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Abstract

Quantifying small scale domestic solar (PV) generation from energy consumption is be-

coming increasingly important as the install base of small solar (PV) panels rapidly grows.

Unfortunately, it is often the case that the only insight into the consumption and generation

of energy within a house comes from smart-meter readings. The smart meter records the

amount of energy the house takes from the grid, and does not independently measure and

report the local generation that might be consumed by the home, or fed back to the grid. To

address this issue, we propose a novel approach to disaggregate solar (PV) generation from

energy consumption that also infers installed PV capacity. This is done by disaggregating

PV generation from censored smart meter readings, and specifically by finding the most

likely distribution for the energy consumption and using it to infer the solar generation. We

extend this approach to propose the first technique to infer PV capacity without weather

data or a solar proxy, using instead only smart meter readings given a group of houses

in close proximity. We evaluate the algorithm on two datasets: (i) the US Pecan Street

dataset is adapted so that net energy meter readings are censored; and (ii) a constructed

dataset, combining smart meter readings from UK households and solar energy generation

from locations across the UK. Our results show comparable accuracy at inferring PV ca-

pacity compared to existing approaches, which cannot deal with censored readings which

represent over 50% of PV panel installations in the UK.

Keywords: Solar Energy, Smart Meters, Data Disaggregation, Residential Sector, Energy

Generation
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1. Introduction1

Solar energy (PV) generation in the UK has increased by a factor of 130 between Decem-2

ber 2010 and December 2019, with small installations (under 10 kW) increasing in number3

by 4000%1, making up a growing proportion of the grids electricity supply. Thus, grid op-4

erator who must balance the supply and demand of electricity in real time in order to keep5

the grid at a stable frequency [1, 2, 3], have an increasing challenge to estimate the quantity6

of energy provided by these PV installations. Ideally, the location of these panels, and their7

capacity would be reported to the grid operator, and their generation would be measured8

and reported in real-time through smart meters. Unfortunately, in the UK, no reporting9

scheme currently operates, and the deployed base of smart meters (and those scheduled to10

be deployed to all UK homes in the future) do not separate local generation and consump-11

tion. Rather, they simply record the net energy taken from the grid. More significantly,12

they also fail to report net export to the grid, and simply report 0 kWh of consumption13

over each half hour, during these periods. In statistical terms, these observations are said14

to be censored. Thus, there is a need to develop approaches to identify homes with PV15

panels installed, and to estimate their real-time net contribution to overall grid generation,16

by disaggregating domestic energy generation using existing censored smart meter data.17

In the setting where smart meters are uncensored, existing approaches often combine18

known physical models of PV panels with an analytical approach to identify the maximum19

generation of a PV panel to disaggregate the energy generated [4, 5]. Others take a su-20

pervised learning approach to the problem, using radial basis functions and wavelet kernel21

support vector machine that map weather metrics to a solar output [6]. Many approaches do22

not focus on disaggregation, but only on inferring PV generation using its relationship with23

weather [7, 8]. Alternative approaches have implemented solar disaggregation at a feeder or24

small-region level, which does not correspond directly to our work [9, 10, 11].25

1https://www.gov.uk/government/statistics/solar-photovoltaics-deployment (Accessed 16/04/20)
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The above approaches do not explicitly account for censored smart meter readings. This26

means that they would not work in over 50% of real world settings where censoring occurs27

due to incorrect installations2. As the number of PV panel installations grow, this creates28

a significant issue in balancing the grid. A new approach is required to deal with censored29

smart meter readings, otherwise PV panels will go undetected and their generation unac-30

counted for. Without a non-intrusive approach, costly interventions need to be taken, such31

as re-fitting smart meters or installing new hardware, to measure PV generation separately.32

In this paper, an approach to disaggregate PV generation and energy consumption from33

censored smart meter readings is presented. The approach infers the maximum power input34

into the house that can be expected from the specific system of PV panels, this means the35

inverter efficiency is also accounted for. Then using a solar proxy, which is defined as the36

known solar generation from a local house, the PV generation can be inferred. Using a37

solar proxy to infer solar generation of a different house has been successfully demonstrated38

in other bodies of research [5]. To find the PV capacity, the most likely joint probability39

distribution of the PV capacity and the energy consumption for each time period across a40

year is found. Figure 1 provides a visualisation of this process.41

Our novel approach allows solar disaggregation to be performed in real-world situations42

where smart meter readings are censored. Furthermore, in line with current smart meter43

standards, only half-hourly readings are required for the algorithm to work. The algorithm44

can classify the presence of PV panels on small buildings and infer the solar generation45

at each time of the day. The algorithm is evaluated on the widely-used US Pecan Street46

dataset, and to demonstrate the viability of the approach in the UK setting a dataset is47

constructed combining a dataset of UK smart-meter readings and a dataset of energy gener-48

ation recordings from small PV systems. Combining the two datasets is required as there are49

multiple publicly available datasets of small houses with labelled energy consumption, how-50

ever there are currently no large scale datasets with local energy generation also recorded.51

Our experiments demonstrate the algorithms success at detecting houses with solar panels52

2https://www.utilityweek.co.uk/sta-warns-smart-meters-solar-panels-decoupled (Accessed 16/04/20)
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Figure 1: The leftmost plot shows the energy consumption for a random day from the Pecan Street dataset,

whilst the second plot shows the corresponding energy generation for the day. The third plot displays the net

meter reading, which most existing approaches to solar disaggregation are designed to use. The rightmost

plot shows the corresponding readings of a censored smart meter - notice here the regions where net smart

metering is censored, namely kept at zero when negative.

from censored smart meter readings and inferring their PV capacity and PV generation.53

This is the first approach to explicitly deal with censored smart meters and the results are54

comparable to other approaches, which do not address the issue of censored readings and55

assume net-metering. This approach will allow inference of PV capacity and generation from56

all energy generating customers in the UK, as the current methods rely on reporting to the57

feed-in tariff, inference from quarterly energy generation and national grid models which do58

not explicitly account for generation by individual homes.59

The rest of the paper is structured as follows. Section 3 outlines the model to infer60

PV capacity from censored smart meter readings. Section 4 illustrates our implementation61

of an algorithm to infer PV capacity, which is extended in Section 5 to not require solar62

irradiance. Finally, Section 6 introduces the datasets, Section 7 outlines the experiments63

and the results and Section 8 summarises our contribution to the field and outlines future64

work.65

2. Related Work66

Recent work proposes a method for disaggregating solar PV generation behind-the-meter67

for individual buildings using historical advanced metering infrastructure, which records the68
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net energy consumption for a house, feeder level net energy consumption, and a solar proxy69

(similar to what is used in this paper), however the approach still requires net meter data,70

which means that in its current form it would not work when the smart meter data is71

censored. [5]. Other work has looked at identifying PV generation on a larger geographic72

basis, estimating the electric generation from “invisible solar PV resources” by identifying73

a small number of solar PV sites and using it to estimate a larger set of sites via data74

dimension reduction and clustering techniques [12, 13]. The total capacity of the PV sites75

must be known a-priori and this approach does not work on a household-specific basis like76

our proposed approach, but only for regions.77

To disaggregate solar energy generation from smart-meter readings a number of machine78

learning techniques have been proposed. One such approach is to use support vector machine79

models with different kernel functions to disaggregate the solar energy generation from smart80

meter readings [6, 14]. However, the approach requires procuring data at a granularity that81

is much finer than that available from a regular smart meter, as it uses dedicated meter82

hardware. Other approaches to disaggregate energy generation rely on physical models83

to infer solar irradiance and then use a physical model to map the solar irradiance to the84

predicted PV energy generation [4]. This approach works by predicting the base load energy85

used by a house and also finding the times in the year when there is no reduction in solar86

irradiance due to weather. By combining these two sources the solar generation of the house87

can be predicted. Deep learning approaches to real-time observability of PV generation88

behind the meter have also shown success [15]. However, none of the above approaches have89

been shown to deal with situations where smart meter readings are censored, which is the90

focus of this work.91

Physical models can fail in real world settings, due to the models not correctly repre-92

senting the true complexity of the actual system being described and due to the difficulty93

in forecasting solar irradiance that is incident on the ground [16]. Recent success has been94

achieved via data-driven or hybrid approaches, where the observed relationships between the95

actual solar irradiance reaching the ground and weather factors are used to train the models.96

This relinquishes the requirement on the physical models to accurately reflect the real world.97
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This paper provides a benchmark for common machine learning techniques applied to the98

problem of forecasting solar irradiance and guides towards which weather features are useful99

inputs for a predictive model [7]. Alternatively, neural networks have been used to predict100

solar irradiance incident on the ground [17, 18]. Intuitively we can attribute their success to101

the ability of deep learning to consider a large set of weak features (i.e. weather factors) as102

there is a non-trivial correlation between different weather factors affecting solar irradiance.103

Other approaches show the strong correlation that solar irradiance has in time, however104

these methods are limited as they are unable to forecast beyond the next 30 minutes [19].105

Satellite and aerial imagery has been utilized in recent work to detect solar panels and106

to construct a dataset of the actual deployment of solar panels [20, 21, 22, 23]. Advances107

in deep learning have made it possible for image recognition techniques, using convolutional108

neural networks, to be deployed on large-scale tasks [24, 25]. One such deep learning frame-109

work, DeepSolar, finds the GPS location of PV panels and the size of the installation from110

30cm-resolution satellite imagery data [20]. The framework has been used to create a dataset111

of PV panel locations around the US, locating 1.47m panels with a precision of 93.1% in112

residential areas. Extensions to this research have culminated in a predictive model that113

estimates the solar deployment density based on census data. The use of satellite imagery114

allows for a scalable and non-intrusive approach to detect the location of solar panels. How-115

ever high-quality satellite data can be expensive, making this approach prohibitive in some116

applications. Whilst this approach can provide estimates of the solar PV generation based117

on panel size and location, there is no way to infer the real amount being generated, and it118

can only provide an upper bound on predicted generation. Other research has also shown119

the benefits of using satellite imagery to improve nowcasting from power data demonstrating120

the feasibility to use satellite imagery techniques in parallel with other approaches [26]. As121

such this is a complementary field of research and can be used in tandem with our proposed122

approach to validate results (cf. Future Work).123
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3. Censored Solar Disaggregation Model124

We consider a dataset of smart-meter readings, rhtd [kWh], where h ∈ [1...H], t ∈125

[1...T ], d ∈ [1...N ], such that H denotes the number of households, T is the number of126

time steps the data readings are separated into, and N is the number of days of data. A127

smart meter records only the energy supplied to the house from the grid. This means if128

behind-the-meter energy generation, ghtd [kWh], is larger than the energy consumption, xhtd129

[kWh], there is a censored reading, rhtd = max(0, xhtd − ghtd).130

3.1. Energy Generation131

The PV panel is assumed to be the only source of possible energy generation in the132

household. A PV panel generates energy according to ghtd = τchftd, where τ [hours] is133

the constant time step size, ch [kW] is the PV capacity, namely the maximum power input134

into the home from the PV panel. In particular, ch = 0 kW implies that there is no PV135

panel present. In this paper we use a solar proxy as an input to the algorithm. The solar136

proxy factor, 0 ≤ ftd ≤ 1, is the proportion of the solar proxy recorded divided by the137

maximum recorded solar proxy for the year. The accuracy with which the solar proxy138

correctly represents the solar energy generation of the house in question will improve as the139

scale of smart meter installations increases, as it will reduce the distance to the nearest PV140

panel.141

3.2. Energy Consumption142

It is assumed that the energy consumption, xhtd, for a given time step (e.g., 10:00-10:30,143

with τ = 0.5 h) comes from a probability distribution, P, parameterised by the set Θht, valid144

for all days, d, as:145

Xhtd ∼ P(Θht).

To select the probability distribution that best represents the energy consumption of146

residential households, multiple distributions that can model asymmetric data have been147

empirically evaluated. From the evaluation the gamma distribution has been selected as148
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the probability distribution that best model energy consumption for a given time step in149

a residential household. It has been chosen as it produced the maximum likelihood, and150

equivalently, minimized the Kullback–Leibler divergence with the energy consumption data151

across all houses tested. Regions with different energy consumption patterns may benefit152

from re-evaluating which distribution provides the best fit, however this was the best fit for153

the houses we tested from the UK and the US. Mixture distributions may show improved154

results, however in order to keep the run time as low as possible, distributions with less155

parameters to infer have been preferred.156

An indicator function is defined as Ihtd = 1 if rhtd > 0, and equal to 0 if censored for the157

respective time step, day, and household. A point is defined as censored if rhtd = 0 kWh.158

For the uncensored observations we have that:159

xhtd = rhtd + τchftd, (1)

whereas in the censored case we know that the unknown energy consumption, xhtd, is160

bounded above by the energy generated, as:161

xhtd ≤ τchftd. (2)

In order to succinctly describe quantities over whole populations, we define sets of data162

corresponding to each house and time step. We introduce sets comprising values of indicator163

functions, energy consumption values, smart meter readings and solar proxy factors for164

a time step, as: Iht = {Ihtd, d ∈ [1...N ]}, Xht = {xhtd, d ∈ [1...N ]}, Rht = {rhtd, d ∈165

[1...N ]}, and F t = {ftd, d ∈ [1...N ]}, respectively. We similarly define the set of alpha166

and beta parameters for the gamma distribution, PV capacity, indicator function values,167

energy consumption values and smart-meter readings for a specific time step and day across168

houses, as follows: αt = {αht, h ∈ [1...H]}, βt = {βht, h ∈ [1...H]}, C = {ch, h ∈ [1...H]},169

Itd = {Ihtd, h ∈ [1...H]}, X td = {xhtd, h ∈ [1...H]} and Rtd = {rhtd, h ∈ [1...H]}.170

4. PV Capacity Inference with Solar Proxy171

We present a novel algorithm to infer the PV capacity, ch, using a smart meter with172

censored readings, rhtd. For a given house, our algorithm aims to find the maximum power173
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input into the home that can be expected from the installed PV panels. Notice that there is174

a counter-intuitive nature about the algorithm, as the PV capacity, which is our main point175

of interest, is found in the process of estimating the most likely distributions for energy176

consumption, Xhtd.177

Our algorithm finds the most likely gamma distribution representing the energy consump-178

tion for each time slot. If we first consider dealing with uncensored smart-meter readings,179

namely when all the smart-meter readings are known, then by finding the most likely en-180

ergy consumption, we also find the most likely PV generation, ghtd, via Equation (1). This181

approach is extended to when the smart-meter readings are censored and we do not have182

a direct relation between the energy consumption and PV generation, the only relation we183

know is the inequality seen in Equation (2).184

We work with half-hourly smart meter data (τ = 0.5 h) and only use the time steps185

when the sun is shining, since a solar proxy factor equal to 0 does not help with the task186

of inferring PV generation. Our algorithm is trained using 365 days of half-hourly readings187

from historic smart meters and recorded solar irradiance. It is worth reiterating that whilst188

the smart meter readings are known, the energy consumption values are unknown and are189

being inferred. Once the PV capacity, ch, is known, it can be used to calculate the PV energy190

generation for any time step with the solar proxy, fhtd. Also, note that the inferred value of191

the PV generation is constrained as we are inferring a scalar value (the PV capacity), which192

is shared across all time steps for the house, assuming the PV capacity remains constant,193

and this value is multiplied by the solar proxy, fhtd, for that specific time step to give the194

energy generation.195

In this work the energy consumption is assumed to follow a gamma distribution across196

days for each half-hour period in a specific house. Other distributions, such as the log-197

normal distribution, lend themselves to analytical solutions and may prove to be better198

assumptions when working with different datasets where energy consumption patterns are199

different. The unknown parameters of the gamma distribution, denoted as αht and βht, are200

found by maximum likelihood estimation. When the true value in some cases is not observed201

due to the smart meter censoring readings below 0 kWh, a specific likelihood function can202
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be used, which deals with data that is censored below [27]. To find both the PV capacity203

and the parameters of the gamma distribution representing the energy consumption, these204

parameters are iteratively updated in turn to maximise the likelihood.205

4.1. Log-Likelihood of Censored Smart Meter Readings206

A standard likelihood function is the product of probability density functions (PDF) for

all the given data points. The PDF at a specific value corresponds to the probability that a

data point with that value is observed. When the smart meter reading is 0 kWh, the energy

consumption is unknown and we do not have a data point to calculate the corresponding

PDF. However, we know that for the censored data points the energy generated by the PV

panel is an upper bound on the energy consumption. Hence, the cumulative distribution

function (CDF) of the upper bound is used when the smart meter reading is censored, as it

describes the probability that the energy consumption value is less than the upper bound

[27]. In summary, the proposed model uses the CDF when the smart meter reading is

censored and the PDF when it is uncensored. The PDF, φ, and CDF, Φ, for the gamma

distribution are defined respectively as follows where the gamma function is represented as

Γ, whereas γ denotes the lower gamma function:

φ(x|α, β) =
βα

Γ(α)
xα−1 exp(−βx),

Φ(x|α, β) =
γ(α, βx)

Γ(α)
.

For a specific house and time, we infer the gamma distribution parameters, αht and

βht, parameterising the set of energy consumption values, Xht, given the calculated set of

indicator functions Iht, the smart meter readings Rht, and the solar proxy readings F t. We

can then find the likelihood of the energy consumption data by factorising across the days

as follows:

L(αht, βht, ch|Rht, Iht,F t, τ) =

N∏
d=1

φ(xhtd|αht, βht)IhtdΦ(τchftd|αht, βht)(1−Ihtd). (3)
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Note that we have the PDF of xhtd = rhtd + τchftd (as per Equation (1)) when the smart-207

meter reading is uncensored and the CDF of predicted PV generation when censored. By208

maximising this likelihood function the most likely gamma parameters representing half-209

hourly energy consumption, αht and βht, and PV capacity, ch, are found. The likelihood210

function is factorised across all days (N) in the year.211

As the log function is monotonically increasing, finding the maximum of the likelihood

is equivalent to finding the maximum of the following log-likelihood expression:

logL(αht, βht, ch|Rht, Iht,F t, τ) =

N∑
d=1

Ihtd log(φ(xhtd|αht, βht))

+
N∑
d=1

(1− Ihtd) log(Φ(τchftd|αht, βht)). (4)

The golden section search is a standard technique used to find the extrema of a function.

Since the log-likelihood of the gamma distribution with respect to each variable is uni-modal

(see Figure 2), we use this technique to find the parameters that maximise the log-likelihood,

with the other parameters being fixed. The benefit of using the golden section search is that

we do not need to revise the approach if we change the distribution, as we only need to be

able to calculate the PDF and CDF for that distribution. The golden section search finds

the parameters of the gamma distribution, αht and βht, maximising the likelihood as follows:

(α∗
ht, β

∗
ht) = argmax

αht,βht

logL(αht, βht, ch|Rht, Iht,F t, τ). (5)

Furthermore, also using the golden section search the PV capacity can be found since it is

independent of the time of the day, we find the value of ch that maximises the likelihood

across all gamma distributions, corresponding to single time intervals of the day, namely:

c∗h = argmax
ch

T∑
t=1

logL(αht, βht, ch|Rht, Iht,F t, τ). (6)
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Algorithm 1: Iterative golden section search to find PV panel capacity via likeli-

hood maximisation
Result: Returns ch

input: τ, rhtd ∀ h ∈ [1, ..., H], t ∈ [1, ..., T ], d ∈ [1, ..., N ], ftd (if known) ∀ t ∈

[1, ..., T ], d ∈ [1, ..., N ]

ch = 1 ∀ h

ftd = 1 ∀ t, d

for h in 1:H; t in 1:T; d in 1:N do

if rhtd > τchftd then
Ihtd = 1

else
Ihtd = 0

end

end

LL =
∑T

t=1 logL(αht, βht, ch|Rht, Iht,F t, τ)

while LL is not converged do

for h in 1:H; t in 1:T do

(α∗
ht, β

∗
ht) = argmax

αht,βht

logL(αht, βht, ch|Rht, Iht,F t, τ)

(αht, βht)← (α∗
ht, β

∗
ht)

end

for h in 1:H do

c∗h = argmax
ch

∑T
t=1 logL(αht, βht, ch|Rht, Iht,F t, τ)

ch ← c∗h

end

for t in 1:T; d in 1:D do // Ignore if solar irradiance is known

f ∗
td = argmax

ftd

logLirr(ftd|αt,βt,C,Rtd, Itd, τ)

ftd ← f ∗
td

end

LL =
∑T

t=1 logL(αht, βht, ch|Rht, Iht,F t, τ)

end

212
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Figure 2: The log-likelihood function is uni-modal with respect to αht, βht and ch, with the other parameters

kept fixed.

The log-likelihood is maximised by finding the αht and βht parameters for each gamma213

distribution that best represent the energy consumption at each time step. Then for each214

house we find the value of the PV capacity, ch, that maximises the likelihood of the in-215

ferred energy consumption values being from their respective gamma distributions. This is216

then repeated until the log-likelihood converges (see Algorithm 1, set h = 1 and follow the217

instructional comments).218

5. PV Capacity Inference with Only Clearsky Solar Irradiance219

We extend the above approach to the inference of PV capacity only using clearsky irradi-220

ance (as opposed to a solar proxy for each panel), under the assumption we have a group of221

houses in close proximity (e.g., sharing the same postcode). The clearsky (solar) irradiance,222

std, is the solar irradiance that would be incident on the ground if there was no atmospheric223

or weather interference. It is calculated using existing physical models, as it only depends224

on the location on Earth relative to the Sun. To identify how much of the solar irradiance225

is actually incident on the ground, the clearsky solar irradiance is multiplied by the clearsky226

irradiance factor, ftd ≤ std ≤ 1, defined as the solar irradiance at a particular time compared227

to the maximum recorded solar irradiance of the year.228

Assuming all houses receive the same solar irradiance, an additional step is added in the
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previous algorithm to find an estimate of the solar proxy factor, namely ftd, for each time step

across all houses, so that we maximise the likelihood that the inferred energy consumption

values come from their corresponding distributions. Consider the new likelihood function

which factorises the probability distribution across houses and is no longer conditioned on

ftd as it is now being inferred:

Lirr(ftd|αt,βt,C,Rtd, Itd, τ) =

H∏
h=1

φ(xhtd|αht, βht)IhtdΦ(τchftd|αht, βht)(1−Ihtd). (7)

This likelihood function is factorised over houses (H) in close proximity, as opposed to

Equation (3) that factorises over days (N) for a single house. To infer the solar proxy, the

likelihood is conditioned on the predicted gamma distribution parameters. This is due to

the close houses sharing the same solar proxy, fhtd, but having unique PV capacity, ch, and

unique gamma distribution parameters representing energy consumption, αht and βht. The

value of ftd maximising this likelihood is given by:

f ∗
td = argmax

ftd

logLirr(ftd|αt,βt,C,Rtd, Itd, τ). (8)

The approach finds the solar proxy factor that gives either the most likely energy consump-229

tion, or an upper bound on the energy consumption in the case of censoring. As illustrated230

in Algorithm 1, this becomes an extra step in the algorithm as the most likely gamma distri-231

bution parameters for each house, αht and βht, the most likely PV capacity for each house,232

ch and the most likely solar proxy values, ftd, are inferred iteratively and until convergence.233

Notice that this approach is realistically not feasible over a single house, as the inferred234

solar proxy factor would likely overfit, being dependent on a single data point. On the235

contrary, finding the solar proxy factor across a batch of houses (assumed to be adjacent)236

regularises the most likely solar proxy factor and allows for a prediction of its true value (see237

Algorithm 1). Let us emphasise that this is not intended to be an improvement of the above238

algorithm, but rather an approach that works with more limited data and an exploratory239

result towards alternative methods to using weather to predict solar irradiance for inferring240

PV generation.241
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6. Datasets242

To evaluate the approach a subset of the US Pecan Street dataset and a constructed UK243

dataset are used.244

The Pecan Street dataset provides energy data for houses with PV panels [28]. We have245

cleaned the data by creating censored smart meter readings for each house, as obtained from246

their energy consumption and generation. From this dataset, 30 houses have been identified247

to have solar panels and selected and the PV Capacity is in the range 2.5 kW to 10.2 kW248

for the Pecan Street dataset.249

Alongside this, we have constructed a dataset representing smart meter readings from250

the UK, comprising solar energy generation from locations across the UK from the Sheffield251

Solar microgen dataset [29], and smart meter readings from London households3. Curation252

of this dataset is required as there are no large scale public UK datasets that record energy253

usage, PV energy generation and local solar irradiance. To create the dataset a selection of254

smart meter readings for 260 houses are taken from the London smart meter dataset and255

treated as energy consumption. A manual check was conducted to ensure that there is no256

PV energy generation on the selected houses. Each house has been randomly assigned one257

of the 50 available PV generation profiles from the microgen dataset. The maximum power258

output for each PV system in the microgen dataset has been re-scaled to demonstrate how259

the algorithm works across a range of PV capacity values in the range 0.5 kW - 6.5 kW with260

20 values drawn randomly in each 0.5kW band, additionally 20 houses were included with261

no PV panel (0 kW). Then, the half-hourly smart meter readings for the combined dataset262

are calculated using the formula rhtd = max(0, xhtd − τftdch). Only the daylight hours of263

each day have been used. As the assignment of the PV panels to the smart meters is random264

this can be considered as a worst-case scenario as there is typically correlation between the265

energy usage of a home and the PV capacity.266

The solar proxy has been implemented as seen in previous papers by taking the known267

proportion of the PV energy generation through the day [5]. There is potential for transpo-268

3data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households (Accessed 16/04/20)
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sition errors, where there is a difference between the plane of incidence for the solar proxy269

to the PV system that is being evaluated. However, it has been shown that the geometry270

of the proxy system can be recovered and mapped to the geometry of the PV system being271

evaluated removing this source of error [4]. Furthermore, it is shown that the factors other272

than orientation only affect the maximum power output, hence they can be absorbed into273

the PV capacity term which represents the true power input to the house from the PV274

system.275

The clearsky solar irradiance is calculated using existing techniques such as the Bird276

model (as seen in the package PVLIB) [30, 31].277

7. Empirical Evaluation278

To evaluate the performance of the algorithm four metrics are used. The root mean

square error (RMSE) measures the accuracy of the inferred values by taking its distance

from the true value, regardless of the true PV capacity. RMSE is a useful metric in a

situation when we are not interested in the contributions of individual houses and instead

focus on the total prediction of PV generation,

RMSE =

√∑H
h=1(ĉh − ch)2

H
.

Note that, ĉh denotes the inferred PV capacity and ch is the real PV capacity. To measure

the precision we also calculate the mean absolute percentage error (MAPE). The MAPE

calculates the absolute error as a percentage of the real PV capacity,

MAPE =
1

H

H∑
h=1

∣∣∣∣ ĉh − chch

∣∣∣∣ .
Furthermore, to identify the bias in the estimations the mean normalised bias error (MNBE)

is calculated,

MNBE =
1

H

H∑
h=1

ĉh − ch
ch

.

We also measure the classification rate, which is the number of houses correctly predicted279

to have a solar panel. In order to classify the presence of a PV panel, we have selected a PV280
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Figure 3: Each boxplot represents the distribution of percentage error for the 20 houses in each 0.5 kW band

of PV capacity. The performance of the approach appears to be independent of the PV capacity, however

there is a bias and the approach consistently over-estimates the PV capacity which the approach can be

adjusted for.

capacity threshold, and assumed that if the inferred generation is above the given threshold,281

then a PV panel is present.282

7.1. PV Capacity Inference with Solar Proxy283

For our constructed UK dataset we have selected 260 houses from the smart meter284

readings from London households dataset that do not have a PV panel installed, and have285

treated the readings as energy consumption. They are then combined with PV generation as286

described in Section 6 to create the dataset used for the experiments. For the 30 houses with287

from the US Pecan Street dataset we have run the algorithm twice: once with the censored288

smart meter readings as described above, and once with the solar generation removed to289

emulate if the houses did not have solar panels.290

7.1.1. Inference of PV Capacity291

The first key takeaway from Table 1 is the 100% classification rate, meaning that the292

algorithm correctly identified every incident where there was a PV panel present and every293

incident where there was not. This was achieved by setting a threshold at 0.05 kW, and any294

value below this was reported as not having a PV panel. Furthermore, the results indicate295

that the performance of the algorithm does not vary with the size of the panel and there296
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does not appear to be a range of values where the approach fails, showing the algorithm297

performs in the range of expected PV capacity values.298

However, there is a consistent bias in the results as the MNBE, as Figure 3 shows. The299

algorithm typically infers the PV capacity to be larger than the true value: this is most300

likely caused by the distribution representing energy usage over-estimating the amount of301

energy used and hence leading to a larger PV capacity being inferred. This can potentially302

be addressed by finding a distribution that better represents the energy usage in the specific303

scenario, or if the bias is known for the dataset the inferred values can be corrected for the304

bias.305

MAPE (%) MNBE (%) RMSE Classification (%)

UK dataset

0 kW - - 0.01 100

0.5 - 1.0 kW 18 17 0.14 100

1.0 - 1.5 kW 10 9 0.16 100

1.5 - 2.0 kW 13 9 0.32 100

2.0 - 2.5 kW 14 12 0.44 100

2.5 - 3.0 kW 13 6 0.41 100

3.0 - 3.5 kW 14 11 0.62 100

3.5 - 4.0 kW 15 13 0.73 100

4.0 - 4.5 kW 15 15 0.81 100

4.5 - 5.0 kW 15 12 0.92 100

5.0 - 5.5 kW 12 7 0.71 100

5.5 - 6.0 kW 13 11 0.96 100

6.0 - 6.5 kW 10 8 0.76 100

Average 13 11 0.64 100

Pecan Street

Average 29 -18 1.68 100

Table 1: The MAPE, MNBE, RMSE and classification metrics for each band of 20 PV capacity values on

the UK dataset and across the Pecan street dataset. The performance is relatively consistent across all

ranges of values with the RMSE increasing as expected due to the larger PV capacity values.

There is also a noticeable drop in performance from the constructed UK dataset to the306
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Pecan Street dataset, with the MAPE across the dataset going from 13% to 29%. The307

drop in performance on the Pecan Street dataset is expected as it typically has PV systems308

with larger PV capacity, and if the PV generation is large relative to the energy usage it309

can be difficult to accurately infer the PV capacity as more information is censored. This310

explanation is validated by the MNBE showing an 18% under-estimate of PV capacity in311

the Pecan Street dataset on average due to the high energy generation censoring a large312

proportion of the smart meter readings. This is a difficult issue to address with censored313

smart meters and providing a lower bound on the PV capacity for these households may314

have to suffice. Combining this approach with satellite imagery will provide an upper and315

lower bound on the potential PV generation.316

7.1.2. Failure without Consideration of Censoring317

To show the importance of correctly handling censored observations, we have demon-318

strated in Table 2 what happens if we treat the censored smart meter readings (rhtd = 0319

kWh) as a net reading and ignore censoring. Following Algorithm 1, we have set Ihtd = 1320

for all data points. The algorithm fails to detect the presence of PV panels or correctly infer321

the PV capacity, demonstrating the importance of using an appropriate likelihood function322

to deal with censored observations.323

UK Dataset

PV No PV All

MAPE 99.6% - -

RMSE (kW) 1.23 0.01 0.87

Classification 0.4% 98.2% 49.3%

Table 2: Error metrics and classification rate of PV capacity inference without censoring

7.2. PV Capacity Inference with Clearsky Solar Irradiance324

For this experiment we have used the constructed UK dataset, and present the outcomes325

in Table 3. We have taken a sample of 250 houses with PV panels and 250 houses without PV326

panels. The smart meter readings have been calculated similarly to the previous experiment,327

and we have normalised the actual PV generation from one of the microgen dataset houses328
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and randomly assigned a PV capacity between 1.5 kW and 3.0 kW to each house with a329

PV panel, whereas the houses without a PV panel have been left as is. The solar irradiance330

and PV capacity data have then been disregarded and we have implemented our algorithm331

to infer the PV capacity for each house. In our implementation, once the inference of a PV332

capacity has gone below 0.1 kW, we have classified the house as not having a solar panel333

and removed it from the next iteration as it would no longer contribute useful information334

to the problem.335

UK Dataset

PV No PV All

MAPE 33.0% - -

RMSE (kW) 0.55 0.01 0.39

Classification 100% 100% 100%

Table 3: Error metrics and classification rate of PV capacity inference with clearsky solar irradiance

Whilst the RMSE is similar to the previous results for the constructed UK dataset,336

the MAPE is larger (more than twice as large), indicating that the approach without solar337

irradiance incurs a larger error in houses with solar panels of smaller PV capacity. To the338

best of our knowledge, this is the first approach to infer PV capacity that does not require339

solar irradiance or weather data as an input. Whilst in practice if the location is known340

then weather data could be acquired, the purpose of this implementation and experiment341

was to show the feasibility of alternative approaches to solar dissagregation, in particular342

approaches that do not inherit errors related to inferring solar irradiance from weather data.343

Weather-based approaches to solar disaggregation to infer PV capacity are still considerably344

more accurate, however we believe this shows the feasibility of an alternative approach345

and could inspire related research efforts that use local clusters of households to infer PV346

generation [5].347

7.3. Runtime and Scalability348

The runtime on a single Intel 7th gen i7 CPU core to detect the presence and capacity of a349

PV panel averaged at 9.32 seconds per house (8.54 seconds per house excluding data loading)350
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across the 240 houses with PV panels and at 5.74 seconds per house (5.06 seconds per house351

excluding data loading) for the 20 houses without PV panels. There are approximately 25352

million homes in the UK, of which about 1 million homes have PV panels, which means to353

infer the PV capacity for all buildings across the UK it would require 16000 CPU-hours.354

As each house uses a separate instance of the algorithm, the workload could be parallelised355

across multiple CPUs and, based on current AWS EC2 T2 prices, it could be conducted for356

under $400. Further speed-ups are expected by employing GPU-based computations.357

A nationwide scan only needs to be run once to detect panels and their associated PV358

generation. The algorithm can be re-run at set intervals at the discretion of the user to359

update their dataset of solar panel locations and capacity. Once the capacity of the solar360

panel is known - the inference of expected solar generation for the next time step is in the361

magnitude of seconds to infer the generation for all houses with solar panels, as it is a single362

calculation using the solar irradiance. The run times of the algorithm and inference show363

that this approach is fit for purpose at scale and affordable with cloud computing services.364

8. Conclusions and Future Work365

In this paper, we have proposed the first approach to dissagregate solar (PV) generation366

from energy consumption given censored smart meter readings and to infer the PV capacity.367

To evaluate our approach, we have used an appropriate subset of the Pecan Street dataset368

and a custom dataset that we have created by combining data supplied from the Sheffield369

Solar microgen dataset and the smart meter readings from London households. We have370

shown that if the solar irradiance is known as a proxy from a single panel, we can detect the371

presence of a PV panel successfully 100% of the time on our test data, and we can additionally372

infer the PV capacity. Using our approach, solar dissagregation can be performed on over373

500,000 houses in the UK alone where alternatives that do not address the censoring of374

smart meters would fail. We have also shown that we can infer PV capacity with clearsky375

solar irradiance if we have a group of houses in a local area, and combined with the inferred376

values of solar irradiance using smart meter readings, we have presented the first approach377

to infer solar generation with clearsky solar irradiance.378
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In future work we plan to extend our approach to deal with daily censored smart meter379

readings. This has the added difficulty of not knowing at what time of day the censoring has380

occurred. We are also working with grid operators and energy suppliers to operationalise our381

research. Extensions to the work could look to combine this research with recent approaches382

to detecting solar panels using satellite imagery. Using both approaches in parallel can383

improve the confidence that a panel is correctly detected. Furthermore, satellite imagery384

can be used to detect the size of PV panels, and if our algorithm infers the real PV capacity385

to be below what is expected of a PV panel of the detected size, it could be used to identify386

faulty panels.387
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