
Performance Evaluation 00 (2017) 1–33

Performance
Evaluation

Certified policy synthesis for general Markov decision processes:
An application in building automation systems

Sofie Haesaerta, Nathalie Cauchib, Alessandro Abateb

aDepartment of Electrical Engineering, Technische Universiteit Eindhoven, Eindhoven, Netherlands
bDepartment of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, United Kingdom

Abstract
In this paper, we present an industrial application of new approximate similarity relations for Markov models, and show that
they are key for the synthesis of control strategies. Typically, modern engineering systems are modelled using complex and
high-order models which make the correct-by-design controller construction computationally hard. Using the new approximate
similarity relations, this complexity is reduced and we provide certificates on the performance of the synthesised policies. The
application deals with stochastic models for the thermal dynamics in a “smart building” setup: such building automation system
set-up can be described by discrete-time Markov decision processes evolving over an uncountable state space and endowed with
an output quantifying the room temperature. The new similarity relations draw a quantitative connection between different levels
of model abstraction, and allow to quantitatively refine over complex models control strategies synthesised on simpler ones. The
new relations, underpinned by the use of metrics, allow in particular for a useful trade-off between deviations over probability
distributions on states and distances between model outputs. We develop a software toolbox supporting the application and the
computational implementation of these new relations.

c© 2011 Published by Elsevier Ltd.

Keywords: Verification, Synthesis, general Markov decision processes, Safety, Building automation systems, Temperature control

1. Introduction

Buildings consume more than 40% of the energy in Europe [1] and in the United States [2]. The design of their
heating, ventilation and air-conditioning (HVAC) systems has become a focal point not only in the buildings and
HVAC community [3, 4], but also in the control community [5, 6, 7].

The goal of modern building automation systems (BAS) is to control the climate in an energy-efficient manner,
while allowing for diverse and complex functionality imposed by the users. For this, a myriad of possible control
strategies have been proposed, the most modern of which hinge on accurate mathematical models of the thermal
dynamics [8, 9, 10]. The quantification of building dynamics leads to models evolving stochastically over continuous
spaces. Stochastic dynamics are needed to capture the effect of external disturbances, such as weather fluctuations
and occupancy changes, both of which can hardly be described with deterministic models. While accurate models are
needed, their inherent level of complexity, related to stochasticity and dimensionality, limits the type of controllers
that can be designed. Recent literature [11, 12, 13, 14] has seen control designs targeted to optimally maintain a
comfortable inside climate. To satisfy the goal for future modern BAS, such control strategies should not only be
optimal but also guarantee user-imposed diverse and complex requirements and specifications. The use of temporal
logics allows for a formalised expression of such diverse functional requirements, and enables for the automated

1

/ Performance Evaluation 00 (2017) 1–33 2

verification and synthesis of control strategies [15, 16, 17]. An interesting formal approach is the approximation of
the original (concrete) models by simpler (abstract) models that are prone to be analysed or algorithmically verified.
Further, if a strategy can be synthesised on these abstractions, it should then be certifiably refined over the concrete
model. Building on the similarity between the abstract and concrete models, key formal guarantees on the latter can
be raised. In this work, we employ notions of approximate probabilistic similarity relations, originally introduced in
[18]. Underpinned by the use of metrics, these relations allow in particular for a useful trade-off between deviations
over probability distributions on states, and distances between model outputs. Other relations, also targeting general,
uncountable-state spaces, such as those established via martingale theory [19, 20] require stringent stability criteria,
or alternatively enforce structural abstractions [21] based on state-space gridding [22].

Within the control community, the computational complexity of a model is tackled by abstracting it to a lower
dimensional one. Numerical model-order reduction (MOR) techniques reduce the dimensionality of models with
minimal loss in input-output accuracy [9, 23, 24, 25, 26]. A number of different MOR techniques are in use [27]:
Gramian-based MOR involve balancing the observability and controllability Gramians via truncations [27]; Schur-
based MOR techniques compute a reduced-order system through a set of projections [28]; alternative MOR techniques
reduce model orders with respect to the Hankel norm [29]. These numerical model-order reduction techniques are
oblivious of the underlying physics associated to the dynamics and, as a result, the obtained low-order models often no
longer have a physical interpretation. This can be of a disadvantage when faults arise and an analysis on the underlying
model is needed to detect and interpret the physical source causing faults. In this paper, we perform model reduction
based on assumptions made on the underlying physical quantities. We present a methodology to provide guarantees for
control strategy synthesis over a library of thermal models. Models could in general be obtained via MOR techniques,
however key to this library of models is that they maintain correspondences via the underlying physical variables.
The provided guarantees are computed by a new toolbox that implements the synthesised control strategy via (ε, δ)-
approximate simulation relations. The new relations serve as a performance metric between models of different
orders of complexity and allow the user to choose the most suitable model abstraction for achieving the required
level of performance by the synthesised and refined control policies. The toolbox is configured via a graphical user
interface (GUI) that simplifies the certified policy synthesis process. Consequently, the toolbox facilitates the process
of designing certified control strategies for BAS.

The used notions of approximate similarity relations for control refinement were first introduced in [18]. The
theoretical background is given more extensively in [30], and a case study using FAUST2 [17]. In this paper, we move
beyond the purely theoretical treatment of these relations. For building management, we show how these relations can
be used. More precisely, we explain the computational procedures that can be used to compute the accuracy of these
relations for given models.

The article has the following structure: Section 2 introduces the problem statement and gives a demonstration of
the developed policy synthesis toolbox. Section 3 introduces the library of models that capture the thermal dynamics
of building zones. This is followed by the theory behind policy synthesis via approximate simulation relations in
Section 4. Section 5 presents how certified control refinement based on the approximate simulation relations can be
performed. The case study, which highlights the advantages and applicability of the devised framework, is presented
in Section 6. This is then followed by the computational implementation of the toolbox in Section 7.

2. Certified control synthesis

With as goal the future industrial application of certified control synthesis for complex engineering systems, we
want to develop a first application-oriented framework to enable the design and evaluation of this methodology. We
target the application in BAS and single out an exemplar case study in room heating. We want to provide quantified
performance of the synthesised policies with certificates.

Often a single system can be described by several models of varying complexity and accuracy. For the BAS case
study, we develop such a library of models, of use for advanced control solutions. Given a library of different but
related models, we want to reason over different levels of abstraction, while maintaining guarantees. Such guarantees
are established based on the computation of (ε, δ)−approximate (bi)-simulation relations, which are capable of refin-
ing assertions on synthesised control policies amongst models. The pair (ε, δ) represent the deviation in the output
trajectories between complex and abstract models and the differences in the stochastic transition kernels, respectively.
In particular, we aim at automating the generation of

2

/ Performance Evaluation 00 (2017) 1–33 3

1. (ε, δ)-approximate simulation relations between models of varying orders,
2. control policies with guarantees for time bounded safety specifications,

These aims are tackled by developing a software toolbox which is enhanced by a graphical user interface (GUI).
A block diagram describing the structure of the toolbox is presented in Figure 1. It is divided into three main sections.
First, a given concrete high-order model is abstracted into a reduced-order model by either making use of the inbuilt
library of reduced-order models, or manually inputting user-specific models. Second, the user can perform the com-
putation of the (ε, δ)-approximate simulation relations (cf. step 2 in Figure 1), and based on these approximations, the
user can synthesise and refine policies for a time-bounded PCTL safety property given in the form of

ψ = P≥p

[
�≤N |y| ≤ a

]
, (1)

where p is the probability that is to optimised, N is the time horizon, a is the bound within which the output y is in the
safe region. We will follow the paradigm of abstraction-based control synthesis [31], wherein we first synthesise the
control strategy for a reduced-order model using a modified specification ψ(ε,δ). This control strategy is then refined
such that it satisfies the original specification ψ. Alternatively, the user can opt to manually input a control strategy
for the built abstract model, select a specific (ε, δ) pair and compute a refined policy for the input guarantees (cf. 3b
in Figure 1).

Build
models1 Ma,Mc

Compute (ε, δ)-
approximate simulation

relations
2

(ε, δ)-refinement
of control strategy3b

Synthesize and refine
policy for time-bounded

safety specification
3a

Policy synthesis certification toolbox

Figure 1: Toolbox block diagram showing the different steps (found within numbered labels) to certify policy synthesis for a pair of concrete and
abstract models. The user first builds the concrete (Mc) and abstract (Ma) models in step 1. For the two models the user first computes the (ε, δ)-
approximate simulation relation in step 2 and is then given the option to either compute the optimal policy for the time-bounded safety specification
ψ in step 3a or to refine a user input control policy in step 3b.

3. A library of thermal models for building automation systems

Buildings have the capability of both storing and transmitting heat. By increasing zones temperatures, energy
is stored in the walls, ceilings, floors and in the air inside enclosed spaces. The thermal capacity with which these
building components can store energy is a function of their mass and the specific heat capacity of the material making
up the building component. Heat can be transmitted through building elements via conduction and convection over
surfaces and volumes. Heat can be further gained from radiators, solar radiation through windows, and thermal heat
generated by occupants or devices.

By virtue of these thermal properties, mathematical models representing the temperature dynamics of the building
zones can be built. For ease of interpretation, these models are often represented by an electrical circuit with corre-
sponding current and voltage dynamics. These equivalent models are called Resistor-Capacitor (RC) circuit networks:
resistors represent heat transmission and capacitors represent heat storage [32, 33, 34]. External heat gains such as
heat gains due to solar energy are added to the network in the form of equivalent current sources.

The size and complexity of the resulting models depend on the precision with which thermal phenomena are
modelled. By neglecting specific thermal phenomena or influences, we can obtain models with different levels of
complexity, and regard these models at different levels of abstractions. Whilst abstract and simplified, low-order
models are often key. First, they have been developed to isolate the dominant thermal phenomena in the building,
and as such, they provide accessible insight to engineers. Second, abstract models are simpler and of a lower order,
and thus suitable for the design of control architectures and prone to be computed. On the other hand, complex and

3

/ Performance Evaluation 00 (2017) 1–33 4

high-dimensional models, taking into account many thermal phenomena, provide a more realistic description of the
building dynamics.

In this work, the goal is to show how control architectures designed for the different levels of abstraction can be
related to each other. We will consider an actual Building Management System (BMS) set-up in two seminar rooms
of the Computer Science Department, at the University of Oxford. Resorting to a few assumptions that are typical in
literature for the modelling of thermal dynamics, we first obtain a set of continuous-time models. This collection of
models is then translated to discrete-time models, which are expressed as general Markov decision processes. Within
the obtained library of models, we quantify their differences by means of new approximate similarity relations, which
are introduced in the next section.

3.1. Models for two teaching rooms

We consider two teaching rooms within the Department of Computer Science, University of Oxford. The teaching
rooms are connected back to back. Three of the walls of the two rooms are exposed to the outside, while the rest
connects to the interior hall. The rooms are used between 8 am and 5 pm during term time. The dimensions of
the floor plan areas, for each respective room, are 94m2 and 96m2. Both rooms have two external windows and
contain twenty desktop computers. A layout of the teaching rooms is shown in Figure 2. The two rooms form part
of a larger BMS that controls the rest of the building. Indoor heating control is primarily managed with thermostat
controlled radiators and fan coil units (FCU), which form part of a variable-air ventilation system. The rooms are
further equipped with temperature, humidity, and CO2 sensors. Measurements consisting of one-minute sampled
values are recorded and stored on a daily basis.

(a) Layout of first room (b) Layout of second room

Figure 2: Layout of teaching rooms for modeling room dynamics, with desks in the front and computer servers at the back.

The thermal dynamics of the two rooms are translated into an equivalent RC circuit, which is shown in Figure
3, and which can be described by a 7th-order ODE model. The thermal dynamics of the two rooms is captured by
the average room temperatures T1, T2 and which exchange heat with the outside (temperature Tout) and with the hall
(temperature Thall) through corresponding walls w j, j = 1 . . . 7. The equivalent RC-circuit in Figure 3 is built by
applying the following assumptions on the thermal dynamics:

1. The air in the rooms has a uniform temperature over its volume (temperature nodes T1 and T2 in Figure 3).
2. The temperature is uniform across each of the modelled walls.
3. The outer north and west walls of room 1 (labelled w1 and w2) can be modelled as a single wall (cf. w2 in Figure

3). To do this lumping, we have assumed a uniform wall temperature and negligible differences in their captive
and resistive values, because they are constructed using the same material.

4. Similarly in room 2, the inner walls to the east (w4) and south (w5) are lumped into w4.

4

/ Performance Evaluation 00 (2017) 1–33 5

hallT hallT

W4

Room 1

outT

 radQ

refV

W4

R

C

C

C

R

Room 2

gQ
int

Q

refV

refV

refV
refV

refV
refV

int2
Qg2Q

outT radQ

o

o

i i

W2

iw2

w3

w7

w6

r1

r2

CR R

R

C

C

C

1T

w4Tw6T

w2T w7T

W7

W3

R i

R

R

o R

i

R

2T

w4

o

i

w7T

w3T

Figure 3: Equivalent RC-circuit for the two teaching rooms in the Department of Computer Science. Each of the modelled walls (w2,w3,w4,w6,w7)
has a unique hue of yellow. The model has seven states, depicted by nodes, representing both the wall temperatures Tw j, j = 2, 3, 4, 6, 7 and the
zone temperatures Ti, i = 1, 2. The zone temperature T1 of room 1 is highlighted in orange as it is the output of the model. The temperatures
Tout ,Thall and heat sources Qrad ,Qg,Qg2,Qint ,Qint2 are input disturbances. Here, Qg = Qheater1 + QHVAC1 represents the input heat gain in room
1, Qg2 = Qheater2 + QHVAC2 represents the input heat in room 2 and Qint2 is the internal heat gained from occupants in room 2. The effect of heat
stored in the walls and in the rooms is depicted with the capacitors (−||−) and quantified based on the reference temperature Vre f . This includes the
wall capacitance Cw j, j = 2, 3, 4, 6, 7 and the individual room capacitances Cri, i = 1, 2. In the circuit, the resistors (∨∨∨) model the resistance Ro
to heat transfer from walls to the outside, and the resistance Ri to heat transfer for walls connected internally within zones.

The resulting model is a 7th-order, continuous-time model described by

Cr1
d(T1)

dt
=

Tw2 − T1

Ri
+

Tw6 − T1

Ri
+

Tw7 − T1

Ri
+ QHVAC1 + Qint1 + Qheater1 , (2a)

Cr2
d(T2)

dt
=

Tw4 − T2

Ri
+

Tw3 − T2

Ri
+

Tw7 − T2

Ri
+ QHVAC2 + Qint2 + Qheater2 , (2b)

Cw2
d(Tw2)

dt
=

T1 − Tw2

Ri
+

Tout − Tw2

Ro
+ αA1Qrad, (2c)

Cw3
d(Tw3)

dt
=

T2 − Tw3

Ri
+

Tout − Tw3

Ro
+ αA2Qrad, (2d)

Cw4
d(Tw4)

dt
=

T2 − Tw4

Ri
+

Thall − Tw4

Ro
, (2e)

Cw6
d(Tw6)

dt
=

T1 − Tw6

Ri
+

Thall − Tw6

Ro
, (2f)

Cw7
d(Tw7)

dt
=

T1 − Tw7

Ri
+

T2 − Tw7

Ri
. (2g)

Here Cw j is the capacitance of the corresponding j-th wall; Cri represents the capacitance in the i-th room; Ro rep-
resents the resistance of walls connected to the outside; Ri represents the resistance offered by the internal walls.
Furthermore in (2) QHVACi , Qheateri are the heat sources for the i-th room that can be controlled, whereas Qradi , Qinti
are heat sources that cannot be controlled. Firstly, heat is pumped in by the heating, ventilation and air-conditioning

5

/ Performance Evaluation 00 (2017) 1–33 6

(HVAC) system, represented by the quantity QHVACi , and quantified as:

QHVACi = ṁCpa(T f si − Ti), i = 1, 2,

where ṁ represents the mass airflow, Cpa the specific heat capacity and T f si the HVAC supply temperature. The mass
air flow ṁ is also fixed. Additionally for each room, Qheateri represents the total power being output by the radiators
in the i-th room, and is modelled as:

Qheateri = kiδTiPout, δTi = f (Trad − Ti), i = 1, 2,

where ki represents the number of radiators in the room i; δTi is a function f of the radiator mean flow temperature
Trad and room temperature Ti, which is obtained from standard radiator conversion look-up tables; and finally Pout is
the rated output power of the radiator. δTi will be modelled as a stochastic signal.

Radiative solar energy is absorbed by the walls and is labelled Qrad, for this α is the absorptivity coefficient of
solar energy of the windows, and Ai is the total window area for zone i. Occupants or objects generating heat in each
room i = 1, 2 are modelled using Qinti . Similarly to [35] we model Qrad and Qinti , i = 1, 2 as

Qrad(t) = a0Tout(t) + a1ζ(t), (3)
Qinti (t) = b0iCO2i (t) + b1iνi(t), i = 1, 2. (4)

Here the total solar heat gain is a function of Tout and an additive signal ζ(t) is modelled as a random noise signal.
Since the internal heat gain is related to (inter alia) the number of people in the room, it can as a consequence be
modelled by the CO2 (which can be monitored) in combination with a random signal νi(t).

Remark 1. The model is composed of a set of unknown parameters that must be estimated, in order to have a fully
identified model that is able to represent the underlying dynamics of the system. There are a number of techniques that
can be used to estimate these unknown parameters, which include methods based on maximum likelihood [33, 36]
or Kalman filtering [37]. In this work, the algorithm developed in [38] is used to estimate the unknown parameters:
this makes use of the extended Kalman filter to predict the state evolution of the model and then applies maximum
likelihood to obtain the parameters that best fit the underlying model.

3.2. Discrete-time models for building automation systems
We construct a set of discrete-time models, with 4T = 5 minutes sampling time having the following general

structure:

M̃ :
{

x(n + 1) = Ax(n) + Bu(n) + Fd(n),
y(n) = Cx(n). (5)

Here, x is a column vector representing the states, u represents the control input, d represent the disturbance, y
represents the output observations of the model and matrices A ∈ Rp×p, B ∈ Rp×m, F ∈ Rp×md , C ∈ R1×p. The models
are initialised using such, x(0) = x0 where x0 is a deterministic vector representing the initial temperatures. The length
of the sampling period is assumed to be 4T and the Euler-Maruyama method is used to discretise time in the model.
For the constructed library of models, the analogous RC circuits are depicted in Figure 4. The continuous-time model
given by Equation (2) is discretised to obtain the equivalent 7-th order (M̃7) discrete time model

M̃7 :


x(n + 1) = Ax(n) + Bu(n) + F1Tout(n) + F2Thall(n) + F3CO2(n)

+F4CO22 (n) + F5δT (n) + F6ζ(n) + F7ν1(n) + F8ν2(n),
y(n) = Cx(n).

(6)

M̃7 models the indoor zone temperature of room 1 (T1) and of room 2 (T2). It includes, x ∈ R7 with elements
x = (Tw2, Tw3, Tw4, Tw6, Tw7, T1, T2). For our library of models, we are only interested in the temperature in
zone 1, thus we set C =

[
0 0 0 0 0 1 0

]
. The actual values of the matrices A, B,C, Fi are provided in the

Appendix. The model has one control input, u = T f s1 ∈ R|0 ≤ T f s1 ≤ 30, which affects the input supply air that
is fed to the two rooms. The model considers eight major sources of disturbances. We quantify and model these
disturbances as random effects entering in the room temperature dynamics.

6

/ Performance Evaluation 00 (2017) 1–33 7

(a) Tout is the randomness generated by the outside air temperature. This is modelled as a noise signal generated
independently in time from a Gaussian distribution with a mean of 9 ◦C and unit variance. Namely, at each time
instant the outside temperature is modelled via independent realisations, as Tout(n) ∼ N(9, 1).

(b) Thall represents the external temperature surrounding the room for all walls not exposed to the outside air temper-
ature (w6,w4). This is captured namely using an i.i.d. Gaussian distribution, i.e., a random signal modelled with
an identical and independent distribution over time, having a mean of 15 ◦C and unit variance. Namely, at each
time instant t it holds the hall temperature is modelled as an independent realisation Thall(n) ∼ N(15, 1).

(c) There is a relation between the internal heat gain in each room caused by people and objects and the CO2 levels
(cf. Equation (4)). Based on the available CO2 measurements, we choose to model its behaviour using an i.i.d.
stochastic signal with a Gaussian distribution given as CO2(n) ∼ N(400, 100). Notice that these two signals
represent the third and fourth stochastic disturbances considered in the model.

(d) ζ and νi, i = 1, 2 are stochastic inputs that come from modelling the heat gain from solar radiation and the internal
heat gain in the i-th room respectively. They are all modelled using as zero-mean i.i.d. Gaussian distributions
with variance of 0.1, that is, ζ(n)∼N(0, 0.1) and ν1,2(n)∼N(0, 0.1).

(e) δT is a stochastic input that is dependent on the radiator mean flow temperature and is modelled as an i.i.d. random
signal where at each time instant δT (n) is a realisation of a Gaussian given as δT (n)∼N(0.82, 0.1).

The above disturbances are modelled as independent random variables. Thus, as an example, we model the CO2
signal as a random signal whose realisations are independent of the realisations of ζ(n).

R

2T

W7

2Tw7

hallT

 W6

Room 1

outT

 radQ

refV
W2

gQ
int

Q

refV

refV
refV

o

i

W2

iw2 w7

w6

r1
CR R

R

C

C

C

1T

w6T

w2T w7T

R i

R o

i
w7T T

(a) 4th order model (M̃4) representing dynamics of room 1. The
temperature measurements of room 2, T2 are now considered as a
stochastic disturbance.

hallT

 W6

Room 1

outT

 radQ

W2

gQ
int

Q

refV

refV
refV

o

i

W2

w2

w6

r1
CR

R

C

C

1T

w6T

w2T w7T

R i

R o

2T

(b) 3rd order model (M̃3) representing dynamics of room 1 ob-
tained by assuming there is negligible temperature difference be-
tween T2 and T1.

Room 1

C

W2

gQ intQ

refV

 r1
CR

outT

 radQ

refV

o w2
1Tw2T

R i

(c) 2nd order model (M̃2) representing dynamics of room 1 ob-
tained by assuming there is negligible temperature difference be-
tween T1, the surrounding walls and Thall.

Room 1

C

W2

gQ intQ

refV

r

outT

 radQ

1T

R i

(d) 1st order model (M̃1) representing dynamics of room 1 ob-
tained by assuming steady-state wall dynamics and only considers
heat exchange with the outside air. Here, Cr = Cr1 + Cw2.

Figure 4: Library of thermal models and corresponding analogous RC circuits. The models states are highlighted using purple nodes, observed
output is in orange and the stochastic disturbances are in blue. The states in the models are in turn shown with purple nodes. Here Qg =

Qheater + QHVAC .

The fourth-order model of the temperature in room 1 (M̃4), neglects the dynamics of room 2 and replaces its
state by a stochastic signal T2 modelled as an i.i.d. Gaussian distribution having a mean of 20 ◦C and unit variance.

7

/ Performance Evaluation 00 (2017) 1–33 8

Namely, independent realisations T2(n) ∼ N(20, 1), as can be seen in Figure 4a. The model comprises variables
xs4 = (Tw6 ,Tw2 ,Tw7 ,T1), which represent the inner and outer wall temperatures Tw6, Tw2 of the zone, the temperature
of the wall which separates the two neighbouring zones Tw7 and the indoor zone temperature T1. Similarly to the
original model it is affected by several stochastic sources. The model is represented by

M̃4 :


xs4 (n + 1) = As4 xs4 (n) + Bs4 us4 (n) + F1s4

Tout(n) + F2s4
Thall(n) + F3s4

CO2(n)
+F4s4

T2(n) + F5s4
δT (n) + F6s4

ζ(n) + F7s4
ν(n),

y(n) = Cs4 xs4 (n).
(7)

The parametrised matrices As4 , Bs4 ,Cs4 , Fs4 are again detailed in the Appendix.

The third-order model of the temperature in room 1 (M̃3), shown in Figure 4b, is constructed by assuming negli-
gible temperature difference between the two neighbouring zones T2 = T1. The model is represented by

M̃3 :


xs3 (n + 1) = As3 xs3 (n) + Bs3 us3 (n) + F1s3

Tout(n) + F2s3
Thall(n) + F3s3

CO2(n)
+F4s3

δT (n) + F5s3
ζ(n) + F6s3

ν1(n),
y(n) = Cs3 xs3 (n).

(8)

M̃3 has xs3 ∈ R3, xs3 = (Tw6 ,Tw2 ,T1) and six major sources of stochastic disturbance (Tout,Thall,CO2, δT, ζ, ν1) .
Unlike M̃4, the stochastic disturbance coming from T2 is ignored as it is assumed that T2 = T1.

The second-order model of the temperature in room 1 (M̃2), depicted in Figure 4c, assumes that the inner walls
have a similar temperature to the zone temperature and Thall = T1 = Tw2 . The model includes variables xs2 ∈ R2, xs2 =

(Tw2 ,T1) and considers five major sources of stochastic disturbances (Tout,CO2, δT, ζ, ν1):

M̃2 :
{

xs2 (n + 1) = As2 xs2 (n) + Bs2 us2 (n) + F1s2
Tout(n) + F2s2

CO2(n) + F3s2
δT (n) + F4s2

ζ(n) + F5s2
ν1(n),

y(n) = Cs2 xs2 (n).
(9)

Lastly, the first-order model representing the temperature in room 1 (M̃1) no longer considers dynamics of any of
the walls and only takes into account the heat exchange with the outside air. The analogous RC circuit is shown in
Figure 4d and it is described by

M̃1 :
{

xs1 (n + 1) = As1 xs1 (n) + Bs1 us1 (n) + F1s1
Tout(n) + F2s1

CO2(n) + F3s1
δT (n) + F4s1

ζ(n) + F5s1
ν1(n),

y(n) = Cs1 xs1 (n).
(10)

The model comprises xs1 = T1 and considers five major sources of stochastic disturbance to the system (Tout,CO2, δT, ζ,
ν1), which act as an additional source of heat gain in the zone. The internal heat storage capacity of the room encom-
passes both the heat stored by the walls and the room itself and, thus, the new capacitance is Cr = Cr1 + Cw2 [39].

In all the given model descriptions, the output space of the model represents the temperature T1 in room 1. We
introduce a norm on the output space y. For a given set X a metric or distance function dX is a function dX : X×X→
R+

0 . So the output space y ∈ Y ⊂ R is then endowed with the Euclidean norm dY = ‖·‖.

Remark 2 (Extensions of the given models). The library of models has been built based on the two teaching rooms
set-up within the Department of Computer Science and follow standard RC circuit modelling techniques. This does
not limit the application of the models to exclusively the current scenario. The reduced-order models can be extended
to model more zones by duplicating the model and adding or removing disturbance and control signals, depending on
the actual configuration of the new zones. More sophisticated weather forecasting and occupancy detection models
can be added to the thermal models via Qrad and Qint in a straightforward manner. Further details can be added
into the models by introducing new additive RC input nodes. These extensions increase the flexibility of the library of
models, with a multitude of applications in different building set-ups.

8

/ Performance Evaluation 00 (2017) 1–33 9

3.3. General Markov decision processes and synthesis of control strategies
In this section, we formalise the previously introduced models as general Markov decision processes. We generally

consider probability measures P defined over a Borel measurable space (X,B(X)) [40] for which X is a Polish space,
e.g., a Euclidean space. Together with the measurable space, such a probability measure P defines a probability space,
which is denoted as (X,B(X),P) and has realisations x ∼ P. Let us further denote the set of all probability measures
for a given measurable pair (X,B(X)) as P(X,B(X)).

Given a probability space (X,B(X),P), a measurable function y : X→ Y, which induces a probability measure in
P(Y,B(Y)), is referred to as a random variable. As such all the disturbances affecting the building automation system
in Section 3.2 (cf. items (a) to (e)) are random variables originating from a shared probability space (Ω,B(Ω),P).
Let us consider the hall temperature Thall to illustrate this. At each time instant n, the distribution of the temperature
Thall(n) ∈ R is modelled as a (R,B(R))-valued random variable whose probability distribution is given as N(15, 1) ∈
P(R,B(R)). The probability that a temperature realisation, Thall(n) ∼ N(15, 1), is between 13 and 17 degrees, i.e.,
Thall(n) ∈ [13, 17] ∈ B(R) is denoted as N ([13, 17] | 15, 1). Furthermore at each time instant, the set of disturbances
affecting the state evolutions of the model M̃7 in (6) can be modelled as a single random variable with measure space
(R7,B(R7)) and realisations

Tout(n)
Thall(n)
CO2(n)
δT (n)
ζ(n)
ν1(n)
ν2(n)


∼ N (dm,Σd) , with mean dm =



9
15

400
0.82

0
0
0


and variance Σd =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 100 0 0 0 0
0 0 0 0.1 0 0 0
0 0 0 0 0.1 0 0
0 0 0 0 0 0.1 0
0 0 0 0 0 0 0.1


. (11)

At each time instant these disturbances are modelled as realisations of identical and independent distributions (i.i.d.).
This means that the state evolutions of model M̃7 affected by the random disturbances in (11) are Markovian and that
the stochastic system can be modelled as a Markov decision process [41, 42, 43], which is introduced next.

Definition 1 (Markov decision process (MDP)). The tuple M = (X, π,T,U) defines a discrete-time MDP over an
uncountable state space X, and is characterised by T, a conditional stochastic kernel that assigns to each point x ∈ X
and control u ∈ U where U is a continuous input space, a probability measure T(· | x, u) over (X,B(X)). The initial
probability distribution is π : B(X)→ [0, 1].

Consider models of the form M̃7 in (6) (or more abstractly (5)). Their state evolution can be described by the
conditional stochastic kernel of a Markov decision process (X, π,N(· |Ax + Bu + Fdm, FΣdFT),U) with state x in X,
control u ∈ U and initialisation π = δx(0), that is, for realisations x(0) ∼ δx(0) it holds that x(0) = x0 with probability
1. At every state, the state transition depends on the choice of u ∈ U. More precisely, given a string of inputs
u(0), u(1), . . . , u(N), over a finite time horizon {0, 1, . . . ,N}, and an initial condition x(0) (sampled from distribution
π), the state at the (n + 1)-st time instant, x(n + 1), is obtained as a realisation of the controlled Borel-measurable
stochastic kernel T (· | x(n), u(n)) – these semantics induce paths (or executions) of the MDP.

Consider next a generalisation of the MDP that includes an output mapping to a metric space, such as the mapping
y(n) = Cx(n) in (6) of M̃7.

Definition 2 (General Markov decision process (gMDP)). M = (X, π,T,U, h,Y) is a discrete-time gMDP consisting
of an MDP combined with output space Y and a measurable output mapping h : X → Y. A metric dY decorates the
output space Y.

The semantics of the gMDP are directly inherited from those of the MDP (cf. Def 1). Further, output traces
of gMDPs are obtained as mappings of MDP paths, namely {y(n)}0:N = y(0), y(1), . . . , y(N), where y(n) = h

(
x(n)

)
.

Denote the class of all gMDP with metric output space Y asMY. Notice that the models introduced in the previous
section all have as output the temperature in the first room, and as such they can be represented by gMDPs in a
common classMY with a metric output space Y = R.

In the sequel, we will allow the input u to also be chosen according to a distribution µu : B(U) → [0, 1], i.e.,
u ∼ µu. This stochastic control input, referred to as µu, induces a stochastic transition kernel denoted as T(·|x, µu) =

9

/ Performance Evaluation 00 (2017) 1–33 10∫
U T(·|x, u)µu(du) ∈ P(X,B(X)). A policy is a selection of such control inputs chosen to achieve the desired controlled

behaviour based on the past history of states and controls. We allow controls to be selected from the state to the control
space. When the selected controls are only dependent on the current states, and thus conditionally independent of
history (or memoryless), the policy is referred to as Markov.

Definition 3 (Markov policy). For a gMDP M = (X, π,T,U, h,Y), a Markov policy µ is a sequence µ = (µ1, µ2, µ3, . . .)
of maps µn = X→ P(U,B(U)) for n = 0, 1, 2, . . ., from the state space X to the set of controls.

The execution {x(n), n ∈ [0,N]}, initialised with x(0) ∈ X and controlled with Markov policy µ, is a stochastic pro-
cess defined on the canonical sample space Ω = XN+1 endowed with its product topology B(Ω) and with a probability
measure P defined by the transition kernel T, policy µ, and initial distribution π [41, Prop. 7.45]. One can intuitively
realise that the optimal policy leading to the maximal probability might not be Markov (memoryless), as introduced
in Def. 3. We introduce the notion of a control strategy, and define it as a broader, memory-dependent version of the
Markov policy above. This strategy is formulated as a Markov process that takes as an input the state of the given
gMDP and is time homogeneous.

Definition 4 (Control strategy). A control strategy C = (XC, xC0,X,Tn
C, h

n
C) for a gMDP M with state space X and

control space U over the time horizon n = 0, 1, 2, . . . ,N is an inhomogenous Markov process with state space XC;
an initial state xC0; inputs x ∈ X; time-dependent, kernels Tn

C, n = 0, 1, . . . ,N; and with output maps hn
C : XC →

P(U,B(U)), n = 1, . . . ,N, with elements µ ∈ P(U,B(U)).

Unlike a Markov policy, the defined control strategy C is in general history dependent, as it has an internal state
that can be used to remember relevant past events.

The composition of a given control strategy C with a model M yields a controlled model C × M, which is a
Markov process whose transitions are explained in Algorithm 1. Observe that in this execution algorithm the first
control u(0) is selected by drawing xC(1) according to T0

C(· |xC(0), x(0)), where xC(0) = xC0 is the initial state, and
selecting u(0) from measure µ0

C = h0
C(xC(1)). Also note that the stochastic transitions for the control strategy and the

gMDP are selected in an alternating fashion. The output map of the strategy is indexed based on the time instant at
which the resulting policy will be applied to the gMDP. The control strategy C applied to M can be both stochastic
(as a realisation of T0

C(· | xC(0), x(0))), a function of the initial state x(0), and time dependent. As such it is capable
of representing both classical control strategies and more complex strategies. In the following, we provide a few
control examples. The execution {(x(n), xC(n)), n ∈ [0,N]} of a gMDP M controlled with strategy C is defined on the
canonical sample space Ω = (X ×XC)N+1 endowed with its product topology B(Ω), and with the probability measure
PC×M.

Algorithm 1 Execution of the controlled model C ×M
set n = 0 and xC(0) = xC0
draw x(0) ∼ π {from M}
while n < N do

draw xC(n + 1) ∼ Tn
C(· |xC(n), x(n)) {from C}

set µn = hn
C(xC(n + 1)), draw u(n) from µn

draw x(n + 1) ∼ T(· |x(n), u(n))) {from M}
set n = n + 1

end while

Example 3.

3.a. For the first-order model M̃1 consider an open-loop control strategy1 we take as control input a constant supply
temperature of 22 ◦C. Thus us1 (n) = 22,∀n ∈ [0,∞). Then this input can be trivially written as a control
strategy C22◦C = ({q0}, q0,Xs1 ,Tn

22◦C , h
n
22◦C) with

1We refer to a strategy as being open-loop if it does not depend on the value of state or output of model M.
10

/ Performance Evaluation 00 (2017) 1–33 11

• {q0} the set of possible control states.

• Xs1 = R is the embedding of the state space of M̃1.

• Tn
22◦C is the stochastic kernel defining the distribution of transitions over the set of control states xC ∈ {q0}.

Since there are only transitions within the singleton set XC22 ◦C = {q0}, the conditional stochastic kernel is
given as ∀xC ∈ {q0}, ∀xs1 ∈ Xs1 , ∀n ∈ [0,∞)

Tn
22◦C(q1|xC, xs1) = 1.

• hn
22◦C : {q0} → P(U,B(U)) is the output mapping defined as

hn
22 ◦C(xC) = δ22 ∈ P(U,B(U)), ∀n.

Here δ22 is a Dirac distribution over U = R, such that with probability 1 it holds that us1 (n) = 22.

3.b. As an alternative, we now consider a state-feedback control strategy. In this case the control strategy again
selects the input supply temperature in the rooms (T f s1), but now it takes into consideration the difference
between the desired room temperature of 21 ◦C and the actual temperature at each time step. Thus we take
us1 = k(21− xs1) with an appropriate gain k > 0 such that |As1 − Bs1 k| < 1. This is equal to the feedback control
strategy Ck = {R, 0,Xs1 ,Tn

k , h
n
k}

• R the set of possible control states is equal to the state space of M̃1 and is trivially initiated at {q0}.

• Xs1 = R is again the embedding of the state space of M̃1,

• Tn
k is the stochastic kernel and is chosen as the current error in the temperature, that is 21 ◦C − xs1 , and

this is formalised as as ∀xC ∈ {q0}, ∀xs1 ∈ Xs1 , ∀n ∈ [0,∞)

Tn
k(·|xC, xs1) = δ21−xs1

(·).

• hn
k : {0} → P(U,B(U)) is the output mapping defined as hn

k(xC) = δkxC ∈ P(U,B(U)), ∀n.

Both control strategies can be employed to regulate the room temperature. In this specific case they are also Markov
policies.

4. Approximate simulation relations for gMDPs

In this section, we relate pairs of gMDPs based on their output behaviours with as objective the hierarchical
synthesis of control strategies. The gMDPs are considered to be related if a control strategy synthesised for one can
be refined to the other, in such a way that the difference in the output behaviour is bounded. More precisely, we define
approximate probabilistic simulation and bisimulation relations. These quantify differences in both probability and
deviations in the outputs of two controlled gMDPs. These relations, first introduced in [30], characterise the similarity
in the controllable behaviours of the two gMDPs.

4.1. Lifting of probability distributions

For sets A and B a relation R ⊂ A × B is a subset of their Cartesian product that relates elements x ∈ A with
elements y ∈ B, denoted as xRy. We use the following notation for the mappings R(Ã) = {y : xRy, x ∈ Ã} and
R−1(B̃) = {x : xRy, y ∈ B̃} for Ã ⊆ A and B̃ ⊆ B.

As will be detailed in the next section, R will be used over state spaces of gMDPs, and it should be selected so that
we can relate their output behaviour. Furthermore, R should be such that the transitions are similar in a probabilistic
sense. For finite- or countable-state stochastic processes this concept has been introduced in [44, 45, 46] and referred
to as lifting: the transition probabilities are coupled using a weight function in a way that respects a given relation over
the combined state spaces. A simple example is portrayed in Fig. 5. Consider the two models M1 and M2 depicted
on the left and in the middle, then the pairs of states (qi, x j) with the same colouring constitute to a relation R. For
M1 and M2 the transition probabilities are noted on the transition edges. Initiated at q1 the stochastic transition kernel

11

/ Performance Evaluation 00 (2017) 1–33 12

of M1 assigns the probability measure over the discrete state space S = {q1, q2, q3, q4} as {0, 1/2, 1/3, 1/6}. Similarity
for M2, at x1 a probability distribution {0, 5/6, 1/6} over {x1, x2, x4} is given. For these probability distributions, the
rightmost figure depicts a lifting with respect to the given relation for the initial state pair (q1, x1). Observe that this
lifting assigns probabilities to pairs of next states. This lifting is a specific type of probability coupling in which not
only transition kernels for each of the models are maintained, but also the pairs of next states are elements of the
relation R.

{b}

{a}

{b}

{c}

q3

q4
q2

1

2

1

3

1

6

1

1

1 M1

{a}

{b}

{c}

x1

x4

x2

5

6 1

6

1

M2

q1

1

q1 x1

1

2

1

3

1

6

q2

q3

x2

x2

q4 x4

Figure 5: Finite-state Markov processes M1 and M2 (left & middle) with S = {q1, q2, q3, q4} and T = {x1, x2, x4} the respective state spaces. The
states are labelled with three different colours. Lifting probabilities of the transition kernels for (q1, x1) are given on the edges of the rightmost
figure.

Since we assume that the state spaces are Polish and have a corresponding Borel σ-field for the given probability
spaces (X1,B(X1),P1) and (X2,B(X2),P2) with P1 = T1(· | x1, u1) and P2 = T2(· | x2, u2), the question of finding a
coupling (cf. [47, 48]) can be reduced to finding a probability measure in P(X1 ×X2,B(X1 ×X2)). This is depicted in
Figure 6, where on the left there is a measurable space with an unknown probability measure. For this coupling prob-
lems the unknown measure should be specified, such that events mapped to the spaces X1 and X2 induce probability
measures P1 and P2, respectively. Of interest is the case of lifting where this coupling is restricted to a given mapping
R, which relates states that are similar.

Figure 6: Coupling of probability distributions.

Definition 5 (δ-lifting for general state spaces). Let X1,X2 be two sets with associated probability spaces (X1,B(X1),∆),
(X2,B(X2),Θ), and let R ⊆ X1 × X2 be a relation for which R ∈ B(X1 × X2). We denote by R̄δ ⊆ P(X1,B(X1)) ×
P(X2,B(X2)) 2 the corresponding lifted relation (acting on ∆R̄δΘ), if there exists a probability space (X1×X2,B(X1×

X2),W) satisfying

1. for all X1 ∈ B(X1): W(X1 × X2) = ∆(X1);
2. for all X2 ∈ B(X2): W(X1 × X2) = Θ(X2);
3. for the probability space (X1 × X2,B(X1 × X2),W) it holds that x1Rx2 with probability at least 1 − δ, or

equivalently that W (R) ≥ 1 − δ.

For δ = 0 the exact lifting with respect to R, as introduced in [18], is recovered.

2Details on how to compute the Cartesian product of P(X1,B(X1)) × P(X2,B(X2)) can be found in [30] .

12

/ Performance Evaluation 00 (2017) 1–33 13

4.2. Exact and (ε, δ)- approximate simulation relations for gMDPs

We work with pairs of gMDP put in a relationship, with the intention to apply the developed notions to an abstrac-
tion Ma of a concrete model Mc. Consider two gMDP Ma,Mc ∈ MY mapping to a common output space Y with met-
ric dY. For Ma = (Xa, πa,Ta,Ua, ha,Y) and Mc = (Xc, πc,Tc,Uc, hc,Y) at given state-action pairs xa ∈ Xa, ua ∈ Ua

and xc ∈ Xc, uc ∈ Uc, respectively. We will now use the introduced notions to relate the corresponding transition
kernels, namely the probability measures Ta(· | xa, ua) ∈ P(Xa,B(Xa)) and Tc(· | xc, uc) ∈ P(Xc,B(Xc)).

Similar to the alternating notions for probabilistic game structures in [49], we provide a simulation that relates
any input chosen for the first process with one for the second process. For this, we introduce the notion of interface
function:

Uv : Ua × Xa × Xc → P(Uc,B(Uc)), (12)

where we require thatUv is a Borel measurable function. This means thatUv induces a Borel measurable stochastic
kernel, again denoted byUv, over Uc given (ua, xa, xc) ∈ Ua×Xa×Xc. The notion of interface function is known in the
context of correct-by-design controller synthesis and of hierarchical controller refinement [31, 50]. For the objective
of hierarchical controller refinement, an interface function implements (or refines) any control action synthesised
over the abstract model to an action for the concrete model. Note that we extend standard interface functions for
deterministic systems by allowing randomised actions µc ∈ P(Uc,B(Uc)). In most cases a deterministic, (that is,
non-randomised), control action will suffice. These deterministic interfaces, generally denoted as uv, can be written
as stochastic kernels using a Dirac measure as

Uv = δuv ∈ P(Uc,B(Uc)) with uv : Ua × Xa × Xc → Uc. (13)

The notion of approximate probabilistic simulation can be defined based on the lifting of the transition kernels (cf
Definition 5) for this interface, thereby generating a stochastic kernel WT conditional on the values of signals in Ua

and in Xa×Xc. The relation defined next encompasses two approximation requirements: allowing for both a deviation
in probability (δ) and a deviation in output accuracy (ε), and is referred to as an (ε, δ)-approximate probabilistic
simulation.

Definition 6 ((ε, δ)-approximate probabilistic simulation). Consider two gMDP Mi = (Xi, πi,Ti,Ui, hi,Y), i = a, c,
over a shared metric output space (Y,dY). Ma is (ε, δ)-probabilistically simulated by Mc if there exists an interface
functionUv and a relation R ⊆ Xa ×Xc, for which there exists a Borel measurable stochastic kernel WT(· |ua, xa, xc)
on Xa × Xc given Ua × Xa × Xc, such that:

1. ∀(xa, xc) ∈ R, dY (ha(xa), hc(xc)) ≤ ε;
2. ∀(xa, xc) ∈ R, ∀ua ∈ Ua: Ta(·|xa, ua) R̄δ Tc(·|xc,Uv(ua, xa, xc)), with lifted probability measure WT(· |ua, xa, xc);
3. πaR̄δπc.

The simulation relation is denoted as Ma �
δ
ε Mc.

That is, Ma is in (ε, δ)-approximate probabilistic simulation relation with Mc, if there exists an interface function
Uv and a relation R such that for all state pairs (xa, xc) within the relation R, the difference in the output between each
of the models is less than or equal to ε and for all control inputs given to Ma, the transition probabilities of the two
models are related according the lifting probability measure WT(· |ua, xa, xc). Also the initial probability distribution
of the two models are in the lifted relation R̄.

If δ = 0 and ε = 0 we refer to the probabilistic simulation relation as exact, and for this probabilistic simulation
relation we drop the indices, i.e, Ma � Mc. If there exists a relation R such that Ma � Mc (respectively, Ma �

δ
ε Mc)

and such that for R−1 also Mc � Ma (respectively, Mc �
δ
ε Ma), then we say that Ma ≈ Mc (respectively, Ma ≈

δ
ε Mc).

The latter is referred to as a ((ε, δ)-approximate) probabilistic bisimulation relation.
For every gMDP M: M �M and M ≈M. This can be seen by considering the diagonal relation Rdiag = {(x1, x2) ∈

X × X | x1 = x2} and selecting equal inputs for the associated interfaces. The resulting equal transition kernels
T(·|x, u)R̄diagT(·|x, u) are lifted by the measure WT(dx′1 × dx′2|u, x1, x2) = δx′1 (dx′2)T(dx′1|x1, u) where δx′1 denotes the
Dirac distribution located at x′1. Let us use this diagonal relation to give some additional examples.

13

/ Performance Evaluation 00 (2017) 1–33 14

Example 4. a. We show the notion of lifting for diagonal relations. Consider two models as in (5), that is, they can
be seen as Gaussian processes written as

M1 : x1(n + 1) = A1x1(n) + Bu1(n) + Fd(n), y1(n) = Cx1(n),
M2 : x2(n + 1) = A2x1(n) + Bu2(n) + Fd(n), y2(n) = Cx2(n),

with A1 = A2 + BK and variables x(n), x(n + 1), d(n) taking values in Rp and u(n) ∈ Rm, matrices A1,2 ∈ Rp×p,
B ∈ Rp×m, K ∈ Rm×p, F ∈ Rp×p. Both systems are disturbed by the signal d, which is a white noise signal with
variance Σd. For any pair of states (x1, x2) ∈ Rdiag, that is x1 = x2 = x, it holds that for the corresponding transition
kernels, given asN(· |A1x + Bu1, FΣdFT) and N(· |A2x + Bu2, FΣdFT), and taking u2 = uv(u1, x1, x2) = Kx2 + u1, we
can lift the conditional probability kernels as

N(· |A1x + Bu1, FΣdFT)R̄diagN(· |A1x + Bu1, FΣdFT).

Hence, if the systems are both initialised with the same π, then we have shown that M1 � M2. This follows trivially
because the models have the same output mapping and satisfy the lifting criteria.
b. Consider the gMDP M1 and M2, given in a slightly more general form than (5), as

M1 : x(n + 1) = f (x(n), u(n)) + d(n), y(n) = h(x(n)),

M2 : x(n + 1) = f (x(n), u(n)) + d̃(n) + ũ(n), y(n) = h(x(n)),

with variables x(n), x(n + 1), u(n), ũ(n), d(n), d̃(n) taking values in Rp, and with dynamics initialised with the same
probability distribution at t = 0 and driven by white noise sequences d(n), d̃(n), both with zero mean normal distribu-
tions and with variance Σd,Σd̃, respectively. Notice that if Σd−Σd̃ is positive definite then M1 �M2. To see this, select
the control input pair (u2, ũ2) ∈ U2 as u2 = u1, and ũ2 according to the zero-mean normal distribution with variance
Σd − Σd̃, then the associated interface is Uv(du2 × dũ2|u1, x1, x2) = δu1 (du2)N(dũ2|0,Σd − Σd̃). For this interface
the stochastic dynamics of the two processes are equal, and can be lifted with Rdiag. Note that unlike the previous
example, in this case the models are clearly ordered, that is, it does not hold that M2 is probabilistically simulated by
M1.

In this section, we have provided similarity relations quantifying the difference between two Markov processes.
The end use of the introduced similarity relations is to quantify the probability of events of a gMDP via its abstraction
and to refine controllers: this is achieved in the next section. In the sequel of this section, we will first give computation
details for relations over models of the form (5) for the rooms models.

4.3. Computation of approximate simulation relations for models of thermal dynamics

Let us consider a concrete model Mc and abstract model Ma in the same form as (5), that is,

Mc :
{

x(n + 1) = Ax(n) + Bu(n) + Fd(n),
y(n) = Cx(n), and Ma :

{
xs(n + 1) = Asxs(n) + Bsus(n) + Fsd(n),
ys(n) = Csxs(n). (14)

In contrast to (5), we will assume that d is a md-dimensional white noise sequence with Gaussian distribution and unit
variance. This is not a restrictive assumption as any of the models in (5) can be rewritten as (14). Furthermore, we
have assumed that the noise term d is shared between the models. By making this choice we will be able to naturally
define our lifted transition kernel based on d. For the models of Section 3, we know the origin of the noise and this
sharing is hence a sensible choice. Notice that the models under study define gMDPs over the same output space
endowed with the Euclidean norm dY(ys, y) = ‖y − ys‖, which we will study under assumption of bounded inputs.

We are now ready to investigate under which conditions for given (ε, δ)-values it holds that Ma �
δ
ε Mc. Let us first

introduce the set of symmetric matrices of dimension m, denoted as Sm. We say that M ∈ Sm is positive definite, i.e.,
M � 0 if for all x , 0 ∈ Rm it holds that xT Mx > 0. Similarly, any M ∈ Sm is positive semi-definite (M � 0) if it holds
that xT Mx ≥ 0 for all x ∈ Rm. Moreover for M1,M2 ∈ Sm, M1 � M2 if M1 − M2 � 0 and M1 � M2 if M1 − M2 � 0.

14

/ Performance Evaluation 00 (2017) 1–33 15

To investigate Ma �
δ
ε Mc, we will consider relations R of the form

R :=
{
(x, xs) | (x − Pxs)T M(x − Pxs) ≤ ε2

}
with Sm 3 M � 0, (15)

where P is a properly-sized matrix. This allows us to rewrite the conditions for (ε, δ)-approximate probabilistic
simulation (as in Definition 6) on the respective gMDPs into a set of conditions on the system matrices, as detailed
next.

Theorem 7. Consider the Gaussian models of (14) at gMDPs with

Mc = (X, π,T,U, h,Y) Ma = (Xs, πs,Ts,Us, hs,Y)

T(· |x, u) = N(· |Ax + Bu, FFT), Ts(· |x, u) = N(· |Asxs + Bsus, FsFT
s),

x ∈ X = Rm, π = δ0 ∈ P(Rm,B(Rm)), xs ∈ Xs = Rms , πs = δ0 ∈ P(Rms ,B(Rms)),

and U = {u ∈ R}; and Us =
{
us ∈ R

∣∣∣ |us| ≤ cu
}
,

for which we assume that the abstract model Ma is of lower order than the concrete model Mc, that is m ≥ ms. To
obtain a bounded output error ε, we have required the input of the abstract model to be bounded by cu. Consider the
relation

R :=
{
(xs, x) | (x − Pxs)T M(x − Pxs) ≤ ε2

}
, (16)

with M � 0, and the interface uv : Us × Xs × X→ U, where

u = uv(us, xs, x) = Rus + Qxs + K(x − Pxs). (17)

Then Ma �
δ
ε Mc with respect to the relation (16) and the interface (17) if the matrices M ∈ Sm, P ∈ Rm×ms ,Q ∈ R1×ms

and K ∈ R1×m satisfy the following conditions

PAs = AP + BQ and Cs = CP (18)

M −CT C � 0, (19)

together with a condition on the state transitions given as

(x′s, x
′) ∈ R, ∀dT d ≤ cd, us ∈ Us, ∀(xs, x) ∈ R (20)

with transitions x′ = Ax + Buv(us, xs, x) + Fd, x′s = Asxs + Bsus + Fsd, with the noise bound cd based on the inverse
Chi-square cd := χ−1

2 (1 − δ,md).

The first equality in (18) is the Sylvester equality. The given formulation is very similar to the alternating refine-
ment problems and the hierarchical control work of [31]. The main difference is that in this case the bound on the
disturbance input is directly linked to the probability of staying in the relation R. The proposed form of the equations
is such that much of the computations can be performed with tools tailored to convex optimisation of linear quadratic
control problems [51].

Proof. Furthermore, the relation Ma �
δ
ε Mc must satisfy three conditions:

1. ∀(x, xs) ∈ R : dY(y(n), ys(n)) ≤ ε must be satisfied. This is indeed the case as ‖y − ys‖
2 = ‖Cx − CPxs‖

2 and
(x − Pxs)T CT C(x − Pxs) ≤ (x − Pxs)T M(x − Pxs), and the latter is bounded by ε2 for (x, xs) ∈ R.

2. ∀(x, xs) and ∀us ∈ Us: Ts (· | xs, us) R̄δT (· | x, uv(us, xs, x)). This is satisfied by constructing a lifted probability
measure WT(· | us, xs, x) based on the shared input noise d(n), as

WT(dx′s × dx′|us, xs, x) = N

[dx′s
dx′

]
|

[
Asxs + Bsus

Ax + Buv(us, xs, x)

]
,

[
Fs

F

] [
Fs

F

]T 
15

/ Performance Evaluation 00 (2017) 1–33 16

From this lifting measure, the original transition kernels can easily be recovered by marginalising over Xs and
over X, respectively, as T (· | x, u) = N(·|Ax + Buv(us, xs, x), FFT), and Ts (· | xs, us) = N(·|Asxs + Bsus, FsFT

s).
Now we need to prove that with probability at least 1−δ it holds that the pair (x′, x′s) ∈ R for realisation (x′, x′s) ∼
WT (· | us, xs, x). We know that the shared input noise d(n) is governed by an i.i.d. Gaussian distribution
d ∼ N(0, I) and dT d has a Chi-square distribution with md degrees of freedom. Hence if for all dT d ≤ cd it
holds that the next state belongs to the relation R, then it holds that the next state belongs to the relation with a
probability of at least 1 − δ.

3. The initialisation can be lifted, that is, πR̄πs. Define Wπ = δx=0δxs=0, then with probability 1(≥ 1−δ): (xs, x) ∈ R
since (0, 0) ∈ R.

Notice that also the imposed measurability conditions have been trivially achieved, since all mappings are linear
mappings and are hence continuous mappings, see [40] or [41].

Computations related to Theorem 7. We can write (20) as an implication based on several quadratic forms:

∀z =


x
us

d
1

 : zT Fxz ≥ 0, zT Fuz ≥ 0 and zT Fdz ≥ 0 =⇒ zT FMz ≥ 0. (21)

Introduce auxiliary variables τx, τu, τd > 0, then a sufficient condition based on the S -procedure [52] for (21) is

FM � τxFx + τuFu + τdFd (22)

with matrices

FM =


−(A + BK)T M(A + BK) −(A + BK)T M(BR − PBs) −(A + BK)T M(F − PFs) 0
−(BR − PBs)T M(A + BK) −(BR − PBs)T M(BR − PBs) −(BR − PBs)T M(F − PFs) 0
−(F − PFs)T M(A + BK) −(F − PFs)T M(BR − PBs) −(F − PFs)T M(F − PFs) 0

0 0 0 ε2

 , (23)

Fx =


−M 0 0 0

0 0 0 0
0 0 0 0
0 0 0 ε2

 , Fu =


0 0 0 0
0 −I 0 0
0 0 0 0
0 0 0 cu

 , Fd =


0 0 0 0
0 0 0 0
0 0 −I 0
0 0 0 cd

 ,
where I denotes an identity matrix of appropriate size. Written out, this matrix inequality can be split in two inequal-
ities as (A + BK)T M(A + BK) − τxM (A + BK)T M(BR − PBs) (A + BK)T M(F − PFs)

(BR − PBs)T M(A + BK) (BR − PBs)T M(BR − PBs) − τuI (BR − PBs)T M(F − PFs)
(F − PFs)T M(A + BK) (F − PFs)T M(BR − PBs) (F − PFs)T M(F − PFs) − τdI

 � 0, (24)

τucu + τdcd + τxε
2 − ε2 ≤ 0.

The latter inequality can be rewritten as

τucu + τdcd ≤ (1 − τx)ε2.

This implies that 0 < τx < 1 and 0 < ε2 ≤
τucu+τdcd

(1−τx) . Hence, for given values τu, cu, τd, cd, τx, the maximal ε that can

be obtained is
√

τucu+τdcd
(1−τx) . The inequality in (23) clearly limits the achievable accuracy ε as a function of the variables

τx, τu, τd, and of M. As such, in Algorithm 2 we optimise these variables to obtain the best possible accuracy. The
given algorithm requires that an interface (17) for which the Sylvester equation has been solved beforehand.

The choice of the interface (17), together with the selection of P and Q such that the Sylvester equation is satisfied,

16

/ Performance Evaluation 00 (2017) 1–33 17

have a direct impact on the accuracy of the computed ε and δ values. To observe this, note that in inequality (24),
which is a crucial part of Algorithm 2, we can extract three sufficient conditions

(A + BK)TM(A + BK) � τxM, (25)

(BR − PBs)TM(BR − PBs) � τuI, (26)

(F − PFs)TM(F − PFs) � τdI. (27)

Each of the variables τu, τd and τx ∈ (0, 1) increases the output deviation ε. Hence we can use these inequalities to
resolve the free design variable before using Algorithm 2.

Solving the Sylvester equations. We evaluate the choice of P, Q and R with respect to γd and γu based on (26) and
(27) subject to

γuI � (BR − PBs)T M(BR − PBs) and γdI � (F − PFs)T M(F − PFs). (28)

For a given M this allows us to select P, Q and R by utilising an optimisation algorithm over the corresponding linear
matrix inequalities, as in (29) and as summarised in Algorithm 3. The algorithm can be implemented using a convex
optimisation toolbox, such as CVX [51, 53], which can solve this problem in polynomial time. Of course, when
computing P, Q and R we do not have access to the final M, which will be computed based on Algorithm 2. Instead,
we can use a preliminary estimate for M. Notice that Algorithm 3 is currently given with respect to the objective
(γu + γd), which however can be altered with a weighting factor to trade-off the importance of γu and γd.

Interface Design. Given P, Q and R, the interface in (17) has one free variable the gain K. The choice of K defines
how hard the interface counteracts to deviations in the states. A selection of K to purely minimise these deviations
will lead to a very aggressive interface. Therefore in an actual implementation, it makes more sense to select K based
both on the deviation in the state (cf. (25)) and based on the input deviation it creates.

Full computational implementation. A full design procedure to obtain the relation, the interface and the quantification
of ε and δ is defined as a combination of Algorithm 3 and Algorithm 2, together with the design procedure for K. The
main parts of each of the algorithms can be implemented using convex programming in polynomial time. In the case
study and toolbox, we will use the CVX toolbox of [53] for these optimisation steps. To design all the free variables,
the matrices P, Q and R are first optimised using Algorithm 3, by solving (18) together with the imposed constraints
in (28) for an estimate of the design matrix M. We design a gain K by applying an algorithm similar to Algorithm
3 with an additional penalty for large K values. Next, for a given range of δ values the corresponding ε values are
computed using Algorithm 2.

Algorithm 2 Computing ε given δ
Given K, P, R, δ
Set cd := χ−1

2 (δ,md)
Initialise τx := max(| eig(A + BK)|)2

Minimise∗ (τucu + τdcd)/(1 − τx)
with arguments: M ∈ Rm×m, 0 < τu ∈ R, 0 < τd ∈ R, τx ∈ (0, 1)

and subject to: M −CT C � 0, (A + BK)TM(A + BK) − τxM (A + BK)TM(BR − PBs) (A + BK)TM(F − PFs)
(BR − PBs)TM(A + BK) (BR − PBs)TM(BR − PBs) − τuI (BR − PBs)TM(F − PFs)

(F − PFs)TM(A + BK) (F − PFs)TM(BR − PBs) (F − PFs)TM(F − PFs) − τdI

 � 0.

Set ε =
√

(τucu + τdcd)/(1 − τx)

[∗: Can be implemented as a line search over τx together with a convex programming solution]

17

/ Performance Evaluation 00 (2017) 1–33 18

Algorithm 3 Compute P, Q, R
Given M

Minimise (γu + γd)
with arguments: P ∈ Rm×ms ,Q ∈ Rp×ms ,R ∈ Rp×p, γu > 0 ∈ R, γd > 0 ∈ R
and subject to: AP + BQ − PAs = 0, Cs = CP,[

M M(BR − PBs)
(BR − PBs)T M γuI

]
� 0,

[
M M(F − PFs)

(F − PFs)T M γdI

]
� 0. (29)

Return P, Q, and R.

Remark 5. We have used the relation R := (x−Pxs)T M(x−Pxs) ≤ ε2 and the interface u := Rus + Qxs + K(x−Pxs).
This is similar to the hierarchical control problems leveraging approximate simulation relations and interfaces for
deterministic systems in [31]. Note that the resulting (ε, δ) relations are dependent on the chosen R and Uv. For a
different choice of relation R′ or of interfaceU′v, the optimisation procedure needs to be updated.

Example 6. We illustrate the full computational procedure for approximate simulation relations by running the opti-
misation procedure between the second order and the fourth order models in section 3, namely M̃2 in (9) and M̃4 in
(7).

The models are mapped to the form of (11), by splitting the states of the model into a steady state (xss) and a
transient (xtr) component, as follows:

xss = Axss + Buss + Fdm,
xtr(n + 1) = Axtr(n) + Butr(n) + FΣ0.5

d e(n),
y(n) = Cxss + Cxtr(n).

(30)

Here, uss represents the nominal input required to achieve the desired steady-state temperature, utr is the additional
input required from the nominal one to reach a new desired temperature, dm represents the mean noise signal, e is
white noise described by e(n) ∼ N(0, I), yss is the steady-state output, and ytr(n) is the output of the transient state. In
order to avoid ill-conditioning, the input signal u is rescaled such that a full heating input T f s1 = 30 ◦C corresponds
to value 1. Similarly, a steady-state temperature of T1 = 20 ◦C corresponds to uss = 0.65.

We first proceed by solving the Sylvester equations using a preliminary estimate of matrix M. This is computed as
the solution of an infinite-horizon linear quadratic stochastic optimal control problem with respect to the disturbances
[54]. The solution is found using the Matlab function dare

M =


11.6229 −0.0224 0.0188 0.6953
−0.0224 11.6229 −0.0188 0.6953
−0.0188 −0.0188 11.6295 0.6107
0.6953 0.6953 0.6107 5.5080

 .
Using this estimate for M, we obtain the design matrices P, Q and R using Algorithm 3, as

P =


1 2.12e − 7
1 2.87e − 7

0.8762 −4.13e − 6
0 1

 , Q =
[
−0.1611 0.1597

]
and R = 1.007.

The stabilising gain K is computed using a procedure similar to Algorithm 3, which incorporates both the state
deviations and the additional input required for minimising these state deviations. In this example we obtain

K =
[
−0.0122 −0.0122 −0.012 −4.6903

]
. (31)

18

/ Performance Evaluation 00 (2017) 1–33 19

Next, we proceed with the computation of (ε, δ) over logarithmically spaced points δ ∈ [0.001, 1], under a bounded
input set Us2 = {us2 ∈ R||us2 | ≤

1
30 }, using Algorithm 2. The input set is bounded within an absolute deviation of 1 ◦C

of fluctuations. Algorithm 2 optimises the M matrix for each δ value – for instance, for δ = 1

Mδ=1 =


0.5348 −0.1676 −0.1508 0.0147
−0.1676 0.5413 −0.1433 0.0156
−0.1508 −0.1433 0.5806 0.0131
0.0147 0.0156 0.0131 1.3862

 ,
whereas for δ = 10−2

Mδ=10−2 =


0.0019 −0.0006 −0.0013 −0.0134
−0.0006 0.0011 −0.0003 −0.0092
−0.0013 −0.0003 0.0021 −0.0113
−0.0134 −0.0092 −0.0113 3.1350

 .
The resulting (ε, δ)-pairs are shown in Table 1: it can be seen that for increasing values of δ, ε decreases to a positive
lower bound. This lower bound is a function of the size of the set Us2 . Note that a large value of δ corresponds to a
discount in the probability of the controller satisfying ψ, while a large value of ε corresponds to a larger error in the
output bound.

δ 1 10
−1
3 10

−2
3 10−1 10

−4
3 10

−5
3 10−2 10

−7
3 10

−8
3 10−3

ε 5.021e-5 0.1061 0.1266 0.1420 0.1548 0.1660 0.1761 0.1854 0.1941 0.2022

Table 1: Trade-off between δ ∈ [0.001, 1] and ε for pair of concrete and abstract models (M̃4, M̃2).

For a chosen (ε, δ)-pair, the resulting relation is described using

R =
{
(x̂s4 , x̂s2) | (x̂s4 − Px̂s2)T Mδ(x̂s4 − Px̂s2) ≤ ε2

}
, (32)

with the corresponding interface given as

ûs4 = uv(ûs2 , x̂s2 , x̂s4) = Rûs2 + Qx̂s2 + K(x̂s4 − Px̂s2). (33)

Here we have x̂s4 = xs4 − xs4ss
, x̂s2 = xs2 − xs2ss

and ûs4 = us4 − us4ss
, ûs2 = us2 − us2ss

.

4.4. Quality of computed (ε, δ)-pair
The algorithms for computing the approximate simulation relations (cf. Algorithms 2 and 3) are composed of a set

of linear matrix inequalities that are solved as a semi-definite program. We make use of CVX which solves the semi-
definite program in polynomial time [53]. We perform a set of experiments on Algorithm 2 to show the sensitivity and
time-complexity of the algorithm. Both tests are run on an Intel(R) Core(TM) i7-4702HQ CPU running at 2.20GHz
with 16GB of RAM. First, we compare the time taken to compute the (ε, δ)-relation over the range δ ∈ [0.001, 1], for
different model orders. The recorded total time taken (in seconds) is presented in Table 2, from which we deduce that

1. the total time taken is dependent on the complexity of the concrete model order. The higher the complexity of
the concrete model, the longer it takes to compute the (ε, δ)-relation (cf. M7 vs the rest of the models).

2. for a specific concrete model order, the total time taken is not directly related to the abstract model order but is
dependent on the structure of the underlying dynamics between the concrete and abstract model.

Second, we test the sensitivity of the algorithm to the (user-defined) gain matrix K, which directly effects the
additional input required for minimising state deviations on the (ε, δ)-relation. In Algorithms 2 and 3, the gain matrix
K is being calculated in a less optimal manner, thus changes in K may effect the (ε, δ)-relation. We proceed with
analysing the sensitivity to variations in K over the range of δ ∈ [0.001, 1] and using Mc = M̃4 and Ma = M̃2. The
gain matrix K is is perturbed using a uniformly distributed array of random numbers ranging between 0 and 2, where

19

/ Performance Evaluation 00 (2017) 1–33 20

K corresponds to the original set of values given in (31). The experiment is run for 100 times. We show the obtained
results in Figure 7, where we witness a maximum variance of 0.0052 (this occurred when δ = 10

−7
3).

Similarly, we test the effect of changing the the maximum iteration and the learning rate of the line search em-
ployed within Algorithm 2. In both cases, negligible difference in the obtained ε values is achieved with a maximum
variance of 6.7650e-8.

10−3 10−2 10−1 100
0

0.2

0.4

δ

ε

Figure 7: Effect of varying K matrix on (ε, δ) relation.

Concrete
Model
Order

Abstract
Model
Order

Time
taken

7 4 168.60
7 3 175.2
7 2 210.0
7 1 176.4
4 3 100.8
4 2 167.4
4 1 152.4
3 2 126.0
3 1 153.0
2 1 109.2

Table 2: Time taken, in seconds, to compute
(ε, δ)-relation for different model orders

5. Certified control refinement based on approximate simulation relations

For low-order models, certified control policies can be synthesised using controller synthesis tools such as FAUST2

[17] - a software tool that generates formal abstractions of a gMDP M as a finite-state Markov decision process. The
abstract model is formally related with M via a user-defined maximum approximation error threshold. For higher
order models, we propose the use of certified controller refinement based on approximate simulation relations, which
reduce the computational complexity of the policy synthesis procedure from the high-order model to a lower order
model, while providing performance guarantees. Next, we discuss the ideas underlying certified control refinement
after which it is shown that the refined controller induces a strategy, as per Def. 4.

Consider two gMDP Mi = (Xi, πi,Ti,U,hi,Y) i = a, c with Ma � Mc. Given the entities Uv and WT associated
to Ma �Mc, the distribution of the next state xc

′ of Mc is given as Tc(· |xc,Uv(ua, xa, xc)), and is equivalently defined
via the lifted measure as the marginal of WT(· |ua, xa, xc) on Xc. Therefore, the distribution of the combined next state
(xa
′, xc

′), defined as WT(· |ua, xa, xc), can be expressed as

WT(dxa
′ × dxc

′|ua, xa, xc) = WT(dxa
′|xc
′, ua, xa, xc)Tc(dxc

′|xc,Uv(ua, xa, xc)), (34)

where WT(dxa
′|xc
′, ua, xa, xc) is referred to as the conditional probability given xc

′ [55, Corollary 3.1.2]. Similarly,
the conditional measure for the initialisation Wπ is denoted as

Wπ(dxa(0) × dxc(0)) = Wπ(dxa(0)|xc(0))πc(dxc(0)). (35)

Now suppose that we have a control strategy for Ma, referred to as Ca, and we want to construct the refined
control strategy Cc for Mc, which is such that events defined over the output space have equal probability. This
refinement procedure follows directly from the interface and the conditional probability distributions, and is described
in Algorithm 4. In the figure within Algorithm 4, a pictorial description is portrayed, the algorithm is separated into
the refined control strategy Cc and its gMDP Mc; Cc is composed of Ca, the stochastic kernel WT, and the interface
Uv, and it stores the previous state of Mc.

20

/ Performance Evaluation 00 (2017) 1–33 21

Algorithm 4 Refinement of control strategy Ca as Cc

Given
• the interface functionUv as in (12), and
• the conditional stochastic kernels (34) and (35).

1: n = 0
2: draw xc(0) from πc,
3: draw xa(0) from Wπ(· | xc(0)).
4: loop
5: given xa(n), select ua(n) according Ca,
6: set µan = Uv(ua(n), xa(n), xc(n)) ,
7: draw xc(n + 1) from Tc(· | xc(n), µan),
8: draw xa(n+1) from WT(· |xc(n+1), ua(n), xa(n), xc(n)),
9: set n = n + 1.

10: end loop

conditioned on lifted

probability measure

Theorem 8 (Refined Control Strategy). Let gMDP Ma and Mc be related as Ma � Mc, and consider the control
strategy Ca = (XCa , xCa0,Xa,Tn

Ca
, hn

Ca
) for Ma as given. Then there exists at least one refined control strategy Cc =

(XCc , xCc0,Xc,Tn
Cc
, hn

Cc
) as defined in Def. 4, which is an inhomogenous Markov process with

• state space XCc = XCa × Xa × Xc, with elements xCc = (xCa , xa, xc);

• initial state xCc0 = (xCa0, 0, 0);

• input variable xc ∈ Xc, namely the state variable of Mc;

• time-dependent stochastic kernels Tn
Cc

, defined as

T0
Cc

(dxCc |xCc0, xc(0)) = T0
Ca

(dxCa |xCa0, xa)Wπ(dxa|xc)δxc(0)(dxc) and

Tn
Cc

(dx′Cc
|xCc (n), xc(n)) = Tn

Ca
(dx′Ca

|xCa , xa
′)WT(dxa

′|xc
′, hn

Ca
(xCa), xc, xa)δxc(n)(dxc

′) for n ∈ [1,N];

• measurable output maps hn
Cc

(xCa , xa, xc) = Uv(hn
Ca

(xCa), xa, xc).

since Borel measurable maps are universally measurable and the latter are closed under composition [41, Chapter
7].

Example 7 (Conditional stochastic kernel). Let us give an example for which it is possible to use elementary compu-
tations to get the conditional kernels. Consider an interface uv : Ua × Xa × Xc → Ua and let WT(· | ua, xa, xc) be the
corresponding lifted transition kernel, which is based on an auxiliary shared noise input e taking values in Rmd for
models in (14), given as

WT(dxa
′ × dxc

′|ua, xa, xc) =

∫
e∈Rmd

δ fa(e)(dxa
′)δ fc(e)(dxc

′)N (de | 0, I) with
{

fa(e) = Aaxa + Baua + Fae
fc(e) = Acxc + Bcuv(ua, xa, xc) + Fce.

Notice that fa(e) and fc(e) are linear transformations that yield, respectively, xa
′ and xc

′ based on the shared noise e.
The conditional kernel Tc(dxc

′|xc, uv(ua, xa, xc)) is equal to
∫

e∈Rmd
δ fc(e)(dxc

′)N (de | 0, I). To obtain WT(dxa
′|xc
′, ua, xa, xc),

we need to obtain a distribution that is a function of xc
′ instead of e. Assume that Fc has full column rank, then we

can compute its left inverse as Fc
+ = (Fc

T Fc)−1Fc
T for which Fc

+Fc = I. As such we can define the function inverse
fc−1(·) : Xc → Rmd given as fc−1(xc

′) = Fc
+(xc

′ − Acxc − Bcuv(ua, xa, xc)). Denoting3 with (fa ◦ fc−1) the composition

3Following notational standards, (fa ◦ fc−1)(xc
′) = fa(fc−1(xc

′)) = Aa xa + Baua + FaFc
+(xc

′ − Ac xc − Bcuv(ua, xa, xc)).

21

/ Performance Evaluation 00 (2017) 1–33 22

with fa, this yields a mapping from xc
′ to xa

′. We now have as conditional kernel

WT(dxa
′|xc
′, ua, xa, xc) = δ(fa◦ fc−1)(xc

′)(dxa
′), (36)

practically this means that the next state of the abstract model can be computed deterministically as a linear function
of the next state of the concrete model using the function (fa ◦ fc−1), which is implicitly also a function of ua, xa, xc.
Based on (36), we can now compute the time-dependent stochastic kernels as defined in Theorem 8:

Tn
Cc

(dx′Cc
|xCc (n), xc(n)) = Tn

Ca
(dx′Ca

|xCa , xa
′)δ(fa◦ fc−1)(xc

′)(dxa
′)δxc(n)(dxc

′) for n ∈ [1,N]. (37)

By the above construction of Ca, traces in the output spaces of the closed loop systems Ca ×Ma and Cc ×Mc have
equal distributions, thus it follows that measurable events have equal probability, as stated next.

Theorem 9. If Ma � Mc, then for all control strategies Ca there exists a control strategy Cc such that, for all
measurable events A ∈ B

(
YN+1

)
,

PCa×Ma ({ya(n)}0:N ∈ A) = PCc×Mc ({yc(n)}0:N ∈ A) ,

with respective output traces {ya(n)}0:N and {yc(n)}0:N of Ca ×Ma and Cc ×Mc.

Theorem 10. If Ma �
δ
ε Mc, then for all control strategies Ca there exists a control strategy Cc such that, for all

measurable events A ⊂ YN+1

PCa×Ma

(
{ya(n)}0:N∈A−ε

)
− γ ≤ PCc×Mc

(
{yc(n)}0:N∈A

)
≤ PCa×Ma

(
{ya(n)}0:N∈Aε

)
+ γ,

with constant 1 − γ = (1 − δ)N+1, and with the ε-expansion of A defined as

Aε =
{
{yε(n)}0:N |∃{y(n)}0:N ∈ A : maxn∈[0,N] dY(yε(n), y(n)) ≤ ε

}
and similarly the ε-contraction defined as A−ε = {{y(n)}0:N |{{y(n)}0:N}ε ⊂ A}, where {{y(n)}0:N}ε is the point-wise
ε-expansion of {y(n)}0:N .

While the details of the proof can be found in [30] its key aspect is the existence of a refined control strategy Cc,
which we detail next. Given a control strategy Ca over the time horizon n ∈ {0, . . . ,N}, we denote control strategies
that refine Ca over Mc as Cc. For δ > 0 the control strategy that refines Ca for a given interface is non-unique, as
argued next. The approximate refinement procedure starts exactly as the exact refinement one, and follows the same
execution. This gives again combined state transitions (xa, xc) → (xa

′, xc
′), but now there is a probability (bounded

by δ) that (xa
′, xc

′) < R. When (xa, xc) < R the subsequent control strategy can no longer be certified based on Ca.
Once (xa

′, xc
′) < R we refer to the controls as being in “recovery stage”. Since the latter is of no importance for the

refinement, the control strategy that refines Ca is non-unique.
The control strategy is given in Algorithm 5. Whilst the state (xa, xc) of Cc is in R, the control refinement from Ca

(cf. Alg.5 line 4-9) follows the same steps as the exact case in Algorithm 4. Hence, similar to the control refinement
for exact probabilistic simulations, the basic ingredients of Cc are the states xa and xc, whose stochastic transition to
the pair (xa

′, xc
′) is governed firstly by a point distribution δxc(n)(dxc

′) based on the measured state xc(n) of Mc; and,
subsequently, by the lifted probability measure WT(dxa

′ | xc
′, ua, xc, xa), conditioned on xc

′.
On the other hand, whenever the state (xa, xc) leaves R the control chosen by strategy Ca cannot be refined to Mc:

instead, an alternative control strategy Crec has to be used to control the residual trajectory of Mc. The choice is of no
importance to the result in Theorem 10. This recovery stage of the execution (cf. Alg. 5 line 11-15) makes the overall
control strategy Cc non-unique.

By splitting the execution in Algorithm 5 into a control strategy and a gMDP Mc, we can again obtain the refined
control strategy.

Theorem 11 (Refined control strategy). Let gMDP Ma and Mc, with Ma �
δ
ε Mc, and control strategy Ca =

(XCa , xCa0,Xa,Tn
Ca
, hn

Ca
) for Ma be given. Then for any given recovery control strategy Crec, a refined control

22

/ Performance Evaluation 00 (2017) 1–33 23

Algorithm 5 (ε, δ)-Refinement of control strategy Ca as Cc

Input: ◦ the interface functionUv,
◦ the relation R,
◦ the stochastic kernels

WT(dxa
′|xc
′, ua, xa, xc) and Wπ(dxa(0)|xc(0)),

◦ the control strategy Ca, and {Control strategy}
◦ the chosen recovery strategy Crec. {Recovery strategy}

Execute:
1: set n = 0 {Start}
2: draw xc(0) from πc

3: draw xa(0) from Wπ(· | xc(0))
4: while (xa(n), xc(n)) ∈ R do {Refine}
5: given xa(n), select ua(n) from Ca,
6: set input µcn = Uv(ua(n), xa(n), xc(n)),
7: draw xc(n + 1) from Tc(· | xc(n), µcn),
8: draw xa(n + 1) from WT(· |xc(n + 1), ua(n), xa(n), xc(n)),
9: set n = n + 1

10: end while
11: loop {Recover}
12: given xc(n), select µn (from Crec),
13: draw xc(n + 1) from Tc(· | xc(n), µn),
14: set n = n + 1
15: end loop

strategy, denoted as
Cc = (XCc , xCc0,Xc,Tn

Cc
, hn

Cc
),

can be obtained as an inhomogeneous Markov process whose modes of operation can be categorised as {refinement}
and {recovery}, based on Algorithm 5.

Example 8. In this example we use the second M̃2 and fourth M̃4 models , for which we have computed the approxi-
mate similarity relation in (32), with the respective interface uv as given in (33). To clarify the control refinement step,
we take a trivial control strategy that applies a constant input to M̃2 (cf. Example 3.a with C22◦C) and we refine it to
M̃4 as a strategy denoted with Cr22◦C . We first compute the conditional stochastic kernel as in (36),

WT(dx′s2
|x′s4

, us2 , xs2 , xs4) = δ(fs2◦ fs4
−1)(x′s4)(dx′s2

), (38)

where fs2 ◦ f −1
s4

= As2 xs2 + Bs2 us2 + Fs2 F+
s4

(x′s4
− As4 xs4 − Bs4 uv(us2 , xs2 , xs4)) and F+

s4
= (FT

s4
Fs4)−1FT

s4
for which

F+
s4

Fs4 = I. Thus, WT is a deterministic function given by fs2 ◦ f −1
s4

based on the signals x′s4
, us2 , xs2 , xs4 .

This allows us to compute the time-dependent conditional kernels of the strategy refinement for n ∈ [1,N] as

Tn
Cr22 ◦C

(dx′Cr22 ◦C
|xCr22 ◦C (n), xs4 (n)) = Tn

C22 ◦C
(dx′C22 ◦C

|xC22 ◦C , x
′
s2

)WT(dx′s2
|x′s4

, us2 , xs2 , xs4)δxs4 (n)(dx′s4
). (39)

Since the chosen controller is trivially simple with a single auxiliary state, and since the conditional kernel (39) is

23

/ Performance Evaluation 00 (2017) 1–33 24

given as a Dirac distribution, it follows that we can define the state updates as a deterministic mapping:

xC22 ◦C (n + 1) = q1, (40)
xs2 (n + 1) = As2 xs2 (n) + Bs2 us2 (n) + Fs2 F+

s4

(
xs4 (n + 1) − As4 xs4 (n) − Bs4 us4 (n)

)
, (41)

xs4 (n + 1) = As4 xs4 (n) + Bs2 us4 (n) + Fs4 e(n). (42)

The output mapping of the refined control strategy is then defined as,

hn
Cr22 ◦C

(xC22 ◦C , xs2 , xs4) = uv(hn
C22 ◦C

(xC22 ◦C), xs2 , xs4), (43)

where hn
C22 ◦C

denotes the input action from the original strategy which corresponds to input us2 = 22 ◦C at every time
step, and uv corresponds to the interface between M̃4 and M̃2 given by (33). Consequently, we can update (42) to,

xs4 (n + 1) = As4 xs4 (n) + Bs2 (Rus2 + Qxs2 + K(xs4 − Pxs2)) + Fs4 e(n). (44)

We can further show that the strategy Cr22 ◦C is a refinement of C22 ◦C: substituting (42) into (41) we get,

xs2 (n + 1) = As2 xs2 (n) + Bs2 us2 (n) + Fs2 F+
s4

(Fs4)e(n), (45)

which corresponds to the original state equation of M̃2. Thus, while M̃2 is controlled with C22 ◦C , M̃4 evolves accord-
ing to (44), which corresponds to having the control input given by Cr22 ◦C .

This refinement strategy is not unique (cf. Theorem 11). We define a recovery policy Crec that corresponds to a
constant us4 (n) := 21 ◦C, ∀n ∈ [0,∞), in a similar way to Cr22 ◦C . In this case, the conditional kernel is also given by
(39) which once again is given as a Dirac distribution and the state updates can be represented using (41) and (42)
with us4 (n) = 21 ◦C, ∀n ∈ [n,∞). The resulting control strategy is then defined as inhomogeneous Markov process
with two operating modes corresponding to {refinement} and {recovery},

Cr22 ◦C = (XCr22 ◦C , xCr22 ◦C0,Xs4 ,Tn
Cr22 ◦C

, hn
Cr22 ◦C

)

where XCr22 ◦C is the state space with elements xCr22 ◦C = (xC22 ◦C , xs2 , xs4), xCr22 ◦C0 = (xs2 (0), 0, 0) is the initial state and
input variable xs4 ∈ Xs4 . During the {refinement} mode T n

Cr22 ◦C
and hn

Cr22 ◦C
correspond to (44) and (43) respectively,

while during the {recovery} mode, T n
Cr22 ◦C

corresponds to (42) and hn
Cr22 ◦C

is set to us4 = 21 ◦C.
We further highlight the computation of Cr22 ◦C by executing Algorithm 5 over a time horizon N := 60, using

the pair ε := 0.1761 and δ := 10−2 obtained from Table 1. We further make use of an initial distribution of M̃4

as πs4 = δxs4 (0) where xs4 (0) =
[
20 20 20 20

]T
. The algorithm proceeds by computing (44) and (41) using the

interface function defined by (33) for every time step that the relation given by (32) with ε := 0.1761 and δ := 10−2

is satisfied, else it makes use of the recovery strategy Cre f . For this example, the relation was always satisfied and the
resulting time evolution of M̃4 and M̃2 are shown in Figure 8.

5 10 15 20 25 30 35 40 45 50 55 60
20

20.5

21

21.5

22

Time (n)

Te
m

pe
ra

tu
re
◦
C

M̃4

M̃2

Figure 8: Output trajectories of ys4 and ys2 over time horizon (N = 60) generated during the first run.

24

/ Performance Evaluation 00 (2017) 1–33 25

Remark 9. Algorithm 5 can be extended to attain a quantitative answer on the question whether Ma is an approxima-
tion of Mc, through the application of the transitivity properties of �δε, as presented in [30]. If we consider three gMDP
Mi, i = a, b, c, defined by tuples (Xi, πi,Ti,Ui, hi,Y) and if Ma is (εa, δa)-stochastically simulated by Mb, and Mb is
(εb, δb)-stochastically simulated by Mc, then Ma is (εa + εb), (δa + δb)-stochastically simulated by Mc. Equivalently,
if Ma �

δa
εa Mb and Mb �

δb
εb Mc, then Ma �

δa+δb
εa+εb

Mc.

6. Case study

This section discusses a simple example that makes use of the inbuilt thermal modelling library (cf. Section
3) and generates certified policies via approximate simulation relations. We consider pairs of concrete and reduced
order models: (M̃7, M̃4), (M̃7, M̃3), (M̃7, M̃2), (M̃7, M̃1) and we will index all the model pairs using i = 4, . . . , 1
respectively (corresponding to the model order of the abstract model in the pair). We repeat the process of computing
the (ε, δ)-relations for each pair of models, and obtain the model pair that provides the best (ε, δ) trade-off. In other
words, we identify the abstract model that simulates the seventh-order concrete model with the best guarantees. For
the identified model pair, we then synthesise and refine policies that attain the following specification over the concrete
model: to maximise the probability that the deviation of the inner air temperature in room 1 stays within a 0.5 degrees
difference from the nominal temperature, over a 45 minute time horizon. This corresponds to the following PCTL
property: ψ = P≥p

[
�≤N=9|y| ≤ 0.5

]
, for which we want to maximise the probability of staying in this safe set (the

models have a 5-minute sampling time, thus N = 9).

Computation of (ε, δ) relation for pairs of models. The model pairs are first transformed using (30), with input uss

chosen so that a steady-state temperature of T1 = 20 ◦C is achieved by all the models. This transformation aligns the
models to (14) and thus can be used within the framework developed in Section 4.3. We further restrict the input set
with an upper bound cd = 1

30 that ensures an absolute deviation of 1 ◦C. The (ε, δ)-approximate simulation relations
are computed by first solving the Sylvester equations using Algorithm 3, to obtain the design matrices P, Q, R and
then for a given interface gain matrix K. Algorithm 2 is then applied over a range of logarithmically spaced points
δ ∈ [0.001, 1] and the corresponding ε values are computed. This follows the same procedure in Example 6.

This process is repeated for all the model pairs, and we list the resulting optimised matrices Ri, Qi, Ki, Pi, Mi, i =

4, . . . , 1 below. Note that, since Algorithm 2 optimises matrix M for each δ value, we present the optimal matrix Mi

for δ = 10−2.
For M̃4 we select R4 = 1.00004 and we obtain,

Q4 = [−0.03 −0.0298 −0.0298 −0.0005], K4 = [−0.0122 −0.0122 −0.0122 −1.72e−6 1.5e−6 −4.6709 −0.0004],

P4 =


−0.0859 1.0747 0.0128 7.27e−6
−0.2268 1.2269 −4.6e−10 7.27e−6
1.6614 −0.9542 1.3344 1.39e−5
2.3362 −1.3473 0.0128 7.54e−6
−2.6488 3.6489 −1.75e−9 7.54e−6

0 0 0 1
2.82e−9 1.11e−8 6.33e−9 1

, M4 =


0.2783 −0.4785 0.2074 −0.2831 0.0256 −0.0276 −0.0014
−0.4785 0.8586 −0.4024 0.4887 −0.0459 0.0487 0.0055
0.2074 −0.4024 0.2141 −0.2126 0.0215 −0.0558 −0.0053
−0.2831 0.4887 −0.2126 0.2915 −0.0262 0.0237 0.0016
0.0256 −0.0459 0.0215 −0.0262 0.0025 −0.0030 −0.0003
−0.0276 0.0487 −0.0558 0.0237 −0.0030 2.7883 0.0512
−0.0014 0.0055 −0.0053 0.0016 −0.0003 0.0512 0.0149

.
For M̃3 we take R3 = 1.0001 and we obtain,

Q3 = [−0.6156 0.4546 0.0794], K3 = [−0.0123 −0.0123 −0.0123 −9.62e−7 9.61e−7 −4.7432 −0.0004],

P3 =


−1.8110 2.8118 0.0001
−2.9031 3.9039 0.0001
12.8787 −11.0053 −0.0002
14.0926 −13.0960 −0.0003
−18.8129 19.8095 −0.0003

0 0 1.0000
−2.02e−5 −6.61e−6 0.9999

, M3 =


0.1682 −0.3194 0.1330 −0.1704 0.0171 −0.0246 −0.0016
−0.3194 0.6103 −0.2592 0.3266 −0.0327 0.0274 0.0034
0.1330 −0.2592 0.1704 −0.1358 0.0138 −0.0502 −0.0051
−0.1704 0.3266 −0.1358 0.1759 −0.0175 0.0211 0.0018
0.0171 −0.0327 0.0138 −0.0175 0.0018 −0.0017 −0.0002
−0.0246 0.0274 −0.0502 0.0211 −0.0017 2.2569 0.0407
−0.0016 0.0034 −0.0051 0.0018 −0.0002 0.0407 0.0129

.
For M̃2 we select R2 = 1.0006 and we obtain,

Q2 = [−0.2478 0.1592], K2 = [−0.0121 −0.0121 −0.0121 −1.43e−6 −9.70e−7 −4.6464 −0.00042],

P2 =


1.0019 0.00017
1.0019 0.00017
1.8802 0.00034
1.0026 0.0002
1.00455 0.0004

0 1
1.06e−5 1

, M2 =


0.5698 −0.7188 0.36372 −0.5789 0.0385 0.0489 0.0028
−0.7188 1.2768 −0.6480 0.7324 −0.0682 0.0851 0.0105
0.3637 −0.6480 0.3310 −0.3742 0.0346 −0.0733 −0.0060
−0.5789 0.73244 −0.3742 0.5957 −0.0392 −0.05465 −0.0022
0.0385 −0.0682 0.03462 −0.0392 0.0036 −0.0049 −0.00059
0.0489 0.0851 −0.0733 −0.0546 −0.0049 4.9291 0.0843
0.0028 0.0105 −0.0060 −0.0022 −0.00059 0.0843 0.021

.
25

/ Performance Evaluation 00 (2017) 1–33 26

For M̃1 we take R1 = 0.9312 and we obtain,

Q1 = [0.1980], K1 = [−0.0126 −0.0126 −0.0126 −9.86e−7 1.07e−7 −4.8557 −0.0004],

P1 =


−0.0879
−0.0879
−0.1649
−0.0879
−0.0879
1.0000
0.9999

, M1 =


0.0792 −0.0806 0.0683 −0.0814 0.0044 −0.0053 −3.66e−5
−0.0806 0.1346 −0.0726 0.0810 −0.0072 0.0077 0.0007
0.0683 −0.0726 0.0632 −0.0709 0.0039 −0.0064 −0.0006
−0.0814 0.0810 −0.0709 0.0845 −0.0044 0.0035 −0.0001
0.0044 −0.0072 0.0039 −0.0044 0.0004 −0.0004 −0.0002
−0.0053 0.0077 −0.0064 0.0035 −0.0004 1.0256 0.0274
−3.66e−5 0.0007 −0.0006 −0.0001 −0.0002 0.0274 0.0475

.
Remark 10. From the resulting projection matrices Pi, i = 4, . . . 1, a relation between the different levels of abstrac-
tions is deduced. We note that there is coupling between walls w2 and w3, w4 and w6. This is expected as these walls
are physically connected to each other (cf. Figure 3). From P4, it can be seen that the states Tw2 and Tw6 play a larger
role in the wall dynamics than Tw7 and thus for a lower-order model Tw7 can be ignored. This directly corresponds to
the realistic assumption taken to construct M̃3 from M̃4. Similarly, from P3 one can note that Tw2 plays a larger role
than Tw6 and thus a possible abstraction step is to ignore the dynamics of Tw6.

From the computed reduced-order models, we obtain the resulting trade-off for parameters (ε, δ) in the simulation
relation. These are listed in Table 3. Note that with decreasing model order, ε increases: this is due to the assumptions
taken to construct the different levels of abstractions (cf. Section 3). For instance, recall that to construct the third order
model from the second order model, we assume that the inner walls between the two zones have similar temperature.
This assumption reduces the model complexity but consequently increases the output deviation, as witnessed from the
obtained ε values. Furthermore, for increasing values of δ, ε decreases to a positive lower bound which is a function
of the bounded input set.

δ 1 10
−1
3 10

−2
3 10−1 10

−4
3 10

−5
3 10−2 10

−7
3 10

−8
3 10−3

M̃4 0.0002 0.0993 0.1126 0.1200 0.1295 0.1384 0.1463 0.1536 0.1604 0.1668
M̃3 0.0001 0.1094 0.1035 0.1153 0.1251 0.1337 0.1413 0.1484 0.1550 0.1611
M̃2 0.0001 0.1403 0.1418 0.1580 0.1712 0.1833 0.1939 0.2032 0.21222 0.2206
M̃1 0.0006 0.1461 0.1727 0.1924 0.2086 0.2227 0.2358 0.2475 0.2585 0.2688

Table 3: Trade-off between (ε, δ) for concrete (M̃7) and abstract model pairs (M̃i, i = 4, . . . 1).

We are interested to select a low-order model that introduces the least errors in the specification and is com-
putationally feasible. Based on these outcomes we proceed with the pair (M̃7, M̃2) and choose the parameters pair
(ε, δ) = (0.1939, 10−2). The resulting relation and interface functions are described as

R =
{
(x̂, x̂s2) | (x̂ − Px̂s2)T M2(x̂ − Px̂s2) ≤ (0.1939)2

}
and û = uv(ûs2 , x̂s2 , x̂) = Rûs + Qx̂s + K(x̂ − Px̂s2), (46)

where x̂ = x − xss, x̂s2 = xs2 − xs2ss
and û = u − uss, ûs2 = us2 − us2ss

.

Controller synthesis for M̃2. We set the safety property to ψ = P≥p

[
�≤N=9|y| ≤ 0.5

]
for the concrete model. For the

abstract model we modify it as follows: ψ(ε,δ) = P≥p+γ

[
�≤N=9|y| < 0.5 − ε

]
= P≥p+0.09

[
�≤N=9|y| ≤ 0.30615

]
. Here γ

gives the accumulation of the error in probability over the time horizon of interest, and is obtained from 1−γ = (1−δ)9

then γ ≤ 9δ. Note that y is replaced with the computation of ytr by using (30). This is done since we are only interested
in computing the deviations in fluctuations from the nominal zone temperature yss. Policy synthesis is performed by
employing algorithms in FAUST2 [17], which convert the gMDPs into finite-action models, grid the state space and
discretise the input space within specific precision. This precision is computed using the technique presented in [30,
Appendix B.1.1] and ensures that the required minimal quantisation error is achieved. Subsequently, a stochastic
dynamic programming scheme is set up such that the final value function provides the maximal probability p for the
specification ψ(ε,δ). This grid-based computation of the safety probability over the nine times steps of the formula
leads to a model of size of 9.4 × 107 and to an overall accuracy of 0.15. Over this approximation, we compute the
optimal policy µ(ε,δ). This results in ψ(ε,δ) being satisfied with a probability of at least 0.99913− 0.15= 0.84913 for the

26

/ Performance Evaluation 00 (2017) 1–33 27

reduced order model M̃2 initialised at origin (zero fluctuation in air temperature in the room). 4

Controller refinement for M̃7. The resulting policy µ(ε,δ) is refined back to µ by employing Algorithm 5 such that ψ is
satisfied by the concrete model, in a similar way to the procedure presented in Example 8. The algorithm makes use
of the designed relation and interface functions given in (46) and the conditional stochastic kernel given as,

Tn
µ(dx′µ(ε,δ)

|xµ(n), xs7 (n)) = Tn
µ(ε,δ)

(dx′µ(ε,δ)
|xµ(ε,δ) , x

′
s2

)WT(dx′s2
|x′s7

, us2 , xs2 , xs7) for n ∈ [1, 9],

to compute the new strategy µ with WT(dx′s2
|x′s7

, us2 , xs2 , xs7) computed using (36). This results in the safety probabil-
ity for M̃7, initialised at the origin, being satisfied with a lower bounded probability of p = (0.99913 − 0.15 − 0.09) =

0.75913 with the inner air temperature fluctuations remaining in the bound between [−0.5, 0.5]. This is according to
Theorem 10.

6.1. Experiments
We show the advantages of employing the developed framework over the current state of the art where certi-

fied policies for complex models are synthesised directly. We make use of the software tool FAUST2 [17] to syn-
thesise the optimal policy that satisfies the specification ψ := P≥p−0.15

[
�≤N=4|y| ≤ 0.5

]
, directly on all the models

(M̃7, M̃4, M̃3, M̃2), while we make use of the developed framework to synthesise and refine the policies for the same
set of models. For our framework, we compute the policies using the following pair of models (M̃7, M̃2), (M̃4, M̃2),
(M̃3, M̃2), (M̃2, M̃1) and the refined policies must satisfy the following specification,ψ := P≥p+4δ−0.15

[
�≤N=4|y| ≤ 0.5

]
.

The policies for the abstract models are also computed using FAUST2. In both cases, the abstraction procedure per-
formed within FAUST2 introduces an error of 0.15 in the overall accuracy of the achieved probability of satisfying
ψ. All the policies are computed using an Intel(R) Core(TM) i7-4702HQ CPU running at 2.20GHz with 16GB of
RAM. We record the total time taken to compute the policies, in seconds, the amount of memory required to store the
gridded state-space and the probability of satisfiability of ψ when using the directly synthesised policy or the refined
policy. The results are shown in Table 4. One should note that when using FAUST2 directly, one needs to tighten the
bounds of the state-space such that the gridding of the underlying model is of sufficiently small size which allows the
synthesis procedure to be performed. This however comes at the expense of the overall probability of satisfying the
specification ψ (cf. Table 4). For M̃7 the policy could not be computed directly due to large memory usage required:
this highlights the advantages of using the developed framework where policies for higher complex order models can
be achieved with good certificates.

Model Order of M̃c Method Time taken Memory p
7 Refinement, M̃2, (ε, δ) = (0.1939, 0.01) 279.0 9773664 0.802
4 Refinement, M̃2, (ε, δ) = (0.1761, 0.01) 145.8 3703425 0.809
3 Refinement, M̃2, (ε, δ) = (0.0503, 0.01) 157.8 3849772 0.810
2 Refinement, M̃1, (ε, δ) = (0.0470, 0.01) 175.2 4003725 0.809
7 Directly - - -
4 Directly 999.0 9148370 0.505
3 Directly 874.8 8136942 0.602
2 Directly 155.4 4764384 0.844

Table 4: Comparison between computing the policies directly using the high order model vs computing the refined policies using the developed
framework.

Next, we further show the effect of varying the time horizon N of the specification ψ on the total time taken to
compute the policy. We run the experiments using the pair of models (M̃4, M̃2) and synthesise the refined policy
which satisfies the specification ψ = P≥p+Nδ−0.15

[
�≤N |y| ≤ 0.5

]
. For this case we have, (ε, δ) = (0.1761, 0.01). We

depict the total time to synthesise policies for a varying maximum time horizon in Figure 9, from which it can be seen
that it follows an exponential curve.

4The 0.15 error is being introduced due to the gridding in FAUST2.
27

/ Performance Evaluation 00 (2017) 1–33 28

1 2 3 4 5 6 7 8 9 10
0

500

1,000

Max time horizon of property (N)

E
la

ps
ed

Ti
m

e
(s

ec
s)

Figure 9: Total time take to synthesise policies as a function of the maximum time horizon considered.

7. Computational implementation

In this section, we introduce a software toolbox for certified policy synthesis, which supports the previously
introduced algorithms to compute (ε, δ)-simulation relations (cf. Subsection 4.3), as well as to synthesise refinement
strategies for models in the form of (5) (cf. Section 5). The toolbox is implemented in MATLAB and its user
interaction is enhanced by a GUI displayed in Figures 10a - 10c. It provides flexibility of synthesising and refining
policies for (i) models defined by the user where both the concrete and abstract models are known, (ii) models defined
by the user where only the concrete model is known and the abstract model is generated by the toolbox using balancing
truncation techniques and (iii) the provided library of models. It also provides the option for the user to input a control
policy and refine the policy based on the input interface function and initial conditions.

Constructing models using the toolbox. The first tab, shown in Figure 10a, sets up the models, the concrete (Mc) and
abstract (Ma) models, that will be used for synthesising and refining policies. The user has the option of defining
models by either making use of

1. the available library of models, each having one control input representing the supply temperature from the
HVAC system T f s1 (cf. Section 3);

2. or defining concrete and abstract models, entered in the form of corresponding structures stored in a “.mat” file;
3. or defining a concrete model and an order for the abstract model. The corresponding abstract model is con-

structed using the Matlab balred function, which applies a balance reduction algorithm to obtain a lower-
order model.

All user-defined models should be of the form given by (5) with one control input, where the input disturbance
signals d(n) are described using i.i.d. Gaussian distributions with the mean and covariance of the signals also being
supplied to the toolbox. Furthermore, the nominal input should be also supplied by the users. The toolbox normalises
and transforms the models to adhere to (14): this allows for the application of the algorithms developed in Section
4.3. It also simulates the models response, when subjected to a unit-step input.

Computing (ε, δ)-relations using toolbox. The second tab (cf. Figure 10b) performs the computation of the (ε, δ)-
approximate simulation relations which are used to establish the relationship Ma �

δ
ε Mc. In this step, the models

are converted into the equivalent gMDP (cf. Subsection 3.3) and the simulation relations are computed using the
optimisation procedure presented in Section 4.3 and highlighted in the case study (cf. Section 6). Algorithms 2 and 3
are solved using CVX, a package for specifying and solving convex programs [51, 53]. In Algorithm 2, the value of cd

is computed using the Matlab function chi2inv, while in Algorithm 3 the Matlab dare function is used to compute
the initial estimates of th M matrix. The ε values are computed over logarithmically spaced points δ ∈ [0.001, 1] with
a bounded input set U = {ua ∈ R| |ua|≤ cd}, where cd is user-defined. The toolbox presents the resulting values in the
form of a table and a corresponding figure, from which the optimal trade-off between (ε, δ) is selected.

28

/ Performance Evaluation 00 (2017) 1–33 29

(a) Certified policy synthesis toolbox: models are set up either
from the given library, or can be manually entered.

(b) Certified policy synthesis toolbox: computation of simulation
relations for the given models.

(c) Certified policy synthesis toolbox: synthesis and refinement of
the control strategy.

(d) Certified policy synthesis toolbox: computation of (ε, δ) refine-
ment of user control policy C1, with user-definedUv and R.

Synthesising and refining certified policies using toolbox. This step is performed using the third tab, shown in Figure
10c. The optimal policy µ for a time bounded safety specification having the form (1) is synthesised. The policy is
computed based on the previously selected (ε, δ) pair from which the policy µ(ε,δ) for the abstract model is synthesised
by employing techniques from FAUST2 [17], following the same technique presented in the case study (cf. Section
6). Furthermore, we optimise the algorithms in FAUST2 to use less memory by decoupling noise through a state
transform. This allows for storing the discretised probability transitions in a structured and efficient manner. We make
use of the Multi-Parametric Toolbox 3 [56] to define polyhedrons representing the transformed state spaces of the
abstract model and find the minimum and maximum bounds over which the state space is defined. We proceed by first
discretising the input and the state space based on the corresponding bounds. Second, we obtain the stochastic transi-
tions along each of the dimensions. Third, we obtain the deterministic transitions and convert the large deterministic
transitions matrix into a sparse matrix using the Matlab function sparse. Next, we compute the optimal strategy
by solving a stochastic dynamic programming problem for the abstract model. This policy is further refined to µ by
using the procedure presented in Example 8. During this refinement step, Algorithm 5 is executed. This employs the
developed interface given by (17), the relation described by (16), the conditional kernel computed using (36) and the
time-dependent stochastic kernel defined as (37). The design matrices P, K, Q, M for uv and R are computed within
the computation of (ε, δ)-relations in the second tab using Algorithms 2 and 3.

(ε, δ)-refinement for given policy using toolbox. In the fourth tab, the toolbox presents the option to compute the (ε, δ)-
refinement of a user input control strategy C1 (cf. Figure 10d). This tab executes Algorithm 5, in a similar manner

29

/ Performance Evaluation 00 (2017) 1–33 30

to the procedure presented in Example 8 over a finite time horizon N. The inputs to the algorithm are specified by
the user and represent the control interface uv, the corresponding relation R with the selected ε value, the stochastic
kernel WT having a lower bound of 1 − δ, the original control policy C1, and the recovery policy Crec. The (ε, δ) pair
are obtained from the previously computed pair in the second tab. This tab gives further flexibility to the toolbox since
the abstract policies can be generated, using any software tool and for this policy, the toolbox provides the option to
perform policy refinement such that it can be used on more complex models.

In all tabs within the toolbox, a “Running Status” field is present and serves as user feedback that indicates that
computations are running or in case of errors what steps must be taken by the user to resolve them.

8. Conclusion

In this work, we have discussed methods for reasoning about levels of abstractions with guarantees. The guarantees
are formulated in the form of (ε, δ)-approximate simulation relations. Such relations transfer the controller synthesis
task from complex models to simpler models, and guarantees are asserted on the refinement of the control policy over
the complex models. The concepts have been illustrated via a toolbox and a library of thermal models for a building
automation system setup.

We plan to extend the framework, together with the toolbox, to more complex models. The toolbox is a first step
in facilitating the use and application of the devised framework to large and complex models. Second, we want to
extend the developed toolbox so that controller synthesis and refinement for more general properties in the form of
pLTL and PCTL properties can be performed. This will include integrating the toolbox with TULip [57] which is
able to synthesise properties for a subset of pLTL specifications. TULip has been developed only for deterministic
models, thus further work needs to be done to extend the computation of simulation relations to non-deterministic
models.

Acknowledgements

This work has been funded by the European Commission in the Seventh Framework Programme project AMBI
(Grant Agreement no. 324432). This work is in part supported by the Alan Turing Institute, London, UK and Malta’s
ENDEAVOUR Scholarships Scheme.

References

[1] European Parliament and Council of the European Union, Directive 2010/31/EU (2010).
[2] US Department of Energy, Office of Energy Efficiency and Renewable Energy, Energy efficiency trends in residential and commercial

buildings (2010).
[3] F. Bernier, J. Ploennigs, D. Pesch, S. Lesecq, T. Basten, M. Boubekeur, D. Denteneer, F. Oltmanns, F. Bonnard, M. Lehmann, et al., Architec-

ture for self-organizing, co-operative and robust building automation systems, in: Industrial Electronics Society, IECON 2013-39th Annual
Conference of the IEEE, IEEE, 2013, pp. 7708–7713.

[4] A. Nagy, A. Bratukhin, T. Sauter, Efficient thermal modeling for distributed energy management in industrial buildings, in: Systems Confer-
ence (SysCon), 2015 9th Annual IEEE International, 2015, pp. 309–316.

[5] D. Sturzenegger, D. Gyalistras, M. Morari, R. S. Smith, Model predictive climate control of a swiss office building: Implementation, results,
and cost–benefit analysis, IEEE Transactions on Control Systems Technology 24 (1) (2016) 1–12.

[6] N. Yu, S. Salakij, R. Chavez, S. Paolucci, M. Sen, P. Antsaklis, Model-based predictive control for building energy management: Part
ii–experimental validations, Energy and Buildings 146 (2017) 19–26.

[7] M. B. Rasheed, N. Javaid, A. Ahmad, M. Jamil, Z. A. Khan, U. Qasim, N. Alrajeh, Energy optimization in smart homes using customer
preference and dynamic pricing, Energies 9 (8) (2016) 593.

[8] D. Sturzenegger, D. Gyalistras, M. Morari, R. Smith, Model predictive climate control of a swiss office building: Implementation, results and
cost-benefit analysis, IEEE Transactions on Control Systems Technology 24 (1) (2016) 1–12.

[9] H. Harb, N. Boyanov, L. Hernandez, R. Streblow, D. Müller, Development and validation of grey-box models for forecasting the thermal
response of occupied buildings, Energy and Buildings 117 (2016) 199–207.

[10] M. Fiorentini, J. Wall, Z. Ma, J. H. Braslavsky, P. Cooper, Hybrid model predictive control of a residential {HVAC} system with on-site
thermal energy generation and storage, Applied Energy 187 (2017) 465 – 479.

[11] A. Parisio, M. Molinari, D. Varagnolo, K. Johansson, A scenario-based predictive control approach to building HVAC management systems,
in: Automation Science and Engineering (CASE), 2013 IEEE International Conference on, 2013, pp. 428–435.

[12] Z. Wu, Q. S. Jia, X. Guan, Optimal control of multiroom hvac system: An event-based approach, IEEE Transactions on Control Systems
Technology 24 (2) (2016) 662–669.

30

/ Performance Evaluation 00 (2017) 1–33 31

[13] K. Li, X. Wenping, C. Xu, H. Mao, A multiple model approach for predictive control of indoor thermal environment with high resolution,
Journal of Building Performance Simulation 4 (1) (2017) 1–15.

[14] T. V. Pham, D. H. Nguyen, D. Banjerdpongchai, Decentralized iterative learning control of building temperature control system, in: 2017
SICE International Symposium on Control Systems (SICE ISCS), 2017, pp. 1–7.

[15] T. Brázdil, K. Chatterjee, M. Chmelı́k, V. Forejt, J. Křetı́nský, M. Kwiatkowska, D. Parker, M. Ujma, Verification of Markov decision
processes using learning algorithms, in: Proceedings 12th International Symposium on Automated Technology for Verification and Analysis
(ATVA’14), Vol. 8837 of LNCS, Springer, 2014, pp. 98–114.

[16] O. Holub, K. Macek, HVAC simulation model for advanced diagnostics, in: Intelligent Signal Processing (WISP), 2013 IEEE 8th International
Symposium on, 2013, pp. 93–96.

[17] S. Esmaeil Zadeh Soudjani, C. Gevaerts, A. Abate, FAUST2: Formal abstractions of Uncountable-STate STochastic Processes, in: Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2015,
pp. 272–286.

[18] S. Haesaert, A. Abate, P. M. J. Van den Hof, Verification of general Markov decision processes by approximate similarity relations and policy
refinement, in: G. Agha, B. V. Houdt (Eds.), Quantitative Evaluation of Systems - 13th International Conference, QEST 2016, Quebec City,
QC, Canada, August 23-25, 2016, Proceedings, Vol. 9826 of Lecture Notes in Computer Science, Springer, 2016, pp. 227–243.

[19] A. A. Julius, G. J. Pappas, Approximations of stochastic hybrid systems, IEEE Transactions on Automatic Control 54 (6) (2009) 1193–1203.
[20] M. Zamani, P. M. Esfahani, R. Majumdar, A. Abate, J. Lygeros, Symbolic control of stochastic systems via approximately bisimilar finite

abstractions, IEEE Transactions on Automatic Control 59 (12) (2014) 3135–3150.
[21] J. Desharnais, V. Gupta, R. Jagadeesan, P. Panangaden, Metrics for labelled Markov processes, Theoretical Computer Science 318 (3) (2004)

323–354.
[22] S. Esmaeil Zadeh Soudjani, A. Abate, Adaptive and sequential gridding procedures for the abstraction and verification of stochastic processes,

SIAM Journal on Applied Dynamical Systems 12 (2) (2013) 921–956.
[23] S. Goyal, P.Barooah, A method for model-reduction of non-linear thermal dynamics of multi-zone buildings, Energy and Buildings 47 (2012)

332–340.
[24] M. Mossolly, K. Ghali, N. Ghaddar, Optimal control strategy for a multi-zone air conditioning system using a genetic algorithm, Energy

34 (1) (2009) 58–66.
[25] K. Deng, Model reduction of Markov chains with applications to building systems, Ph.D. thesis, University of Illinois at Urbana-Champaign

(2013).
[26] L. Zhao, W. Zhang, A stochastic hybrid system approach to aggregated load modeling for demand response, CoRR abs/1503.06911.
[27] U. Baur, P. Benner, L. Feng, Model order reduction for linear and nonlinear systems: A system-theoretic perspective, Archives of Computa-

tional Methods in Engineering 21 (4) (2014) 331–358.
[28] M. G. Safonov, R. Chiang, A schur method for balanced-truncation model reduction, IEEE Transactions on Automatic Control 34 (7) (1989)

729–733.
[29] S. Kung, D. Lin, Optimal hankel-norm model reductions: Multivariable systems, IEEE Transactions on Automatic Control 26 (4) (1981)

832–852. doi:10.1109/TAC.1981.1102736.
[30] S. Haesaert, S. Esmaeil Zadeh Soudjani, A. Abate, Verification of general Markov decision processes by approximate similarity relations and

policy refinement, CoRR abs/1605.09557.
URL http://arxiv.org/abs/1605.09557

[31] A. Girard, G. J. Pappas, Hierarchical control system design using approximate simulation, Automatica 45 (2) (2009) 566–571.
[32] M. Maasoumy, A. Pinto, A. Sangiovanni-Vincentelli, Model-based hierarchical optimal control design for HVAC systems, in: ASME 2011

Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, American Society of Mechan-
ical Engineers, 2011, pp. 271–278.

[33] P. Bacher, H. Madsen, Identifying Suitable Models for the Heat Dynamics of Buildings, Energy and Buildings 43 (7) (2011) 1511–1522.
[34] Y. Lin, T. Middelkoop, P. Barooah, Issues in identification of control-oriented thermal models of zones in multi-zone buildings, in: Decision

and Control (CDC), 2012 IEEE 51st Annual Conference on, 2012, pp. 6932–6937.
[35] M. Maasoumy, M. Razmara, M. Shahbakhti, A. Sangiovanni-Vincentelli, Handling Model Uncertainty in Model Predictive Control for Energy

Efficient Buildings, Energy and Buildings 77 (2014) 377–392.
[36] M. Maasoumy, A. Sangiovanni-Vincentelli, Total and peak energy consumption minimization of building HVAC systems using model pre-

dictive control, IEEE Design Test of Computers 29 (4) (2012) 26–35.
[37] S. Baldi, S. Yuan, P. Endel, O. Holub, Dual estimation: Constructing building energy models from data sampled at low rate, Applied Energy

169 (2016) 81–92.
[38] N. R. Kristensen, H. Madsen, S. B. Jørgensen, Parameter Estimation in Stochastic Grey-box Models, Automatica 40 (2) (2004) 225–237.
[39] K. Kalsi, M. Elizondo, J. Fuller, S. Lu, D. Chassin, Development and validation of aggregated models for thermostatic controlled loads with

demand response, in: System Science (HICSS), 2012 45th Hawaii International Conference on, IEEE, 2012, pp. 1959–1966.
[40] V. I. Bogachev, Measure theory, Springer Science & Business Media, 2007.
[41] D. Bertsekas, S. E. Shreve, Stochastic Optimal control : The discrete time case, Athena Scientific, 1996.
[42] S. P. Meyn, R. L. Tweedie, Markov chains and stochastic stability, Communications and Control Engineering Series, Springer-Verlag London

Ltd., 1993.
[43] O. Hernández-Lerma, J. B. Lasserre, Discrete-time Markov control processes, Vol. 30 of Applications of Mathematics (New York), Springer

Verlag, 1996.
[44] R. Segala, Modeling and verification of randomized distributed real-time systems, Ph.D. thesis, Massachusetts Institute of Technology (1995).
[45] R. Segala, N. Lynch, Probabilistic simulations for probabilistic processes, Nordic Journal of Computing.
[46] B. Jonsson, K. G. Larsen, Specification and refinement of probabilistic processes, in: Proceedings Sixth Annual IEEE Symposium on Logic

in Computer Science, 1991, pp. 266–277. doi:10.1109/LICS.1991.151651.
[47] H. J. Skala, The existence of probability measures with given marginals, Ann. Probab. 21 (1) (1993) 136–142.

31

/ Performance Evaluation 00 (2017) 1–33 32

[48] V. Strassen, The existence of probability measures with given marginals, Ann. Math. Statist. 36 (2) (1965) 423–439.
[49] C. Zhang, J. Pang, On probabilistic alternating simulations, in: C. Calude, V. Sassone (Eds.), Theoretical Computer Science, Vol. 323 of IFIP

Advances in Information and Communication Technology, Springer Berlin Heidelberg, 2010, pp. 71–85.
[50] P. Tabuada, Verification and control of hybrid systems, Springer US, 2009.
[51] M. Grant, S. Boyd, CVX: Matlab software for disciplined convex programming, version 2.1, http://cvxr.com/cvx (Mar. 2014).
[52] S. Boyd, L. Vandenberghe, Convex Optimization, CUP, Cambridge, 2004.
[53] M. Grant, S. Boyd, Graph implementations for nonsmooth convex programs, in: V. Blondel, S. Boyd, H. Kimura (Eds.), Recent Ad-

vances in Learning and Control, Lecture Notes in Control and Information Sciences, Springer-Verlag Limited, 2008, pp. 95–110, http:
//stanford.edu/˜boyd/graph_dcp.html.

[54] Y. Huang, W. Zhang, H. Zhang, Infinite horizon linear quadratic optimal control for discrete-time stochastic systems, Asian Journal of Control
10 (5) (2008) 608–615.

[55] V. S. Borkar, Probability theory: an advanced course, Springer Verlag, 2012.
[56] M. Herceg, M. Kvasnica, C. Jones, M. Morari, Multi-Parametric Toolbox 3.0, in: Proc. of the European Control Conference, Zürich, Switzer-

land, 2013, pp. 502–510.
[57] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, R. M. Murray, Tulip: a software toolbox for receding horizon temporal logic planning, in:

Proceedings of the 14th international conference on Hybrid systems: computation and control, ACM, 2011, pp. 313–314.

Appendix A. Details on the discrete-time models for building automation systems

We present the corresponding system matrices of the library of discrete time order models described in subsection
3.2. M̃7 is given by Equation (6) and is characterised by the following system matrices:

A =


0.9782 2.45e−6 2.45e−6 1.06e−12 1.06e−12 0.0107 9.34e−9

2.45e−6 0.9782 2.45e−6 1.06e−12 1.06e−12 0.0107 9.34e−9
2.14e−6 2.14e−6 0.9783 2.45e−6 2.45e−6 0.0093 0.0107
9.29e−13 9.29e−13 2.45e−6 0.9782 2.45e−6 8.18e−9 0.0107
9.29e−13 9.29e−13 2.45e−6 2.45e−6 0.9782 8.18e−9 0.0107
0.00041 0.00041 0.00041 3.57e−10 3.57e−10 0.8556 2.34e−6

3.13e−10 3.13e−10 0.00041 0.00041 0.00041 2.05e−6 0.8556

, B =


0.0008

2.84e−5
2.84e−5
5.33e−5
2.84e−5
2.84e−5
0.0047
0.0047

, C =
[
0 0 0 0 0 1 0

]
,

F =


1.52e−8 0.0101 8.06e−7 5.91e−11 4.58e−6 5.08e−10 −1.29e−9 −2.81e−14
0.0181 8.51e−9 8.06e−7 5.91e−11 4.58e−6 0.0006 −1.29e−9 −2.81e−14

2.97e−7 1.59e−8 7.06e−7 0.0001 1.16e−5 1.98e−10 −1.13e−9 −6.52e−8
2.83e−7 0.0101 3.04e−13 0.0001 7.64e−6 −2.47e−10 −4.90e−16 −6.52e−8
0.3381 8.51e−9 3.04e−13 0.0001 7.64e−6 −0.0002 −4.90e−16 −6.52e−8

3.87e−6 2.16e−6 0.0001 1.99e−8 0.0007 1.29e−7 −2.17e−7 −9.50e−12
7.21e−5 2.16e−6 1.029e−10 0.023 0.0012 −6.27e−8 −1.65e−13 −1.09e−5

 =
[

F1 F2 F3 F4 F5 F6 F7 F8

]
.

The fourth order models M̃4, given by Equation (7), is described using,

As4 =

[
0.9782 2.45e−6 2.45e−6 0.0107

2.45e−6 0.9782 2.45e−6 0.0107
2.14e−6 2.14e−6 0.9782 0.0093
0.00041 0.00041 0.00041 0.8556

]
, Bs4 =

 0.0008
2.84e−5
2.84e−5
2.49e−5
0.0047

, Cs4 =
[
0 0 0 1

]
,

Fs4 =

[1.52e−8 0.0101 8.06e−7 9.10e−9 4.58e−6 5.08e−10 −1.29e−9
0.0181 8.51e−9 8.00e−7 9.75e−9 4.08e−6 0.0006 −1.70e−9

1.33e−8 7.46e−9 7.06e−7 0.0115 4.02e−6 4.45e−10 −1.13e−9
3.87e−6 2.1=e−6 0.0001 2.46e−6 0.00077 1.29e−7 −2.17e−7

]
=

[
F1s4 F2s4 F3s4 F4s4 F5s4 F6s4 F7s4

]
.

M̃3 is given by Equation (8) and has,

As3 =

[
0.9782 2.45e−6 0.0107

2.45e−6 0.9782 0.0107
0.0004 0.0004 0.8559

]
, Bs3 =

[
0.0008

2.842e−5
2.842e−5

0.004

]
, Cs3 =

[
0 0 1

]
,

Fs3 =

[
9.34e−9 0.0101 8.06e−7 4.58e−6 5.08e−10 −1.29e−9
0.0111 8.51e−9 8.06e−7 4.58e−6 0.0006 −1.29e−9

2.37e−6 2.16e−6 0.0001 0.0007 1.29e−7 −2.18e−7

]
=

[
F1s3 F2s3 F3s3 F4s3 F5s3 F6s3

]
.

The second order model M̃2 is described using Equation (9) with,

As2 =
[

0.9782 0.0107
0.0004 0.8559

]
, Bs2 =

[
2.84e−5
0.0047

]
, Cs2 =

[
0 1

]
Fs2 =

[
0.018 8.06e−7 4.59e−6 0.0006 −1.29e−9

3.87e−6 0.0001 0.0007 1.29e−7 −2.18e−7

]
=

[
F1s2 F2s2 F3s2 F4s2 F5s2

]
.

32

/ Performance Evaluation 00 (2017) 1–33 33

M̃1 is described using Equation (10) and has the following system matrices:

As1 = [0.8564], Bs1 = [0.0048], Cs1 =
[
1
]
,

Fs1 = [0.0011 0.0001 0.00077 2.17e−5 −2.18e−7] =
[

F1s1 F2s1 F3s1 F4s1 F5s1

]
.

33

