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cDelft Center for Systems and Control, Delft University of Technology, 2628 CD Delft, The Netherlands

Abstract

We describe a framework for analyzing probabilistic reachability and safety problems for discrete time stochastic hybrid
systems within a dynamic games setting. In particular, we consider finite horizon zero-sum stochastic games in which a control
has the objective of reaching a target set while avoiding an unsafe set in the hybrid state space, and a rational adversary has the
opposing objective. We derive an algorithm for computing the maximal probability of achieving the control objective, subject
to the worst-case adversary behavior. From this algorithm, sufficient conditions of optimality are also derived for the synthesis
of optimal control policies and worst-case disturbance strategies. These results are then specialized to the safety problem, in
which the control objective is to remain within a safe set. We illustrate our modeling framework and computational approach
using both a tutorial example with jump Markov dynamics and a practical application in the domain of air traffic management.
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1 Introduction

In application scenarios ranging from air traffic man-
agement [40,44], automotive control [6], systems biology
[16,29], to bipedal walking [4], the behavior of the system
can be described in terms of a hybrid system abstraction
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in which the system state evolves both in the discrete
and continuous domain. While the discrete state can be
used to capture qualitative behavior of the system, for
example the operating modes of a flight management
system or the phases of a walking cycle, the continuous
state can be used to capture quantitative characteristics
such as the velocity and heading of the aircraft or the
joint angles of a biped. When the evolution of the dis-
crete and continuous state can be modeled probabilis-
tically, for example through analysis of statistical data,
then a natural modeling framework is that of a stochas-
tic hybrid system (SHS) [17,20,21].

For a controlled SHS, the performance of the closed-
loop system can be measured in terms of the probability
that the system trajectory obeys certain desired spec-
ifications. Of interest to safety-critical applications are
probabilistic safety and reachability problems in which
the control objective is to maximize the probability of re-
maining within a certain safe set or of reaching a desired
target set. In the continuous-time case, a theoretical up-
per bound on the reachability probability is derived in
[13] using Dirichlet forms. The temporal evolution of the
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probability density function of the hybrid state has been
characterized through generalized Fokker-Planck equa-
tions [7]. Optimal control of stochastic hybrid systems is
considered in [8] and quasi-variational inequalities based
on dynamic programming are derived for the optimal
trajectory. An optimal control approach towards reach-
ability analysis is discussed in [25] and [33], in which the
solutions of probabilistic safety and reachability prob-
lems are derived in terms of the viscosity solutions of ap-
propriate Hamiltion-Jacobi-Bellman equations. To ad-
dress the computational issues associated with proba-
bilistic reachability analysis, the authors in [22] propose
a Markov chain approximation of the SHS using methods
from [28], while in [36], the authors discuss an approach
for computing an upper bound on the safety probabil-
ity using barrier certificates. For discrete-time stochastic
hybrid systems (DTSHS), a theoretical framework for
the study of probabilistic safety problems is established
in [3]. These results are generalized in [43] to address the
reach-avoid problem, in which the control objective is to
reach a desired target set, while remaining within a safe
set. Considerations for time-varying and stochastic sets
are discussed in [1] and [42], respectively.

While much of the previous work have studied optimal
control formulations of probabilistic safety and reacha-
bility problems, in which the evolution of the system is
only subject to inputs by the control, we consider in this
paper an extension to the case of zero-sum stochastic
games, in which the system dynamics is also subject to
inputs by an adversary, whose objectives are opposed to
that of the control. In particular, generalizing the results
in [3] and [43] for a controlled DTSHS, our recent work
in [24] introduced a framework for the study of max-min
probabilistic reachability problems within the context of
a stochastic game model of DTSHS. This is motivated
by practical applications such as conflict resolution in air
traffic management [44] and control of networked sys-
tems subject to external attacks [5], in which the intent
of certain rational agents may be uncertain. In addition,
the framework is applicable to robust control applica-
tions, in which unmodeled dynamics or bounded distur-
bances are to be accounted for in a worst-case fashion.

In this article, we expand upon our work in [24] by pro-
viding a thorough exposition of the theoretical results,
along with detailed analysis of several examples. Most
importantly, we present a detailed proof for the main
theorem in [24], which provides a dynamic programming
approach for computing the maximal probability of sat-
isfying a reach-avoid specification, subject to the worst-
case adversary behavior. This proof also allows us to
derive sufficient conditions of optimality for the synthe-
sis of optimal policies for the control and the adversary.
Furthermore, we demonstrate how these results can be
specialized to address the safety problem, by computing
the minimal probability that the system state reaches an
unsafe subset of the state space. Finally, we also provide
detailed discussions of both a tutorial example as well as

a practical numerical example in order to illustrate the
application of the proposed methodology.

Our main contribution is a theoretic framework for the
study of probabilistic reachability and safety problems
for DTSHS within the setting of zero-sum stochastic
games, extending previous work on the optimal con-
trol framework in [3] and [43]. It is important to note
that such an extension requires addressing several subtle
and yet challenging issues that are unique to stochastic
games: 1) the choice of an appropriate information pat-
tern; 2) the measurability of value functions under max-
min operations; 3) the existence of equilibrium strategies
within appropriate classes.

We will now briefly elaborate on these issues. First,
depending on what information one assumes is ex-
changed between the control and the adversary in a
zero-sum game, one can arrive at drastically different
problem formulations, with correspondingly different
game values and interpretations of solution strategies.
Motivated by an interest in robust control, this work
considers an asymmetric information pattern which fa-
vors the adversary, leading to a max-min [18] or Stack-
elberg game formulation [11] of the zero-sum game.
Second, measurability of value functions, which are vi-
tal for ensuring that the probabilities of interest can
be computed recursively by a dynamic programming
procedure, is often significantly more difficult to estab-
lish in a stochastic game setting as compared with an
optimal control setting, due to nested maximization
and minimization [34]. Thus, formal proofs of dynamic
programming results requires analysis tools and proof
techniques stemming from the field of non-cooperative
stochastic games [27,34,38,32,18]. Finally, it is a well-
known fact that equilibrium strategies for zero-sum
stochastic games need not exist within the space of
pure (i.e. deterministic) strategies [31,41]. On the other
hand, by assuming an asymmetric information pattern,
as well as continuity and compactness properties on the
system model, we show that there exists a solution to
the max-min reachability problem within the space of
pure strategies, albeit at the cost of conservativeness.

The article is organized as follows. In Section 2, we dis-
cuss the model for a discrete-time stochastic hybrid game
(DTSHG). In Section 3, we give formal stochastic game
formulations of the probabilistic reach-avoid and safety
problems. In Section 4, we state and prove our main re-
sult for computing the max-min reach-avoid probability,
and give sufficient conditions of optimality for both the
control and the adversary. This is followed by the special-
ization of this result to the safety problem. Throughout,
we illustrate the terminology and methodology through
a simple jump Markov system. In Section 5, we apply
our framework to a practical example from air traffic
management. Finally, concluding remarks along with di-
rections for future work are given in Section 6.
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2 Discrete-Time Stochastic Hybrid Game

The model for a discrete-time stochastic hybrid game
(DTSHG) proposed here is an extension of the discrete-
time stochastic hybrid systems (DTSHS) model pro-
posed in [3,43] to a two-player stochastic game setting.
As in previous work, we require the stochastic transition
kernels to be Borel-measurable and denote by B(·) the
Borel σ−algebra. This condition ensures that the proba-
bilities of interest can be computed by integration of the
transition kernels over a hybrid state space. Following
standard conventions, we refer to the control as player I
and the adversary as player II.

Definition 1 (DTSHG) A discrete-time stochas-
tic hybrid game between two players is a tuple H =
(Q, n,A,D, τv, τq, τr), defined as follows.

• Discrete state space Q := {q1, q2, ..., qm}, m ∈ N;
• Dimension of continuous state space n : Q → N: a

map which assigns to each discrete state q ∈ Q the
dimension of the continuous state space. The hybrid
state space is given by X :=

⋃
q∈Q{q} × Rn(q);

• Player I controlsA: a nonempty, compact Borel space;
• Player II controlsD: a nonempty, compact Borel space;
• Continuous state transition kernel τv : B(Rn(·))×X×
A × D → [0, 1]: a Borel-measurable stochastic kernel
on Rn(·) given X × A × D which assigns to each x =
(q, v) ∈ X, a ∈ A and d ∈ D a probability measure
τv(·|x, a, d) on the Borel space (Rn(q),B(Rn(q)));

• Discrete state transition kernel τq : Q×X×A×D →
[0, 1]: a Borel-measurable discrete stochastic kernel on
Q given X ×A×D which assigns to each x ∈ X and
a ∈ A, d ∈ D a probability distribution τq(·|x, a, d)
over Q;

• Reset transition kernel τr : B(Rn(·)) ×X × A × D ×
Q → [0, 1]: a Borel-measurable stochastic kernel on
Rn(·) given X × A × D × Q which assigns to each
x ∈ X, a ∈ A, d ∈ D and q′ ∈ Q a probability measure
τr(·|x, a, d, q′) on the Borel space (Rn(q′),B(Rn(q′))).

In contrast with the single-player case, the stochastic
transition kernels in a DTSHG are affected by the inputs
of two agents with possibly differing objectives. In par-
ticular, we assume that player I and player II are non-
cooperative and consider a conservative decision model
in which the actions of player II may be chosen in a ra-
tional fashion based upon the actions of player I.

Definition 2 A Markov policy for player I is a sequence
µ = (µ0, µ1, ..., µN−1) of Borel measurable maps µk :
X → A, k = 0, 1, ..., N − 1. The set of all admissible
Markov policies for player I is denoted byMa.

Definition 3 A Markov strategy for player II is a se-
quence γ = (γ0, γ1, ..., γN−1) of Borel measurable maps
γk : X × A → D, k = 0, 1, ..., N − 1. The set of all ad-
missible Markov strategies for player II is denoted by Γd.

The scenario described here is a common setting in ro-
bust control problems in which the control selects inputs
in anticipation of the worst-case response by an adver-
sary or a disturbance. More formally, this can be inter-
preted as a zero-sum Stackelberg game in which player I
is the leader. Due to the asymmetry in information in a
Stackelberg game, equilibrium strategies of a zero-sum
game can be typically chosen to be deterministic rather
than randomized [11]. We note, however, that in a zero-
sum stochastic game with symmetric information (the
actions of player I are not revealed to player II), the ex-
istence of a non-cooperative equilibrium in general re-
quires randomized strategies (see for example [31,41]).
Furthermore, if one were to consider transition probabil-
ities and utility functions which depend on the entire his-
tory of the game, it may also be necessary to broaden the
class of player strategies to encompass non-Markov poli-
cies [32,38]. However, as shown in [38], when the transi-
tion probabilities are Markovian and the utility function
is sum-multiplicative (as in our case), it is sufficient to
consider the class of Markov control policies.

For a given initial condition x(0) = (q0, v0) ∈ X, player
I policy µ ∈ Ma, and player II strategy γ ∈ Γd, the
semantics of a DTSHG can be described as follows. At
time step k, each player obtains a measurement of the
current system state x(k) = (q(k), v(k)) ∈ X. Using
this information, player I selects a control input a(k) =
µk(x(k)), following which player II selects a disturbance
input d(k) = γk(x(k), a(k)). The discrete state is then
updated according to the discrete transition kernel as
q(k + 1) ∼ τq(·|x(k), a(k), d(k)). If the discrete state re-
mains the same, namely q(k+1) = q(k), then the contin-
uous state is updated according to the continuous state
transition kernel as v(k+ 1) ∼ τv(·|x(k), a(k), d(k)). On
the other hand, if there is a discrete jump, the continu-
ous state is instead updated according to the reset tran-
sition kernel as v(k+1) ∼ τr(·|x(k), a(k), d(k), q(k+1)).

Following this description, we can compose the transi-
tion kernels τv, τq, and τr to form a hybrid state transi-
tion kernel τ : B(X)×X×A×D → [0, 1] which describes
the evolution of the hybrid state under the influence of
player I and player II inputs:

τ
(
(q′, dv′)|(q, v), a, d, q′

)
:= (1){

τv(dv
′|(q, v), a, d)τq(q|(q, v), a, d), if q′ = q

τr(dv
′|(q, v), a, d, q′)τq(q

′|(q, v), a, d), if q′ 6= q.

Using the transition kernel τ , we can now give a formal
definition for the executions of a DTSHG.

Definition 4 Let H be a DTSHG and N ∈ N be a finite
time horizon. For a given µ ∈Ma, γ ∈ Γd, and x0 ∈ X,
a stochastic process {x(k), k = 0, ..., N} with values in
X is an execution of H if its sample paths are generated
according to Algorithm 1.
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Algorithm 1 DTSHG Execution

Require: Initial hybrid state x0 ∈ X, player I policy
µ ∈Ma, player II strategy γ ∈ Γd;
Set x(0) = x0;
for k = 0 to N − 1 do

Set a(k) = µk(x(k));
Set d(k) = γk(x(k), a(k));
Extract from X a value xk+1 for x(k+ 1) according
to τ(·|x(k), a(k), d(k));

end for
return Sample Path {xk, k = 0, ..., N}.

By this definition, the execution of a DTSHG is a
time inhomogeneous stochastic process on the sam-
ple space Ω = XN+1, endowed with the canon-

ical product topology B(Ω) :=
∏N+1
k=1 B(X). The

evolution of the closed-loop hybrid state trajectory
can be described in terms of the transition kernels
τµk,γk(·|x) := τ(·|x, µk(x), γk(x, µk(x))), k = 0, . . . , N .
By Proposition 7.28 of [9], for a given x0 ∈ X, µ ∈Ma,
γ ∈ Γd, these stochastic kernels induce a unique proba-
bility measure Pµ,γx0

on Ω as defined by

Pµ,γx0
(X0 ×X1 × · · · ×XN ) := (2)∫
X0

∫
X1

· · ·
∫
XN

N−1∏
k=0

τµk,γk(dx′k+1|x′k)δx0(dx′0),

where X0, X1, . . . , XN ∈ B(X) are Borel sets and δx0

denotes the probability measure onX which assigns unit
mass to the point x0 ∈ X.

2.1 Example - 2-mode Jump Markov System

Consider a simple jump Markov system with two modes
of operation Q = {q1, q2}. The transitions between the
discrete modes are modeled probabilistically, with the
probability of dwelling in mode qi given by pi, i = 1, 2.
While in mode qi, a continuous state v ∈ R evolves ac-
cording to a stochastic difference equation v(k + 1) =
fi(v(k), a(k), d(k), η(k)), defined as follows:

fi(v(k), a(k), d(k), η(k)) := (3){
2v(k) + a(k) + d(k) + η(k), if i = 1

1
2v(k) + a(k) + d(k) + η(k), if i = 2.

where a and d are player I and player II inputs, and η is
a random variable. It is assumed that the players have
identical capabilities, with a, d ∈ [−1, 1]. The noise is
modeled by a uniform distribution η ∼ U [−1,+1].

Under the DTSHG modeling framework, the hybrid
state space is X = {q1, q2} × R, and the players’ in-
put spaces are A = D = [−1, 1]. The discrete tran-
sition kernel τq is derived as τq(q1|(q1, v), a, d) = p1,
τq(q2|(q1, v), a, d) = 1 − p1, τq(q1|(q2, v), a, d) = 1 − p2,

τq(q2|(q2, v), a, d) = p2. The continuous transition kernel
τv can be derived from the continuous state dynamics (3)
as τv(dv

′|(q1, v), a, d) ∼ U [2v+a+d− 1, 2v+a+d+ 1],
τv(dv

′|(q2, v), a, d) ∼ U [ 1
2v + a + d − 1, 1

2v + a +
d + 1]. Finally, the reset transition kernel is given by
τr(dv

′|(q, v), a, d, q′) = τv(dv
′|(q, v), a, d).

3 Probabilistic Reach-avoid and Safety Prob-
lems for DTSHG

Within the context of a DTSHG model, we discuss in
this section stochastic game formulations of the proba-
bilistic safety and reach-avoid problems, as introduced
by [3] and [43] in an optimal control setting. First, we
consider a reach-avoid problem in which the objective of
player I (the control) is to steer the hybrid system state
into a desired target set, while avoiding a set of unsafe
states, and the objective of player II (the adversary) is
to prevent player I from doing so.

More precisely, suppose that a Borel set K ∈ B(X) is
given as the target set, while K ′ ∈ B(X) is given as the
safe set, with K ⊆ K ′. Then the probability that the
state trajectory (x0, x1, ..., xN ) reaches K while staying
within K ′ under fixed µ ∈Ma and γ ∈ Γd is given by

rµ,γx0
(K,K ′) := Pµ,γx0

({(x0, ..., xN ) : ∃j ∈ {0, 1, ..., N} ,
(xj ∈ K) ∧ (xi ∈ K ′, ∀i ∈ {0, 1, ..., j})})

=

N∑
j=0

Pµ,γx0
((K ′ \K)j ×K ×XN−j), (4)

Following a similar procedure as in [43], this probability
can be rewritten as

rµ,γx0
(K,K ′) = (5)

Eµ,γx0

1K(x0) +

N∑
j=1

(
j−1∏
i=0

1K′\K(xi)

)
1K(xj)

 ,
where Eµ,γx0

denotes the expectation with respect to the
probability measure Pµ,γx0

, and 1X′ denotes the indicator
function of a set X ′ ⊆ X. Now define the worst-case
reach-avoid probability under a player I policy µ as

rµx0
(K,K ′) := inf

γ∈Γd

rµ,γx0
(K,K ′). (6)

The reach-avoid problem for a DTSHG is as follows.

Problem 1 Given a DTSHG H, target set K ∈ B(X),
and safe set K ′ ∈ B(X) such that K ⊆ K ′:

(I) Compute the max-min reach-avoid probability
r∗x0

(K,K ′) := supµ∈Ma
rµx0

(K,K ′), ∀x0 ∈ X;
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(II) Find a max-min control policy µ∗ ∈ Ma, when-
ever it exists, such that r∗x0

(K,K ′) = rµ
∗

x0
(K,K ′),

∀x0 ∈ X.
(III) Find a worst-case adversary strategy γ∗ ∈ Ma,

whenever it exists, such that r∗x0
(K,K ′) =

rµ
∗,γ∗

x0
(K,K ′), ∀x0 ∈ X.

We now consider a safety problem in which the objec-
tive of player I (the control) is to keep the system state
within a safe set, and the objective of player II (the ad-
versary) is to steer the system state into the unsafe set.
Following a similar approach as in [43], one can formulate
the safety problem as a special case of the reach-avoid
problem. This stems from the observation that the hy-
brid state xk remains within a safe set S for all k if and
only if it does not reach the unsafe set X\S for any k.
Mathematically speaking, for fixed µ ∈Ma and γ ∈ Γd,
the safety probability is given by

pµ,γx0
(S) := Pµ,γx0

({(x0, ..., xN ) : xk ∈ S, ∀k})
= 1− rµ,γx0

(X\S,X). (7)

The safety problem for a DTSHG is then characteriza-
tion by the following max-min value function.

p∗x0
(S) := sup

µ∈Ma

inf
γ∈Γd

pµ,γx0
(S). (8)

Similarly as in the single-player case, both the safety and
reach-avoid problems can readily be modified to account
for time-varying [1] and stochastic [42] target sets and
safe sets. For simplicity of notation, we will focus here
on static and deterministic sets.

4 Reach-Avoid Probability Computation

4.1 Main Theorem

For our theoretical derivations, we impose the following
regularity assumptions on the stochastic kernels.

Assumption 1

(a) For each x = (q, v) ∈ X and E1 ∈ B(Rn(q)), the
function (a, d)→ τv(E1|x, a, d) is continuous;

(b) For each x = (q, v) ∈ X and q′ ∈ Q, the function
(a, d)→ τq(q

′|x, a, d) is continuous;
(c) For each x = (q, v) ∈ X, q′ ∈ Q, and E2 ∈
B(Rn(q′)), the function (a, d) → τr(E2|x, a, d, q′) is
continuous.

The need for continuity assumptions on the stochastic
kernel commonly arise in the stochastic game literature
(see for example [18,27,31,34]), due to the difficulties
in ensuring the measurability of value functions under
max-min dynamic programming operations. Following
the approach in [34,38], we only assume continuity of the

stochastic kernels in the actions of Player I and Player II,
but not necessarily in the system state. This allows for
stochastic hybrid systems in which transition probabil-
ities change abruptly with changes in the system state.
Furthermore, if the action spaces A and D are finite or
countable, then the assumptions are satisfied under the
discrete topology on A and D. Also, the assumptions
on τv and τr are satisfied if these kernels admit density
functions that are continuous in the player inputs.

In order to provide a solution to Problem 1, we define a
max-min dynamic programming operator T which takes
as its argument a Borel measurable function J : X →
[0, 1] and produces another real-valued function on X:

T (J)(x) := 1K(x) + sup
a∈A

inf
d∈D

1K′\K(x)H(x, a, d, J),

where H(x, a, d, J) :=

∫
X

J(y)τ(dy|x, a, d). (9)

Theorem 1 Let H be a DTSHG satisfying Assump-
tion 1. LetK,K ′ ∈ B(X) be Borel sets such thatK ⊆ K ′.
Let the operator T be defined as in (9). Then the compo-
sition TN = T ◦T ◦ · · · ◦T (N times) is well-defined and

(a) r∗x0
(K,K ′) = TN (1K)(x0),∀x0 ∈ X;

(b) There exists a player I policy µ∗ ∈Ma and a player
II strategy γ∗ ∈ Γd satisfying

rµ,γ
∗

x0
(K,K ′) ≤ r∗x0

(K,K ′) ≤ rµ
∗,γ
x0

(K,K ′), (10)

∀x0 ∈ X, µ ∈ Ma, and γ ∈ Γd. In particular, µ∗

is a max-min control policy, and γ∗ is a worst-case
adversary strategy.

(c) Let JN = 1K , Jk = TN−k(1K), k = 0, 1, ..., N − 1.
If µ∗ ∈Ma is a player I policy which satisfies

µ∗k(x) ∈ arg max
a∈A

inf
d∈D

H(x, a, d, Jk+1), (11)

∀x ∈ K ′ \K, k = 0, 1, . . . , N − 1, then µ∗ is a max-
min control policy. If γ∗ = (γ∗0 , γ

∗
1 , ..., γ

∗
N−1) ∈ Γd is

a player II strategy which satisfies

γ∗k(x, a) ∈ arg min
d∈D

H(x, a, d, Jk+1), (12)

∀x ∈ K ′ \K, a ∈ A, k = 0, 1, . . . , N − 1,then γ∗ is
a worst-case adversary strategy.

First, we will present a recursive procedure for com-
puting the reach-avoid probability rµ,γx0

(K,K ′), under
fixed choices of player I policy µ ∈ Ma and player
II strategy γ ∈ Γd. Consider the cost-to-go functions
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V µ,γk : X → [0, 1], k = 0, . . . , N , defined as

V µ,γN (xN ) := 1K(xN ), (13)

V µ,γk (xk) :=

Eµ,γxk

1K(xk) +

N∑
j=k+1

(
j−1∏
i=k

1K′\K(xi)

)
1K(xj)

 ,
k = 0, 1, ..., N − 1.

From this definition we can infer that rµ,γx0
(K,K ′) =

V µ,γ0 (x0). Now consider a recursion operator Tf,g, pa-
rameterized by an one-stage player I policy f : X → A
and an one-stage player II strategy g : X ×A → D:

Tf,g(J)(x) := 1K(x)+ (14)

1K′\K(x)H(x, f(x), g(x, f(x)), J), x ∈ X,

where H is defined in (9). The following result provides
a recursive algorithm for computing the functions V µ,γk .

Lemma 2 Let µ ∈ Ma, γ ∈ Γd, and V µ,γN = 1K . Then
for k = 0, 1, ..., N − 1, the following identity holds

V µ,γk (x) = Tµk,γk(V µ,γk+1)(x), ∀x ∈ X. (15)

The proof proceeds by minor modifications of previous
results in the single-player case (see Lemma 1 of [3] and
Lemma 4 of [43]), and is omitted.

Next, we will show that under Assumption 1, the op-
erator T defined in (9) preserves suitable measurability
properties (thus allowing recursive dynamic program-
ming calculations) and that there exists one-stage player
I policy and player II strategy achieving the supremum
and infimum in (9). Let F denote the set of Borel mea-
surable functions from X to [0, 1].

Proposition 3 If Assumption 1 holds, then

(a) ∀J ∈ F , T (J) ∈ F ;
(b) For any J ∈ F , there exists a Borel measurable func-

tion g∗ : X×A → D such that, for all (x, a) ∈ X×A,

g∗(x, a) ∈ arg min
d∈D

H(x, a, d, J);

(c) For any J ∈ F , there exists a Borel measurable func-
tion f∗ : X → A, such that for all x ∈ X,

f∗(x) ∈ arg max
a∈A

inf
d∈D

H(x, a, d, J).

PROOF. Let J ∈ F . Define a function FJ : X × A ×
D → R as FJ(x, a, d) := H(x, a, d, J). From the defini-
tion of H, the range of FJ is contained in [0, 1]. By the

Borel measurability of J and τ , Proposition 7.29 of [9]
implies that FJ is Borel measurable. Furthermore, by
Assumption 1 and Fact 3.9 of [34], FJ(x, a, d) is continu-
ous in a and d, for each x ∈ X. Now consider a function
F̃J(x, a) := infd∈D FJ(x, a, d). By the compactness of D
and continuity of FJ in d, this infimum is achieved for
each fixed (x, a) [39]. Thus, applying Corollary 1 of [12],
we have that there exists a Borel measurable function
g∗ : X ×A → D for which part (b) holds. Furthermore,

by Proposition 7.32 of [9], F̃J is continuous in a. Let

F ∗J (x) := supa∈A F̃J(x, a) = − infa∈A−F̃J(x, a). Then,
by a repeated application of Corollary 1 of [12], there ex-
ists a Borel measurable function f∗ : X → A such that
part (c) holds. By the composition of Borel measurable
functions, this also implies that F ∗J is Borel measurable.

Finally, it can be observed that T (J)(x) = 1K(x) +
1K′\K(x)F ∗J (x), ∀x ∈ X. Given that Borel measura-
bility is preserved under summation and multiplication
(see for example Proposition 2.6 of [15]), T (J) is Borel
measurable. It is also clear that 0 ≤ T (J) ≤ 1. Part (a)
then follows. 2

Now consider the dynamic programming value function
JN := TN (1K). In the following two results, it will be
shown that JN is both greater than or equal to, as well
as less than or equal to the max-min reach-avoid proba-
bility r∗x0

(K,K ′). Furthermore, from the operator T , we
also extract player strategies satisfying (10).

Proposition 4

(a) ∀x0 ∈ X, TN (1K)(x0) ≤ r∗x0
(K,K ′);

(b) There exists µ∗ ∈ Ma such that, for any γ ∈ Γd,
TN (1K)(x0) ≤ rµ∗,γx0

(K,K ′),∀x0 ∈ X.

PROOF. For notational convenience, we define Jk :=
TN−k(1K), k = 0, 1, ..., N . First, we prove the following
claim by backwards induction on k: there exists µ∗k→N =
(µ∗k, µ

∗
k+1, ..., µ

∗
N−1) ∈ Ma such that, for any γk→N =

(γk, γk+1, ..., γN−1) ∈ Γd, Jk ≤ V
µ∗k→N ,γk→N

k .

Let γk→N ∈ Γd be arbitrary. The case of k = N is
trivial. Now assume that this holds for k = h. Let
µ∗h→N ∈ Ma be a player I policy satisfying the in-
duction hypothesis. By Proposition 3(c), there exists
a Borel measurable function f∗ : X → A such that
f∗(x) ∈ arg maxa∈A infd∈DH(x, a, d, Jh), ∀x ∈ X.
Choose a policy µ∗h−1→N = (f∗, µ∗h→N ). Then by the
monotonicity of the operator Tf,g and Lemma 2, we
have for each x ∈ X:

V
µ∗h−1→N ,γh−1→N

h−1 (x) = Tf∗,γh−1
(V

µ∗h→N ,γh→N

h )(x)

≥ Tf∗,γh−1
(Jh)(x)

= 1K(x) + 1K′\K(x)H(x, f∗(x), γh−1(x, f∗(x)), Jh)

≥ 1K(x) + inf
d∈D

1K′\K(x)H(x, f∗(x), d, Jh)

= T (Jh)(x) = Jh−1(x).
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The claim then follows by induction. From this,
we obtain µ∗0→N ∈ Ma satisfying TN (1K)(x0) =

J0(x0) ≤ V
µ∗0→N ,γ0→N

0 (x0) = r
µ∗0→N ,γ0→N
x0 (K,K ′),

∀x0 ∈ X, γ0→N ∈ Γd, and hence satisfying state-
ment (b). Furthermore, since γ0→N is arbitrary,

TN (1K)(x0) ≤ infγ∈Γd
r
µ∗0→N ,γ
x0 (K,K ′), ∀x0 ∈ X.

Statement (a) then follows. 2

Proposition 5

(a) ∀x0 ∈ X, r∗x0
(K,K ′) ≤ TN (1K)(x0);

(b) There exists γ∗ ∈ Γd such that, for any µ ∈ Ma,
rµ,γ

∗

x0
(K,K ′) ≤ TN (1K)(x0),∀x0 ∈ X.

PROOF. As in the proof of Proposition 4, we define
Jk := TN−k(1K), k = 0, 1, ..., N . First, we prove the
following claim by backwards induction on k: there exists
γ∗k→N = (γ∗k , γ

∗
k+1, ..., γ

∗
N−1) ∈ Γd such that, for any

µk→N = (µk, µk+1, ..., µN−1) ∈Ma, V
µ,γ∗k→N

k ≤ Jk.

Let µk→N ∈ Ma be arbitrary. The case of k = N
is trivial. Now assume that this holds for k = h. Let
γ∗h→N ∈ Γd be a player II strategy satisfying the in-
duction hypothesis. By Proposition 3(b), there exists a
Borel measurable function g∗ : X × A → D such that
g∗(x, a) ∈ arg mind∈DH(x, a, d, Jh) for every x ∈ X and
a ∈ A. Choose a strategy γ∗h−1→N = (g∗, γ∗h→N ). Then
we have for each x ∈ X:

V
µh−1→N ,γ

∗
h−1→N

h−1 (x) = Tµh−1,g∗(V
µh→N ,γ

∗
h→N

h )(x)

≤ Tµh−1,g∗(Jh)(x)

= 1K(x) + 1K′\K(x)H(x, µh−1(x), g∗(x, µh−1(x)), Jh)

= 1K(x) + inf
d∈D

1K′\K(x)H(x, µh−1(x), d, Jh)

≤ T (Jh)(x) = Jh−1(x).

The claim then follows by induction. From this,

we obtain γ∗0→N ∈ Γd satisfying r
µ,γ∗0→N
x0 (K,K ′) =

V
µ,γ∗0→N
0 (x0) ≤ J0(x0) = TN (1K)(x0), ∀x0 ∈ X,
µ ∈ Ma, and hence statement (b). This in turn implies
that rµx0

(K,K ′) = infγ∈Γd
rµ,γx0

(K,K ′) ≤ TN (1K)(x0),
∀x0 ∈ X, µ ∈Ma, proving statement (a). 2

We are now ready to prove Theorem 1.

PROOF. Statement (a) of Theorem 1 follows directly
from Proposition 4(a) and Proposition 5(a). The player
I policy µ∗ and player II strategy γ∗ satisfying statement
(b) is provided by Proposition 4(b) and Proposition 5(b),
respectively. Finally, it can be inferred from the proof of
Proposition 4 and Proposition 5 that any player I policy
µ∗ and player II strategy γ∗ satisfying the conditions in
statement (c) is a max-min policy or worst-case strategy,
respectively. 2

4.2 Specialization to Probabilistic Safety Problem

Consider the probabilistic safety problem defined in (8).
Given the connection between the safety and reach-avoid
problems through the relation (7), the solution to the
probabilistic safety problem can be obtained from a com-
plementary reach-avoid problem. In particular, consider
the value function

r̄∗x0
(X \ S,X) := inf

µ∈Ma

sup
γ∈Γd

rµ,γx0
(X\S,X), x0 ∈ X.

From (7) and (8), the max-min safety probability is sim-
ply given by

p∗x0
(S) = 1− r̄∗x0

(X \ S,X). (16)

With minor modifications of Theorem 1, we can show
that r̄∗x0

(X \ S,X) is computed by the recursion

r̄∗x0
(X \ S,X) = T̄N (1X\S)(x0), x0 ∈ X,

where the operator T̄ is defined as

T̄ (J)(x) := 1X\S(x)+ inf
a∈A

sup
d∈D

1S(x)H(x, a, d, J). (17)

Combining this with equation (16), we obtain the fol-
lowing result.

Theorem 6 Let H be a DTSHG satisfying Assump-
tion 1. Let S ∈ B(X) be a Borel safe set. Then

p∗x0
(S) = 1− T̄N (1X\S)(x0), ∀x0 ∈ X.

Similarly as in the reach-avoid problem, max-min safety
control policies, as well as worst-case adversary strate-
gies can be derived from the dynamic programming op-
erator given in (17).

4.3 Analytic Reach-Avoid Example

We illustrate the sequence of steps associated with a
probabilistic reachability calculation in the context of
the jump Markov system example in Section 2.1. In par-
ticular, consider a reach-avoid problem in which the ob-
jective of player I is to drive the continuous state into
a neighborhood of the origin, while staying within some
safe operating region. In this case, the target set and
safe set are chosen to be K = {q1, q2} × [− 1

4 ,
1
4 ] and

K ′ = {q1, q2}× [−2, 2]. In the following, we will solve for
the max-min reach-avoid probability and player I policy
over a single stage of the stochastic game (N = 1).

7



Given the DTSHG model, the operator H(x, a, d, J) for
a hybrid state x = (q1, v) can be derived as follows:

H((q1, v), a, d, J) =

∫
X

J(x′)τ(dx′|(q1, v), a, d) (18)

=
1

2
p1

∫ 1

−1

J(q1, 2v + a+ d+ η)dη +

1

2
(1− p1)

∫ 1

−1

J(q2, 2v + a+ d+ η)dη.

For an initial condition x0 = (q1, v0), the max-min reach-
avoid probability can be then computed as

r∗(q1,v0)(K,K
′) = T (1K)(q1, v0) (19)

1, |v0| ≤ 1
4 ,

0, |v0| > 2,

supa∈A infd∈DH((q1, v0), a, d,1K), 1
4 < |v0| ≤ 2.

From equations (18) and (19), the analytic expression
for the max-min reach-avoid probability in mode q1 is:

r∗(q1,v0)(K,K
′) =


1, |v0| ≤ 1

4
1
8 ,

1
4 < |v0| ≤ 1

2
5
8 − |v0|, 1

2 < |v0| ≤ 5
8

0, |v0| > 5
8 .

In the course of performing the dynamic programming
step in (19), we also obtain a max-min player I policy
µ∗0 in mode q1 satisfying the sufficient conditions for op-
timality in (11):

µ∗0(q1, v0) =

{
−sgn(v0), |v0| > 1

2

−2v0, |v0| ≤ 1
2 .

Using a similar calculation, one can also derive the max-
min reach-avoid probability and player I policy in q2.

r∗(q2,v0)(K,K
′) =


1, |v0| ≤ 1

4
1
8 ,

1
4 ≤ |v0| ≤ 2

0, |v0| > 2,

µ∗0(q2, v0) =

{
−sgn(v0), |v0| > 2

− 1
2v0, |v0| ≤ 2.

As one considers more complicated system models, such
as in the example of the following section, there may
no longer be a closed-form expression for the operator
T . This would then require a numerical approximation
of the dynamic programming procedure in Theorem 1.
In the single-player case, a method is proposed in [2]
for a grid-based approximation of the probability map
through a discretization of the continuous state space
and player input space. However, the computational cost

of such an approach scales exponentially with the di-
mensions of the continuous state space and player in-
put spaces, which currently limits application scenarios
to problems with relatively low continuous state dimen-
sions (typically n ≤ 4). Methods for reducing the com-
putational time is a topic of ongoing research [14].

5 Aircraft Conflict Detection and Resolution

In this section, we describe an application of the DTSHG
framework to a practical problem in air traffic manage-
ment, in particular, that of detecting and resolving po-
tential conflicts between pairs of aircraft. For a compre-
hensive survey of existing methods in this field, the in-
terested reader is referred to [26]. Our approach to this
problem involves a combination of worst-case [44] and
probabilistic approaches [35], namely the intent of one
of the aircraft is assumed to be unknown and possibly
adversarial, while the wind effects on aircraft trajectory
is modelled as stochastic noise. Within this context, con-
flict resolution then becomes a probabilistic safety prob-
lem in which the control task is to maximize the proba-
bility of avoiding a collision between two aircraft.

In [35], a model for aircraft trajectory perturbation as
Gaussian noise was proposed, along with an analytic
method for computing the conflict probability. This
formed the basis of several probabilistic conflict detec-
tion methods which followed [23,37]. As more detailed
trajectory models are considered, with variations to
aircraft intent [45] and spatial correlation in wind ef-
fects [22], closed-form expressions for the conflict prob-
ability is often no longer available, requiring the use of
numerical estimation algorithms. In comparison with
previous methods, our approach has the flexibility of be-
ing able to treat uncertainty in intent as an adversarial
input rather than as a stochastic process, thus offering
an interpretation of the conflict probability we com-
pute as the probability of collision under the worst-case
behavior of one of the aircraft.

Let v = (xr, yr, θr) ∈ R2 × [0, 2π] denote, respectively,
the x-position, y-position, and heading of aircraft 2 in
the reference frame of aircraft 1. By performing an Euler
discretization of the kinematics equations given in [44]
and augmenting the resulting dynamics with a stochastic
wind model as described in [22], we obtain the model
v(k + 1) = f(v(k), ω1(k), ω2(k)) + η(k), where

f(v(k), ω1(k), ω2(k)) (20)

:=


xr(k) + ∆t(−s1 + s2 cos(θr(k)) + ω1(k)yr(k))

yr(k) + ∆t(s2 sin(θr(k))− ω1(k)xr(k))

θr(k) + ∆t(ω2(k)− ω1(k))

 .
Here ∆t is the discretization step, si is the speed of air-
craft i (assumed to be constant), ωi is the angular turn-

8



(a) Set of x0 with conflict probability ≥ 1%
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(b) Slice of r̄∗x0
(X \S,X) at θr = π/2 radians

Fig. 1. Probability of conflict for pairwise aircraft conflict resolution example.

ing rate of aircraft i, taken to be the inputs to the sys-
tem. The noise vector is given by η = [η1 η2 η3]T , where
(η1, η2) models spatially correlated wind effects, with
a position dependent Gaussian distribution (η1, η2) ∼
N
(
0, 2σ2

h∆t(1 − exp(−β‖(xr, yr)‖2))I
)

(details can be
found in [22]); and η3 models process noise acting on the
turning rate of either aircraft, with a Gaussian distribu-
tion η3 ∼ N (0, (σω∆t)2).

As consistent with common flight maneuvers, we con-
sider a scenario in which each aircraft is allowed to se-
lect from among one of three operation modes: straight
flight, right turn, or left turn, corresponding to the an-
gular turning rates ωi = 0, ωi = −ω, and ωi = ω, re-
spectively. Here, ω ∈ R is assumed to be a constant.
The control objective of aircraft 1 is to avoid a disc D
of radius Rc centered on the origin in the (xr, yr) plane
(corresponding to a loss of minimum separation), sub-
ject to the worst-case inputs of aircraft 2. This can be
then viewed as a probabilistic safety problem with the
safe set given as S = DC × [0, 2π]. By Theorem 6, the
solution to this problem can be obtained from a com-
plementary reach-avoid problem in which the objective
of aircraft 1 is to minimize the worst-case probability of
entering the collision set X \ S, with the value function
given by r̄∗x0

(X \ S,X).

For our numerical results, we choose a sampling time
of ∆t = 15 seconds, with a time horizon of 2.5 min-
utes. The radius of the protected zone is set to Rc = 5
nmi. The model parameters are selected as s1 = s2 = 6
nmi/min, ω = 1 deg/sec, σh = 0.5, σw = 0.35, β = 0.1.
The value function is computed using a numerical dis-
cretization approach, similar to the one discussed in [2],
on the domain [−10, 20]× [−10, 10]× [0, 2π], with a grid
size of 121 × 81 × 73. We note that for this particular
application, the computation of the value function can
be performed offline, given wind forecast, and the result-
ing max-min control policy can be implemented online
in lookup table form.

The set of initial conditions x0 for which the conflict
probability is at least 1% (namely, where r̄∗x0

(X\S,X) ≥
0.01) is shown in Fig. 1(a). Outside of this set, we have
a confidence level of at least 99% of avoiding a collision
over a 2.5 minute time interval. A slice of the worst-case
conflict probability r̄∗x0

(X \S,X) at a relative heading of
θr = π/2 rad is shown in Fig. 1(b). In a conflict detection
and resolution algorithm, one can use this probability
map to determine the set of states at which to initiate
a conflict resolution maneuver (for example where r̄∗x0

exceeds a certain threshold), upon which time the max-
min policy µ∗ provides a feedback map for selecting flight
maneuvers to minimize the conflict probability. A plot of
this policy at a relative heading of θr = π/2 rad is shown
in Fig. 2. As can be observed, when the two aircraft are
far apart, one can choose to fly straight on the intended
course. However, as aircraft 2 approach the boundary
of the set shown in Fig. 1(a), it becomes necessary for
aircraft 1 to perform an evasive maneuver.
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Fig. 2. Max-min control policy at a relative heading of
θr = π/2 rad. The color scale is as follows: Black = collision
set, dark gray = straight, medium gray = right turn, light
gray = left turn, white = either left or right turn.

To apply this approach in a large airspace with multi-
ple aircraft, one can obtain the pairwise aircraft conflict
probabilities from a probability map such as shown in
Figure 1, for given relative configurations of the aircraft.
The air traffic controllers may then define a priority list
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for trajectory modification, with respect to aircraft pairs
whose conflict probabilities exceed a certain threshold.

6 Conclusion

In this article, we discussed a framework for study-
ing probabilistic safety and reachability problems for
discrete-time stochastic hybrid systems in a zero-sum
stochastic game setting. It was shown that, under cer-
tain assumptions on the underlying stochastic kernels
and action spaces, there exists a max-min control policy
which guarantees a worst-case probability of satisfying
the safety and reachability objectives, regardless of the
adversary strategy. Furthermore, the worst-case prob-
ability and the max-min policy can be computed via a
dynamic programming recursion.

Some immediate directions for future work are as fol-
lows. First, to formally justify approximations of the
max-min safety or reach-avoid probabilities through nu-
merical discretization, it would be interesting to estab-
lish results on the convergence of the max-min value
functions and optimal strategies under appropriate dis-
cretization schemes. Based upon existing work in the
single-player case [2], possible approaches include di-
rect approximation via piecewise-constant functions, or
indirect approximation via a finite-state abstraction of
the DTSHG model. Second, for application scenarios in
which one would like to ensure probabilistic reachabil-
ity specifications over an extended time horizon, it may
be necessary to consider infinite horizon formulations of
the safety and reach-avoid problems. Issues here include
the convergence of the dynamic programming iterations
and the existence of stationary strategies, which may be
addressed through adaptation of methods developed for
additive cost stochastic games [27,34]. Third, to reduce
the conservatism of a max-min approach to reachability
problems, one may also consider alternative game formu-
lations with different information patterns. As discussed
in Section 2, the existence of equilibrium strategies un-
der a symmetric information pattern is typically assured
only under the assumption of randomized policies. This
then motivates investigations into methods for efficiently
computing and implementing such control policies.

Taking a more long term perspective, the application of
the proposed framework to practical problems will re-
quire addressing several important challenges. One of
the most difficult is the development of efficient algo-
rithms for approximating probabilistic reachability com-
putations. A possible approach would be to investigate
approximate dynamic programming methods such as
the use of adaptive gridding [14] or parameterized basis
functions [10]. Another interesting question is whether
the methodology developed here can be used to ad-
dress multi-objective problems in which one would like
to optimize a performance index (e.g. fuel, power con-
sumption), while satisfying a probabilistic reachability

specification. Taking a hierarchical view as in [30], one
could consider the derivation of design conditions from
a reachability computation, for example in terms of op-
timality conditions given in Section 4, to serve as con-
straints for performance optimization. Finally, future re-
search could also investigate into probabilistic reacha-
bility problems with more complex specifications, such
as expressed in terms of probabilistic computation tree
logic (PCTL) [19]. This would require an extension of
the proposed methodology to handle temporal objec-
tives (e.g. visiting a sequence of target sets, while re-
maining safe), possibly through a composition of reach-
avoid and safety controllers.
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