to cope with the increasing complexity of real-world engineering sys-
tems and with the intractability of their corresponding mathematical models,
a number of studies have explored the development of techniques aimed at
quantitatively putting in relationship two models, a concrete one and an ab-
stract one. The latter is generally obtained via a simplification of the first (e.g.,
by means of model reduction, low-order approximation, state-space cluster-
ing, or lumping and factorization) and represents a tractable version of it.
Ideally, the abstract model should be, in a certain sense, equivalent to the
concrete one. Equivalence between models is usually expressed with the no-
tion of language correspondence, trajectory or trace equality, or with that of
bisimulation relation between pairs of states of the two models. Unidirectional
and thus less stringent versions of the notion of bisimulation are also used to
express the idea of inclusion between the abstract model dynamics and that
of the concrete one: in this sense, the abstract model represents a simulation
of the concrete one.

From a different perspective, since frequently the exact notion of bisimu-
lation translates into rather conservative requirements on the models under
study, and because it is a notion that lacks robustness (against model param-
eter perturbations, for instance), the concept of approximate bisimulation has
been introduced as a relaxed version of that of strict bisimulation. This ap-
proximate concept leads to the use of proper metrics (or pseudo-metrics) over
the dynamics of the models. The use of approximate relations between models
appears to be quite pertinent for models that are dynamically rich, such as
models with continuous (uncountable) or even hybrid state spaces, as well as
stochastic processes. For the latter in particular, the use of approximate no-
tions allows the development of metrics that are robust to small perturbations
of the models parameters, and accommodates quantitative correspondences
between the realization likelihood of models trajectories.

This contribution focuses on probabilistic processes with general (continu-
ous) state spaces and aims at surveying and discussing approximation metrics
between pairs of such processes. In particular, we provide an overview of
results in the literature that are based on the notion of approximate bisim-
ulation. We decide to concentrate on approximate version of the notion of
strong (rather than weak) bisimulation, and we only touch upon the concepts
of (probabilistic) simulations.

This work suggests that metrics between processes, based on the concept of
approximate bisimulation, can be introduced essentially in two separate ways.
The first approach employs the probabilistic conditional kernels underlying
the stochastic processes under study – in this sense, the approximation comes
from metrics between (marginals of) probability measures related to the two
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A. Abate

Fig. 1. Approximation metrics for general state-space Markov processes: two approaches.

processes. The second procedure looks at distance metrics between trajectories
of the two processes and utilizes the dynamical properties of the two processes
to define such metrics: this can be done either by analyzing the models syntax,
or by directly employing their semantics in order to compare realizations of
the two models.

The two approaches are depicted in Figure 1. The blue and red dots
represent realizations of two “similar” stochastic processes, which evolve over
the Euclidean plane and are both initialized on the black dot (top right). The
first approach refers to the magnified square at the bottom, which portrays
the two corresponding conditional kernels. The second approach is pictorially
represented by the top square, where the (point-wise) distance between the
realization of the trajectories of the two processes is highlighted.

This work is structured as follows.

• Section 2 provides a comprehensive coverage of the work on simulations,
bisimulations and approximate versions thereof, with focus on probabilistic
models living on general state spaces.

• Section 3 introduces and discusses the models under study.

• Section 4 presents the concept of exact and approximate (strong) proba-
bilistic bisimulation, and provides related characterizations based on alge-
bra, logic, and category theory.

• Section 5 puts forward the definition and the characterization of the notion
of probabilistic bisimulation function, which leads to the introduction of
approximate metrics between the trajectories of two processes.

• Section 6 finally looks at semantic-based computations of distance metrics
between comparable probabilistic processes.

• Section 7 discusses the surveyed techniques and looks forward at future
research directions.
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A. Abate

2 Review of Literature Background

The concept of strong probabilistic bisimulation over a discrete-time, finite-
state Markov chain has been introduced in [46], based on earlier notions for
non-probabilistic models [49,51]. The work in [36] uses similar notions for
Markov decision processes with finite state spaces, and puts forward proce-
dures for finding factored bisimilar models. The notion of weak bisimulation
is discussed in [9,38,54] for a number of (finite-state) probabilistic processes.
The contributions in [39,59] cover the notion of probabilistic simulation rela-
tions for classes of probabilistic automata. [10,11] provide a recapitulation and
draw relationships between these notions. These concepts are of applicative
interest and build on earlier work on approximation techniques, such as that
of lumpability for Markov chains [13] and in queuing theory [41].

The interesting work in [24] discusses approximate notions of bisimula-
tions for finite state labeled Markov chains, and elaborates on this notions by
using a logical approach as well as one based on games. The use of approxi-
mate notions is advocated in [32] and motivated by robustness issues related
to the verification of specifications over probabilistic models. Furthermore,
approximate notions appear much less restrictive than the exact one, particu-
larly when applied over models with continuous state spaces – this is precisely
what has been observed also for deterministic models, where notions of exact
bisimulation have been developed only for limited classes of models, e.g. timed
automata [7] (via the region graph construction), linear hybrid automata [37],
o-minimal hybrid systems [45] and certain classes of linear (control) systems
[50,61]. The introduction of approximate versions [34] based on distance be-
tween trajectories of deterministic models has lead to the study of approximate
abstractions for nonlinear [55] and switched systems [35].

For continuous space processes (namely, discrete-time labeled Markov pro-
cesses as in Section 3), [21] provides a relational and logical characterization
of bisimulation (see Section 4). Alternatively, probabilistic bisimulations re-
lations can be introduced via coalgebraic [20] or categorical arguments [64].
Building on these results, the material in [22] is relevant in that metrics for
labeled Markov processes are discussed (see Section 4), whereas [23] proposes
metrics via weak bisimulations, and the contributions in [29,30] discusses met-
rics for respectively finite- and infinite-state Markov decision processes.

Related to the notions above, [60] introduces exact bisimulations for com-
municating piecewise-deterministic Markov processes (which are models re-
lated to [38]), [25] discusses bisimulation of continuous-time processes, [8]
elaborates abstraction notions based on bisimulations for probabilistic pro-
cess algebras, whereas [14] attempts definitions of bisimulations for stochastic
hybrid models [12,17]. None of these works proposes approximate variants of
the respective exact notions.
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With focus on probabilistic models and on the development of metrics over
systems trajectories (realizations) [34], the concept of probabilistic bisimula-
tion functions (see Section 5) is introduced in [40] and elaborated in [1]. The
recent work in [63] puts forward a reachability problem to find metrics between
discrete-time stochastic processes.

From a different perspective, [5] puts forward an approach based on ran-
domization techniques to characterize approximation distances between pro-
cesses over finite time horizons, with no assumptions on their dynamics (see
Section 6). This approach also promises to provide model reduction or ap-
proximation techniques for classes of stochastic processes. Along this line of
research, [26] introduces an approximation for such processes. This approx-
imation can be related to the work in [3,4] (which works with discrete-time
stochastic hybrid systems), as well as to that in [62] (which uses Wasserstein
Pseudometrics over continuous space processes) and to the classical reference
in [43,44], which discusses weak approximations of stochastic processes, which
has been applied on hybrid models in [42,56], but which offers no explicit ap-
proximation bound. Related to this works, [58] has proposed explicit error
bounds on a time and space discretization of a Markov process with certain
ergodic properties.

3 Markov Processes over General State Spaces

We consider probabilistic processes defined over continuous spaces with Pol-
ish structure [48]. Namely, we assume to be working on a topological space
that is homeomorphic to a subset of a complete (i.e., a metric space where
every Cauchy sequence converges) and separable (i.e., which contains a count-
able dense subset) metric space. The reference metric can be taken to be
equivalent to the usual Euclidean metric (more on this in the following). Fur-
thermore, we assume that the space is endowed with a Borel σ-algebra, which
is characterized by sets that are Borel measurable.

The continuous state-space is denoted by S, whereas B(S) is the associated
σ-algebra. Processes will be evolving in discrete time over the interval [0, N ] on
a sample space ΩN+1 = SN+1, equipped with the canonical product topology
B(ΩN+1). P is a probability measure defined on this event space.

We also introduce a control space U , which we assume to be Borel mea-
surable and in general continuous.

The following definition first appeared in [6], which focused on a rather rich
state-space structure, namely a hybrid state space [12,17] – it can be shown
[19] that a metric that is equivalent to the Euclidean one can be defined over
this space. This model can be equivalently regarded as a Markov decision
process [57] over a general state space with no rewards.
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Definition 3.1 [Controlled Markov Process] Consider a discrete time con-
trolled Markov processes (CMP) S = (S, T ,U) defined over the state space
S, and characterized by T , a conditional stochastic kernel that assigns to each
point s ∈ S and control u ∈ U a probability measure T (·|s, u). For any set
A ∈ B(S),Ps,u(X(1) ∈ A) =

∫

A
T (ds|X(0) = s, u), where Ps,u denotes the

conditional probability P(·|s, u). Process S = (S, T ,U) is initialized accord-
ing to a probability distribution π : B(S) → [0, 1]. 2

The syntax in Definition 3.1 leads to the following semantics for a tra-
jectory X(k) over the time horizon [0, N ]. Let us fix a control string
{u0, u1, . . . , uN−1; ui ∈ U}. Given an initial condition x ∈ S sampled from
the probability distribution π, and given the control input u0 ∈ U , the
value of the process at time k = 1 point is described by a probability
law characterized by the conditional kernel T (·|x, u0). Likewise, for any
k = {1, . . . , N − 1}, X(k + 1) ∼ T (·|X(k), uk).

Example 3.2 Consider the process S characterized as the solutionX(k), k ∈
N, of the following stochastic difference equation:

X(k + 1) = X(k) + a(X(k))u(k) + b(X(k))w(k),

where X(·) ∈ Rn, u(·) takes values in a bounded set U , the functions
a(·), b(·) are Lipschitz continuous and with linearly bounded growth, and
w(k) ∼ N (0, 1) is a standard normal random variable for any k ∈ N. Then,
process S exists, is uniquely defined, and its dynamics can be characterized
by the following kernel: T (·|x, u) = N (x+ a(x)u,

√

b(x)).
An instance of a realization of this process can be either of the two traces
depicted in Figure 1, which have a deterministic initialization (black dot) and
evolve in discrete time according to (Gaussian) conditional kernels. 2

Let us now assume that U a finite set of labels (that is, elements taken
from a finite alphabet). The following definition is derived from the work in
[21,22,26] 2 .

Definition 3.3 [Labeled Markov Process] A labeled Markov process (LMP)
S is a structure

(S, s0,B(S), {τu|u ∈ U}) ,

where S is the state space, s0 ∈ S is the initial state, B(S) is the Borel σ-field
on S, U is the set of labels, and

∀u ∈ U , τu : S × B(S) −→ [0, 1]

2 Some of these contributions work with analytic spaces, which are generalization of the
Borel measurable ones that this work focuses on. However, since the properties of analytic
spaces are not needed in this work and since Borel measurable sets are also analytically
measurable, we have decided to focus on the latter.
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is a transition probability function, namely a set-valued function τu(s, ·) that
is a probability measure on B(S) for each s ∈ S, and such that for each
S ∈ B(S) the function τu(·, S) is measurable. 2

Definition 3.3 is generalized in [21,22,26] by allowing sub-probability mea-
sures τu. In this work, for the sake of consistency, we will only refer to complete
probability measures. Notice that in general, unlike LMP, CMP do not spec-
ify the initial condition within the model definition, instead allowing for any
choice of it within the state space.

If we semantically equate the labels of the LMP with the controls of the
CMP, it is clear that labeled Markov processes in Definition 3.3 are a subclass
of discrete time controlled Markov processes as in Definition 3.1, since the
latter allows for a richer control structure. In fact the measure τu(s, ·) corre-
sponds to the conditional kernel T (·|s, u). We thus proceed by utilizing the
model with syntax in Definition 3.1. In the next sections we will come back
to the differences in the semantical characterization of the control structure
between LMP and CMP.

4 Exact and Approximate Probabilistic Bisimulations:

Relations, Logics, and Categories

In the following we introduce exact and approximate notions of bisimulations
for CMP. We emphasize that both concepts are to be regarded as strong
notions, as opposed to weak versions as in [9,38,54] 3 . The definitions can
be looked at from three different aspects: via relations, via logics, and via
categories.

4.1 Exact Characterization via Relations, Logics, and Categories

Recall that a relation over a given set is an equivalence relation if it is reflexive,
symmetric, and transitive.

Definition 4.1 [(Exact) Probabilistic Bisimulation] Consider two CMP S1 =
(S1, T1,U) and S2 = (S2, T2,U). An equivalence relation R ⊆ S1 × S2 is a
bisimulation relation on S1 × S2 if, whenever s1Rs2 for any s1 ∈ S1, s2 ∈ S2,
for given u ∈ U and set S̃1 × S̃2 ∈ (S1 × S2)/R (which is Borel measurable),
it holds that

T1(S̃1|s1, u) = T2(S̃2|s2, u).

A pair of states s1 ∈ S1, s2 ∈ S2 is said to be (probabilistically) bisimilar if
∃R, a bisimulation, such that sR t, whereas two CMP S1,S2 are said to be

3 Weak notions are introduced in order to abstract from “internal” moves that do not
influence the future behaviour of a process.
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(probabilistically) bisimilar (denoted S1RS2) if there exists a bisimulation
relation R that is total over respectively S1 and S2

4 . 2

Notice that the autonomous case, characterized by an empty labels set,
can be obtained as a special case of the above definition.

Example 4.2 Consider two processes Si, i = 1, 2, characterized by the mod-
els (as per Example 3.2)

Xi(k + 1) = Xi(k) + ai(Xi(k))ui(k) + bi(Xi(k))wi(k),

where we assume ai(Xi) = −Xi, ui = 1 ∀k ≥ 0 (U = {1}), b1(X1) =
0.4X1, b2(X2) = 0.3X2, and where Xi ∈ R = Si. The dynamics are quite
trivial, since a trajectory is reset at any point in time to a neighborhood of
the origin according to a Gaussian kernel with state-dependent variance. The
following simple relation

R =































(−∞, 0]× (−∞, 0],

(−∞, 0]× (0,+∞),

(0,+∞)× (−∞, 0],

(0,+∞)× (0,+∞)































induces an (exact) bisimulation relation between the two processes, since con-
ditional on any pair of states in S1 × S2 = R

2, the probability that either
process Xi transitions to the respective projection of an element of R is equal
to 0.5. Notice that R induces a partition of the composed state space R2. 2

A logic L can be defined, which allows to show that two states are bisimilar
if and only if they satisfy the same formulas φ of the logic L [21]. This approach
emphasizes the fact that bisimulation is an equivalence relation.

The work in [21] further characterizes probabilistic bisimulations via cat-
egorical notions (based on zigzag morphisms). Related to this approach, [20]
employ coalgebraic notions to precisely relate probabilistic models. Similarly,
probabilistic bisimulations relations over continuous-space processes can be
introduced via categorical arguments, as discussed in [64].

4.2 Approximate Characterization via Metrics based on Functions

The exact relational and logical characterizations are formal, but have to be
relaxed in order to accommodate for computational robustness [65] and for

4 As a special case, if the initial conditions of S1,S2 are characterized by two given sets,
then the relation should hold over pairs of states extracted from each of these sets respec-
tively.
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real-world engineering applications.

Probabilistic bisimulation can be sufficiently characterized by a family of
functional expressions [22]. More specifically, given a process S , consider a
family F c of real-valued functions fS : S → [0, 1], which are defined by a
grammar (a set of operations). The operations induced by the grammar can
be related to the rules of the logic L. The parameter c ∈ (0, 1] is utilized
in the definition of an operator in order to rescale the computation of the
expected value at successive times (notice that this operation also depends
on the labels of the process), and is in practice put forward to discount the
future. The introduction of the family F c of functions further allows to define
a metric on processes.

Definition 4.3 [Metric between processes] Consider two CMP Si =
(Si, Ti,U), i = 1, 2. A family F c of functional expressions on Si induces a
distance as follows:

dc(S1,S2) = sup
f∈Fc

|fS1
− fS2

|,

where fSi
are functions in F c evaluated over the respective spaces Si. 2

It can be shown that, for any c ∈ (0, 1], dc is a pseudo-metric 5 . As a
special instance, d0 characterizes bisimilar processes [22]. Quite interestingly,
for c < 1 it can be shown that, given an approximation parameter ǫ > 0, the
problem of checking dc(S1,S2) < ǫ is decidable.

This discussion leads to the notion of approximate bisimulation with level
ǫ, or simply of ǫ-bisimulation [24]. Let R be a relation on a set A. A set
Ã ⊆ A is said to be R-closed if R(Ã) = {t|sR t, s ∈ Ã} ⊆ Ã.

Definition 4.4 [Approximate Probabilistic Bisimulation] Consider two CMP
S1 = (S1, T1,U) and S2 = (S2, T2,U). A relation Rǫ ⊆ S1 × S2 is an ǫ-
bisimulation relation if, for any s1 ∈ S1 there is a s2 ∈ S2 such that s1Rǫs2,
and for any u ∈ U and Rǫ-closed set S̃1 × S̃2 ⊆ S1 × S2, it holds that

∣

∣

∣
T1(S̃1|s1, u)− T2(S̃2|s2, u)

∣

∣

∣
≤ ǫ.

In this case we say that the two CMP are ǫ-bisimilar (denoted S1Rǫ S2). 2

In general Rǫ does not satisfy the transitive property, and as such is not an
equivalence relation [24]. Hence, it induces a cover of S1 × S2 but in general
not a partition.

5 In conformity with the discussions in [22,64], in the following we will not be formally
distinguishing between pseudo- (or semi-)metrics and actual metrics, since we are simply
interested in (pseudo-)metrics that are sufficient for characterizing bisimilarity (or trajectory
equivalence, see Section 5) – the necessity is not fundamentally important.
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Example 4.5 An example of approximate probabilistic bisimulation relation
Rǫ is obtained by adapting the models Si, i = 1, 2 from Example 4.2 allow for
a noise term with a small drift ηi, namely wi ∼ N (ηi, 1) and η1 6= η2. Based
on the corresponding probabilistic kernels, this allows computing an upper
bound ǫ on the (absolute value of the) difference in the marginalization of the
corresponding kernels over the sets in R2 induced by R = Rǫ. In this specific
instance Rǫ induces a partition of the composed state space R2 — this fact
does not old in general. 2

The use of a metric between processes, as in Definition 4.3, allows to relate
the distance in time between processes that are “similar.” We then employ a
result from [22] and use it in the case where similarity between processes is
precisely characterized by an approximate bisimulation relation.

Theorem 4.6 Consider two CMP S1 = (S1, T1,U) and S2 = (S2, T2,U) that
are ǫ-bisimilar, namely S1RǫS2. Then d

c(S1,S2) < kǫ, with c < 1 and where
k = supn∈R+ ncn.

Proof. The claim follows from [22, Prop. 7.5], where an ǫ-approximate bisim-
ulation relation between S1 and S2 is used in place of the ǫ-perturbation
notion of [22, Def. 7.4]. 2

The idea to define discounted metrics over probability measures that admit
bisimulation as a fixed point is taken up in [30], which uses the Kantorovic
distance between probability measures to approximate MDP over infinite state
spaces. This distance is related to that discussed in Section 6. The cited work
in [64] introduces a discounted metric that is both closely related to that
presented in this survey and which is also based on the Kantorovic distance.

Remark 4.7 While for processes over discrete, finite state spaces there exist
algorithmic procedures to compute exact [11] and approximate [24] proba-
bilistic bisimulations, the computational aspects related to these notions for
processes over continuous state spaces require further research. Presently,
based on these notions a few results [3,18,26] have put forward techniques to
approximate these processes with finite state ones — however their scalabil-
ity properties ought to be more thoroughly assessed. Next section proposes
an alternative approach to synthesize approximate probabilistic bisimulations,
which hinges on the computation of a function relating the two processes. 2

5 Approximate Bisimulations via Probabilistic Bisimu-

lation Functions

Consider a CMP S1 = (S1, T1,U1) with associated realizations X1(k), k ∈ N,
and a second model S2. The quantification of similarity between S1 and
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S2 can be assessed by comparing trajectories of the two models. A formal
comparison can be set up by seeking a function g : S1×S2 → R

+
0 that induces

a metric over the distance between the trajectories [40], for instance

g(X1, X2) = ‖X1 −X2‖
2, if S1 = S2.

If S1 6= S2, in order to effectively relate the two processes, we need to assume
the existence of proper output maps Yi : Si → So taking values over the same
observation space So. In this instance, we would then consider a function

g(X1, X2) = ‖Y1(X1)− Y2(X2)‖
2.

In general, given such a measurable, non-negative function g evaluated over
(X1(k), X2(k)), k ∈ N (the Markov process related to the joint system
(S 1,S 2)), the quality of the approximation between S1 and S2 is then
characterized over a finite and an infinite time horizon, by the following two
quantities:

V N
δ (x) = Px

{

sup
0≤k≤N

g(X1(k), X2(k)) ≥ δ

}

(1)

and

Vδ(x) = Px

{

sup
k≥0

g(X1(k), X2(k)) ≥ δ

}

. (2)

Here x ∈ S1×S2 represents a pair of initial conditions, and δ is a non-negative
real number denoting the approximation quality.

It is of interest to provide meaningful and possibly tight bounds for the
probabilistic quantities in (1)-(2). In order to do so, let us start by recalling
the following classical notion [27]:

Definition 5.1 [(Super-) Martingale] Consider an autonomous stochastic
process X(k), k ≥ 0, taking values in S. A function χ : S → R is
called a martingale for the process X(k), k ≥ 0, if for any x = X(0) ∈
S, k ≥ 0,Ex[χ(X(k))] = χ(x). The function χ is called a supermartingale
if Ex[χ(X(k))] ≤ χ(x). 2

In words, a (super-)martingale is a function of the process which, condi-
tional on any initial condition, has an expected value that remains equal (does
not increase) in time. Notice that the controls have not been introduced so far
– they do play a role in the following. Let us introduce the notion of stochastic
bisimulation function (SBF), as presented for continuous-time models in [40].

Definition 5.2 [Stochastic Bisimulation Function] Let the measurable func-
tion ϕ : S1 × S2 → R

+
0 satisfy the following conditions:

(i) ϕ(x) ≥ g(x) for all x ∈ S1 × S2;

11
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(ii) for any u1 ∈ U1, there exists u2 ∈ U2 such that the function
(ϕ(X1(k), X2(k)))k≥0 is a Px-supermartingale for any fixed x ∈ S1 × S2.

Then ϕ is a stochastic simulation function of S1 by S2. If ϕ is also a stochastic
simulation function of S2 by S1, then it is an SBF for the function g with
respect to the joint process (S1,S2). If two processes admit an SBF, they are
said to be probabilistically bisimilar with precision ϕ(x). 2

Notice how in this definition the controls of the two CMP are treated
quite differently than those in Definitions 4.1 and 4.4, which were originally
stated for LMP and associated labels. We will comment on these semantical
differences in Remark 5.6.

The existence of an SBF can be directly used to compute an upper bound
for the quantities in (1) and (2). More precisely, selecting a parameter δ > 0,
any two initial conditions xi ∈ Si, i = 1, 2, and by resorting to the properties
of the SBF (as described in Definition 5.2) and to the Markov inequality [27],
the following holds:

P(x1,x2)

(

sup0≤k<∞ ‖Y1(X1(k))− Y2(X2(k))‖
2 ≥ δ

)

= P(x1,x2)

(

sup0≤k<∞ g (X1(k), X2(k)) ≥ δ
)

≤ P(x1,x2)

(

sup0≤k<∞ ϕ (X1(k), X2(k)) ≥ δ
)

≤ ϕ(x1,x2)
δ

.

(3)

We have shown that the knowledge of an SBF allows deriving bounds on the
approximation quality between two processes. Next, we survey three concep-
tually different approaches to find such an SBF.

5.1 Characterization of Stochastic Bisimulation Function based on Stochastic
Stability

The contribution in [40] puts forward conditions to construct an SBF for
certain classes of continuous-time stochastic processes, namely models that are
linear in the drift, in the diffusion coefficient, and in the observation map. The
setup allows for spontaneous jumps (under homogeneous arrivals) with related
(linear) resets, thus resulting in a model with hybrid structure [12,17]. The
reader is referred to [40] for practical examples of computation of stochastic
bisimulation functions.

In the present work we re-derive a condition for the existence of an SBF
similar to [40] for discrete time models Si, i = 1, 2, and for the sake of clarity
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we focus on the following simpler (non hybrid) dynamics:







Xi(k + 1) = AiXi(k) +Biui(k) + FiXi(k)wi(k),

Yi(k) = CiXi(k).
(4)

Here wi are independent standard normal random variables, and we assume
that the outputs of the two processes take values over the same space. Consider
a candidate SBF with the following quadratic form:

ϕ(x) = xTMx, (5)

where x = [X1X2]
T and M is a properly sized, symmetric, non-negative defi-

nite, constant matrix.

Theorem 5.3 Assume that S1 and S2 are autonomous (namely, disregard
the terms Bi). Consider the joint process (S1,S2). A function ϕ as in (5) is
a stochastic bisimulation function for S1 and S2 if and only if

M − CTC � 0,

ATMA + F TMF −M � 0,

where C = [C1 − C2], A =





A1 0

0 A2



, and F =





F1 0

0 F2



.

Proof. The two conditions are directly derived from the corresponding re-
quirements in Definition 5.2. In particular, notice that

g(X1, X2) = ‖C1X1 − C2X2‖
2 = xTCTCx

and compare with (i). Furthermore, with reference to (ii) and Def. 5.1 and
recalling the independence of the sample realizations of the noise process,

Ex [ϕ(X1(k + 1), X2(k + 1))]

= Ex

[

[X1(k + 1)X2(k + 1)]M [X1(k + 1)X2(k + 1)]T
]

= xT
(

ATMA + F TMF
)

x.

2

Example 5.4 Consider the models Si, i = 1, 2 from Example 4.2, where
AiXi = Xi + ai(Xi), and where FiXi = bi(Xi). The processes are (semanti-
cally) autonomous, since ui = 1 is fixed. An SBF for Si, i = 1, 2 is obtained

13
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considering

M = CTC =





1 −1

−1 1



 ,

which is clearly positive semi-definite, and since matrix A is degenerate, M is
such that

M − F TMF = CTC − (CF )TCF = (C(I − F ))TC(I − F ) � 0.

2

Let us generalize the previous result to the non-autonomous case.

Theorem 5.5 Consider two non-autonomous processes S1 and S2. A func-
tion ϕ as in (5) is a stochastic bisimulation function for S1 and S2 if and
only if, ∀x ∈ S1 × S2

M − CTC � 0,

max
u1∈U1

min
u2∈U2

(

xT
(

ATMA + F TMF −M
)

x+ 2xTATMBu
)

≤ 0,

max
u2∈U2

min
u1∈U1

(

xT
(

ATMA + F TMF −M
)

x+ 2xTATMBu
)

≤ 0,

where B =





B1 0

0 B2



 and u = [u1 u2]
T .

Proof. It follows similarly to that of Theorem 5.3. 2

Let us now elaborate on the different role that controls in CMP play as
opposed to labels in LMP.

Remark 5.6 [Labels vs Controls] Notice that the condition in Theorem 5.5
is set up as a dynamical game between the two models. This is in accord
with the role that control inputs play in Definition 5.2, and is in contrast
with Definition 4.1 or 4.4 (originally stated for LMP), which fixed the same
control input for both models. This difference highlights two distinct ways to
conceive the role of labels for LMP on the one hand, and that of control inputs
for CMP on the other. In LMP labels are intended as predefined schedules or
actions taken by the environment (or adversary), which the system reacts to.
This adheres to the role that nondeteminism classically plays in LMP. For the
second models (CMP, as well as MDP in the systems and control literature)
control inputs are actions to be synthesized based on an objective function, or
policies (“strings” of control actions over a time span) that are chosen for the
model. Notice how this difference reflects in the game-theoretical definition of
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approximate bisimulation given in [24] (as a game between a “prover,” i.e. a
model, and an “adversary”), in contrast to the formulation in Theorem 5.5.2

Theorem 5.5 can be re-stated according to the LMP interpretation as fol-
lows:

Corollary 5.7 Consider two non-autonomous processes S1 and S2 with the
same input space U . A function ϕ as in (5) is a stochastic bisimulation func-
tion for S1 and S2 if and only if for any ū = [u u]T ∈ U × U the following
holds, ∀x ∈ S1 × S2:

M − CTC � 0,

xT
(

ATMA + F TMF −M
)

x+ 2xTATMBū ≤ 0.

Conversely, for the sake of completeness, we provide a statement of Def-
inition 4.1 according to the CMP interpretation as follows (notice that now
U1 6= U2):

Definition 5.8 Consider two CMP S1 = (S1, T1,U1) and S2 = (S2, T2,U2).
A binary relation R ⊆ S1 ×S2 is a simulation of S1 by S2 if, for any s1 ∈ S1

there is a s2 ∈ S2 such that s1Rs2, and for any u1 ∈ U1 and R-closed set
S̃1 × S̃2 ∈ S1 × S2, there exists a u2 ∈ U2 such that

T (S̃1|s1, u1) = T (S̃2|s2, u2).

If R is also a simulation of S2 by S1, then it is a bisimulation of S1 and S2

and corresponds to an equivalence relation between pairs of states. 2

A similar restatement can be introduced for the approximate version of
probabilistic bisimulation of Definition 4.4.

In this section we have raised structural assumptions on the joint process
under study to derive sufficient conditions for the existence of an SBF with
the shape of equation (5). These conditions can be shown to lead to certain
stochastic stability properties of the models under study, and equation (5) to
be related to a Lyapunov function for the process [31].

5.2 Characterization of Stochastic Bisimulation Function based on Stochastic
Contractivity

The contribution in [1] introduces sufficient conditions for the existence of an
SBF, based on the use of contractivity analysis [47] for probabilistic systems.
(Please refer to this contribution for practical examples of computation of
stochastic bisimulation functions.) Furthermore, it shows that the notion of
stochastic contractivity is related to a probabilistic version of the concept of
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incremental stability. Interestingly, the results presented in the previous para-
graph and based on [40] leveraged assumptions on model stability that are
analogous to the deterministic equivalents in [50,61], and similarly the con-
tractivity assumptions, related to incremental stability, parallel similar results
in corresponding deterministic literature [35,55]. The work in [2] extends the
characterization of SBF to more general hybrid models [12,17].

In the present work we tailor the conditions in [1] to discrete time processes
Si of the following kind:







Xi(k + 1) = ai(Xi(k), ui(k)) + fi(Xi(k))wi(k),

Yi(k) = ci(Xi(k)), k ∈ N.
(6)

In general, the functions ai, fi and ci can be nonlinear. As usual, the pro-
cess Xi ∈ Si (e.g. R

n) and wi(k) are independent standard normal random
variables. We assume that a solution is well defined, which solely requires
boundedness assumptions on the quantities at the right-hand side of the state
equation. Moreover, we assume that the observation functions ci vanish at
the origin and that they are Lipschitz continuous with constant 0 ≤ νi <∞.

Let us focus on autonomous models (i.e., let us disregard the effect of ui).
The following definition is inspired by [52,53], which extends earlier studies
for deterministic models [47].

Definition 5.9 [Stochastic Contractivity] Consider the process Si in (6)
characterized by its state equation with no control input. Assume that the
following conditions are valid:

(i) ai(·) is such that, for all x̃ ∈ Si, ∃Λi < ∞ : λmax

(

∂ai
∂x

(x̃)T ∂ai
∂x

(x̃)
)

≤ Λi,
where ∂ai/∂x(x̃) is the Jacobian of ai evaluated at x̃, and λmax(·) is a
function computing the maximum among the real parts of the eigenvalues
of a matrix;

(ii) fi(·) is Lipschitz continuous, with finite and positive constant Ki.

Then the system Si in (6) is said to be stochastically contractive (in the
identity metric) if Λi + 2Ki < 1. 2

Properties of stochastically contractive processes (such as extensions to
non-identity, weighted metrics, as well as the relationship to probabilistic in-
cremental stability) are further discussed in [1].

Next, given two processes Si, i = 1, 2, we show that the property of
stochastic contractivity of the joint process (S1,S2) entails a condition of
probabilistic bisimilarity between the processes. The contractivity is intended
to hold for the same metric (as discussed above, we consider here the iden-
tity metric) for both processes. Consider a parallel composition of the two
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processes,

a =





a1

a2



 , f =





f1 0

0 f2



 , c = [I − I]





c1

c2



 = [c1 − c2] ,

where the new output map computes the difference between the two original
ones. Let us again start considering autonomous models.

Theorem 5.10 Consider two autonomous processes, solutions of systems
S1,S2 as in (6). If the composition of S1,S2 is stochastically contractive,
then S1,S2 are probabilistically bisimilar.
When existing, a probabilistic bisimulation function has the form ψ(X1, X2) =
2ν‖[X1, X2]

T‖2, where ν = max{ν1, ν2}. 2

Example 5.11 Consider the models Si, i = 1, 2 from Example 4.2, where
the vector field ai(Xi) takes the value Xi + ai(Xi) as in Example 4.2, whereas
fi(Xi) = bi(Xi). The processes are again (semantically) autonomous, since
ui = 1 is fixed. Notice that Λi = 0, whereas Ki < 1/2, so that Λi + 2Ki <
1. Since ci(Xi) = Xi, we have that νi = 1. Given that both processes
are contractive, an SBF for Si, i = 1, 2 is obtained considering ψ(X1, X2) =
2‖[X1, X2]

T‖2. 2

The extension to the non-autonomous case follows.

Corollary 5.12 Consider two processes, solutions of systems S1,S2 as in
(6). S1,S2 are probabilistically bisimilar if (1.) for any u1 ∈ U1 there exists
a ũ2 ∈ U2 and if (2.) for any u2 ∈ U2 there exists a ũ1 ∈ U1 such that
the composition of S1,S2 is stochastically contractive in the following two
instances, ∀(x1, x2) ∈ S1 × S2:

a1. =





a1(·, u1)

a2(·, ũ2)



 , and a2. =





a1(·, ũ1)

a2(·, u2)



 ,

with associated parameters Λ1. and Λ2. respectively. Here f1. = f2. and we
assume it is Lipschitz with parameter K. The above condition can be expressed
as:

max
u1∈U1

min
ũ2∈U2

Λ1. + 2K < 1, max
u2∈U2

min
ũ1∈U1

Λ2. + 2K < 1.

When existing, a probabilistic bisimulation function has the form ψ(X1, X2) =
2ν‖[X1, X2]

T‖2. 2

In contrast to the approach in the previous section and based on matrix
inequalities, the contractivity conditions are directly computable on the sys-
tem dynamics (abstractly, it is possible to characterize the portion of the
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state space where such conditions are valid, and this region is – in a certain
sense – invariant); also, the probabilistic bisimulation function is directly ob-
tained; finally, the conditions are applicable to nonlinear dynamics; however,
at present the former results are applicable to models with richer dynamics.
Both approaches can potentially yield bounds that are conservative.

5.3 Characterization of Stochastic Bisimulation Function as solution of a
Probabilistic Reachability Problem

For a measurable function g : S1 × S2 → R
+
0 and a parameter δ ∈ R

+
0 define

the superlevel set

Sg(δ) = {x ∈ S1 × S2 : g(x) > δ}.

Consider the event set corresponding to the sample space Ω over respec-
tively a finite and infinite time horizon N ∈ N ∪ {∞}, ΩN+1 = (S1 × S2)

N+1,
and equipped with the canonical product topology. Let us define the following
events over ΩN+1, for any N ≥ 0 and A ∈ B(S1 × S2):

rN(A) = {ω ∈ ΩN+1|∃n ∈ [0, N ] : X(n, ω) ∈ A},

r(A) = {ω ∈ Ω∞|∃n ≥ 0 : X(n, ω) ∈ A}.

The quantity rN(A) expresses the event that the joint process X = (X1, X2)
enters set A within the time horizon [0, N ], whereas r(A) extends this quantity
to the infinite horizon.

For a finite horizon N , it can be noticed that

V N
δ (x) = Px[rN(Sg(δ))],

thus the metrics of interest V N
δ (x) can be calculated by solving a probabilistic

reachability problem in discrete time [6]. A number of contributions have put
forward techniques to approximately compute this quantity [4,28].

Next, we focus on the infinite horizon case, where

Vδ(x) = Px[r(Sg(δ))].

Notice this latter quantity is in general difficult to precisely quantify. Recent
work [63] has provided methods for bounding this quantity or raised conditions
for computing it with finite-step procedures. These conditions critically hinge
on deciding and computing the presence of “absorbing” sets for the dynamics
[63]: it is interesting to notice that these sets are related to the notions of
stability and contractivity presented above.

The extension to the controlled case involves again setting up a game over
the control inputs of the two models. The reader is referred to [63] for an
example of computation of such a stochastic bisimulation function.
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6 Approximation Metrics via Sampling Techniques and

Randomization Algorithms

The collection of definitions and concepts described above allow establishing
metrics for the a-priori quantification of the similarity between (the distribu-
tions or trajectories of) two processes when considered over a finite or infinite
time horizon. As such, they relied on structural assumptions over the models
under study.

Next we present an approach, first described in [5], which has the advantage
to be valid for general models, with no specific structural assumptions raised
on them. It examines sample trajectories of the two processes over finite
horizons. In other words, while the approaches above focused on the syntax
of the models, this technique directly exploits the process semantics. The
material focuses on the autonomous case.

Consider two autonomous processes S1,S2, for which equation (3) can be
interpreted as follows:

Px

(

dT (S1,S2) > δ
)

≤ ǫ ⇔ Px

(

dT (S1,S2) ≤ δ
)

≥ 1− ǫ,

where dT (·, ·) represents a metric between trajectories evaluated over the finite
time horizon [0, T ] and started at x ∈ S1 × S2, whereas δ is a given desired
parameter quantifying the approximation precision, and ǫ is an a-priori quan-
tity (probabilistic confidence on the approximation) depending on the models.
The choice of the metric dT (·, ·) is unrestricted; [5] employs either a distance
in time between the trajectories, or a Hausdorff distance between the traces
of the two processes.

From a different perspective, the inequalities above can be interpreted as a
quantification of the approximation (δ), given a certain certainty level (1− ǫ)
on the similarity of the two processes. The quality δ of the approximation up
to level 1−ǫ can be assessed as the solution of the following chance-constrained
optimization problem [15]:

min
δ∈ℜ

δ, subject to: (7)

Px

(

dT (S1,S2) ≤ δ
)

≥ 1− ǫ.

Notice that (7) is a semi-infinite optimization program, since the number of
probabilistic constraints is in general infinite while the number of optimiza-
tion variables (δ) is finite. Denote with δǫ the solution of (7): while the
computation of this solution is in general hard, it can be mitigated by using
a randomized approach, which provides an estimate of δǫ with approximation
guarantees.

The randomized algorithm executes N trajectories of the two processes
S1,S2 over [0, T ], for random extractions of the initial condition x and of the
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driving uncertainty. It then computes their distance dT (S1,S2) and discards
the k < N obtained largest values, thus finding an approximate solution δ̂ǫ.
Based on arguments developed in [16], the work in [5] shows that a proper
choice of the parameters k,N allows ensuring the feasibility of the solution δ̂ǫ
(namely, the verification of the probabilistic constraints), and provides bounds
on its performance degradation. This result holds up to a second confidence
parameter that can be properly tuned. Intuitively, by extracting at random
N executions of the processes and discarding a-posteriori a fraction k/N of
them that corresponds to the largest discrepancies between the processes, one
can improve the quality bound δ while guaranteeing that the violation set has
size smaller than or equal to the prescribed ǫ value.

Additionally, the approach also enables an additional feature: the design
of an approximation. Recall that, thus far, we have assumed that both models
S1,S2 have been given. Here instead, we postulate that S2(θ), θ ∈ Θ, is a
parameterized approximation of S1, where Θ is either a finite or an infinite
but compact set. The synthesis problem can be stated as:

min
δ∈ℜ,θ∈Θ

δ, subject to:

Px

(

dT (S1,S2(θ)) ≤ δ
)

≥ 1− ǫ.

The problem can be solved similarly as that in (7). In the instance of a
continuous Θ, the argument within the probabilistic constraints needs to be
convex in the optimization variable θ [5]. In the above problem we are actually
selecting an optimal abstraction S2 of a given model S1, while quantifying
its approximation level.

A few comments are due. The advantages of this approach over those
based on the synthesis of a probabilistic bisimulation function are

(i) the absence of assumptions on the dynamics of the two processes,

(ii) and the possibility of approaching the problem of synthesis of an approx-
imation.

On the other hand, the limitations are

(i) the presence of a confidence level on the obtained bounds – this level can
nevertheless be finely tuned,

(ii) the validity of the outcomes over finite horizons of time,

(iii) as of yet, the absence of an approach for non-autonomous models.

As discussed in Section 4 with reference to [26,64], the distance between two
(comparable) stochastic processes can also be studied by setting up metrics on
the corresponding probability distributions over their sample spaces. There
is a vast literature on the use of metrics between probability measures [33].
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Related to the work presented in this Section, the approach in [62] leverages
Wasserstein pseudo-metrics between two processes, and approximates them
by empirical quantities, obtained by taking samples of the trajectories of the
two processes. While the empirical quantities are proven to converge to the
actual distance with the number of samples taken, this approach does not
provide explicit bounds based on finite samples for the distance between the
two processes.

7 Discussion and Conclusions

The use of metrics to quantify distances between processes has a long history
[33]. This survey has focused on distances based on the approximate notion
of probabilistic bisimulation, which has seen a recent increased interest both
from the dependability and formal verification community, as well as within
the systems and control field. The two communities clearly differ in the re-
spective approach to the problem: in a quest for categorization, it superficially
looks like the first method opts for employing the underlying conditional ker-
nels of the processes under study, whereas the second favors a trajectory-based
approach to the problem. Furthermore, the two techniques are grounded on
different mathematics: algebra, logics, and category the first, versus dynamical
systems (Lyapunov theory, contractivity and invariance analysis) the second.
As an alternative, sampling approaches and randomized methods look at the
approximation problem from a totally different perspective. Here the focus is
on the semantics of the processes and on the possibility to extract trajectories
over a finite time horizon. The latter approach appears to yield results that
are perhaps less formal (they hold with given confidence bounds, though ex-
tremely high), yet with outcomes that are less conservative and not stymied
by assumptions on the model syntax (such as model stability, contractivity,
etc.).

Looking forward, this survey would like to draw the attention to and place
some emphasis on two topics:

(i) practical computation of approximation levels between two given pro-
cesses, and

(ii) synthesis of approximations of a given general state-space stochastic pro-
cess.

Indeed, while the majority of the examined approaches assume to be given two
similar processes to compare (one of which may be regarded as an approxi-
mation or an abstraction of the other), only a few put forward procedures for
model approximation or abstraction with quantified quality. In particular:

• The work in [26], followed by [18], puts forward an approximation based on
time unfolding and relates it to the distance metrics developed by the same
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authors.

• The work in [1] puts forward a procedure that constructs a discrete approx-
imation of a diffusion process. The procedure is based on the discretization
of space and time. Given a diffusion process, sufficient conditions for the
existence of such an approximation are raised. It shows that the abstrac-
tion is probabilistically bisimilar to the original process, up to a certain
approximation precision.

• The work in [5] allows the design of an approximation of a continuous-space
process. Similarly, the work in [62] allows for a synthesis of approximating
processes.

• The contributions in [3,58] have proposed two separate techniques to ab-
stract a stochastic model into a finite-state Markov chain with probabilistic
bounds on the distance in time between the trajectories of the two processes.

An emphasis on the computability aspects as well as on the problem of syn-
thesis of abstractions will lead to practically relevant procedures helping with
the analysis, verification, and control of general state-space Markov processes.
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