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A Mathematical Model to study the
Dynamics of Epithelial Cellular Networks
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Abstract—Epithelia are sheets of connected cells that are essential across the animal kingdom. Experimental observations suggest
that the dynamical behavior of many single-layered epithelial tissues has strong analogies with that of specific mechanical systems,
namely large networks consisting of point masses connected through spring-damper elements and undergoing the influence of active
and dissipating forces. Based on this analogy, this work develops a modeling framework to enable the study of the mechanical properties
and of the dynamic behavior of large epithelial cellular networks. The model is built first by creating a network topology that is extracted
from the actual cellular geometry as obtained from experiments, then by associating a mechanical structure and dynamics to the
network via spring-damper elements. This scalable approach enables running simulations of large network dynamics: the derived
modeling framework in particular is predisposed to be tailored to study general dynamics (for example, morphogenesis) of various
classes of single-layered epithelial cellular networks. In this contribution we test the model on a case study of the dorsal epithelium of
the Drosophila melanogaster embryo during early dorsal closure (and, less conspicuously, germband retraction).

Index Terms—Epithelium, Cellular network, Nonlinear dynamical model, Spring-damper system, Discrete element method, Early
dorsal closure, Morphogenesis
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1 INTRODUCTION

QUANTITATIVELY understanding the mechanical
structure and dynamical properties of epithelial

cellular networks is a compelling but complex task.
Three main factors contribute to the difficulty of this
goal.

Firstly, single cells are made up of a number of distinct
components, each contributing to their mechanical struc-
ture [1]. The mechanical characteristics of networks of
cells thus hinge on the characteristics of single cells, each
with their complex structural features [2]. Encompassing
these components easily leads to high-dimensional, non-
linear, spatially distributed models of cellular networks
that are not likely to be prone to mathematical analy-
sis or to simulation on a computer over large cellular
networks.

Secondly, at the cellular network level, dynamics are
often influenced by a combination of different forces
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(both internal and external to the network) acting si-
multaneously [3], [4], [5] – isolating individual force
mechanism contributions in the lab can be a daunting
task – we contend that a synthetic model can be an
alternative solution.

Thirdly, the influence of genetic processes on the me-
chanical properties of cellular network is currently an
open field of investigation [6]: conducting manipulations
in the expression of certain genes can lead to significantly
different mechanical properties. Encompassing such a
dependence at the modeling level can be very difficult.

This work focuses on the first two of the three issues
described above. With the general goal of developing
a quantitative model comes a tradeoff between model
descriptiveness and precision on the one hand, and size,
computability, and ease of analysis on the other. Taking
up this latter perspective, the main objective of this
work is to develop a quantitative mathematical model
for the study of the dynamics of large and heterogeneous
epithelial networks. The model furthermore enables the
investigation of the role played by forces acting on
the epithelium, as well as the study of the influence
of the non-uniformity of its mechanical properties on
its dynamics. The model is developed with the main
intention of enabling the simulation of complex, large-
dimensional networks of cells.

After benchmarking two different modeling ap-
proaches over their ability to encompass the complexity
of epithelial networks and the capacity of modeling
subtleties of single cellular mechanics, this work presents
a model that strikes a balance between computable high-
level abstractions [7], [8], [9], [10] and specific low-level
refined characterizations [11], [12], [13]. We claim that the
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main features of the proposed modeling framework are
that 1. it is biologically well-grounded; 2. it is tractable
for analysis and large-scale simulations; and 3. it is
promising in a number of diverse applications focusing
on classes of single-layered epithelial cellular networks.

Structure of the article
Section 2 recapitulates biological knowledge that is at the
basis of cellular mechanics. Based on this insight, Section
3 proposes important modeling criteria and distills them
towards the derivation of a novel modeling framework
for single-layered epithelial cellular networks. This part
motivates the use of the discrete-element approach as
a principal constituent of the model. This Section also
elaborates on the mathematical formulation: first, the
underlying graphical structure is described; then, the
dynamics are associated to the structure by introducing
spring-damper elements. Section 4 discusses the po-
tentials and the limitations of the proposed modeling
framework. While this work does not claim to lead to
any new biological insight, with the goal of validating
the approach Section 5 proposes a experimental study,
which focuses on simulating the dorsal epithelium of
D. melanogaster embryo during early dorsal closure (and
in part germband retraction). Section 5.1 presents how
experimental data is utilized as a basis for the modeling
framework (definition of the graphical structure). Sec-
tion 5.2 discusses how the dynamics are added to the
model, as well as how external forces and constraints are
included. Section 5.3 presents the outcomes of the sim-
ulations: it focuses on both qualitative and quantitative
assessments of modeling properties and of simulation
assumptions. Finally, Section 6 concludes the work.

2 BIOLOGICAL BACKGROUND

This Section recalls key empirical evidence on cellular
mechanics. In order to gain understanding on its me-
chanical and dynamical characteristics, a single epithelial
cell is dissected in terms of its own structural compo-
nents and of its connections to adjacent components.

2.1 Cellular Mechanics
Cells are highly dynamic: they stretch, crawl, change
shape and divide [14]. Their mechanical properties de-
pend on their internal structure [15]. In many critical
biological processes, cells both exert and respond to
forces toward and from their surroundings [16]. The
mechanical properties of a cell are thus intimately related
to its physical nature, as well as to its position within a
network of similar cells.

Cellular mechanics are determined by three key as-
pects: the internal structure of the cells, which hinges on
the presence of the cytoskeleton (Sec. 2.1.1); cell-cell con-
nections within the epithelium, as well as the connection
of epithelial cells to other tissue layers (Sec. 2.1.2); and
two additional important mechanical characteristics [16],
[17]: nonlinear elasticity and anisotropy (Sec. 2.1.3).

2.1.1 Cellular structure
The cytoskeleton is a complex, heterogeneous and dy-
namic structure, which affects both elastic and viscous
characteristics of cells [8], [18], [19], [20] (for possible
modeling frameworks to encompass these properties see
[10], [21], [22], [23]). The cytoskeleton is a biopolymer
network consisting of three major components (Figure
1): microfilaments (made of actin), intermediate fila-
ments, and microtubules. In addition to these major
components, a myriad of filament cross-linker, motor
and regulatory proteins also play a role.

cell membrane 

circumferential actin belts

(a) Cell membrane (thin, black) and circumferen-
tial actin belts along the cell boundaries (thick,
blue).

adherens junctions
(E-cadherin/integrin connections)

intermediate filaments

microtubules

(b) Intermediate cytoskeletal components (fila-
ments and microtubules) and cell-cell connections
(adherens junctions).

Fig. 1. Pictorial top-view of a single cell in an epithelial
network.

Cell tensional forces depend on the three components
mentioned above [24]. With regards to the first filaments,
actin accumulates as a circumferential belt along the cell
membrane, at a specific apical-basal depth. Circumfer-
ential actin belts of adjacent cells are connected to each
other through adherens junctions, see Figures 1(b) and
2, which thus contribute to cytoskeletal structure and
dynamics by connecting cytoskeleta of adjacent cells. An
adherens junction is a cell junction whose cytoplasmic
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face is linked to the cytoskeleton. The connection of
circumferential actin belts of adjacent cells creates a
two-dimensional network of actin, within the epithelial
cellular network.

Fig. 2. Two-dimensional pictorial top-view of two ad-
jacent epithelial cells: actin accumulation (blue) along
cell boundaries (black outer lines). Adherens junctions
(green) connect different circumferential actin bundles
between the cytoskeleta of adjacent cells along their
boundaries.

As for intermediate filaments, they operate as ropes
connecting two points on the cell membrane. They form
a pattern of intersecting lines over the cell, as depicted
in Figure 1(b). The tension sustaining actin filaments
is balanced by interconnected structural elements that
bear compression, called microtubules [25], with The
flexible protein structure [9]. They act as struts pushing
the cell membrane outwards, as depicted in Figure 1(b).
Pushing microtubules and pulling intermediate actin
filaments meet at the cell membrane, around adherens
junctions, contributing together with actin belts to cell
shape stability.

While the discussion has focused on the two-
dimensional surface of circumferential actin belts and
the elements in between, there also exist cytoskeletal
components connecting the apical and basal cell mem-
branes, thus developing along the third dimension of the
cell (the apical-basal axis, which crosses the cell surface).
These filaments govern the stability of the thickness of
the cell under stretching and compressing loads.

While recent studies have addressed the issue of
modeling the thickness of epithelial cells [2], [26], since
in epithelia much of the mechanical properties of cell
networks is dictated by the cell apical surface, a two-
dimensional simplification is a good compromise that
captures many of the properties of interest. Also in
the present study, we shall focus on two-dimensional
cellular properties and argue that, under careful working
assumptions, the effect of this third dimension can be left
out.

2.1.2 Cell-cell connections and connection to the extra-
cellular matrix
The different cytoskeletal components of adjacent cells
are connected by junctions (Figures 1(b) and 2), which
are composed of (among others) integrin and E-cadherin
proteins. These proteins are cell adhesion molecules
nestled in the cell membrane and are connected to

cell adhesion molecules of neighboring cells [27] (see
Section 2.1.2), creating a cellular aggregate. The cell
adhesion molecules can float through the cell membrane
plane, which suggests that the bilipid cell membrane
does not play a significant contribution to the structural
balance of the cell. Most of the force is sustained by
cytoskeletal components that cross cell membranes. In
developing epithelia, cell junctions often rearrange at a
high frequency, which facilitates cell motility and cell
proliferation. In many other cases – with a much lower
frequency – rearrangements help stabilizing the epithe-
lium. Because epithelia serve primarily as a structural
layer to protect underlying organs and processes, stable
adherens junctions are needed to seal cells together into
an aggregate. In this work we shall focus on cellular net-
works where rearrangements have very low occurrence
and thus can be disregarded.

The extracellular matrix, and more specifically the
basement membrane, is situated underneath the epithe-
lium. Epithelial cellular networks are connected to the
extracellular matrix [18], particularly to the basement
membrane via focal adhesions, where integrins serve
as anchors [27]. The number of adhesions affects the
dynamical characteristic of this viscous interaction.

2.1.3 Additional mechanical characteristics
The overall elasticity of cells can be attributed to a num-
ber of different components, including the cell boundary,
the cytoskeleton, and cell-cell connections. It can be ver-
ified experimentally that this elasticity is nonlinear [16].
The elastic modulus [28] of a cell depends on the degree
of externally applied forces and of internal stress, as well
as on the mechanical properties of its environment [16].
Unlike in materials that display an elastic constant that
is independent of the applied stress (at least approxi-
mately, within a large stress regime) in networks of semi-
flexible polymers the elastic modulus increases under
increasing applied stress. This phenomenon is called
stress stiffening: a typical nonlinear (quadratic) elasticity
characteristic of a cell is represented in Figure 3. The cell

linear quadratic

Strain

S
tr
e
ss

Fig. 3. Nonlinearity in cell elasticity (stress-stiffening).

elasticity thus cannot be modeled by simple Hookean
springs. Furthermore, recent experiments have unveiled
the prestress characteristics (namely, presence of tension
at equilibrium) of different cytoskeletal components and
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of the cell as a whole [20], [25], [29]. Evidence (both at
the cellular [15], [29] and cytoskeletal level [19], [25])
has shown a linear relation between pre-stress and the
stiffness coefficient. Following the analogy with spring
elements exerting forces proportional to stiffness and
strain, this results in a quadratic elasticity characteristic.
Furthermore, by severing individual actin filaments and
microtubules and analyzing the dynamical response of
the cell, it was shown that the dynamical characteris-
tics of cytoskeletal components are viscoelastic. These
responses can be encompassed by leveraging the Voigt
element [30], which employs a spring and a damper in
parallel (see also Sec. 3.4 for the mathematical details
and Sec. 4.1 for alternatives or extensions).

The spatial organization of cytoskeletal compo-
nents creates cellular structures which are inherently
anisotropic. For instance, microtubules often determine
the direction of elongation of a cell [17]. A feature of
stretched cells is the alignment of their cell boundaries.
Hence, the circumferential actin filaments that organize
along the cell membrane, tend to sustain and propagate
most of the load in the network. This property of the
cell boundaries, in addition to the discussed nonlinear
elasticity behavior, contribute to the cell stability.

3 MODELING FRAMEWORK

Section 3.1 distills the details on cellular mechanics
discussed in the previous section into a few essential
modeling criteria for single-layer epithelial cellular net-
works. Among the many cellular modeling alternatives
in the literature [2], Section 3.2 motivates the modeling
choices by comparison against one alternative known
modeling framework. Section 3.3 describes the under-
lying structure of the model. This leads to the formal
introduction of the dynamical modeling framework in
Section 3.4.

3.1 Modeling principles

We synthesize the biological knowledge presented in
Section 2 into the following key principles, which in-
spire the development of a model for epithelial cellular
networks:

1) The cellular architecture is discrete:
Single epithelial cells behave mechanistically as
discrete entities composed of different intercon-
nected cytoskeletal constituents, and are able to
sustain both tensional and compressional loads.
They do not behave as mechanical (viscous or
viscoelastic) continua. The discrete nature of the
actin network and of intermediate filaments should
be incorporated in the model. A large proportion
of the actin architecture is organized over a two-
dimensional surface, governing most of the ob-
served cell dynamics [31], [32].

2) Anisotropy depends both on cell geometry and on net-
work topology:

Single cells have highly anisotropic mechanical
structures, determined by their physical character-
istics as well as by their geometry. Along with local
anisotropy, the network topology is often necessary
to explain the existence of global properties or
certain global dynamics, such as the alignment
of patches of cells or the propagation of forces
through the cellular network. Taking into account
both single cell geometry and global topology of
the epithelial network is therefore necessary to
study anisotropy and to explain properties at the
network level.

3) Nonlinear and temporal mechanical characteristics of
cell appear due to different structural components:
Cell components display characteristics of nonlin-
ear elasticity, which thus emerges at the cellu-
lar level. The cytoskeletal prestress contributes to
the nonlinearity in cell deformation [19], [20] and
should be integrated with ideas from the tensegrity
model [24]. Relatively simple nonlinear elasticity
characteristics (namely, quadratic relations) have
been observed at a cellular level as well as over a
larger tissue level [16], [25], [29]. Furthermore, more
complex properties (hysteresis, memory) can play
a role in specific instances, thus the model should
be extensible to accommodate them.

4) Modeling volume preservation can be complex:
Volume preservation is a feature of epithelial cells
deforming in a network. However, since there is
no clear relation between the stress in the surface
directions (planar dimension) and the thickness
(height) of the cellular network [26], volume preser-
vation of cellular components should be imposed
under controlled conditions and over specific spa-
tial models.

3.2 Comparison between FEM and DEM models
Finite and discrete element methods (FEM and DEM)
are numerical techniques developed to compute approx-
imate solutions of partial differential equations (PDE)
and of integral equations [30], [33]. These methods are in
particular used for solving a set of nonlinear PDE over
time-varying domains whenever the desired precision
varies over the entire domain, or in case the solution
lacks smoothness. The common feature of these two
techniques is the application of a mesh discretization of
a continuous domain into a set of discrete sub-domains,
called elements. We draw a qualitative comparison be-
tween FEM and DEM techniques. This comparison is
attuned to the modeling principles explained above and,
with focus on the problem under study, is intended to
motivate the choice of DEM as the basis of the model.

FEM represent continuous objects by meshing them
into volumetric elements. Within each of these elements
the mechanical properties are defined as constant or
continuous functions. When spatial properties such as
incompressibility, osmotic pressure, or density are im-
portant, then using these elements is indispensable.
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The FEM approach assumes that strain and stress vary
continuously over the introduced volumetric elements,
which is a delicate assumption when modeling systems
endowed with a discrete mechanical structure.

DEM on the other hand consider a nodal mesh of
a given object, in which nodes are associated to point
masses and connected via discrete elements (discrete el-
ements can be specific mechanical components). Internal
forces can be exerted in any direction between nodes.
The DEM approach is useful when the presence and
organization of distinct elements resembles the physical
structure of the system.

Hybrid combinations with both element types are also
possible [22], for instance on structures consisting of
beams (modeled with volumetric finite elements) and
rods (modeled with discrete elements).

The four criteria derived in Section 3.1 are used to
compare the two modeling methods in Table 1. For each
of the criteria, the table includes a simple assessment
(positive vs. negative sign) of the two modeling frame-
works. The DEM approach is selected as the basis of the
model that will be developed in Section 3 for the follow-
ing reasons. The DEM method is suited to easily repre-
sent the discrete tensegrity structure of cellular mechan-
ics. The use of DEM also enables the study of anisotropy
due to cellular geometry and structural organization
(network topology). Cellular volume preservation is an
elusive task (though FEM techniques may enable en-
compassing it), and therefore is not considered in the
early stage of modeling framework development. The
DEM has shown interesting results in other modeling
studies, where nonlinear mechanical characteristics were
incorporated. These studies showed qualitative resem-
blance of tissue deformation [34], [35], [36] and displayed
stability properties over high-dimensional models [37].
Time-dependent properties (hysteresis, memory effects)
can be incorporated, albeit at increased computational
costs. In conclusion, DEM promises to encompass the
features of interest for the problem at hand.

3.3 Graphical representation of underlying cellular
structure

Consider a general graph-theoretical structure. This
structure will be generated from experimental data, as
discussed in Section 5.1. The graph consists of three
different features: vertices, edges, and faces. Vertices are
contained in a set V of cardinality N , which stores the
index i ∈ {1, 2, . . . , N} of each vertex vi. In Figure 4 ver-
tices are indicated by dots and their indices are denoted
by the adjacent numbers. An edge (circled numbers in
Figure 4) ei,j = {vi, vj} is defined as a pair of adjacent
vertices vi and vj , where j 6= i and i, j ∈ {1, 2, . . . , N}.
Edges are stored as pairs in a N e × 2 set E, where N e is
the cardinality of set E. The edge index k ∈ {1, 2, . . . , N e}
is defined by the row number in E. The graph G = (V,E)
describes the full topology of a network. Consider the
N × N e incidence matrix H of a graph. Its entries are

TABLE 1
Comparison of FEM and DEM modeling frameworks.

1) Cellular architecture is discrete
FEM DEM

± Representation of discrete
tensegrity structure
unclear

+ Can represent discrete
tensegrity structure

+ Can be combined with
DEM as a hybrid model

- To keep computations
tractable, number of
components per cell is
limited to a lumped version
of the real cell layout

2) Anisotropy also depends on cell geometry and network topology
FEM DEM

+ Finite elements can be
adapted to cellular
geometry

+ Discrete elements can be
adapted to cellular
geometry

± Incorporation of
anisotropy of actin
accumulation bundles to
be understood

+ Anisotropy of actin
accumulation bundles can
easily be incorporated

- Computational issues
related to modeling large
scale cellular networks

+ Can scale to model large
cellular networks and thus
encompass their topological
features

3) Nonlinear and temporal mechanical characteristics
FEM DEM

+ Can be incorporated in
finite elements

+ Can be incorporated in
discrete elements

- May lead to heavy
computations, even for
average-sized cellular
network

+ Nonlinear elasticity
qualitatively resembles
tissue deformation

+ Nonlinear elasticity
contributes to model
stability, prevents collapse

- Temporal characteristics can
be computationally
demanding

4) Volume preservation
FEM DEM

+ Can be imposed through
volumetric properties

± Its effect can be
approximated but not
formally embedded

± May result in artifacts
and computational issues
(stiffness), due to limited
knowledge on properties
of cell height

- Approximation likely
related to introduction of
dynamical artifacts, requires
evaluation of resulting
mechanical properties

formulated as

hik =

+1, if vi is the first component of kth edge
−1, if vi is the second component of kth edge

0, otherwise.

As an example, consider a small graph Gsmall consisting
of three vertices and two edges, as depicted in Figure 4.
The incidence matrix follows:

H =

 1 0
−1 1

0 −1

 .
The N ×N Laplacian matrix L describes which vertices
are adjacent to each other and is calculated using the
incidence matrix [38], as given by L = HH>. For Gsmall
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3

2

1

1
2

Fig. 4. A small graph Gsmall. Loose numbers denote
vertices, whereas circled numbers denote edges.

this yields

L =

 1 0
−1 1

0 −1

[ 1 −1 0
0 1 −1

]
=

 1 −1 0
−1 2 −1

0 −1 1

 .
More specifically, the Laplacian L = L> indicates
whether a vertex vi is connected to another vertex vj
(lij = lji = −1) or not (lij = lji = 0). The diagonal
represents the degree D(vi) = lii, which is the number
of edges that are adjacent to vertex vi.

The third important feature in the network is repre-
sented by its cell faces. In a cellular network a face f
represents (the apical side of) a cell and is defined as the
set of its vertices. The degree of a face f is denoted by
D f(f) and denotes the number of vertices (or edges) it
consists of, e.g. D f(f1) = 4. Since in this project the data
is delivered as graphs of vertices and edges (G = (V,E)),
an algorithm has been implemented in order to retrieve
the information of the faces.

3.4 Dynamical Model: the Spring-Damper element
Assume that the underlying cellular geometry (that is,
the underlying network topology) is known. A mesh
is overlaid to the cell junctions, that is to the points
where cell boundaries intersect (the magenta dots in
Figure 5). A model is created as a two-dimensional, tiled
surface and is represented using the graph theoretical
network notation given in Subsection 3.3. Within this
data structure three different modeling elements (dis-
cussed below) are discussed and associated to different
structural features in epithelial cellular networks.

First, a magenta dot in Figure 5 represents a point
mass element mi associated to vertex vi, i ∈ {1, 2, . . . , N}.
This models the inertia of the network via a constant
mass value. However, let us importantly remark that
the modeling approach is not intended to imply that
inertial forces are reflecting the underlying biology: the
actual effect of the mass in the model dynamics can be
eliminated by simple rescaling (as discussed later, we
have in practice used it to normalize the simulations time
span). The second law of Newton is applied to each point
mass element at vi by considering the global contribution
all the forces ~Fi acting upon the point:

mi~̈xi(t) =
∑
i

~Fi(~x, t),

Fig. 5. A spring-damper model of a single cell. Discrete
points (large magenta dots) are adapted to the actual
cell shape extracted from experiments (see Section 5.1).
Black lines denote cell boundaries. Blue spring-damper
elements are associated to boundaries, whereas green
ones to intermediate pairs of non-adjacent points.

where ~̈xi(t) is the second time derivative of the position
~xi of point mass mi, and ~x denotes a vector collecting all
the points ~xi. We will shortly express explicitly the force
contribution in the equation above. The point masses are
placed at vertices, where different cell boundaries come
together. It should be noted that in reality cell junctions
are not fixed, but they may rearrange with respect to the
adjacent cell boundaries: the present modeling frame-
work neglects these rearrangements. The implications of
this assumption are further elaborated in Section 4.2.

The second element models the circumferential actin
belts, which organize along cell boundaries and connect
adjacent cell vertices. Since these belts propagate their
elastic energy to adjacent components through these
vertices, a mechanistic equivalent will be used in the
model. The mechanical behavior of actin belts is visco-
elastic and modeled by the presence of spring-damper
elements (Voigt elements) between two adjacent cell
vertices, as depicted in Figure 5 [37], [34]. Section 4.1
discusses possible alternatives to the Voigt elements.
In the following, these modules are called boundary
elements. A boundary element encompasses the belts of
two adjacent cells, since these two cells are connected
through adherens junctions. Consider a point mass ele-
ment mi connected to three other point mass elements
mj , j ∈ N (vi), where N (vi) denotes the set of vertices
adjacent to vertex vi, as depicted in Figure 6. The point
masses are connected through spring-damper elements,
characterized respectively by stiffness coefficients ki,j
and damping coefficients νi,j . The mathematical equa-
tion for point mass element mi connected to the point
masses mj via a spring-damper element, is given by:

mi~̈xi(t) = ~F elastic
i (~x) + ~F damping

i (~x) =∑
j∈N (vi)

{(
ki,j (li,j − di,j) + νi,j

dli,j
dt

)
~xj − ~xi
||~xj − ~xi| |

}
,
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kij
vij

mi

mj

mj

mj

Fig. 6. A single point mass elementmi connected to three
point mass elements (all denoted as mj) through spring-
damper elements.

where li,j is the length of boundary element ei,j ,
dli,j
dt

is its time derivative, di,j is the resting length related
to the spring at boundary element ei,j , and ~xj−~xi

||~xj−~xi|| is
the normalized vector accounting for orientation and
direction of the element ei,j .

As a third modeling element, the cytoskeleton (con-
sisting of intermediate filaments and microtubules, see
Figure 1) is modeled similarly to the circumferential
actin belts using spring-damper elements, which in the
following will be denoted as intermediate elements. With
reference to the nodal characteristic of each single cell,
elements are placed between all non-adjacent mass ele-
ments within a cell, as depicted in green on Figure 5. The
collection of intermediate elements represent a discrete
abstraction of the cytoskeleton. Section 4.2 explains the
potential as well as the limitations of this approach. The
mathematical equations for the elements are identical to
those of the external elements, that is

~F int.elastic
i (~x) + ~F int.damping

i (~x) =∑
j∈N int(vi)

{(
ki,j (li,j − di,j) + νi,j

dli,j
dt

)
~xj − ~xi
||~xj − ~xi| |

}
,

where N int(vi) denotes the set of vertices laying within
a face to which vertex vi belongs, but which are not
directly adjacent to vi.

As anticipated in Section 2.1.3, the model considers
nonlinear elasticity in cellular mechanics. The relation-
ship between applied prestress and stiffness has a lin-
ear characteristic, both on the cell [29] and on the cy-
toskeletal component level [25]. To illustrate this relation,
consider a spring, as depicted in Figure 7. The classical
constitutive equation given by the Hooke law for the
magnitude of the elastic force exerted by a spring is

F elastic(l) = k (l − d) , (1)

where k denotes the stiffness coefficient, l is the current
length and d is the resting length of the spring. Prestress
is defined as the fraction of the deviation from the resting
length, which is (l−d)

d . Now consider an affine relation

Fig. 7. One-dimensional spring model used to explain the
applied prestress.

between stiffness and applied prestress, as observed in
experiments [29]. This yields a coefficient

k(l)
.
= k1

(l − d)

d
+ k0, (2)

where k0 is the nominal (linear) stiffness coefficient at
resting length and k1 accounts for the stiffness due
to applied prestress. Substituting the affine relation in
(2) into equation (1) for the elastic force results in a
quadratic (and thus nonlinear) elastic force-deformation
(stress-strain) relation:

F elastic(l) = k(l) (l − d) =
k1

2

(l − d)
2

d
+ k0 (l − d) .

The stiffness coefficients ki,j of the spring-damper ele-
ments in the model are characterized according to this
nonlinear relation. This means that a pair of parame-
ters (k0i,j/2, k

1
i,j) is introduced for each spring-damper

element. Section 4.1 discusses possible extensions of the
expressions considered in (1)-(2).

In addition to the relations developed for the three
main modeling elements, the framework assumes that
the connections between cells and the extracellular ma-
trix are viscous. A friction force ~F friction

i is added, which
acts on each point mass element mi. ~F friction

i is inversely
proportional to the velocity ~̇xi of point mass mi,

~F friction
i (~xi) = −λi~̇xi,

where λi is the positive friction coefficient related to
point mass mi.

All the described components can be mathematically
encompassed within a system of second-order ordinary
differential equations (ODE). Formally, consider a point
mass mi at vertex vi representing 6 state variables, i.e.
3 position variables ~xi and 3 velocity variables ~̇xi. The
dynamical ODE for mi is presented in (3) on page 8,
where ki,j(·) and νi,j denote the stiffness and damping
coefficients of an element between masses mi and mj ; li,j
is the distance between the two masses; N (vi) denotes
the adjacent vertices of vi, and N int(vi) denotes the
non-adjacent vertices within all the neighboring faces
of vi. The stiffness and damping forces can only act in
the direction of the element between the two masses,
which is ~xj−~xi

||~xj−~xi|| . The parameter λi denotes the friction
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mi~̈xi(t) = ~F elastic
i (~x) + ~F damping

i (~x) + ~F int.elastic
i (~x) + ~F int.damping

i (~x) + ~F friction
i (~xi) + ~F ex

i (~xi, t)

=
∑

j∈N (vi)∪N int(vi)

{(
ki,j(li,j) (li,j − di,j) + νi,j

dli,j
dt

)
~xj − ~xi
||~xj − ~xi| |

}
− λi~̇xi +

∑
µ

~F ex,µ
i (~xi, t) (3)

coefficient at mass mi, whereas
∑
µ
~F ex,µ
i denotes the

sum of all possible external, time-dependent forces µ
acting on mass mi. (In Section 5.2 we shall consider a
few examples for external forces and show that they
also enable the embedding of spatial constraints in the
model.)

The model in (3) is nonlinear, due to the presence
of the lengths li,j and their time derivatives, and be-
cause of the varying stiffness coefficients ki,j(li,j). A
matrix formulation can be derived using the Laplacian
L defined above. First introduce a matrix S based on
(3), which structure is related to that of L: notice that
‖~xj − ~xi‖ = li,j , and define the non-diagonal entries
(i 6= j) of S as

sij = −
(
ki,j(li,j) (li,j − di,j) + νi,j

dli,j
dt

)
1

||~xj−~xi||

= −
(
ki,j(li,j)

li,j−di,j
li,j

+
νi,j
li,j

dli,j
dt

)
,

and similarly the diagonal entries as

sii =
∑

j∈N (vi)∪N int(vi)

{
ki,j(li,j)

li,j − di,j
li,j

+
νi,j
li,j

dli,j
dt

}
.

Subsequently, S can be exploited to rewrite the dynam-
ical equations in (3) for the whole network of point
masses in matrix notation as follows: ~̇x

−
~̈x

 (t) =

[
O I

M−1S(k, l, t) −M−1Λ

] ~x
−
~̇x

 (t)

+

 0

M−1
∑
µ F

ex,µ(~x, t)

 , (4)

where M is a 3N ×3N diagonal matrix composed of the
masses mi, and Λ is a 3N×3N diagonal matrix with the
friction coefficients λi. S is time-dependent and contains
all the nonlinearities of the equations. The values of
ki,j(·), li,j , and dli,j/dt need to be updated in time for all
spring-damper elements: the Laplacian L can be used to
assign the updated variables to the corresponding entries
in S. Using smart vectorial implementations in MATLAB,
the simulation algorithm can integrate the dynamics in
(4) of a mass spring-damper network with dimensions in
the order of hundreds of vertices in a computationally
rapid way. The simulation can also benefit from tech-
niques developed in the computer graphics community,
for the development of simulators of soft-body dynamics
[39]. We shall further discuss computational issues of the
model in Section 5.2.

4 DISCUSSION ON THE MODEL

The presented modeling framework incorporates both
biological insight and engineering principles. Based on
this modeling framework, the dynamical equations can
be extended by introducing terms that account for new
knowledge gained from both experiments and simula-
tions. On the other hand, the choices made on the model
architecture also pose limitations over its general appli-
cation. We discuss next both potential and the limitations
of the model.

4.1 Potential: model extensions and applications

The dynamical model allows to embed the effect of
general, time-varying, non-linear, external forces. With
reference to Figure 3 and the related discussion on
nonlinearity of cellular elasticity, it is possible to in-
clude hysteresis and memory effects in the stress/strain
characteristic by direct modification of Equation (2): the
first feature can be useful to prevent dynamical high-
frequency oscillations that are usually not observed ex-
perimentally, whereas the second can lead to the mod-
eling of permanent cellular deformations. However, this
can lead to higher computational costs. The choice of
viscoelastic Voigt modules as interconnections between
cellular junctions has been motivated by literature evi-
dence and model testing, but can be as well substituted
by Maxwell elements or – at the expense of an increase in
complexity – by standard-linear or generalized-Maxwell
elements [30]. The model also allows for the introduction
of physical and spatial constraints, as will be discussed
in the case study of Section 5.

The presence of an underlying dynamical model al-
lows generating simulation outputs that can be matched
to time-lapse experiments. This may help to explain
mechanical properties of the network, for instance by
identifying its stiffness parameters or friction coeffi-
cients. There are a number of advanced parameter iden-
tification techniques that could be used with this goal
[40], [41], [42]. The model can furthermore help quan-
titatively studying certain morphogenetic effects such
as germband retraction, groove formation, or dorsal
closure. At the cell level, the study of elastic properties
via laser ablation experiments can also represent an in-
teresting potential to test the model on, where generated
data would be matched to the model simulations.

4.2 Limitations

The cytoskeleton, scattered throughout the whole cell
(cf. Subsection 2.1.1), influences most of the mechanical
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behavior of cells. Besides, other factors contribute to
the internal mechanics of cells, such as osmotic pres-
sure, the (apical-basal) height of the cell, the presence
of microtubules. The internal spring-damper elements
represent a lumped, two-dimensional abstraction of the
cytoskeleton. This representation is not able to model
the highly scattered cytoskeleton to its full extent, nei-
ther can it distinguish between different contributors to
internal mechanics (e.g., microtubules vs. intermediate
filaments).

The model describes a two-dimensional surface struc-
ture. It neglects the depth of the cell and only considers
the mechanics and dynamics at the surface level. This
assumption is meaningful since there is limited insight
in the three dimensional deformation of epithelial struc-
tures, and because it represents an abstraction that makes
the model computable over large networks of cells.
Hence, this framework can help explaining behaviors of
the surface-level properties of an epithelium, even with
regards to its spatial dynamics (when for example used
for full embryo studies), rather than giving insight on
the volumetric deformations and dynamics (including
volume preservation) of single epithelial cells or small
clusters of cells.

The model assumes that cell junctions maintain their
fixed configuration. In other words, adherens junction re-
arrangements are neglected. This means the framework
cannot model cell division, cell death, or cell motility.
Depending on the morphogenetic events under study
(as it is the instance in the case study of Section 5),
cell rearrangement may not play a significant role. It
should be stressed that the modeling framework has
the potential to incorporate these characteristics, albeit
with a non-trivial extension of the underlying graphical
structure and with an expected increase in computations
(required to update the data structure and to integrate
the dynamics over time). This extension could enable the
study of higher-level phenotypes such as cell motility,
cell proliferation and apical constriction, and to under-
stand their relations to the dynamics and mechanics of
epithelial cellular networks.

5 CASE STUDY: FROM EXPERIMENTAL DATA
TO MODEL AND TO SIMULATIONS

The dorsal epidermis of the D. melanogaster embryo
during dorsal closure provides a solid basis for a case
study. Firstly, at these stages, cells of different shapes
get stretched along their dorso-ventral axis. Secondly, at
each segment boundary a specific group of cells, called
the groove (as we will discuss later, in our data this
corresponds to the central vertical “column” of cells
in Figure 8(b)), cells get organized in order to form a
single column of rectangular cells [6]. Thirdly, this row
of cells deepens in the tissue in order to shape the
segmental grooves [3], [5], [8]. Altogether these stereo-
typical features in a developing embryo provide a good
comparison benchmark.

We test the presented dynamical model on a cellu-
lar network extracted from experimental data covering
dorsal closure and, less conspicuously, germband retrac-
tion. We build a dynamical model first by extracting a
cellular network from data (Sec. 5.1), then by associating
dynamics to the elements of the network (Sec. 5.2). We
then perform simulations by exciting the model with
external forces and introducing physical constraints (Sec.
5.2), to produce simulations resembling dorsal closure.
While the goal of this simulation is solely to provide
an interesting computational validation for the model,
rather than to present new biological knowledge, it also
suggests that the use of this model can lead to qualitative
and quantitative conclusions on the mechanical proper-
ties of the epithelium of the embryo by comparing the
simulation outcomes to the experimental data (Sec. 5.3).

5.1 From Experiments to Model
We consider a planar confocal microscopy image of a
rectangular section of the lateral epithelium before dorsal
closure occurs, as in Figure 8(a). An image processing
software [43], developed in-house and implemented in
MATLAB, is used to segment a rectangular section of
the frame into a cellular network, namely a graph. The
software employs a randomized search algorithm that
scans the entire image and originates the graph. The
output of the segmentation algorithm results in the thin
red cellular network, depicted in Figure 8(b). The cellular
sides of the network are subsequently straightened (see
overlaid blue network) to obtain a graph. This graph
contains the relevant information on boundaries (edges)
and vertices of the patch of cells under study. The graph
is represented and stored via the data structure that has
been detailed in Section 3.3 (recall that the data structure
accounts for the cell vertices, the cell boundaries (edges),
and the cell areas (faces)).

Figure 9 gives a pictorial representation of an embryo,
with the position of the segment of the epithelium under
study. The two dimensional cellular network that has
been extracted from the data is morphed to assume
a three dimensional embryo-like shape. The obtained
three dimensional network matches its two-dimensional
projection. The morphing procedure consists of three
steps, as detailed in Figure 10. First, based on the mi-
croscope settings (e.g., its orientation w.r.t the embryo),
the processed network is calibrated (rotated and trans-
lated) with respect to a cylindrical body resembling the
embryo. Subsequently, the network is stretched out and
finally, it is folded three dimensionally to adapt to the
model of the epithelium, as indicated in blue color in
Figure 10. Based on our experimental data, the radius of
the embryo has been set to be Rbody = 100µm.

5.2 Adding Dynamics to the Model
Given a cellular network extracted from data, we overlay
the spring-damper elements on it. The dynamics in
equation (3) are thus associated to each vertex of the
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(a) Confocal microscopy image. The red polygon indicates the subnet-
work of interest.

(b) A processed version of the network. The thin red graph
is the raw processed network, whereas the straight thick blue
lines constitute the graph to be used in the simulations.

Fig. 8. Isolated cellular network at starting time, used for
model building.
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Fig. 9. Pictorial model of the embryo, depicting a segment
of the epithelium (blue). The dorsal closure forces acting
on the epithelium over the amnioserosa (pink region) are
indicated by the blue arrows.

stored cellular network and allow for the inclusion of
external forces. The model in equation (3) depends on a
set of parameters, which characterize spring and damper
elements (both boundary and internal ones, both for
stiffness and resting prestress), friction in the model,
as well as external forces and constraints (the latter
will be discussed shortly). These parameters need to be
instantiated according to the data and to the goal of the

calibrated 2D projection

2D back projection

3D model, folded on cylinder

embryo

z

y

0
1 2 3

x
z

y

Fig. 10. Top: A pictorial longitudinal view of the embryo
with indication of calibration, back projection, and folding
steps, which together yield the folded, three-dimensional
model of the epithelium. Bottom: A three-dimensional
view of the morphing procedure.

simulation. In this study, their value is selected from
a set of simulation tests, each of which is driven by a
specific external force. The goal of these tests is, given a
specific cellular network and a set of forces, to produce
outputs that are qualitatively acceptable, namely that
do not present unstable, unrealistic, on non-physical
dynamics. Notice from Equation (3) that there is a linear
relationship between the time horizon of a simulation
and the value of the mass. We have thus decided to
rescale both in order to normalize the first to span the
unit interval.

One important set of forces that acts on epidermal
cells comes from the developing central nervous system
(CNS). The ventral epithelium closely wraps around the
CNS, thus the epithelium experiences the CNS as a
physical constraint. While the precise mechanical char-
acteristics of the CNS have not been investigated, it is
observed that folds rarely appear in the epidermis jux-
taposed to the CNS. Only strong grooves, generated in
genetic over-expression experiments, partially pinch into
the CNS. This observation suggests that in general the
CNS is able to resist pressure exerted by the overlaying
epidermis. In our model the CNS is abstracted as two
adjacent and parallel cylinders, as in Figure 11. The
radius of each cylinder of the CNS, RCNS is estimated
from cross section experiments to be one fifth of the
radius of the embryo Rbody. Ideally the CNS only acts
on mass elements that are in contact with it. However,
modeling the CNS as a hard physical constraint may
be both biologically unrealistic (organs are not infinitely
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rigid) and practically undesired (it may lead to stiff
dynamics). Inspired by an approach developed in the
computer graphics community for the development of
simulators of soft-body dynamics [39], the interaction
between embryo and CNS is implemented as an external
force acting on the epithelium along a direction that is
normal to the CNS cylinder. Let us denote the distance
vector from the axis of the CNS to a vertex i by ~ri. Our
implementation employs a polynomial formulation that
depends on a parameter u ∈ N:

~FCNS
i (~ri) =

{ (
||~ri||−2RCNS

RCNS

)2u
~ri
||~ri|| , for ||~ri| | < 2RCNS

0 , otherwise.

The interaction of the epithelium with the CNS can be
tuned and stiff dynamics can be avoided.
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Fig. 11. Three-dimensional model of the epithelium of the
embryo (symmetric representation). The green cylinders
denote the central nervous system. Notice that part of
the ventral epithelium has not been captured by the
microscope and hence has not been modeled.

The ventral vertices of the cellular network ideally
would lie under the ventral line of the embryo, as in
Figure 9. Unfortunately, a limited section of the network
close to the ventral line is not included in the model from
the data, due to the limited range of the microscope – see
Figure 11. Thanks to the limited dynamics of the ventral
cells this drawback is not too severe: assuming symmetry
between two vertical halves of the embryo and because
of their adjacency to the ventral line, the ventral vertices
are constrained to move exclusively along the ventral
line, that is in x-direction. This means that the dynamics
in the y- and z-direction are set to zero.

How to prevent the global cellular network from
collapsing over itself? The inner body of the embryo can
be imagined as a fluid mass exerting a pressure force on
the ectoderm, whenever there is a pressure difference
between the interior and the exterior of the embryo.
This phenomenon can be modeled using the Laplace-
Young law [44]. Assume that the embryo is a cylindrical

wall tension T

reaction
force

(pressure    p)

Fig. 12. The Laplace-Young Law relates the pressure
difference ∆p over a surface to the surface tension T .

vessel, as depicted in Figure 12. The larger the cylindrical
radius Rbody, the larger the boundary tension T (dashed
red arrows in Figure 12) required to withstand a given
pressure difference ∆p (solid cyan arrows in Figure 12)
over the boundary. This property can be derived from
the Laplace-Young equation, which relates the pressure
difference to the shape of the surface: ∆p = T

Rbody . This
effect is implemented over the whole cellular network,
assuming a constant pressure difference ∆p.

Dorsal closure is the preponderant morphogenetic
movement showing in the experimental data for the
case study, and is driven by the leading edge cells,
namely the row of cells lying most dorsally within the
epithelium. The leading edge is pulled locally, and the
corresponding cells move over the embryo surface up
toward the dorsal line, while propagating the pull over
the rest of the epithelium. We assume to have knowledge
only of the final position of the leading edge vertices
(aligned along the dorsal line). We simulate DC forces by
imposing a C 2 continuous trajectory (that is, a trajectory
represented with a twice-continuous function of time) on
all leading edge vertices, between their initial and final
configuration. The trajectory is thus only imposed on
the dynamics in the y- and z-directions, the x-direction
being left undisturbed. A C 2 trajectory provides com-
plete flexibility in order to obtain smooth motion and
to eliminate jerk from the mechanical components [45].
The input trajectory, along with velocity and acceleration
profiles, are depicted in Figure 13.

Simulations are run in MATLAB, on a laptop with a
Pentium 2.66 GHz Intel Core 2 Duo processor and 4
GB of memory at 1067 MHz DDR3. The Runge-Kutta
4,5 method [46] is used to numerically integrate the
dynamics in (4). The cellular network is made up of
253 vertices and thus the dynamical model has 1518
ODEs. The average integration time for a simulation
taks less than three minutes. The total time spent on the
post-processing of the data and the graphical analysis
amounts to about two minutes.

The outputs of the integration procedure, namely the
position and the velocities of all the vertices of the net-
work in time, are saved as Visualization ToolKit (VTK)
files and exported to the ParaView software environment
[47]. Paraview is an open-source software that imports
the generated VTK files and compiles them allowing for
spatial computer graphics and visualization.
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Fig. 13. C 2 trajectory imposed on the leading edge
vertices. Top down displacement profile pLE(t), velocity
profile vLE(t), and acceleration profile aLE(t). The time
axis has been normalized.

5.3 Simulations

We select a stiffness coefficient k0 for the central vertical
column of cells in Figure 8(b) that is twice as high
as that of the remaining cells. These cells display an
accumulation of cytoskeletal proteins compared to their
non-groove neighbors [6]. This is the case for instance for
Enabled, which is implicated in the organization of actin
filaments [48], as well as the beta-catenin Armadillo,
which links the adherens junctions to the cytoskeleton
[49]. Higher stiffness of these specific cells is related to
the emergence of grooves, a phenomenon we are not
going to further focus on.

We expect the cells to stretch vertically and show
alignment, particularly around the mid column of Figure
8(b). We are thus interested in quantitatively assessing
the quality of the simulations with respect

2) to the alignment of cells, and
3) to their elongation.
This outcome may indicate that the accumulation of

cytoskeletal components in the groove cells is consistent
with a different behavior of these cells at the mechanical
level and may be responsible for their rectangular shape.
This possibility will need to be addressed with genetic
tools in vivo. Therefore, this contribution has no explicit
goal to shed new light over the biological data under
consideration: we are instead interested to qualitatively
show that simulations of the model, which has been
initialized to fit the data, can reproduce the behavior
observed in experiments. This indicates the possible
general use of the proposed modeling framework in
similar studies.

5.3.1 Qualitative analysis of the simulation scenarios

Figure 14 displays the rendered outputs of a single
simulation. They are to be compared with the image in
Figure 15(a), representing the network of cells in Figure
8(a) at a later stage, after dorsal closure has ensued.

(a) Dorsal view (b) 3D view

(c) Lateral view (d) Longitudinal view

Fig. 14. Three-dimensional simulation outcomes. The
cartesian axes are x (red), y (yellow), and z (green).

Notice that the indenting central column approaches
the CNS cylinder and interacts with it, which calls for
the use of the corresponding external forces discussed
earlier. The dorsal and lateral view clearly indicate that
cell boundaries line up along columns in dorso-ventral
direction. In particular, the central column lines up in an
almost perfect ladder configuration. It is also quite clear
that cells stretch in the vertical direction. A limitation
of the simulations is visible on the leading edge which,
unlike in the experimental image, is nicely aligned:
this artificial effect is due to the imposed simulation
dynamics (input trajectory) over the leading edge and
can be possibly eliminated by feeding to the simulation
a more realistic trajectory for those specific cells.

5.3.2 Quantitative analysis of the simulation scenarios
We now consider the processed cellular network in
Figure 15(b), which is extracted from the experimental
data in Figure 15(a). It clearly relates to the network
in Figure 8(b), except for a few extra cells that have
been caught by the microscope and appear close to the
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ventral and lateral boundaries. We exclude these extra
cells from the statistics that are going to be elaborated
below. No noticeable junction rearrangement is observed
in the data.

As discussed earlier, we are interested in quantita-
tively comparing alignment and elongation of the cells
from the simulated network with those of the cells
from the experimental data. We introduce the following
metrics, for each cell:

1) the ratio κ = xL/xl between the two axes of the
cell, where xL denotes the longer axis and xl the
shorter one. This quantity is a number greater than
one that denotes the elongation of the cell;

2) the angle of orientation of the principal (longer)
axis of the cell. This is a quantity α ∈ [−180, 180]
degrees, computed from the vertical line, namely
α = 0 along the vertical axis and α growing clock-
wise.

For both κ and α we compute mean m and the standard
deviation σ, over the whole cohort of cells. The value of
σ is particularly important for the orientation angle α,
which is a quantity that spans [−180, 180].

Such metrics can be easily computed over the cellular
networks present in Figures 8(b) and 15(b), which are
extracted from the experimental data. Furthermore, we
compute these metrics on the two-dimensional network
that is obtained by projecting the lateral-view output of
the simulation (see Figure 14(c)): this network is reported
in Figure 16. (Notice that this two dimensional projection
inevitably suffers from a few cells crossing each other:
we shall eliminate these cells from the statistics devel-
oped below.)

We set up two statistical comparisons. The first is
based on the whole network (see Table 2, rows denoted
by “W”), whereas the second is based on the group of
cells adjacent to the central vertical column (see Table
2, rows denoted by “C”). For consistency, we selected
the cells in this region by matching the experimental
outcomes with the simulations. We discussed above how
we expect a more ordinate alignment of cells within this
region.

The first two rows of Table 2 display statistics based
on the experimental data at the initial time, as per Fig.
8(b), and serve as reference. (Notice in particular that
the statistics on the orientation display a high variance,
as expected.) The second pair of rows focus on statistics
at the final time, for the whole network. They compare
the experimental data with the outcomes of the simula-
tions. Similarly, the last two rows draw statistics at the
final time, for the cells belonging to the central vertical
region. Notice how the simulation outputs are consistent
with the observed experimental data, particularly when
the statistics are focused on the central region of the
network. As expected, we observe a general increase in
elongation of the cells (cfr. m(κ) values, for similar values
of variance), as well as an alignment toward the vertical
axis especially in the cells belonging to the central region

(cfr. small values of m(α) and decreasing values of σ(α)
for rows denoted with C).

m(κ) σ(κ) m(α) σ(α)

Initial exp. data, Fig. 8(b), W 2.48 1.93 -23.68 48.66
Initial exp. data, Fig. 8(b), C 2.29 1.18 -33.63 27.78
Final exp. data, Fig. 15(b), W 3.40 1.71 -11.01 25.48
Simulation data, Fig. 16, W 4.09 4.36 -4.55 32.05
Final exp. data, Fig. 15(b), C 4.04 1.31 -6.15 9.01
Simulation data, Fig. 16, C 4.44 2.37 -8.63 16.45

TABLE 2
Metrics on cells - κ denotes the elongation of the cell,

whereas α the angle of orientation of the cell; m
represents the mean value and σ the standard deviation;
W indicates statistics over the whole network, whereas
C over the cells adjacent to the central vertical column.

(a) Confocal microscopy image at final time. The red polygon indicates
the subnetwork of interest.
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(b) A processed version of the network.

Fig. 15. Experimental cellular network at final time, used
as a benchmark for the simulation outcomes.

Let us conclude by adding that of course, the selection
of more complex metrics is possible (in order to enable
a comparison of strain maps, for example), as well as
the extension of the correspondence over the whole set
of images taken from the time-lapse movie (this would
account for detailed matching of the motion).
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Fig. 16. Two dimensional projection of the lateral-view
simulation output in Figure 14(c).

6 CONCLUSIONS

The main goal of this work has been that of developing
and implementing an adaptable and scalable modeling
framework for single-layered epithelial cellular struc-
tures. The modeling architecture has been motivated
by a set of criteria distilled from biological knowledge
on cellular mechanics, and grounded on comparisons
with other modeling options from the literature. After
discussing the data structure underlying the implemen-
tation of the model, the dynamical model has been the
main focus of the exposition.

As a case study, the work has considered the process
of early dorsal closure on the embryo of Drosophila
melanogaster. The work leveraged developed software to
extract the cellular geometry from a two-dimensional mi-
croscopy image, which has enabled realistic simulations
that have been compared to the experimental data.

While this work has no explicit goal of biological rele-
vance over the considered case study, we expect that the
outcomes of the simulations can be meaningful to derive
conclusions on the elasticity and stiffness properties of
the epithelium, as well as on the force distributions
and profiles playing a role in early dorsal closure. More
generally, the proposed modeling framework promises
to be a general platform to investigate structure and
dynamics of single-layered epithelial cellular networks
in a number of diverse applications.

ADDITIONAL ON-LINE MATERIAL

Videos of the simulation outputs can be found at:

http://www.dcsc.tudelft.nl/∼aabate/tcbb
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