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Abstract

This work develops a measurement-driven and model-based formal verification approach, applicable to dynamical systems
with partly unknown dynamics. We provide a new principled method, grounded on Bayesian inference and on reachability
analysis respectively, to compute the confidence that a physical system driven by external inputs and accessed under noisy
measurements verifies a given property expressed as a temporal logic formula. A case study discusses the bounded- and
unbounded-time safety verification of a partly unknown system, encompassed within a class of linear, time-invariant dynamical
models with inputs and output measurements.
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1 Introduction

The design of complex, high-tech, safety-critical sys-
tems such as autonomous vehicles, intelligent robots,
and cyber-physical infrastructures, demands guarantees
on their correct and reliable behaviour. Correct func-
tioning and reliability over models of systems can be at-
tained by the use of formal methods. Within the com-
puter sciences, the formal verification of software and
hardware has successfully led to industrially relevant and
impactful applications [14]. Carrying the promise of a
decrease in design faults and implementation errors and
of correct-by-design synthesis, the use of formal meth-
ods, such as model checking [14], has become a standard
in the avionics, automotive, and railway industries [37].
Life sciences [6,15] and robotic applications [5,11] have
also recently benefited by the application of these suc-
cessful techniques from the computer sciences: this has
required a shift from finite-state to physical and cyber-
physical models, which are of practical use in nowadays
science and technology [26,35].

The strength of formal techniques, such as model check-
ing, is bound to the fundamental requirement of having
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access to a given model, obtained from the knowledge
of the behaviour of the underlying system of interest. In
practice, for most physical systems the dynamical be-
haviour is known only in part: this holds in particular
with biological systems [1] or with classes of engineered
systems where, as a consequence, the use of uncertain
control models built from data is a common practice [25].
As an example consider a battery cell to be placed in
a car, of which we have only a partial model but know
the demand limits that will be raised while in operation.
Before installing the battery we can probe and measure
its dynamics, and wish to verify that the battery will
never heat up excessively under the demanded opera-
tional limits.

Only limited work within the formal methods commu-
nity deals with the verification of models with partly
unknown dynamics. Classical results [4,22] consider ver-
ification problems for non-stochastic models described
by differential equations with bounded parametric un-
certainty. Similarly, but for continuous-time probabilistic
models, [9,10] explore the parameter space with the ob-
jective of model verification (respectively statistical or
probabilistic). Whenever full state measurements of the
system are available, Statistical Model Checking (SMC)
[34,27] replaces numerical model-based procedures with
empirical testing of formalised properties. SMC is lim-
ited to fully observable stochastic systems with little or
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no non-determinism, and may require the gathering a
large set of measurements. Extensions towards the in-
clusion of non-determinism have been studied in [21,28],
with preliminary steps towards Markov decision pro-
cesses. Related to SMC techniques, but bound to finite
state models, [13,30,33] assume that the system is en-
compassed by a finite-state Markov chain and efficiently
use data to learn the corresponding model and to verify
it. Similarly, [3,8] employ machine learning techniques
to infer finite-state Markov models from data over given
logical formulae.

An alternative approach, allowing both partly unknown
dynamics over uncountable (continuous) variables and
noisy output measurements, is the usage of a Bayesian
framework relating the confidence in a formal property
to the uncertainty of a model built from data. When ap-
plied on nonlinearly parameterised, linear time invariant
(LTI) models this approach introduces heavy computa-
tional issues, which can only be mitigated via statistical
methods [18]. Instead, in order to obtain reliable and nu-
merical solutions, we propose the use of linearly param-
eterised model sets defined through orthonormal basis
functions to represent these partially unknown systems.
This is a broadly used framework in system identifica-
tion [24,25]: while maintaining the beneficial computa-
tional aspects of linear parameterisations, the choice of
orthonormal basis functions allows for the incorporation
of prior knowledge on the system behaviour. Practically,
this has been widely used for the modelling of physical
systems, such as the thermal dynamics of buildings [38].

This work investigates the verification of temporal logic
properties over partially unknown systems, using both
prior modelling knowledge and data drawn from the sys-
tem in a Bayesian setting. Building on [19,20], we provide
a complete framework and newly extend the modelling
class in [19] to multi-input multi-output models. The fo-
cus of this work is further set apart from [20], which ex-
plored the use of data as experiments to ameliorate the
verification procedure.

2 General Framework and Problem Statement

In this section we overview a new methodology to assess
the confidence in whether a system S satisfies a given
specification ψ, formulated in a suitable temporal logic,
by integrating the partial knowledge of the system dy-
namics with data obtained from a measurement setup
around the system.

Let us further clarify this framework. Let us denote with
S a physical system, or equivalently its associated dy-
namical behaviour. A signal input u(t) ∈ U, t ∈ N, cap-
tures how the environment acts on the system. Similarly,
an output signal y0(t) ∈ Y indicates how the system in-
teracts with the environment, or alternatively how the
system can be measured. Note that the input and output

signals are assumed to take values over continuous do-
mains. The system dynamics can be described via math-
ematical models, which quantify the behavioural rela-
tion between its inputs and outputs. The knowledge of
the behaviour of the system is often limited or uncertain,
making it impossible to analyse its dynamics by means
of a “true” model. In this case, a-priori available knowl-
edge allows to construct a model set G with elements
M ∈ G: this model class encompasses the uncertainty on
the underlying system by means of a parameterisation
θ ∈ Θ, G = {M(θ)|θ ∈ Θ}. The unknown “true” model
M(θ0) representing S, is assumed to be an element of
G, namely θ0 ∈ Θ. Model sets G obtained through first
principles and with unknown parameters adhere to this
standard setup.

Samples can be drawn from the underlying physical sys-
tem via a measurement setup, as depicted in Figure 1.
An experiment consists of a finite number (Ns) of input-
output samples drawn from the system, and is denoted
by ZNs = {u(t)ex, ỹ(t)ex}Nst=1, where u(t)ex ∈ U (in gen-
eral a continuous domain) is the input for the experi-
ment and ỹ(t)ex is a (possibly noisy) measurement of
y0(t)ex. In general, the measurement noise can enter non-
additively and be a realisation of a stationary stochastic
process. 1 We assume that at the beginning of the mea-
surement procedure (say at t = 0), the initial condition
of the system, encompassed by the initial state x(0)ex of
models in G, is either known, or, when not known, has a
structured uncertainty distribution that is based on the
knowledge of past inputs and/or outputs. As reasonable,
we implicitly consider only well-defined problems, such
that for any model M(θ) representing the system, given
an input signal u(t)ex and an (uncertainty distribution
for) x(0)ex, the probability density distribution of the
measured signal can be fully characterised.

u(t)ex
S

e(t)

y0(t)ex

ỹ(t)ex

Fig. 1. System (smaller red box) and measurement setup
(grey box). In the measurement setup the output ỹ(t)ex in-
cludes the system output y0(t)ex and the measurement noise
e(t). Data collected from experiments comprises the input
u(t)ex and the measured output ỹ(t)ex signals.

The end objective is to analyse the behaviour of system
S. We consider properties encoded as specifications ψ
and expressed in a temporal logic of choice (to be de-
tailed shortly). Let us remark that the behaviour of S to

1 Notice that the operating conditions of the experiment,
that is the input signal u(t)ex, the initial state x(0)ex, and
the measurements ỹ(t)ex, have been indexed with “ex” to
distinguish them from the conditions of interest for verifica-
tion (“ver”), to be discussed shortly.

2



be analysed is bound to a set of operating conditions that
are pertinent to the verification problem and that will be
indexed by “ver”: this comprises the set of possible in-
put signals u(t)ver (e.g., a white or coloured noise signal,
or a non-deterministic signal u(t)ver ∈ Uver ⊆ U), and
of the set of initial states x(0)ver ∈ Xver for the mathe-
matical models M(θ) reflecting past inputs and/or out-
puts of the system. The system satisfies a property if
the “true” model representing the system satisfies the
property, namely S � ψ if and only if M(θ0) � ψ.

In this work we consider the satisfaction of a property
M(θ) � ψ as a binary-valued mapping from the pa-
rameter space Θ. More generally, when in addition to
the measurements of the system also its internal transi-
tions are disturbed by stochastic noise (known as pro-
cess noise), then property satisfaction is a mapping from
the parameter space Θ to the interval [0, 1], and quan-
tifies the probability that the model M(θ) satisfies the
property. This mapping generalises the definition of the
satisfaction function discussed in [9], and is now stated
as follows.

Definition 1 (Satisfaction Function) Let G be a set
of models M that is indexed by a parameter θ ∈ Θ,
and let ψ be a formula in a suitable temporal logic. The
satisfaction function fψ : Θ → [0, 1] associated with ψ
is

fψ(θ) = P (M(θ) � ψ) . (1)

Let us assume that the satisfaction function fψ is mea-
surable and entails a decidable verification problem (e.g.,
a model checking procedure) for all θ ∈ Θ and properties
ψ of interest. In this work we consider the verification of
partly unknown physical systems with respect to a sub-
set of linear time temporal logic properties. We are in a
position to state the following.

Problem 1 For a partly unknown physical system S,
under prior knowledge on the system given as a pa-
rameterised model class G supporting an uncertainty
distribution over the parameterisation, gather possi-
bly noisy data drawn from the measurement setup and
verify properties on S expressed in a temporal logic of
choice, with a formal quantification of the confidence of
the assertion.

2.1 A Bayesian Framework for Data-driven Modelling
and Verification

Consider Problem 1. Denote with P (·) and p (·) respec-
tively a probability measure and a probability density
function, both defined over a continuous domain. We
employ Bayesian probability calculus [29] to express the
confidence in a property as a measure of the uncertainty
distribution defined over the set G. By adopting the
Bayesian framework, uncertainty distributions are han-
dled as probability distributions of random variables.

Therefore the confidence in a property is computed as a
probability measure P (·) via the densities p (·) over the
uncertain variables.

Proposition 1 (Bayesian Confidence) Given a
specification ψ and a data set ZNs , the confidence that
S � ψ can be quantified via inference as

P
(
S � ψ | ZNs

)
=
∫

Θ
fψ(θ)p

(
θ|ZNs

)
dθ, (2)

where fψ is the satisfaction function given in (1). The
a-posteriori uncertainty distribution p

(
θ|ZNs

)
, given

the data set ZNs , is based on parametric inference over
θ as

p
(
θ|ZNs

)
=

p(ZNs |θ)p(θ)∫
Θ
p(ZNs |θ)p(θ)dθ

, (3)

which assumes the knowledge of an uncertainty distribu-
tion p (θ) over the parameter set Θ, representing prior
knowledge.

The statement can be formally derived based on stan-
dard Bayesian calculus, as in [29]. We have chosen to
employ a Bayesian framework, as per (3), since it allows
to reason explicitly over the uncertain knowledge on the
system and to work with the data acquired from the mea-
surement setup. This leads to the efficient incorporation
of the available knowledge and to its combination with
the data acquisition procedure, in order to compute the
confidence on the validity of a given specification over
the underlying system. As a special instance, this result
can be employed for Bayesian hypothesis testing [39].
As long as the mapping fψ is measurable, the models
in the model set (and hence the system represented by
it) can be characterised by either probabilistic or non-
probabilistic dynamics.

Remark 1 In statistical model checking [27,34], the
objective is to replace the computationally tolling ver-
ification of a system over bounded-time properties by
the empirical (statistical) testing of the relevant speci-
fications over finite executions drawn from the system.
In contrast, our setup tackles the problem of efficiently
incorporating data with prior knowledge, for the formal
(deductive) verification of the behaviour of a system
with partly unknown dynamics. As such our overall ver-
ification approach is, as claimed, both data-driven and
model-based. Moreover, by separating the operational
conditions of an experiment from those of importance
for the verification procedure, the system can be verified
over non-deterministic quantities, encompassing both
controller and disturbance inputs, as well as modelling
errors.

2.2 Existing Computational Approaches

In the literature the satisfaction function is related to
the exploration of a parameter set over the validity of
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a formal property fψ(θ), and has been studied for au-
tonomous models in continuous time in [4,16,22].
Bayesian inference is widely applicable to different types
of properties and models, however its computational
complexity might in practice limit its implementation.
Analytical solutions to the inference equation (3) can be
found if the prior is a conjugate distribution. For linear
dynamical systems, closed-form solutions are given inter
alia in [31].
In general (2)-(3) in Proposition 1 lack analytical solu-
tions, and the assessment of the satisfaction function (1)
may be computationally intensive. Statistical methods
such as the one proposed in [18] on a similar Bayesian
approach lead to involved computations and introduce
additional uncertainty from Monte Carlo techniques.

In contrast with the reviewed literature, in the next sec-
tion we propose a novel computational approach over
discrete-time linear time-invariant systems. By exploit-
ing linear parameterisations, analytical solutions of both
the parameter inference and the satisfaction function are
characterised, over properties expressed within a frag-
ment of a temporal logic.

3 LTL Verification of LTI Systems

Consider a system S that can be represented by a class
of finite-dimensional dynamical models that evolve in
discrete-time, and are linear time-invariant (LTI). We
focus the study to non probabilistic dynamics. These
models depend on input and output signals ranging over
Rm and Rp, respectively, and on variables xS(t) taking
values in an Euclidean space, xS(t) ∈ X ⊆ Rn, where n,
the state dimension, is the model order. The behaviour
of such a system is encompassed by state-space models
(AS, BS, CS, DS) as

S :

{
xS(t+ 1) = ASxS(t) +BSu(t),

y0(t) = CSxS(t) +DSu(t),
(4)

where matrices AS, BS, CS, DS are of appropriate di-
mensions. The experimental measurement setup, as de-
picted in Figure 1, consists of the signals u(t)ex and
ỹ(t)ex = y0(t)ex + e(t), representing the inputs and the
measured outputs, respectively, and where e(t) is an ad-
ditive zero-mean, white, Gaussian-distributed measure-
ment noise with covariance Σe that is uncorrelated from
the inputs. Ns samples are collected within a data set
ZNs = {u(t)ex, ỹ(t)ex}Nst=1.

3.1 Formalisation of Properties

System properties are expressed, over a finite set of
atomic propositions pi ∈ AP , i = 1, . . . , |AP |, in Lin-
ear Temporal Logic [2]. Any LTL formula ψ is built up

recursively via the syntax

ψ ::= true | p | ¬ψ | ψ ∧ ψ | ©ψ | ψ U ψ.

Let π = π(0), π(1), π(2), . . . ∈ ΣN+

be a string composed
of letters from the alphabet Σ = 2AP , and let πt =
π(t), π(t+ 1), π(t+ 2), . . . be a subsequence (postfix) of
π. The satisfaction relation between π and ψ is denoted
as π � ψ (or equivalently π0 � ψ). The semantics of the
satisfaction relation are defined recursively over πt and
the syntax of the LTL formula ψ as follows:

(true) πt � true ⇔ true

(atomic prop.) πt � p ⇔ p ∈ π(t)

(negation) πt � ¬ψ ⇔ πt 6� ψ
(conjunction) πt � ψ1 ∧ ψ2 ⇔ πt � ψ1 and πt � ψ2

(next) πt �©ψ ⇔ πt+1 � ψ
(until) πt � ψ1 U ψ2 ⇔ ∃ i ∈ N : πt+i � ψ2,

and ∀j ∈ N :

0 ≤ j < i, πt+j � ψ1

This syntax allows to extend the study to more com-
plex propositional formulae (such as disjunction or im-
plication). Denote the k-bounded and unbounded in-

variance (or safety) operator as 2kψ =
∧k
i=0©

iψ and
2ψ = ¬(true U ¬ψ), respectively.

It is of interest to refer formal properties expressed as
LTL formulae to the input-output behaviour of a dy-
namical model, over a given time horizon t ≥ 0. The
output y0(t)ver ∈ Y is labeled by a map L : Y → Σ,
which assigns symbols α in the alphabet Σ of the formu-
lae discussed previously to half spaces on the output, as

L(y0(t)ver) = α ∈ Σ ⇔
∧
pi∈αApiy0(t)ver ≤ bpi , (5)

for given Api ∈ R1×p, bpi ∈ R. In other words, sets of
atomic propositions in AP are associated to polyhedra
over Y ⊂ Rp. Let us underline that properties are de-
fined over the behaviour y0(t)ver of the model, and not
over the noisy measurements ỹ(t)ex of the model con-
sidered within the measurement setup. Additionally, for
the verification problem the input signal is modelled as
a bounded signal u(t) ∈ Uver, and represents external
non-determinism from the environment acting on the
system.

3.2 Model Set Selection

As a first step we need to embed the available a-priori
knowledge on the underlying system within a param-
eterised model set. Note that although the goal of
parameter exploration in formal verification has re-
cently attracted quite some attention [4,16,22], there
are as of yet no general scalable results for the com-
putation of the satisfaction function for nonlinearly-
parameterised, discrete-time LTI models. The use of
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linearly-parameterised model sets, especially those de-
fined through orthonormal basis functions (as further
elaborated next), has been widely used for the mod-
elling of physical systems, such as the thermal dynamics
of buildings [32,38].

Whilst in general the uncertainty about a model rep-
resenting a linear time-invariant system does not map
onto a linearly-parameterised model set, we argue that
a linearly-parameterised model set can encompass a rel-
evant class of models. For instance, any asymptotically
stable LTI model can be represented uniquely by its
(infinite) impulse response [23], and the coefficients of
the impulse response define a linear parameterisation
for this model. Further, for asymptotically stable sys-
tems, the coefficients of the impulse response converge
to zero, so that a truncated set of impulse coefficients
provide a good approximate LTI model set with a finite-
dimensional, linear parameterisation. These impulse re-
sponses define a finite set of orthonormal basis func-
tions [24, Chapters 4 and 7],[36] and construct a valid
model set for a physical system solely based on knowl-
edge of asymptotic stability. Alternative choices for an
orthonormal basis such as Laguerre functions and Kautz
functions [24], can incorporate additional and more ex-
tensive prior knowledge of the physical system.

We conclude that, as an alternative to the use of a non-
linearly parameterised set of models, structural infor-
mation (even when not exact) can be used to select a
set of orthonormal basis functions, whose finite trunca-
tion defines a finite-dimensional linearly-parameterised
model set indexed over the coefficients of the basis func-
tions. Thus, in the following we consider a linearly pa-
rameterised model set G that encapsulates system S, and
specifically G = {(A,B,C(θ), D(θ)), θ ∈ Θ}.

A system satisfies a property if, assuming it can be equiv-
alently represented by a mathematical model M(θ0), all
the words generated by the model satisfy that property.
Since properties are encoded over the external (input-
output) behaviour of the system S, which is the be-
haviour of M(θ0) (where in our case θ0 ∈ Θ), we may
equivalently assert that any property ψ is verified by the
system, S � ψ, if and only if it is verified by the un-
known model representing the system, namely M(θ0) �
ψ. Within the modelling perspective offered in this work,
let us introduce Θψ to be the feasible set of parameters,
such that for every parameter in that set the property
ψ holds, i.e., ∀θ ∈ Θψ : M(θ) � ψ. More precisely, Θψ is
characterised as the level set of the satisfaction function
fψ, Θψ = {θ ∈ Θ : fψ(θ) = 1}. The quantification of
Θψ is of key importance in our work.

3.3 Safety Verification of Bounded-time Properties

Models M in the class G have the following representa-
tion (A,B,C(θ), 0):

M(θ) :

{
x(t+ 1) = Ax(t) +Bu(t),

ŷ(t, θ) = C(θ)x(t),
(6)

and are parameterised by θ ∈ Θ ⊂ Rpn, θ = vec(C) and
C(θ) ∈ Rp×n. We assume a prior probability distribution
p (θ), which structures the knowledge of the uncertainty
in θ. In addition to this strictly proper model class we will
also allow for a proper model class (A,B,C(θ), D(θ)),
where both theC and theD-matrices are parameterised,
so that θ = vec([C D])). For a given initial condition
x(0) and input sequence, the output of the “true” model
ŷ(t, θ0) is equal to the system output y0(t).

Consider a measurement setup as in Figure 1, related to
an unknown parameter θ0. Signals u(t)ex and ỹ(t)ex rep-
resent the input and the measured output, respectively,
and e(t) is an additive zero-mean, white, Gaussian-
distributed measurement noise with covariance Σe that
is uncorrelated from the input. From this setup Ns sam-
ples are collected in a data setZNs = {u(t)ex, ỹ(t)ex}Nst=1.
Given the operating conditions of the experiment setup,
the measured signal ỹ(t)ex can be fully characterised: its
probability density, conditional on the parameters θ, is

p
(
ZNs |θ

)
=

Ns∏
t=1

p (ỹ(t)ex|θ)

=
1√

|Σe|Ns(2π)pNs
exp

[

− 1

2

Ns∑
t=1

(ŷ(t, θ)− ỹ(t)ex)TΣ−1
e (ŷ(t, θ)− ỹ(t)ex)

]
,

and can be directly used in Proposition 1. This con-
ditional density p

(
ZNs |θ

)
depends implicitly on the

given initial state x(0)ex and, in the case of a given un-
certainty distribution over x(0)ex, p

(
ZNs |θ

)
should be

marginalised over x(0)ex [31]. The a-posteriori uncer-
tainty distribution is obtained as the analytical solution
of the parametric inference in (3) [31].

Recall now that for a given specification ψ, we seek
to determine a feasible set of parameters Θψ, which is
such that the corresponding models admit property ψ,
namely M(θ) � ψ, ∀θ ∈ Θψ. Since models M(θ) have
a linearly-parameterised state space realisation as per
(6), it follows that when the set of initial states Xver
and of inputs Uver are bounded polyhedra, the verifica-
tion of a class of safety properties expressed by formulae
with labels as in (5) leads to a set of feasible parameters
Θψ that is a polyhedron, which can be easily computed.
More precisely, the following result can be derived.
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Theorem 2 Consider properties ψ composed within
the LTL fragment ψ ::= α|©ψ|ψ1 ∧ ψ2, with α ∈ Σ.
Given a bounded polyhedral set (a polytope) of ini-
tial states x(0) ∈ Xver and of inputs u(t) ∈ Uver for
0 ≤ t < ∞, and considering a labelling map as in (5),
then the feasible set Θψ of the parameterised model set
(6) is a polyhedron.

Proof [of Theorem 2] Let ⊗ denote the Kronecker prod-
uct. Consider the input set Uver to be the convex hull
of U , i.e. conv(U) = Uver. Similarly let the set of initial
states be conv(Xver) = Xver. Let the model set be given
as M(θ) = (A,B,C(θ), D). We will temporarily assume
thatD is set to be equal to zero, and afterwards (cf. Point
3) we will show how to work with a parameterised D. As
can be deduced from the and operations in (5), note that
for simplicity the syntax fragment ψ ::= α|©ψ|ψ1 ∧ ψ2

with α ∈ Σ = 2AP is equivalent to ψ ::= p|©ψ|ψ1 ∧ ψ2

with p ∈ AP . We structure the proof in three parts.

1. We claim that for every specification ψ composed
from the syntax fragment ψ ::= p|©ψ|ψ1∧ψ2 and θ ∈ Θ,
the words generated by a model M(θ) = (A,B,C(θ), 0)
with state x(t) satisfy the specification ψ, denoted <
M(θ), x(t) >� ψ, if and only if((

Inψ ⊗ x(t)
)T
Nψ +Kψ

)
θ ≤ Bψ. (7)

The matrices Nψ ∈ Rnnψ×np,Kψ ∈ Rnψ×np, Bψ ∈ Rnψ
in the above satisfaction relation have dimensions that
are functions of the parametrisation and of a property-
dependent “dimension” nψ, which will be obtained in-
ductively over the syntax of the specification. Next we
focus the study of fragments of the LTL syntax.

For any atomic proposition the model starting from state
x(t) satisfies a property pi, i.e., < M(θ), x(t) >� pi ⇔
Apiy ≤ bpi , with Api ∈ R1×p and bpi ∈ R we construct
the matrices Npi , Kpi and Bpi as follows. Consider y(t)
for a given x(t) then

Apiy(t) = ApiC(θ)x(t) = x(t)T (In ⊗Api)θ.

This yields Npi = (In ⊗Api) ∈ Rn×np, Kpi = O1×np ∈
R1×np, and Bpi = bpi ∈ R1×1.

The next operation©ψ1 with matrices (Nψ1 ,Kψ1 , Bψ1)
yields matrices

N©ψ1 = 1|U | ⊗
(
Inψ1

⊗AT
)
Nψ1

,

K©ψ1
= U

(
Inψ1

⊗B
)T
Nψ1

+ 1|U | ⊗Kψ1
,

B©ψ1
= 1|U | ⊗Bψ1

,

where the i-th set of nψ1
rows of U ∈ R|U |nψ1

×m is de-
fined as (

Inψ1
⊗ uTi

)
with ui ∈ U

and where n©ψ1
= |U |nψ1

. This can be derived as

< M(θ), x(t) >�©ψ ⇔ ∀u(t) ∈ Uver :((
Inψ1

⊗ x(t+ 1)
)T
Nψ1

+Kψ1

)
θ ≤ Bψ1

,

⇔ ∀u(t) ∈ Uver :((
Inψ1

⊗Ax(t)
)T
Nψ1

+
(
Inψ1

⊗Bu(t)
)T
Nψ1

+Kψ1

)
θ ≤ Bψ1

.

Since the above is an affine function in u(t), the image
of every u(t) ∈ conv(U) = Uver can be expressed as a
convex combination of the values at the vertices ui ∈ U ,
c.f. [6]. Then an equivalent expression is

⇔ ∀ui ∈ U :
( (
Inψ1

⊗Ax(t)
)T
Nψ1

+
(
Inψ1

⊗ ui
)T (

Inψ1
⊗B

)T
Nψ1 +Kψ1

)
θ ≤ Bψ1 ,

which can be rewritten as

⇔
(
1|U | ⊗

(
Inψ1

⊗Ax(t)
)T
Nψ1 + U

(
Inψ1

⊗B
)T
Nψ1

+ 1|U | ⊗Kψ1

)
θ ≤ 1|U | ⊗Bψ1 .

Matrices K©ψ, and B©ψ can be obtained directly. To
obtain N©ψ now rewrite the first term:

1|U | ⊗
(
Inψ1

⊗ xT (t)
) (
Inψ1

⊗AT
)
Nψ1

=
(
I|U |1|U |

)
⊗
(
Inψ1

⊗ xT (t)
) (
Inψ1

⊗AT
)
Nψ1

=
(
I|U |nψ1

⊗ xT (t)
) (

1|U | ⊗
(
Inψ1

⊗AT
)
Nψ1

)
.

The and operation ψ1∧ψ2 for (Nψ1
,Kψ1

,Bψ1
) and (Nψ2

,
Kψ2

,Bψ2
) with nψ1∧ψ2

= (nψ1
+ nψ2

) gives

Nψ1∧ψ2
=

[
Nψ1

Nψ2

]
,Kψ1∧ψ2

=

[
Kψ1

Kψ2

]
, Bψ1∧ψ2

=

[
Bψ1

Bψ2

]
.

This can be derived from

< M(θ), x(t) >� ψ1 ∧ ψ2

⇔
∧

i∈{1,2}

((
Inψi ⊗ x(t)

)T
Nψi +Kψi

)
θ ≤ Bψi

⇔

((
Inψ1∧ψ2

⊗ x(t)
)T[Nψ1

Nψ2

]
+

[
Kψ1

Kψ2

])
θ ≤

[
Bψ1

Bψ2

]
.

2. The matrix-valued function((
Inψ ⊗ x(0)

)T
Nψ +Kψ

)
θ

6



is affine in x(0) (for a fixed θ), therefore its value at the
initial condition x(0) ∈ Xver is a convex combination of
the function values at the verticesXver of Xver. Thus the
satisfaction relation < M(θ), x(0) >� ψ represented by
the multi-affine inequality holds uniformly over x(0) ∈
Xver if and only if it holds for the vertices of Xver.
This gives a set of affine inequalities in θ, thus the feasible
set Θψ is a polyhedron and is given as{

θ ∈ Θ :
∧

xi∈Xver

((
Inψ ⊗ xi

)T
Nψ +Kψ

)
θ ≤ Bψ

}
.

Let us remark that set Θψ is a polyhedron because it is
formed by a finite set of half spaces.

3. To complete the proof of Theorem 2 we need to ex-
tend the results to models with parameterised D. The
dynamics of model (A,B,C,D) with both C andD fully
parameterised can be reformulated as[

x(t+ 1)

u(t+ 1)

]
=

[
A B

0 0

][
x(t)

u(t)

]
+

[
0

I

]
u(t+ 1)

y(t) =
[
C D

]
x(t).

Using the new matrices (Ã, B̃, C̃(θ), 0) the obtained re-
sults still hold. For part 2. set of vertices Xver needs to
be extended with the vertices of U as Xver × U . 2

In the computation of the feasible set, the faces of the
polyhedron Θψ are shown to be a function of the vertices
(recall that a polytope can be written as the convex hull
of a finite set of vertices) of the bounded set of initial
states Xver and of the set of inputs Uver, and are also
expected to grow in number as a function of the time
horizon of the property.
The result in Theorem 2 is valid for any finite composi-
tion of the LTL fragment ψ ::= α|©ψ|ψ1 ∧ ψ2, as such
it only holds for finite horizon properties. Properties de-
fined over the infinite horizon will be the objective of
Section 3.5.

Remark 2 The feasible set Θψ obtained in Theorem 2
is a Borel-measurable set as it defines (if not empty) a
closed set in the parameter space.

3.4 Case Study: Bounded-Time Safety Verification

3.4.1 Single-Input Single-Output System

Consider a system S and verify whether the output
y0(t)ver remains within the interval I = [−0.5, 0.5],
labeled as ι, for the next 5 time steps, under u(t)ver ∈
Uver = [−0.2, 0.2] and x(0)ver ∈ {02} = Xver. In-
troduce accordingly the alphabet Σ = {ι, τ} and the
labelling map L : L(y) = ι, ∀y ∈ I, L(y) = τ,∀y ∈ Y\I.

Now check whether the following LTL property holds:
S �

∧5
i=1(©)iι.

We assume that system S can be represented as an ele-
ment of a model set G, with models expressed via transfer
functions characterised by second-order Laguerre-basis
functions [23] (a special case of orthonormal basis func-
tions). This translates to the following parameterised
state-space representation:

x(t+ 1)=

[
a 0

1− a2 a

]
x(t) +

[ √
1− a2

(−a)
√

1− a2

]
u(t),

ŷ(t, θ) = θTx(t) .

(8)

The parameter set is chosen as θ ∈ Θ = [−10, 10]2,
whereas the coefficient a is chosen to be equal to 0.4.
We select, as prior available knowledge on the system, a
uniform distribution p (θ) on the model class, and pick a
known variance σ2

e = 0.5 for the white additive noise on
the measurement. The set of feasible parameters Θψ ⊂ Θ
is represented in Figure 2 and is computed according to
Theorem 2. Based on the prior available knowledge, the
confidence associated to θ0 ∈ Θψ amounts to 0.0165:
this quantity is obtained by numerical computation of
(2) with probability distribution 2 p (θ). Thereafter, we
have set up an experiment on the system with “true pa-
rameter” θ0 = [1 0]T (Figure 2) and with input signal
u(t)ex, a realisation of a white noise with a uniform dis-
tribution over [−0.2, 0.2], and measured ỹ(t)ex for 200
consecutive time instances. In comparison to the confi-
dence obtained with the prior p (θ), the uncertainty dis-
tribution is refined as p

(
θ|ZNs

)
, and the resulting con-

fidence in the property is increased to 0.779, as per (2).
Along this line of experiments, we have repeated the test
100 times, for several instances of the parameter θ0 char-
acterising the underlying system S. In all instances, after
obtaining 200 measurements the a-posteriori probability
is used to assess the confidence in the safety of the sys-
tem, as displayed in Table 1 via mean and variance terms.
Observe that θ0 is just outside of Θψ for values [−1,−1]T

and [1, 1]T . For θ0 = [−1, 1]T and θ0 = [1,−1]T , the
true parameter lies in the feasible set but very close to
the edges: this is reflected in the results in Table 1. For
the points clearly inside the feasible set the confidence
generally becomes high with a low variance, whereas
for the points closest to the edges (θ0 = [−1, 1]T and
θ0 = [1,−1]T ) the variance is higher and the confidence
has only increased up to around 0.49. In comparison, the
points just outside the feasible edge give a lower confi-
dence then the former two. Consider as an example the
[1, 1]T case: for this the observed initial increase from
0.0165 (i.e., the a-priori confidence) to around 0.34 is
expected and reflects the closeness of the parameter to

2 Integrals are solved via the numerical integration tool in
Matlab.
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Table 1
Mean (µ) and variance (σ2) of the confidence obtained from
100 experiments with 200 measurements each.

θ0 µ σ2 θ0 µ σ2

[
-1 -1

]T
0.348 0.073

[
1 -1

]T
0.491 0.085[

-1 0
]T

0.705 0.060
[

1 0
]T

0.730 0.056[
-1 1

]T
0.492 0.086

[
1 1

]T
0.339 0.065

the feasible set; additional measurements will steer the
confidence down towards zero (parameter outside of the
feasible set). In conclusion, the experiments show that
the measurements can be used to quantify the confidence
level.

−2 0 2

−1

0

1

θ1

θ 2

Fig. 2: Feasible set of
parameters Θψ ⊂ Θ,
and contour lines
of the posterior
p
(
θ|ZNs

)
, obtained

for θ0 = [1 0]T after
200 measurements.

3.4.2 Multiple-Input/Output system: Feasible Set

In order to showcase the workings of the feasible set com-
putations for multiple-input multiple-output (MIMO)
models, we consider a straightforward extension of (8),
that is model

x(t+ 1) =

[
a 0

1− a2 a

]
x(t) +

[√
1− a2 0

0 −a
√

1− a2

]
u(t),

ŷ(t, θ) =

[
θ1 θ3

θ2 θ4

]
x(t) . (9)

We verify whether the output y0(t) remains for 5 time
steps within the polytope described by[−1 0

−1 −1
1 0
1 1

]
y0 ≤

[
0.5
0.5
0.5
0.5

]
,

with x(0)ver ∈ {02} and under inputs constrained within

Uver = conv
([−0.2

0

]
, [ 0.2

0.1 ],
[

0.1
−0.1

])
.

Using the results in the previous subsection we compute
the feasible set: in Figure 3 we display slices of the feasi-
ble set, where a slice is obtained by fixing one parameter
θi to a value within the feasible set.

−2
0

2

−1
0

1

−2

0

2

Slice for θ1 = 0

−2
0

2

−1
0

1

−2

0

2

Slice for θ2 = 0

−1
0 1

−4
−2

0
2

4

−1

0

1

Slice for θ3 = 0

−2
0

2
−2

0
2

−1

0

1

Slice for θ4 = 0

Fig. 3. Three-dimensional plots of the four-dim feasible set.

3.5 Verifying Unbounded-Time Properties Using In-
variant Sets

In this section we extend the approach of Section 3.3,
to hold on the LTL fragment ψ ::= α|©ψ|ψ1 ∧ ψ2 with
additionally the unbounded invariance (safety) operator.
The subsection is built up as follows:

• first we connect the notion of positive invariance
with that of feasible set;
• then we discuss how to practically compute a fea-

sible set for invariance properties, with the set of
initial states limited to be the origin;
• this is then extended to computing feasible sets un-

der initial states in a polytope that includes the
origin;
• finally, we interpret these results and complete

the section with results on the verification of
unbounded-time properties.

Recall the form of the k-bounded and of the unbounded
invariance operators, namely 2kψ =

∧k
i=0©

iψ and
2ψ = ¬(trueU¬ψ), respectively. The extension from a
k-bounded operator, covered by the result in Theorem
2, to the unbounded invariance one, is based on the con-
cept of robust positive invariance [7, Def. 4.3], recalled
next.

Definition 2 For the system x(t+1) = Ax(t)+Bu(t),
the set S ⊆ X is said to be robustly positively invariant
if, for all x(0) ∈ S and u(t) ∈ Uver, the condition x(t) ∈
S holds for all t ≥ 0.

Recall that the feasible set Θψ is defined as the set of pa-
rameters for which property ψ holds, namely ∀θ ∈ Θψ :
M(θ) � ψ. The satisfaction relation M(θ) � ψ depends
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implicitly on the set of initial states x(0) ∈ Xver and
on the set of inputs Uver. Let us extend the definition
of the feasible set to explicitly account for its depen-
dence on the set of initial conditions: given a bounded
and convex set S ⊂ X, let Θψ(S) be defined as the set
of parameters in Θ for which the parameterised models
M(θ) initialised with x(0) ∈ S satisfy ψ over input sig-
nals u(t) ∈ Uver t ≥ 0. Hence the feasible set Θψ can
be written as a function of the set of initial states Xver,
that is Θψ (Xver). Thus the extended map Θψ (·) takes
subsets of the state space into subsets of the parameter
space. Note that if S is a robustly positively invariant
set that includes the set of initial states Xver ⊆ S, then
for all θ ∈ Θψ(S) the models M(θ) satisfy ψ over all
infinite-time model traces x(t): this allows to state that
M(θ) � 2ψ. We can show that the following holds.

Lemma 3 The function Θψ(·) : 2X → 2Θ, for specifi-
cations obtained as ψ ::= α | ©ψ | ψ1∧ψ2, is monoton-
ically decreasing: that is if S1 ⊆ S2 ⊆ X, then Θψ(S2) ⊆
Θψ(S1).

Proof [of Lemma 3] We leverage the notation used in
the proof of Theorem 2. Provided that the parameterised
model is given as (A,B,C(θ), 0), we show that any θ ∈
Θψ(S2) is also an element of θ ∈ Θψ(S1). Suppose S2

has a finite number of vertices xi ∈ V (S2), then for any
θ ∈ Θψ(S2):∧

xi∈V(S2)

(
(Inψ ⊗ xi)TNψ +Kψ

)
θ ≤ Bψ,

and for every x ∈ S2(
(Inψ ⊗ x)TNψ +Kψ

)
θ ≤ Bψ.

Since the vertices xj ∈ V (S1) are also elements of S2,
then ∧

xj∈V(S1)

(
(Inψ ⊗ xj)TNψ +Kψ

)
θ ≤ Bψ

and θ ∈ Θψ(S1). This reasoning can be trivially ex-
tended to include models with parameterised D matri-
ces. Increasing the number of vertices of S1 and S2, does
not change the result, hence the same holds if S1 and S2

are convex sets. 2

Based on the result in Lemma 3, we conclude that the
maximal feasible set Θ2ψ is obtained as a mapping from
the minimal robustly positively invariant set S that in-
cludes Xver: Θ2ψ = Θψ(S). This leads next to consider
under which conditions such minimal robustly positively
invariant set S can be exactly computed or approxi-
mated.

Feasible set for invariance properties with Xver = {0n}

For Xver = {0n}, assuming a bounded interval Uver with
the origin in its interior, and under some basic assump-

tions on the dynamics (to be shortly discussed), the min-
imal robustly positively invariant set can be shown to be
a bounded and convex set that includes the origin [7].
Maintaining the condition of Uver being bounded and
having the origin in its interior, we first consider the case
that Xver = {0n} and characterise S via tools available
from set theory in systems and control; thereafter we
look at extensions to more general sets of initial states
Xver.

Assume that Uver includes the origin, and denote the
forward reachability mappings initialised with R(0) :=
{0n} ⊂ X as

R(i) := Post(R(i−1)), (10)

with set operation Post(X) := {x′ = Ax + Bu, x ∈
X,u ∈ Uver}. Denote the limit reachable set as R∞ =
limi→∞R(i). From literature we recall that properties of
these i-step reachable sets, as given in [7] include the fol-
lowing: for a reachable pair (A,B) and an asymptotically
stable matrix A, the ∞-reachable set R∞ is bounded
and convex [7, Proposition 6.9]. Specifically, the k-step
reachable set converges to the∞-reachable set via (10),
since it is monotonically increasingR(i) ⊆ R(i+1). More-
over, R∞ is the minimal robustly positively invariant
set for the system, so that any positively invariant set
includes R∞ [7, Proposition 6.13]. Thus, starting from
x(0) = 0n, all x(t) ∈ R∞, and furthermore of interest to
this work we conclude that Θ2kψ= Θψ

(
R(k)

)
and that

Θ2ψ = Θψ

(
R∞

)
.

Feasible set for invariance properties under polytopic
sets of initial states

More generally, if Xver ⊆ R∞ and under the same as-
sumptions on matrices A,B and 0 ∈ Uver, then R∞
is the minimal robustly positively invariant set that in-
cludes Xver, and Θψ(R∞) = Θ2ψ. For finite iterations

the reachable sets R(i) are polytopes, and if R(i) =
R(i+1), then R(i) = R∞. Though the iterations can stop
in finite time, in general the number of iterations to ob-
tain R∞ can be infinite. Whilst the minimal robustly
positively invariant set is not necessarily closed or a poly-
tope, there exist methods to approximateR∞ as detailed
in [7]. For instance, for stable systems, R(k) is shown to
converge to R∞, in the sense that for all ε > 0 there ex-
ists k̄ such that for k ≥ k̄, R(k)⊆ R∞⊆ (1 + ε)R(k) [7,
Proposition 6.9].

Recall that the maximal feasible set Θ2ψ is obtained as a
mapping from the minimal robustly positively invariant
set S including Xver, so that Θ2ψ = Θψ(S). Let us
extend the study to the case where the conditions Xver =
{0n} or its extension Xver ⊆ R∞ do not apply, while the
condition on the bounded set Uver is maintained, that is
0 ∈ Uver. Consider the more general case where the set
of initial states is a polytope but not necessarily a subset
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of R∞. Denote the union of the forward reachability

mappings initialised with R(0)
Xver := Xver ⊆ X as

R(i)
Xver := R(i−1)

Xver ∪ Post(R(i−1)
Xver ) . (11)

This set is also known in the literature as the reach tube.
The corresponding set for infinite time is denoted as

R∞Xver = limi→∞R(i)
Xver . Notice that in the earlier case

when Xver ⊆ R∞, then R∞ = R∞Xver . The iteration is

monotonically increasingR(i)
Xver ⊆ R

(i+1)
Xver , and whenever

R(i)
Xver = R(i+1)

Xver it stops after a finite number of itera-

tions with R∞Xver = R(i)
Xver . Of course, also in this more

general case, the number of iterations can be unbounded,
however the convergence properties of R(i) extend di-

rectly to the case of setsR(i)
Xver . SinceR(i)

Xver is a union of
polytopes, it is not guaranteed to be a convex set. Still,
it can be shown via arguments as in the proof of The-
orem 2 that the computation of the feasible set Θψ(S)
boils down to that of Θψ

(
conv(S)

)
.

Remark 3 Let us illustrate the convergence property

for sets R(i)
Xver as follows. For every vertex xi(0) ∈ Xver,

select a decomposition xir + xis with xir ∈ R∞, which
minimises ‖xis‖ for a chosen vector norm ‖ · ‖. Since
every element x(0) ∈ Xver is a convex combination of
the vertices xi(0), it follows that for all x(0) ∈ Xver:

x(0) =
∑
i

aix
i(0) =

∑
i

aix
i
r(0) +

∑
i

aix
i
s(0)

∈ conv(xir(0)) + conv(xis(0)) ⊆ R∞ + X̄ver,

with
∑
i ai = 1 for ai ≥ 0, where X̄ver = conv(xis(0)),

and where we have employed the standard operation of
set addition. We obtain that Xver ⊆ R∞ + X̄ver, and
that the minimal positively invariant set R∞Xver can

be bounded by R∞ + limk→∞
⋃k
i=0A

iX̄ver. Under the
discussed conditions on Uver and (A,B), previously
necessary for R∞ to be a bounded and convex poly-
tope, AiX̄ver will converge to {0n}. Thus, the iteration

R(k)
Xver is monotonically increasing and bounded, hence

it converges. If X̄ver includes the origin in its inte-
rior, then there exists a finite iteration step k, such

that
⋃k
i=0A

iX̄ver =
⋃k+1
i=0 A

iX̄ver. Moreover, for any
reachable pair (A,B) and asymptotically stable A, the
closure of the minimal robustly positively invariant set
R∞Xver includes the origin.

Robust approximations of the feasible set via Θψ(·)

In order to exploit the convergence in the computation
of the feasible set for invariance properties, we need to
bound the error incurred in the use of approximations of
the sets R∞Xver or R∞. Let B denote a unit ball centred

at the origin and let the Hausdorff distance between sets
R1 and R2 be defined as

δH(R1,R2) = inf{ε ≥ 0|R1 ⊆ R2 + εB,R2 ⊆ R1 + εB}.

We can show that the following holds.

Lemma 4 Let us consider a model set under a reach-
able pair (A,B), an asymptotically stable A, and let the
input set Uver include the origin. Consider a polytope
R, and a property ψ comprised of ψ ::= α|©ψ|ψ1 ∧ψ2,
with α ∈ Σ, for which Θψ(R) is a non-empty polytope
with vertices vi and the origin in its interior. Let A be
bounded as ‖A‖2 ≤ 1. Then for any εx ≥ 0,

Θψ(R+ εxB) ⊆ Θψ(R) ⊆ Θψ(R+ εxB) + εθB (12)

if εθ ≥
εxεp maxi(‖vi‖)2

1 + εxεp maxi(‖vi‖)
, for εp := max

p∈AP

‖Ap‖2
|bp|

.

Proof [of Lemma 4] 1. Θψ(R+ εxB) ⊆ Θψ(R)
Based on the definition of this set (c.f. the proof of Theo-
rem 2), the set operation Θψ(·) is monotonically decreas-
ing as in Lemma 3. Therefore Θψ(R + εxB) ⊆ Θψ(R)
holds.

2. Θψ(R) ⊆ Θψ(R+ εxB) + εθB
Consider the case where the model is parameterised as
(A,B,C(θ), 0). To prove (12), we first find an εθ as a
function of εx such that

Θψ(R) ⊆ Θψ(R+ εxB) + εθB. (13)

Let vi be the vertices of the polytope Θψ(R), i.e., vi ∈
V (Θψ(R)) (as used in Lemma 3), then (13) holds if and
only if vi ∈ Θψ(R+εxB)+εθB. Equivalently, this means
that there exists an rθ ∈ εθB such that vi−rθ ∈ Θψ(R+
εxB). This is equivalent to demanding that for every
xj ∈ V (R), vi ∈ V (Θψ(R)) and rx ∈ εxB, there exists
a vector rθ ∈ εθB:(

(Inψ ⊗ (xTj + rTx ))Nψ +Kψ

)
(vi − rθ) ≤ Bψ

⇔
(
(Inψ ⊗ xTj )Nψ +Kψ

)
(vi − rθ)

+
(
(Inψ ⊗ rTx )Nψ

)
(vi − rθ) ≤ Bψ.

Take (vi − rθ) = (1− αi)vi with αi ∈ [0, 1), then(
(Inψ ⊗ xTj )Nψ +Kψ

)
(1− αi)vi

+
(
(Inψ ⊗ rTx )Nψ

)
(1− αi)vi ≤ Bψ

holds if

(1− αi)(Inψ ⊗ rTx )Nψvi ≤ αiBψ. (14)

Separate the matrix Nψ and Bψ into its block matri-

ces N j
ψ = [Nψ]{1+(j−1)n:nj}×{1:n} and Bj = [Bψ]j , such
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that inequality (14) is equivalent to the set of inequali-
ties

(1− αi)rTxN
j
ψv
′
i ≤ αiBj , for j = 1, . . . , nψ

⇔ rTxN
j
ψv
′
i ≤

αi
(1− αi)

Bj .

Given that 0 is in the interior of Θψ(R), it follows that
Bj > 0 for j = 1, . . . , nψ

max
j

(
rTxN

j
ψv
′
i

)
(Bj)−1 ≤ αi

(1− αi)
.

The term on the left can be upper bounded based on the
Cauchy-Schwarz inequality

max
j

(
rTxN

j
ψv
′
i

)
(Bj)−1 ≤ max

j
‖(N j

ψ)T rx‖2‖v′i‖2(Bj)−1

≤ max
j
‖(N j

ψ)T ‖2‖rx‖2‖v′i‖2(Bj)−1 and ‖rx‖2 ≤ εx

≤ εxεp‖v′i‖2.

The last inequality follows from the introduction of the
precision of the labelling, denoted as εp, and defined as

εp = max
p∈AP

‖Ap‖2
|bp|

. (15)

Remember that ‖L⊗K‖2 = ‖L‖2‖K‖2. Then based on
Theorem 2 and on the condition ‖A‖2 ≤ 1, it can be
shown that

max
j
‖(N j

ψ)T ‖2|Bj |−1 ≤ max
p∈AP

‖Ap‖2
|bp|

.

Note that αi
(1−αi) monotonically increases with αi for

αi ∈ [0, 1). Therefore a bound on αi can be found as

αi = (εxεp‖vi‖)/(1 + εxεp‖vi‖) for j = 1, . . . , nψ. (16)

It follows that (13) holds if

εθ ≥ max(‖vi‖2)
εxεp max(‖vi‖2)

1 + εxεp max(‖vi‖2)
. (17)

For the case that the model is parameterised in both
C and D, i.e., (A,B,C(θ), D(θ)) the derivation is a bit
more cumbersome (cf. proof of Theorem 2), but can be
repeated with no change to the end result. 2

Let us briefly discuss the conditions under which
Lemma 4 is applicable. The requirement that Θψ(R)
is not empty is raised to avoid the trivial case where
Θψ(R) = ∅ in (12) holds for all εθ. The condition
that Θψ(R) is a polytope (and hence bounded) is nec-
essary to obtain a bounded Hausdorff distance. This

distance quantifies the difference between two sets, and
is a necessary step to bound the approximation error.
The requirement that Θψ(R) includes the origin is a
sufficient condition and relates to well-posedness for
bounded input sets including the origin. When consid-
ering invariance properties defined for 0 ∈ Uver and for
any polytope Xver, the requirement that 0n ∈ Θψ(·) is
necessary for Θ2ψ to be non-empty: this can be intu-
itively illustrated by noting that under an assumption
of asymptotic stability for A, for any θ and for u(·) = 0,
the output ŷ(t, θ) of the model in (6) converges to 0.
Hence for a property to be satisfied under these condi-
tions it should at least hold for the zero output, which
is equivalent to demanding that it holds for the param-
eter θ = 0n. For any atomic proposition pi ∈ AP (see
Equation (5)) it can be shown that there is an invertible
mapping between the row vectors, proportional to the
normals of the faces of the polyhedral set Θpi(x(0)), and

the initial state x(0). Therefore, if R(k) has the origin in
its interior, then Θpi(R(k)) has to be bounded, and as
a consequence so does any feasible set comprising this
atomic proposition. This holds for k ≥ n if (A,B) is a
reachable pair and if Uver has 0 in its interior. Under

the same conditions there exists a k such that R(k)
Xver has

0n in its interior. The generalisation to the case dealing
with an Hausdorff distance of the feasible set for invari-
ance properties with a set of inputs 0 6∈ Uver is outside
of the scope of this work.

Convergence properties of robust approximations

We can employ Lemma 4 to bound the Hausdorff dis-

tance between Θψ(R(k)
Xver ) and Θ2ψ. If Xver = {0n} and

the spectral radius of A is strictly less than 1 (that is
ρ(A) < 1 or equivalently A is asymptotically stable),
then the Hausdorff distance can be bounded as

δH(R(k),R∞) ≤ ε(k) := ‖Ak‖2 max
u∈U

(|u|)c1, (18)

with c1 a bound on
∑∞
i=0 ‖AiB‖, which is the peak-to-

peak performance of the dynamical system formed by
(A,B). The derivation of the inequality above, and of
the subsequent results, can be found in the Appendix.
Stronger results can be obtained via dedicated software
for these computations [17]. In the case that Xver 6⊆ R∞
then the forward reachable iteration can be rewritten as

R(k)
Xver =

( k⋃
i=0

AiXver
)

+R(k).

The Hausdorff norm can be bounded as

δH(R(k)
Xver ,R

∞
Xver ) ≤ ε(k) + ‖Ak+1‖2δH (Xver, {0n}).

Note that for ρ(A) < 1 the norm ‖Ak‖2 → 0 for k →∞.

In case the conditions of Lemma 4 on R(k)
Xver ⊆ X and
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Θψ

(
R(k)

Xver

)
hold, the Hausdorff distance δH(Θ2kψ,Θ2ψ)

can be bounded by

‖Ak‖2 max
i

(‖vi‖)2εp
(

max
u∈U

(|u|)c1 +‖A‖δH(Xver, {0n})
)
.

(19)

Verification of unbounded-time properties

Based on the convergence properties of the feasible set,
the asymptotic behaviour of the confidence computed in
Proposition 1 can be stated as follows.

Corollary 5 (Convergence) Under the conditions of
Lemma 4, the feasible sets Θ2kψ and Θ2ψ are mea-
surable; further, for a Gaussian distribution p (θ) ∼
N (µθ, Rθ) with a covariance Rθ � 0, P

(
θ ∈ Θ2kψ

)
→

P (θ ∈ Θ2ψ) for k →∞.

Proof [of Corollary 5] For a strictly positive Rθ, the
Gaussian density distribution takes finite values over
the parameter space, therefore the convergence of a
monotonically-decreasing polytope over the parameter
space induces the convergence of the associated proba-
bility measure. 2

Theorem 2 can now be generalised to include unbounded-
time invariance properties as follows.

Theorem 6 Consider a polytopic set of initial states
x(0) ∈ Xver, inputs u(t) ∈ Uver for t ≥ 0, and a

labelling map as in (5). Let R̂∞Xver be a polytopic su-
perset of the minimal robustly positively invariant set
that includes Xver, denoted as R∞Xver . Then the feasi-

ble set admits a polyhedral subset Θ̂ψ ⊂ Θψ for ev-
ery specification ψ expressed within the LTL fragment
ψ ::= α|©ψ|ψ1 ∧ ψ2|2ψ, and if R̂∞Xver = R∞Xver then

Θ̂ψ = Θψ.

Proof [of Theorem 6] Every property φ ::= p|©ψ|ψ1 ∧
ψ2|2ψ with p ∈ AP can be rewritten as ψ1 ∧ 2ψ2

where ψ1 and ψ2 have syntax ψ ::= p|©ψ|ψ1 ∧ψ2. Con-
sider a property ψ∗ = ψ1 ∧ 2ψ2, and let us leverage
equivalences among LTL formulae [2]. For ψ̄1 and ψ̄2

in ψ ::= p|©ψ|ψ1 ∧ ψ2 the properties ψ1∗ := ψ1 ∧ ψ̄1

and ψ2∗ := ψ2 ∧ ψ̄2 are such that ψ∗ ∧ (ψ̄1 ∧ 2ψ̄2) ≡
ψ1∗ ∧ 2ψ2∗. Now consider ©ψ∗ ≡ ©(ψ1 ∧ 2ψ2) ≡
©(ψ1 ∧2ψ2) ≡ (©ψ1)∧ (©2ψ2), from the distributive
law of ©. Using the semantics of © and 2, it follows
that©2ψ2 is equivalent to 2©ψ2. Thus for ψ1∗ :=©ψ1

and ψ2∗ := ©ψ2 it holds that ©ψ∗ ≡ ψ1∗ ∧ 2ψ2∗.
Take 2ψ∗ ≡ 2(ψ1 ∧ 2ψ2) ≡ (2ψ1) ∧ (22ψ2) based
on the distributive law (c.f. [2, p.248]), which is subse-
quently equal to (2ψ1)∧ (2ψ2) ≡ 2(ψ1 ∧ψ2) by apply-
ing the idempotency law and the distributive law. Hence
2ψ∗ ≡ 2(ψ1 ∧ ψ2).
In conclusion, every property φ ::= p|©ψ|ψ1 ∧ ψ2|2ψ

can be written as ψ1∧2ψ2 where ψ1 and ψ2 have syntax
ψ ::= p|©ψ|ψ1 ∧ψ2: this is because we have shown that
every operation (©, ∧, 2) preserves this rewriting.

For the set of initial states Xver, a property ψ is invariant

〈M(θ), x(0)〉 � 2ψ, ∀x(0) ∈ Xver

if and only if ∀x ∈ R∞Xver : 〈M(θ), x〉 � ψ. Let R̂∞Xver be
a polytopic superset ofR∞Xver with a finite set of vertices
vR ∈ VR. Then the subset approximation of the feasible
set Θ2ψ follows as Θ2ψ ⊇ Θ̂2ψ ={

θ ∈ Θ :
∧

vR∈VR

(
(Inψ ⊗ vTR)Nψ +Kψ

)
θ ≤ Bψ

}
,

where Θ̂2ψ ⊆ Θ2ψ. Note that if R̂∞Xver = R∞Xver then

Θ̂2ψ = Θ2ψ. The feasible set of ψ1 ∧ 2ψ2 is equal to
Θψ1∧2ψ2 = Θψ1∩Θ2ψ2 . And Θψ1∧2ψ2 can be upper and

lower bounded as Θψ1
∩Θ̂2ψ2

⊆ Θψ1∧2ψ2
⊆ Θψ1

∩Θ2kψ2

with k ∈ N. This proves Theorem 6 for the case where the
model is (A,B,C(θ), 0). The proof for the model class
with additional parameterisation of D can be derived
similarly. 2

The extension beyond the LTL fragment discussed above
may lead to feasible sets that are in general not convex,
and is therefore beyond the scope of this work.

3.6 Case Study (continuation): Unbounded-Time
Safety Verification

We study convergence properties for the safety speci-
fication ι considered in the case study in Section 3.4,
maintaining the same operating conditions as before for
the verification step and for the experiments. In Figure
4a the forward reachability sets R(k) with k = 1, . . . , 20
are obtained for the model dynamics in (8). Figure 5
(upper plot) displays bounds ε(k) on the Hausdorff dis-
tances δH(R(k),R∞) computed with (18): starting from
a slanted line segment for R(1) as in Figure 4a, it can be
observed that the forward reachable sets R(k) converge
rapidly, as confirmed with the error bound displayed in
Figure 5 (upper plot).

Based onR(k), the feasible set for the k-bounded invari-
ance 2kι can be computed as Θ2kι = Θι

(
R(k)

)
. The fea-

sible sets Θ2kι with k = 1, . . . , 20 are plotted in Figure
4b. Observe that the feasible set Θ21ι is not bounded,
but for k ≥ 2 the feasible sets are bounded and, as ex-
pected, decrease in size with time. In Figure 5 (middle
plot) bounds on the Hausdorff distances δH(Θ2ι,Θ2kι)
are given for k = 2, . . . , 20 (no finite bound is computed
for the index k = 1, since for that instance the feasi-
ble set is not bounded). Let us conclude this case study
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looking at confidence quantification, as a function of the
time horizon. Figure 5 (lower plot) represents the confi-
dence over the property P

(
θ ∈ Θ2kι | ZNs

)
, for indices

k = 1, . . . , 20. Unlike the case discussed in Section 3.4,
which focused on looking at statistics of the confidence
via mean and variance drawn over multiple experiments,
we zoom in on asymptotic properties by considering a
data set ZNs comprising a single trace made up of 200
measurements, simulated under the same conditions as
in Section 3.4, and with θ0 = [1 0]T . From the result-
ing probability density distribution p

(
θ | ZNs

)
, it may

be observed that the confidence converges rapidly to a
nonzero value.

4 Discussion on the Generalisation of the Re-
sults

The discussed approach based on polytopes allows for
analytical expressions of the feasible set, however the
implementation may not scale to models with very large
dimension: in particular, the number of half-planes char-
acterising the feasible set may increase with the time
bound of the LTL formula ψ (that is, with the repeated
application of the© operator), and with the cardinality
of the set of atomic propositions in the alphabet Σ. Still,
these computations are essentially equivalent to those of
known reachability algorithms, therefore the method is
extensible well beyond the 2-dimensional case study, es-
pecially when applying sophisticated reachability analy-
sis tools in the literature [17,12]. Therefore the discussed
limitations related to the current implementation of the
approach, ought to be dealt with in the future by the use
of tailored and less näıve computational approaches.

In the discussion of model selection, we elaborated possi-
ble generalisations beyond linearly-parameterised model
sets. Future extension will in particular deal with hybrid

−0.2 0 0.2
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0

0.5
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x
2

(a) The first 20 iterations
of the forward reachable set
R(k), k = 1, . . . , 20 for the
case study. The reachable sets
grow in size from dark grey
(k = 1) to light grey (k = 20),

so that R(k−1) ⊆ R(k).
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(b) The feasible sets for
the k-bounded invariance
property 2kι, with k =
1, . . . , 20, obtained for the
case study.

Fig. 4. Reachable and feasible sets for the unbounded-time
verification problem.
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Fig. 5. (Upper plot) Error bound on the approximation
level of the k-th forward reachable sets, which is such
that R(∞) ⊆ R(k) + ε(k) for k = 1, . . . , 20. (Middle plot)
The Hausdorff distance εθ(k) between Θ2kψ and Θ2ψ with
k = 2, . . . , 20, obtained for the case study.(Lower plot) Con-
fidence that S � 2kι for k = 1, . . . , 20 for the case in Sec-
tion 3.4, with a new experiment consisting of 200 samples
collected as ZNs .

models, since when systems are not linear, their (local)
behaviour is often well approximated with piecewise-
linear dynamical models.

We are presently working to extensions of the consid-
ered set of logic formulae of interest, and plan to employ
experiment design to optimise the input-output signal
interaction for efficient data usage over general classes
of models, as initially attempted in [20]. Additionally,
the design of control policies that optimise properties of
interest over partly unknown systems is topic of current
work.

Finally, current work targets the applicability of
tractable solutions to model-based and data-driven
verification over complex physical systems.

5 Conclusions

This paper has introduced a new framework for the inte-
grated formal verification and modelling of physical sys-
tems with partly unknown dynamics. A Bayesian frame-
work allowing for the efficient incorporation of measure-
ment data and prior information has been combined with
a verification procedure based on safety analysis. The
new approach allows for the computation of the confi-
dence level over the validity of a property of interest on
the unknown system. The method has been applied to
the verification of LTI models of systems over bounded
and unbounded safety properties (a fragment of LTL

13



logics), and its computational overhead has been focus
of discussion.
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Derivation of the Bounds in Section 3.5

We derive the Hausdorff distance used in the subsection
“Convergence properties of robust approximations”.

1. Hausdorff distance of forward reachable map-
pings. We sketch the method to bound the Hausdorff
distance, whereas a more formal derivation can be found
in the literature on robustly positively invariant sets [7].

The k-step forward reachable set equals to

R(k) =

k⋃
i=1

{ i∑
j=1

Aj−1Bu(i− j), for u(j) ∈ Uver
}
.

For 0 ∈ Uver, the minimal invariant set R∞ can be
written as

R(∞) =
{ i−1∑
j=0

AjBu(j) +Ai
∞∑
k=0

AkBu(k),

for u(·) ∈ Uver
}
.

If the spectral radius of a A is strictly smaller than 1,
ρ(A) < 1, then

R(∞) ⊆ R(k) + ε(k)B,

with Ak
∑∞
i=0A

iBu(k) ⊆ ε(k)B, for u(·) ∈ Uver. Note
that ε(k) is bounded for ρ(A) < 1. For a matrix A
without defective eigenvalues, i.e. where the eigenvectors
form a complete basis, this L1 norm (the peak-to-peak
performance) can be easily bounded using the spectral
radius of A, by selecting

ε(k) =
|ρ(A)|k

1− |ρ(A)|
‖B‖2 max

u∈Uver
(|u|)

≥ ‖Ak‖2
∞∑
i=0

‖AiB‖2|u(k)|.

In case that the matrix A is defective, we opt to bound
the L1-norm by exploiting the absolute sum of the L2

induced norm for Ai, i → ∞:
∑∞
i=0 ‖Ai‖2. Note that

‖Ai‖2 converges to 0 for i→∞ since ρ(A) < 1, therefore
there exists a finite l such that ‖Al‖2 < 1 and we can
upper bound the absolute sum as

∞∑
i=0

‖Ai‖2 ≤
( l−1∑
i1=0

‖Ai1‖2
)( ∞∑

i2=0

‖Al‖i22
)

=
( l−1∑
i1=0

‖Ai1‖2
) 1

1− ‖Al‖2
.

Thus in general, the Hausdorff distance can be bounded
as

δH(R(k),R(∞)) ≤ ε(k) = ‖Ak‖2 max
u∈Uver

(|u|)c1,

with c1 =

(∑l

i1=0
‖Ai1‖2

)
1−‖Al‖2 ‖B‖2 for l such that ‖Al‖2 < 1.

Note that c1 can be replaced by any bound on the L1

norm (the peak-to-peak performance) of the dynamical
system formed by (A,B).

In case that Xver 6⊆ R∞ then the forward reachable
iteration can be rewritten as

R(k)
Xver =

( k⋃
i=0

AiXver
)

+R(k),

for which we know that

R(∞)
Xver ⊆ R

(k)
Xver + ε(k) + ‖A‖k+1δH(Xver, {0}).

Thus the Hausdorff norm is upper bounded as

δH(R(k)
Xver ,R

(∞)
Xver ) ≤ ε(k) + ‖Ak+1‖δH(Xver, {0}).

2. Hausdorff distance on feasible sets. Suppose

that the conditions in Lemma 4 hold for R(k)
Xver , then

we can compute a value for εθ such that Θψ(R(k)
Xver ) ⊆

Θψ(R(k)
Xver+εxB)+εθB,where εx is a bound on the Haus-

dorff distance δH(R(k)
Xver ,R

(∞)
Xver ).

The set operation Θψ(·) is monotonically decreasing,

therefore Θψ(R(k)
Xver + ε(k)B) ⊆ Θ2ψ = Θψ

(
R∞Xver

)
⊆

Θψ

(
R(k)

Xver

)
= Θ2kψ, and Θ2kψ ⊆ Θψ(R(k)

Xver +ε(k)B)+

εθB ⊆ Θ2ψ + εθB, and

Θ2ψ ⊆ Θ2kψ ⊆ Θ2ψ + εθB.
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Based on Lemma 4, with εp = maxpi
|Api |
|bpi |

, we obtain

εθ =
εxεp maxi(‖vi‖)2

1 + εxεp maxi(‖vi‖)
≤ εxεp max

i
(‖vi‖)2.

Note that since ‖Ak‖2 converges to 0 for k → ∞ for
ρ(A) < 1, and since maxi(‖vi‖)2 is not increasing, the
error εθ also converges to 0.
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