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the perturbations of the latter in the total variation metric affect the resulting product
probability measure.
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1. Introduction

The Ionescu Tulcea extension theorem (Ash, 1972, Section 2.7.2) states that given a sequence of stochastic kernels,
there exists a unique probability measure on the product space generated by this sequence, that is a measure whose
conditional probabilities equal to these kernels. Such a construction is often used in the theory of general Markov Decision
Processes (Bertsekas and Shreve, 1978), and general Markov Chains (Revuz, 1984) in particular. Hence, it is of a certain
interest to study how sensitive the resulting product measure is with respect to perturbations of the generating sequence
of kernels. A possible direct application of such result concerns numerical methods, where characteristics of the original
stochastic process are studied over its simpler approximations, often defined over a finite state space. Such approximations
can be further regarded as a perturbation of the original sequence of kernels (Tkachev and Abate, 2013) which connects to
the original problem.

Here we specifically focus on the metric between kernels and measures given by the total variation norm. Given the
pairwise distances between corresponding transition kernels in this metric, we are interested in bounds on the distance
between the resulting product measures. A similar study was given in Roberts and Rosenthal (2013) which used the Borel
assumption, that is it assumed that spaces involved are (standard) Borel spaces. However, the bounds obtained in Roberts
and Rosenthal (2013) grow linearlywith the cardinality of the sequence and hence are not tight: recall that the total variation
distance between two probability measures is always bounded from above by 2.

In this paper we elaborate on the result of Roberts and Rosenthal (2013) in the two following directions. First, we
generalize linear bounds to the case of arbitrary measurable spaces. Second, we show that under the Borel assumption
used in the paper Roberts and Rosenthal (2013) it is possible to derive sharper bounds, that appear to be precise in some
special cases—e.g. in case of independent products of measures.
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The rest of the paper is structured as follows. Section 2 gives a problem formulation together with statements of main
results. Proofs are given in Section 3, which is followed by the discussion in Section 4 and an enlightening example in
Section 5. With regards to the notation, terminology and conventions adopted in this paper, the readers should consult
the Appendix.

2. Problem statement

Let us recall the construction of the product measure given the regular conditional probabilities. First of all, we need the
following notion of a product of a probability measure and a stochastic kernel which extends a more usual product of two
measures.

Proposition 1. Let (X,X) and (Y ,Y) be arbitrary measurable spaces. For any probability measure µ ∈ P(X,X) and any
stochastic kernel K : X → P(Y ,Y) there exists a unique probability measure Q ∈ P(X × Y ,X ⊗ Y), denoted by Q := µ⊗ K ,
such that

Q(A × B) =


A
K(x, B)µ(dx)

for any pair of sets A ∈ X and B ∈ Y.

Proof. For a proof, see Ash (1972, Section 2.6.2). �

The construction above immediately extends to any finite sequence of spaces by induction, whereas for the countable
products the following result holds true.

Proposition 2 (Ionescu-Tulcea). Let {(Xk,Xk)}k∈N0 be a family of arbitrarymeasurable spaces and let (Ωn,Fn) =
n

k=0(Xk,Xk)

be product spaces for any n ∈ N̄0. For any probability measure P0
∈ P(X0,X0) and any sequence of stochastic kernels (Pk)k∈N,

where Pk
: Ωk−1 → P(Xk,Xk), there exists a unique probability measure P ∈ P(Ω∞,F∞), denoted by P :=


∞

k=0 P
k, such

that the finite-dimensional marginal Pn of P on the measurable space (Ωn,Fn) is given by Pn
=
n

k=0 P
k for any n ∈ N0.

Proof. For a proof, see (Ash, 1972, Section 2.7.2). �

In the setting of Proposition 2, suppose that we are given another sequence of kernels (P̃k)∞k=0 and let P̃ :=


∞

k=0 P̃
k be

the corresponding product measure. Given the assumption that ∥Pk
− P̃k

∥ ≤ ck for any k ∈ N0 and some sequence of reals
(ck)k∈N0 , we study how the distance ∥Pn

− P̃n
∥ can be bounded. For the general case of arbitrary measurable spaces, the

following result holds true.

Theorem 1. Let {(Xk,Xk)}k∈N0 be any family of measurable spaces and let X̃k ⊆ Xk for any k ∈ N0. Denote by (Ωn,Fn) =n
k=0(Xk,Xk) and (Ωn, F̃n) =

n
k=0(Xk, X̃k) the corresponding product spaces for any n ∈ N̄0. Let P0

∈ P(X0,X0), P̃0
∈ P

(X0, X̃0) and let kernels Pk
: Ωk−1 → P(Xk,Xk) and P̃k

: Ωk−1 → P(Xk, X̃k) for k ∈ N be Fk−1- and F̃k−1-measurable
respectively. If a sequence of reals (ck)k∈N0 is such that ∥Pk

− P̃k
∥ ≤ ck for all k ∈ N0, then for any n ∈ N0 it holds that

∥Pn
− P̃n

∥ ≤

n
k=0

ck. (2.1)

Remark 1. Through this paper, and in particular in the statement of Theorem 1, we use the following convention. If the
domain of one measure is a subset of the domain of another, the total variation distance between them is taken over the
smaller domain. For example, in the setting of Theorem 1 we have ∥P0

− P̃0
∥ = 2 · supA∈X̃0

|P0(A)− P̃0(A)|.

The validity of results of Theorem 1 in some special cases was previously established in Roberts and Rosenthal (2013)
and Tkachev and Abate (2013): we discuss these connections in a greater detail in Section 4. As it has been mentioned in
Introduction, the bounds (2.1) are not tight. For example, if ck = c > 0 for all k ∈ N0 then the right-hand side of (2.1) is c · n
and diverges to infinity as n → ∞, whereas the left-hand side stays bounded above by 2. It appears, that under a rather
mild assumption that all involved measurable spaces are (standard) Borel, a stronger result can be obtained.

Theorem 2. Let {Xk}k∈N0 be a family of Borel spaces and let Ωn =
n

k=0 Xk be product spaces for any n ∈ N̄0. Let further
P0, P̃0

∈ P(X0) and Pn, P̃k
: Ωk−1 → P(Xk) for k ∈ N. If a sequence of reals (ck)n∈N0 is such that ∥Pk

− P̃k
∥ ≤ ck for all k ∈ N0,

then for any n ∈ N0 it holds that

∥Pn
− P̃n

∥ ≤ 2 − 2
n

k=0


1 −

1
2
ck


. (2.2)

The proofs of both theorems are given in the next section.
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3. Proofs of the main results

3.1. Proof of Theorem 1

We prove both theorems by induction, by first studying how the perturbation of a measure and a kernel in Proposition 1
propagates to the product measure. The following lemma provides such study in the setting of Theorem 1.

Lemma 1. Let (X,X) and (Y ,Y) be two measurable spaces, and let X̃ ⊆ X and Ỹ ⊆ Y. Consider µ ∈ P(X,X) and µ̃ ∈ P

(X, X̃), and suppose that kernels K : X → P(Y ,Y) and K̃ : X → P(Y , Ỹ) are X- and X̃-measurable, respectively. Denote by
Q := µ⊗ K and Q̃ := µ̃⊗ K̃ the corresponding product measures. It holds that

∥Q − Q̃∥ ≤ ∥µ− µ̃∥ + ∥K − K̃∥ (3.1)

where in (3.1) we follow the convention in Remark 1.

Proof. Let the set A ∈ X̃⊗ Ỹ be arbitrary, and denote by Ax = {y ∈ Y : (x, y) ∈ A} the x-section of A for any x ∈ X . It follows
from Ash (1972, Section 2.6.2) that

Q(A) =


X
Kx(Ax)µ(dx), Q̃(A) =


X
K̃x(Ax)µ̃(dx)

and as a result:

|Q(A)− Q̃(A)| =


X
Kx(Ax)µ(dx)−


X
K̃x(Ax)µ̃(dx)


≤


X


Kx(Ax)− K̃x(Ax)


µ(dx)

+ 
X
K̃x(Ax)(µ− µ̃)(dx)


≤ sup

x∈X
sup
B∈Ỹ

Kx(B)− K̃x(B)
+ sup

B∈X̃

|µ(B)− µ̃(B)|

=
1
2


∥µ− µ̃∥ + ∥K − K̃∥


which together with (A.2) implies (3.1). �

To prove Theorem 1 we are only left to apply the result of Lemma 1 by induction to µ = Pn, µ̃ = P̃n, K = Pn+1 and
K̃ = P̃n+1 for n ∈ N0.

3.2. Proof of Theorem 2

Again, we are going to apply induction, however in the current case the analogue of Lemma 1 requires a more intricate
proof via the coupling techniques. Let us briefly recall some facts about the coupling. Given an arbitrary measurable space
(Ω,F ), a coupling of two probability measures P, P̃ ∈ P(Ω,F ) is a probability measure P ∈ P(Ω2,F 2) such that the
marginals of P are given by

π∗P = P, π̃∗P = P̃, (3.2)

where π(ω, ω̃) = ω and π̃(ω, ω̃) = ω̃ for all (ω, ω̃) ∈ Ω2 (Lindvall, 1992, Section 1.1). In particular, if Ω is a Borel space
and F = B(Ω), we have the following result:

P(π = π̃) ≤ ∥P ∧ P̃∥.1 (3.3)

The inequality (3.3) is called the coupling inequality (Lindvall, 1992, Section 1.2); it holds true for any coupling measure P
as per (3.2). At the same time, thanks to the fact thatΩ is a Borel space, there always exists a maximal coupling: the one for
which the equality holds in (3.3). Some pairs of probability measures admit several choices of maximal coupling; here we
focus on the γ -coupling (Lindvall, 1992, Section 1.5).

Definition 1 (γ -coupling). Let Z be a Borel space and let ν, ν̃ ∈ P(Z) be two probability measures on it. The γ -coupling of
(ν, ν̃) is a measure γ ∈ P(Z2) given by

γ (ν, ν̃) := (ψZ )∗(ν ∧ ν̃)+ 1[0,1)(∥ν ∧ ν̃∥) ·
(ν − ν̃)+ ⊗ (ν − ν̃)−

1 − ∥ν ∧ ν̃∥

where ψZ : Z → Z2 is the diagonal map on Z given by ψZ : z → (z, z).

1 The precise definitions of ∧ and π∗ can be found in the Appendix, see (A.1) and (A.3) respectively.
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The following lemma is the key in the proof of Theorem 2.

Lemma 2. Let X and Y be two Borel spaces, and let µ, µ̃ ∈ P(X) and K , K̃ : X → P(Y ). Denote byQ := µ⊗K and Q̃ := µ̃⊗K̃
the corresponding product measures. It holds that

∥Q ∧ Q̃∥ ≥ ∥µ ∧ µ̃∥ · inf
x∈X

∥Kx ∧ K̃x∥. (3.4)

Proof. The proof is done via coupling of measures Q and Q̃ in a sequential way.
Firstly, let m = γ (µ, µ̃) ∈ P(X2) be the γ -coupling of (µ, µ̃). Secondly, we define a kernel κ : X2

→ P(Y 2) by the
following formula:

κxx̃ = 1∆X (x, x̃) · γ

Kx, K̃x̃


+ 1∆c

X
(x, x̃) · (Kx ⊗ K̃x̃)

where ∆X is the diagonal of X2 as per Appendix. Clearly, the measure κxx̃ is a coupling of measures Kx and K̃x̃ for any
(x, x̃) ∈ X2, which is a maximal coupling on the diagonal, and the independent (or product) coupling off the diagonal. Note
that κ : X2

→ P(Y 2) is indeed a kernel. The only non-trivial part of the latter statement concerns the measurability of the
positive part and the negative part in theHahn–Jordandecomposition of the kernel,which followsdirectly fromRevuz (1984,
Lemma 1.5, Chapter 6). Furthermore, the measurability of Kx ⊗ K̃x̃ obviously holds for any measurable rectangle A× Ã ⊆ Y 2

and extends to the whole product σ -algebra by the monotone class theorem (see e.g. Ash (1972, Theorem 1.3.9)).
Define Q := m ⊗ κ ∈ P(X2

× Y 2) to be the product measure, and further denote by πX , π̃X , πY and π̃Y the obvious
projection maps from that space, e.g.

π̃X (x, x̃, y, ỹ) = x̃ ∈ X .

We claim that the random element (πX , πY ) is distributed according toQ and (π̃X , π̃Y ) is distributed according to Q̃. Indeed,
for any A ∈ B(X) and B ∈ B(Y ) it holds that

Q(πX ∈ A, πY ∈ B) = Q((A × X)× (B × Y )) by definition of πX and πY

=


A×X

κxx̃(B × Y )m(dx × dx̃) by Proposition 1

=


A×X

Kx(B)m(dx × dx̃) since κxx̃ is a coupling

=


A
Kx(B)µ(dx) since µ is a marginal ofm

= Q(A × B) by Proposition 1.

Since both (πX , πY )∗Q and Q are probability measures on a Borel space X × Y , and they have been shown to agree on the
class measurable rectangles which is closed under finite intersections, they are equal (Revuz, 1984, Proposition 3.6, Chapter
0). Similarly, it holds that (π̃X , π̃Y )∗Q = Q̃. Thus, by the coupling inequality (3.3)

∥Q ∧ Q̃∥ ≥ Q(πX = π̃X , πY = π̃Y ). (3.5)

On the other hand, since Q = m ⊗ κ , we can rewrite the right-hand side of (3.5) in terms ofm and κ as follows:

Q(πX = π̃X , πY = π̃Y ) = Q

(∆X × Y 2) ∩ (X2

×∆Y )


= Q(∆X ×∆Y )

=


∆X

κxx̃(∆Y )m(dx × dx̃).

Finally, we can then estimate the latter integral from below, and obtain
∆X

κxx̃(∆Y )m(dx × dx̃) ≥ m(∆X ) · inf
(x,x̃)∈∆X

κxx̃(∆Y ) = m(∆X ) · inf
x∈X
κxx(∆Y )

= ∥µ ∧ µ̃∥ · inf
x∈X

∥Kx ∧ K̃x∥,

so the lemma is proved. �

As we have mentioned above, Lemma 2 is an analogue of Lemma 1. However, unlike in Section 3.1, here we cannot go
directly from Lemma 2 to Theorem 2 and we need the following auxiliary result first:
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Lemma 3. Let {Xk}k∈N0 be a family of Borel spaces and let Ωn =
n

k=0 Xk be product spaces for any n ∈ N̄0. Let further P0, P̃0
∈

P(X0) and Pn, P̃n
: Ωn−1 → P(Xn) for n ∈ N be initial probability measures and conditional stochastic kernels respectively.

Denote:

a0 := ∥P0
∧ P̃0

∥, ak := inf
ωk−1∈Ωk−1

∥Pk
ωk−1

∧ P̃k
ωk−1

∥, k ∈ N

and further Pn
:=
n

k=0 P
k, P̃n

:=
n

k=0 P̃
k. For any n ∈ N0 it holds that

∥Pn
∧ P̃n

∥ ≥

n
k=0

ak. (3.6)

Proof. The inequality (3.6) can be proved by induction. Clearly, it holds true for n = 0. Suppose it holds true for some n ∈ N0,
then in the setting of Lemma 2 put X = Ωn, Y = Xn+1, µ = Pn, µ̃ = P̃n, K = Pn+1 and K̃ = P̃n+1. For the product measures
we obtain that Q = Pn+1 and Q̃ = P̃n+1, so (3.6) now follows immediately from (3.4). �

To prove Theorem 2 we are only left to notice that (2.2) is equivalent to (3.6) thanks to the duality argument in (A.2).

4. Discussion

Let us discuss the results obtained above and their connection to the literature. First of all, Theorem 1 extends the bounds
on the total variation distance between the finite-dimensionalmarginals Pn and P̃n, obtained in Roberts and Rosenthal (2013,
Theorem1) under the Borel assumption, to the case of arbitrarymeasurable spaces. Its proof is inspired by the one of Tkachev
and Abate (2013, Lemma 1) that focused on the Markovian case P1

= P2
= · · · exclusively. The work in Tkachev and Abate

(2013) also emphasized the benefit of dealing with sub-σ -algebras as in Theorem 1: the perturbation constants ck in such
case are likely to be smaller than those in Theorem 2. Moreover, with focus on numerical methods, it allows dealing with
kernels that may not have an integral expression. Although the bounds obtained in Roberts and Rosenthal (2013) is a special
case of Theorem 1, the main focus of Roberts and Rosenthal (2013) was rather on the construction of the corresponding
maximal coupling of the infinite-dimensional product measures P and P̃. In the setting of Theorem 1 the existence of such
coupling is unlikely, as even the measurability of the diagonal, required in the coupling inequality, may be violated in the
case of arbitrary measurable spaces.

At the same time, in the setting of Roberts and Rosenthal (2013) (that is, under the Borel assumption) a stronger result
in Theorem 2 holds true. Although the latter theorem is only focused on the bounds, Lemma 2 which is the core in the
proof of Theorem 2, yields the coupling of finite-dimensional marginals Pn and P̃n that trivially extends to the infinite-
dimensional case by Proposition 2. With focus on bounds, to show that Theorem 2 indeed provides a less conservative
estimate than Roberts and Rosenthal (2013) (or Theorem 1), let us mention that

2 − 2
n

k=0


1 −

1
2
ck


≤

n
k=0

ck (4.1)

for any non-negative sequence (ck)k∈N0 and any n ∈ N0, which can be shown by induction over n.2 In particular, there are
several cases when bounds in Theorem 2 are exact: e.g. when kernels Pk and P̃k are just measures on Xk which correspond
to dealing with a sequence of iid random variables; see also the example in Section 5. In contrast, the bounds in Theorem 1
can grow unboundedly e.g. in case ck = c > 0 for all k ∈ N0.

Finally, let us mention that it is of interest whether Theorem 2 holds true in the general case of arbitrary measurable
spaces and arbitrary stochastic kernels—recall however that even in such case the corresponding maximal coupling may
not exist. Although we do not provide the answer to this general question, we show that under the assumption that kernels
have densities, one can obtain a version of Lemma 2 for the case of arbitrary measurable spaces: this of course implies the
validity of Theorem 2 in such case as well, provided that all the kernels involved have densities.

Lemma 4. Let (X,X) and (Y ,Y) be two arbitrary measurable spaces, and let measures µ, µ̃ ∈ P(X,X) and λ ∈ P(Y ,Y). If
kernels K , K̃ : X → P(Y ,Y) are given by

Kx(dy) := k(x, y)λ(dy), K̃x(dy) := k̃(x, y)λ(dy)

where k, k̃ : X × Y → [0,∞) are X ⊗ Y-measurable functions, then for the product measures Q := µ⊗ K and Q̃ := µ̃⊗ K̃ the
inequality (3.4) holds true.

2 Notice also that the right-hand side of (4.1) can be regarded as the first-order term of the expansion of the product in the left-hand side.
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Proof. Note that the following expressions for Q and Q̃ hold true:

Q(dx × dy) = k(x, y)[µ⊗ λ](dx × dy),

Q̃(dx × dy) = k̃(x, y)[µ̃⊗ λ](dx × dy).

To make them comparable, let us define ν := µ+ µ̃, so that

∥Q ∧ Q̃∥ = (Q ∧ Q̃)(X × Y )

=


X×Y

min

k(x, y)

dµ
dν
(x), k̃(x, y)

dµ̃
dν
(x)


[ν ⊗ λ](dx × dy)

≥


X×Y

min

k(x, y), k̃(x, y)


min


dµ
dν
(x),

dµ̃
dν
(x)


[ν ⊗ λ](dx × dy)

=


X
(Kx ∧ K̃x)(Y )(µ ∧ µ̃)(dx) ≥ ∥µ ∧ µ̃∥ · inf

x∈X
∥Kx ∧ K̃x∥

as desired. �

5. Example

To enlighten the theoretical results obtained above, we study how conservative are the bounds in Theorem 2 on a simple
example for which the analytical expression for the total variation distance is available. For that purpose, we consider a
Markov Chain with just two states, that is X = {0, 1} and Pk

= P for all k ∈ N. The kernel P is given by a stochastic matrix,
which for simplicity we assume to be diagonal: P =


1 0
0 1


. The initial distribution, denoted by P0

= µ, is further given by
µ({1}) = p, µ({0}) = 1 − p. We focus on the case when the perturbed stochastic process is a Markov Chain as well, that is
P̃k

= P̃ for all k ∈ N, and assume that P̃ =


1 − ε ε
ε 1 − ε


for some ε ∈ (0, 1). The perturbed initial distribution we denote

by P̃0
= µ̃, it is given by µ({1}) = p − δ and µ({0}) = 1 − (p − δ); here δ ∈ (p − 1, p).

Since the product space Ωn = {0, 1}n+1 is finite, the precise value of the total variation distance between the product
measures Pn and P̃n can be computed asPn

− P̃n
 =


ωn∈Ωn

Pn({ωn})− P̃n({ωn})
 .

Thanks to the special choice of P , the measure Pn is supported only on two points inΩn which makes it is easy to obtain an
analytic expression for the sum above. Let us abbreviate: fn(ε) := 1− (1− ε)n. There are three possible cases depending on
the interplay between parameters p, ε, δ and n:

a. If δ < −
pfn(ε)
1−fn(ε)

, then ∥Pn
− P̃n

∥ = 2(1 − p)fn(ε)− 2δ(1 − fn(ε)).

b. If − pfn(ε)
1−fn(ε)

≤ δ ≤
(1−p)fn(ε)
1−fn(ε)

, then ∥Pn
− P̃n

∥ = 2fn(ε).

c. If δ > (1−p)fn(ε)
1−fn(ε)

, then ∥Pn
− P̃n

∥ = 2pfn(ε)+ 2δ(1 − fn(ε)).

According to Theorem 2, the bounds are ∥Pn
− P̃n

∥ ≤ 2(fn(ε)+ δ(1− fn(ε))). Clearly, in all cases [a.], [b.] and [c.] the bounds
hold true. Moreover, if only the stochastic matrix is perturbed, that is δ = 0 (case [b.]), then the total variation is 2fn(ε)
which precisely coincides with the bounds provided by Theorem 2. Similarly, if p = 1 and δ ∈ (0, 1) (case [c.]), then the
total variation 2(fn(ε)+ δ(1 − fn(ε))) provides another example when bounds in Theorem 2 are exact. In all other cases it
is easy to see that there is a strictly positive gap in the inequality (2.2).

Unrelated to the precision of bounds in Theorem 2, it is interesting to further comment on the phenomenon in case [b.].
If p, ε and δ are fixed, then there exists N ∈ N such that for n ≥ N always [b.] holds: indeed, it follows directly from the fact
that the denominator 1 − fn(ε) = (1 − ε)n → 0 monotonically as n → ∞. As a result, regardless of the value of δ ∈ (0, 1),
for all n big enough ∥Pn

− P̃n
∥ does not depend on δ: in particular, it is the same as in the case when δ = 0.

To illustrate the discussion in this sectionmore concretely, in Fig. 1 belowwe compare the error bounds in (2.1) and (2.2)
with each other, and with the precise value of the total variation as functions of n, ε, δ and p based on the example above.
The default values of the parameters are as follows: n = 20, ε = 0.02, δ = 0.05 and p = 0.2. For example, in Fig. 1(c) we
depict the dependence with respect to δ which varies in the interval [−0.2, 0.2], whereas the other parameters n, ε and p
are fixed to their default values.

As expected, on all the figures the inequality (2.1) is more conservative than (2.2), which in turn provides an upper bound
on the precise value of the total variation. In particular, Fig. 1(a) supports our observation that ∥Pn

− P̃n
∥ (the bottom green

line) does not depend on δ for n big enough and would in fact coincide with the right-hand side of (2.2) computed for δ = 0.
In turn, Fig. 1(c) illustrates a somehow dual statement: for a fixed n the value of ∥Pn

− P̃n
∥ does not depend on δ if the

latter is small enough and in particular it is the same as for δ = 0, where it also coincides with the right-hand side of (2.2).
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(a) Error bounds against the time horizon n. (b) Error bounds against the value of ε.

(c) Error bounds against the value of δ. (d) Error bounds against the value of p.

Fig. 1. Dependence of error bounds (2.1) (the top blue line) and (2.2) (the middle red line), and precise values of the total variation (the bottom green line)
against n, ε, δ and p.

A similar effect can be found on Fig. 1(d): clearly, neither the right-hand side of (2.1) nor that (2.2) does depend on p, whereas
the dependence of ∥Pn

− P̃n
∥ on p is only non-trivial when p is close to 1. Finally, Fig. 1(b) enlightens the fact that (2.1) is a

linear approximation of (2.2) at ε = 0.
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Appendix

For any set X the corresponding diagonal is denoted by ∆X := {(x, x) : x ∈ X} ⊆ X2. The set of all real numbers is
denoted by R and the set of all natural numbers is denoted by N. We further write N0 := N ∪ {0} and N̄0 := N0 ∪ {∞}. For
any A ⊆ X we denote its indicator function by 1A.

We say that X is a (standard) Borel space if X is a topological space homeomorphic to a Borel subset of a complete
separable metric space. Any Borel space is assumed to be endowed with its Borel σ -algebra B(X). An example of a Borel
space is the space of real numbers R endowed with the Euclidean topology.

Given ameasurable space (X,X)we denote the space of all σ -additive finite signedmeasures on it by bM (X,X). For any
set A ∈ Xwe introduce an evaluationmap θA : bM (X,X) → R given by θA(µ) := µ(A).We always assume that bM (X,X) is
endowed with the smallest σ -algebra that makes all evaluation maps measurable. The subspace of all probability measures
in bM (X,X) is denoted by P(X,X). In case X is a Borel space, we simply write bM (X) and P(X) in place of bM (X,B(X))
and P(X,B(X)) respectively. If (Y ,Y) is another measurable space, by a bounded kernel we mean a measurable map
K : X → bM (Y ,Y) such that

sup
x∈X

sup
A∈Y

|Kx(A)| < ∞
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where we write Kx instead of a more cumbersome K(x) ∈ bM (Y ,Y) for any x ∈ X . In case Kx ∈ P(Y ,Y) for any x ∈ X , we
say that the kernel K is stochastic. The condition that K : X → bM (Y ,Y) is measurable is equivalent to K(·)(A) : X → R
being a measurable map for any A ∈ Y (Kallenberg, 1997, Lemma 1.37). Clearly, any measure can be considered as a kernel
which does not depend on its first argument. Furthermore, any measure ν ∈ bM (X,X) admits the unique Hahn–Jordan
decomposition given by ν = ν+

− ν−, where ν+ and ν− are two mutually singular non-negative measures on (X,X) (Ash,
1972, Section 2.1.2). If K : X → bM (Y ,Y) is a kernel, then

∥K∥ := sup
x∈X


K+

x (Y )+ K−

x (Y )


defines the total variation of K . For any two measures ν, ν̃ ∈ bM (X,X)we denote

ν ∧ ν̃ := ν − (ν − ν̃)− ∈ bM (X,X). (A.1)

In particular, it holds that

∥ν ∧ ν̃∥ = 1 −
1
2
∥ν − ν̃∥ = 1 − sup

A∈X

|ν(A)− ν̃(A)|, (A.2)

for any two probability measures ν, ν̃ ∈ P(X,X).
If f : X → Y is a measurable map between two measurable spaces (X,X) and (Y ,Y), for any ν ∈ bM (X,X) the image

measure f∗ν ∈ bM (Y ,Y) is given by

(f∗ν)(A) := ν

f −1(A)


(A.3)

for all A ∈ Y. Given a family ofmeasurable spaces {(Xk,Xk)}k∈N0 and an index set I ⊆ N̄0, we denote the productmeasurable
space by

k∈I

(Xk,Xk) :=


k∈I

Xk,

k∈I

Xk


,

where


k∈I Xk is the product σ -algebra. Let Ĩ ⊆ I and denote (Ω,F ) :=


k∈I(Xk,Xk) and (Ω̃, F̃ ) :=


k∈Ĩ(Xk,Xk). Let
further π : Ω → Ω̃ be an obvious projection map. For any ν ∈ bM (Ω,F )we say that π∗µ is the marginal ofµ on (Ω̃, F̃ ).
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