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Abstract12

This work is concerned with the problem of point set matching over features extracted from images. A

novel approach to the problem is proposed, which leverages different techniques from the literature. The

approach combines a number of similarity metrics that quantify measures of correspondence between the two

sets of features and introduces a non-iterative algorithm for feature matching based on spectral methods.

The flexibility of the technique allows its straightforward application in a number of diverse scenarios, thus

overcoming domain-specific limitations of known techniques in the literature. The proposed approach is

tested in a number of heterogeneous case studies: of synthetic nature; drawn from experimental biological

data; and taken from known benchmarks in computer vision.
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1. Introduction15

The general problem of point set matching is a fundamental topic in computer vision and is key for the16

task of registration of multiple images. The problem is defined over pairs of feature sets extracted from17

images and can be decomposed, as suggested in [5], into two related sub-problems: that of transformation18

between the images, and that of correspondence between the features of the two images.19

The first problem (transformation) is concerned with finding the mathematical relationship underlying20

the overall morphing between two successive frames, that is a mapping describing the transformation of21

the first image into the second frame [19]. This objective is relatively easily obtained when the underlying22
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transformation is rigid: our approach instead does not assume that the transformation between the images23

is rigid.24

The second issue (correspondence), which is the focus of the present contribution, deals with the task of25

finding a quantitative matching between features associated with the two images, which are not necessarily26

related by a rigid transformation. In the literature this problem is studied either by working directly on27

the intensity maps associated with the two images [2, 19], or by extracting correspondences between sets of28

features obtained from the images [5, 13, 14]. It is often the case that the two sets of features are made up29

of heterogeneously distributed points that are extracted from the original frames.30

The contribution in [7] employs a brute-force approach to the correspondence problem by exploiting the31

notion of Hausdorff distance. However the computational burden of the approach arising from combinatorial32

explosion can be significant. A popular, non-iterative technique uses spectral methods over the abstract33

structures composed of the feature points – seminal contributions in this area are those in [13, 14], which34

essentially differ on one major aspect. The former sets up a similarity metric based on inter-relationships35

between pairs of points taken from the two sets, and studies the spectral properties of a matrix that36

incorporates such a metric. The latter instead compares the spectral properties of two matrices, each37

of which is intended to describe the shape of the single image and its local relations (intra-metrics within38

the image). The technique is related to other approaches based on matrix spectral analysis for abstract39

weighted graph matching problems. Similar to the cited work in [13, 14] and to [20], the presented technique40

is analytic. Alternatively, abstract graph matching can be studied with iterative schemes, such as that in41

[3], which offsets the computation time related to the scheme with a linear dependence on the graph size.42

Both [13, 14] have known pitfalls and shortcomings. [13] presents limitations when the rotation or43

the scaling between the two images is large. To mitigate this deficiency, [11] incorporates a neighborhood44

correlation measure in the inter-metrics. A spectral matching algorithm working along the lines of [13],45

which exploits intensity information from the raw underlying image, is proposed in [17]. As [14] argues, [13]46

suffers also from numerical instability. On the other hand, the approach in [14] performs poorly whenever the47

features corresponding to the main eigenmodes of either image undergo structural changes. Furthermore, the48

technique is not robust to point-jitter. [14] can be improved by employing kernel methods in the definition of49

the intra-metrics matrices [15]. This is for instance implemented with a kernel PCA in [21, 22], where the data50

are embedded into a higher-dimensional space through a Gaussian kernel. Along with not accommodating51

the presence of underlying images, both the approaches in [13] and in [14] do not incorporate information52

about features connectivity or features distinctiveness, which the original images may be endowed with –53

[12] proposes an improvement over the correspondence procedure by incorporating outside information.54

Other techniques in the literature study variants of the correspondence detection problem. Statistical55

methods [23] embed probability distributions over point sets. The registration task can then be reframed56

as a maximum likelihood estimation procedure with coherence constraints [10], or as a distribution align-57
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ment problem [8]. On the other hand, deterministic optimization-based approaches based on minimum58

least-squares problems [5], or constrained global energy minimization techniques using objective functions59

quantifying geometric similarity and features coherence [18] have been put forward to tackle the corre-60

spondence and matching problem. These techniques are intrinsically different in nature than the method61

discussed in this work in that 1) they possibly embed probabilistic information over the data sets, 2) they do62

not fully exploit the texture information underlying the images, and 3) they are iterative (as opposed to being63

one-shot), since they leverage optimization procedures (e.g., energy minimization or likelihood maximiza-64

tion). As such, while these techniques generally aim at solving the same problem, they are methodologically65

and structurally different than the approach discussed in the present contribution.66

The purpose of this work is to propose a novel approach for the general problem of point set matching.67

With reference to the earlier literature review, the approach 1) leverages and combines the intra- and inter-68

information obtained from the pair of feature sets; 2) exploits the use of spectral techniques over the feature69

sets — the proposed method is non iterative and computationally quite efficient; 3) embeds additional70

information deriving from the possible knowledge of an existing graphical structure over the single features71

set, as well as from the presence of underlying raw images. All this heterogeneous information is included72

in a single method by exploiting structural properties of kernel matrices.73

As in [13], we make use of a pairing matrix, which relates pairs of points taken from the two sets.74

In addition, we allow the elements of the pairing matrix to depend on a combination of possible metrics,75

each of which is defined over the two sets of points. This “library” of metrics represents a set of different76

possible measures that quantify attributes of similarity between the pair of feature sets under study, and77

can be extended based on the problem under study and the available information. For example, one metric78

introduces a notion of adjacency between the spatial coordinates of pairs of points, as proposed in [13]; two79

related metrics compare the eigenmodes between intra-matrices defined for each of the two feature sets, as80

in [14]; an additional metric exploits the presence of a graphical structure underlying the points in each81

image; a final metric instead uses the information coming from actual raw images underlying the feature82

points. Thanks to structural properties of kernel matrices, such measures are combined into a single pairing83

matrix obtained as the multiplication of the single pairing matrices. This new pairing matrix accommodates84

different and heterogeneous information: such versatility allows the application of the approach to diverse85

data sets.86

The technique performs robustly on a variety of application domains, by automatically adapting the set87

of useful metrics to the particular case under study. Specifically, the multiplicative structure of the pairing88

matrix ensures that if a particular metric is not discriminative for a pair of images it is automatically89

overridden by the other more relevant metrics. The procedure is tested over a few case studies drawn from90

different domains, in order to fairly assess its performance with regard to the following major characteristic91
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benchmarks: 1) the presence of outliers (i.e., the emergence or the deletion of a subset of the features) in92

each image due to structural changes; 2) substantial rotations and translations between the pair of images;93

and 3) random position jitter.94

The contribution unfolds as follows. Section 2 introduces the theoretical concepts and delineates the95

main technical aspects underlying the proposed technique. In particular, Sections 2.1 and 2.2 discuss the96

notion of pairing matrix and its use for the point set matching problem, Section 2.3 introduces a library97

of different possible metrics that can be embedded within the pairing matrix, and Section 2.4 derives the98

algorithmic complexity of the proposed approach. Section 3 covers a number of case studies, where the99

technique proposed in this work is tested and benchmarked. The examples are both synthetic (Sec. 3.2)100

and drawn from biological experimental data (Sec. 3.3), as well as taken from known benchmarks in the101

literature ([1], Sec. 3.4). Section 4 concludes the work and delineates future research directions.102

2. Theory103

This Section discusses the theory that underpins the proposed point set matching procedure.104

2.1. The Pairing Matrix for Point Set Matching105

Consider two sets of points X = {x1, . . . , xm} and Y = {y1, . . . , yn}, with elements lying in R
d for some106

finite d. As in [13], we introduce a pairing matrix Z ∈ R
m×n, with entries zij ∈ R. Each element zij is107

intended to express a measure of similarity between point xi ∈ X and yj ∈ Y . The definition of the elements108

in Z is elaborated in Sections 2.2 and 2.3. Given the pairing matrix Z, the selection of pairs of matching109

points from the two sets is performed after a normalization procedure, and is described in the following.110

The matrix Z is preprocessed by computing its singular-value decomposition111

Z = TDU, (1)

where D ∈ R
m×n, whereas T, U are properly-sized orthogonal matrices. We replace diagonal elements dpp112

of D, p = 1, 2, . . . ,min{m,n}, with identity constants, which yields113

Z̃ = TEU, (2)

where eij = dij , i 6= j, i = 1, . . . ,m, j = 1, . . . , n, epp = 1, p = 1, . . . ,min{m,n}. This technique is generally114

known as whitening. The matrix Z̃ is orthogonal and is the matrix that maximizes the trace of Z̃TZ [13].115

Furthermore, the largest elements in Z̃ correspond to candidate matching pairs as follows: the pair (xi, yj)116

is matched if and only if zij is the largest element both of row i and of column j. This strong correspondence117

implies a “mutual consent” to the match: indeed, if zij is the largest element of row i but not of column j,118

point xi is similar to yj , but not the contrary. As such, the pair (xi, yj) is not a valid match.119
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If one considers each row i as an n dimensional vector ri, then Z is a map from point xi into vector ri.120

Ideally, a pairing matrix Z should be sparse, with a single non-zero element per row and linearly independent121

rows. In such a case, ri coincides with one of the axis and as such is the farthest possible from any other122

vector row. More generally, if a row vector ri is close to the axis ej ∈ R
n, then it is likely for the pair123

(xi, yj) to be a match. However, if two vectors ri1 and ri2 , i1, i2 ∈ {1, . . . ,m}, are adjacent to the same124

axis ej , then the corresponding points xi1 and xi2 “compete” for the match with yj . Setting the singular125

values of Z to be unitary corresponds to a spatial outspread of its row vectors, which thus alleviates such126

potential conflicts. Figure 1 displays an instance of Z and Z̃ matrices corresponding to sets of cardinality

Figure 1: Graphical comparison of pairing matrix Z (left) and its normalized version Z̃ (right), where Z =


0.7000 0.7500 0.4000

0.9000 0.9500 0.1000

0.3000 0.9000 0.8500


 and Z̃ =




0.8519 0.1527 0.5010

0.4249 0.7607 0.4907

0.3062 0.6309 0.7129


. Notice that the row vectors r1, r2, r3 of Z̃ do not cluster

and better spread in space. The pairing matrix Z yields one pair (2, 2), whereas Z̃ yields the pairs (1, 1), (2, 2), (3, 3).

127

three. In this example where m = n, the above operation corresponds to the normalization the volume of128

the associated prism.129

Unlike other iterative approaches [5, 18], the method yields the matching with a single-step calculation.130

The formal algorithmic complexity of the approach is derived in Section 2.4.131

2.2. Flexible Design of the Pairing Matrix132

As previously mentioned, the elements zij of Z represent a measure of similarity between point xi and133

point yj . A kernel function K : X×Y → R is used to define these elements as an inner product in a (possibly134

infinite) dimensional space [15], so that135

zij = K(xi, yj) = 〈φ(xi), φ(yj)〉 (3)

and136

Z =




z11 . . . z1n
...

. . .
...

zm1 . . . zmn


 =




K(x1, y1) . . . K(x1, yn)
...

. . .
...

K(xm, y1) . . . K(xm, yn)


 . (4)

5



As a special case of (3), one can select K(xi, yj) = 〈xi, yj〉, whereby φ(·) = id(·) is the identity function. In137

general, given a proper kernel function K, Mercer’s Theorem [15, Thm. 3.13] guarantees the existence of138

the embedding function φ(·), though it may not be explicitly known.139

Given a (possibly infinite) set of kernel functions K1, . . . ,Kt, t ∈ N, the closure property [15, Prop. 3.22]140

warrants that141

Ks(xi, yj) =

t∑

k=1

Kk(xi, yj) and Kp(xi, yj) =

t∏

k=1

Kk(xi, yj) (5)

are also kernel functions. Hence, by considering pairing matrices Z1, . . . ,Zt built over the kernel functions142

K1, . . . ,Kt as in (4), the new matrices143

Zs =

t∑

k=1

Zk and Zp =

t∏

k=1

Zk (6)

are still valid kernel-based pairing matrices. (Here the symbols
∑

and
∏

represent point-wise sum and144

multiplication.)145

For any legitimate choice of the kernel function, the pairing matrix Z relates to the notion of Gram146

matrix [15], which connects with a wealth of literature on kernel methods for pattern analysis. However,147

since in the present instance Z is applied over pairs of points extracted from two different sets (rather than148

from the very same set), it does not formally belong to this class of matrices.149

The kernels Kk are built around metrics, or distances dk, which are suitable for the matching problem.150

We select a Gaussian as the kernel function:151

Kk(xi, yj) = e
−

d2
k
(xi,yj )

σ2
k , (7)

where σk is a parameter of choice that controls the degree of interaction between the two feature points.152

Next, we introduce a library of possible metrics, which we will apply in a number of heterogeneous case153

studies.154

2.3. A Library of Metrics155

Let us consider the following set of metrics dk : X × Y → R, k = 1, . . . , 5:156

Metric Definition

d1(xi, yj) ‖xi − yj‖p, p > 0

d2(xi, yj) cos(m(i), m(j))

d3(xi, yj) cos(m̃(i), m̃(j))

d4(xi, yj) |d(xi)− d(yj)|

d5(xi, yj) td(xi, yj)

157

The metrics are further discussed in the following.158
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1. d1 is a p-norm distance between pairs of points taken from the two sets. The present case studies159

consider the Euclidean norm (p = 2).160

2. d2 is a measure of the distance of the i-th mode m(i) and the j-th mode m(j) associated to each161

of the two sets. As suggested in [14], the mode m of a point set is computed as follows: first, a162

square proximity matrix defined according to the intra-distances between the features of the image is163

introduced; it is successively diagonalized and its first min{m,n} eigenvectors, sorted according to the164

largest eigenvalues, are regarded as its modes. The distance between the modes m(i) and m(j) of the165

two graphs is then computed as their cosine.166

3. This metric is valid if the sets X,Y are embedded with a graphical structure. The distance d3 is167

characterized analogously as d2, however the modes m̃ are computed by considering a proximity matrix168

that has non-zero elements only if the corresponding pair of vertices are connected by an existing edge169

in the graph.170

4. The metric d4 is defined as the absolute value of the difference between the graphical degree of a pair171

of points, taken respectively from X and from Y. The function d is the degree of a node in a graph.172

As for d3, this metric is valid if the sets X,Y are embedded with a graphical structure. However, if no173

graphical structure is present over the sets X and Y, then one such graph can be induced artificially:174

for instance, edges can be created between pairs of points if their distance is less than an adjustable175

threshold.176

5. Given an image underlying the point sets, the metric d5, defined by a function td, computes the texture

difference between a neighborhood of xi ∈ X and one of yj ∈ Y . Here the points xi, yj are intended

as features of the corresponding images.

More formally, let us consider the finite discrete domain L ⊂ Z
2 made up of the pixels of the two-

dimensional image frame. Given a point z ∈ R
2, we define a neighborhood N (z, δ) ⊂ Z

2 as the set of

pixels of the image with centroid lying within a radius δ > 0 from z. A function I : L → R
+ specifies

the intensity of the image over its domain.

Let us now consider the two images Lx, Ly underlying X,Y . Given a radius δ of choice (the choice of

δ may be related to σ5 in (7)), the function td(z1, z2) computes the absolute value of the difference

between the intensities of the pixels in the neighborhoods of points z1 and z2:

td(z1, z2) =
∑

p1∈N (z1,δ)∩Lx

∑

p2∈N (z2,δ)∩Ly

|I(p1)− I(p2)|.

This approach is related to a similar procedure used in [17].177

The metrics d1, . . . , d5, which are used in kernel functions (7), are then combined through a product into a178

pairing matrix Z, as in (5), to be employed in the matching procedure. The multiplicative structure of the179

pairing matrix ensures that if a particular metric is not discriminative for a pair of images it is automatically180
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overridden by other more relevant metrics. This versatile feature allows the automatic adaptation of the set181

of useful metrics to the particular case under study.182

2.4. Algorithmic Complexity183

Let us start assuming that we are given t kernel functions Kk, k = 1, . . . , t, as in (7), which are used in184

the matching procedure. The procedure is made up of four sequential steps that determine its algorithmic185

complexity.186

Firstly, we build Z as a point-wise multiplication of the t kernel functions Kk, k = 1, . . . , t, according to187

(6). This involves d · t ·m ·n operations, where m and n are the number of features respectively in X and Y ,188

and d is the dimensionality of their spatial component. We expect that d,t are constants that are smaller189

than m,n, which results in a O(nm) computational complexity.190

Secondly, we compute Z̃ using a singular value decomposition procedure as in [6]: accordingly, the191

computation of U ,V and D requires 4m2n+ 8mn2 + 9n3 operations.192

Thereafter, the whitening procedure is completed by replacing the diagonal elements of D, which easily193

results in O(min{m,n}) computational complexity.194

Finally, the matching procedure on Z̃ requires finding the minimum of each row and then scanning the195

corresponding column to confirm or discard the matching. This entails in
(
min{m,n}

2

)
operations, which is196

O((min{m,n})2).197

The overall computational complexity thus easily add up being O(m2n+mn2 + n3). Intuitively, we can198

state that the computation cost grows with the third power of the size of |X | or |Y |.199

In practice, we have found the computational cost not to be a burden, even using whitening. All the case200

studies described in Section 3, which are by no means of trivial dimensionality or structure, have resulted in201

real-time executions. In other words, whilst the computed polynomial complexity holds, we have exerienced202

that the hidden constants in O(m2n+mn2+n3) to be quite limited in value. For instance, Table 1 shows the203

computational complexity of the matching procedure for the synthetic graph matching test case in Section204

3.2, run using Pe, Pv and Mv = 15.00%: for this test, we have found that the complexity O(m2n+mn2+n3)205

can be further computed to be equal to 2.1 ·10−7m3, where m is the size of the first graph (here n ≤ m). On206

the side, notice that one can implement a much faster algorithm, albeit at a loss in reliability, by avoiding207

the withening of Z (second and third step above). This obtains a computational cost of O(mn).208

3. Case Studies209

This Section develops a number of case studies to test the methodology introduced in Section 2. We210

show that the particular instance under study dictates what subset of metrics mostly influence the pairing211

matrix utilized for the matching procedure and optimize its outcomes. The software and the hardware for212

all the case studies are specified in Table 1.213

8



Graph size, m Computational Time

50 nodes 0.022 sec
75 nodes 0.047 sec

100 nodes 0.089 sec
125 nodes 0.154 sec

150 nodes 0.231 sec
175 nodes 0.347 sec

200 nodes 0.472 sec
250 nodes 0.894 sec
300 nodes 1.396 sec

350 nodes 2.277 sec
400 nodes 3.157 sec

Table 1: Computational complexity for the synthetic graph test case of Section 3.2, tested on a Linux Ubuntu machine, AMD

Mobile Sempron 3600+ processor with 2GB memory. The test was built in Matlab r2009b c©. To reduce noise, for each size

m of the graph we run 10 trials and averaged the outcomes. The table shows the experimental result (blue) as well the least

square analytical fitting (red), obtained with a multiplicative constant 2.1 · 10−7 and here displayed with a 0.5 sec offset.

3.1. Performance Assessment of the Point Set Matching Procedure214

Consider the two sets of feature points X and Y , with cardinality m and n respectively. The outcomes215

of the point set matching procedure is compared with the ground truth. The ground truth is known for the216

synthetic case studies, whereas for the case studies based on real images it is directly assessed over the data217

sets by independent and unbiased observers. Let us introduce the following four entities:218

1. Xtm ⊆ X,Ytm ⊆ Y are the two sets of feature points that are correctly matched, of cardinality219

respectively mtm, ntm220

2. Xts ⊆ X,Yts ⊆ Y are the two sets of feature points that are correctly left un-matched, of cardinality221

respectively mts, nts222

3. Xfm ⊆ X,Yfm ⊆ Y are the two sets of feature points that are wrongly matched, of cardinality223

respectively mfm, nfm224

4. Xfs ⊆ X,Yfs ⊆ Y are the two sets of feature points that are wrongly left un-matched, of cardinality225

respectively mfs, nfs226

Notice, as intuitive, that mtm +mts +mfm +mfs = m and that ntm + nts + nfm + nfs = n. We define as227

percentages, over both sets of points, the following quantities:228

1. true matches, as the ratio of feature points that are correctly matched, i.e. mtm+ntm

m+n
229

2. true singles, as the ratio of feature points that are correctly left un-matched, i.e. mts+nts

m+n
230

3. false matches, as the ratio of feature points that are wrongly matched, i.e.
mfm+nfm

m+n
231

4. false singles, as the ratio of feature points that are wrongly left un-matched, i.e.
mfs+nfs

m+n
232

The outcome of the case studies will be evaluated according to the introduced quality measures.233
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3.2. Synthetic Graph Matching234

We consider a graphical structure G = (V,E) with two dimensional spatial components, which are235

constrained to lie within the unit square in the positive quadrant [0, 1]2. The cardinality of the set of236

nodes V is equal to 50 and their spatial components are generated uniformly at random within the specified237

domain. The edge set E is created between pairs of nodes in V according to a Bernoulli distribution with238

mean equal to 0.5, however the edges that are longer than a specified threshold (0.25) are discarded. Figure239

2 shows an example of a graph.240

The graph is then morphed into a new structure G̃ = (Ṽ , Ẽ), according to the following procedure:241

1. The set Ẽ ⊆ E is generated from E by discarding each edge according to a Bernoulli probability242

distribution with mean Pe;243

2. The set Ṽ ⊆ V is generated from V by discarding each edge according to a Bernoulli probability244

distribution with mean Pv, and additionally by eliminating the residual edges that connect to vertices245

in E \ Ẽ;246

3. The spatial components associated to the elements in Ẽ are obtained from those belonging to the cor-247

responding elements in E by perturbing them with the addition of a random variable that is uniformly248

distributed within the square Mv

2 [−1, 1]. In other words, the original coordinates are subjected to a249

uniform perturbation that amounts to Mv% of their maximum possible value.250

The matching procedure proposed in Section 2 is tested on a cohort of pairs of graphs (G, G̃), parameter-251

ized by the input configuration (Pe,Pv,Mv) used to generate them: for each combination (Pe,Pv,Mv) of252

perturbation parameters we average the outcomes of 2000 simulations.253

Figures 2 and 3 represent respectively a single pair of test graphs (Pe = Pv = Mv = 15.00%), and the254

outcomes of the matching procedure.255

We have employed the first four metrics d1, d2, d3 and d4. The metric d5 is not employed, since the256

artificial graphs have no underlying physical image that can be exploited for the matching procedure. Table257

2 reports the results for each configuration of the perturbation parameters (Pe,Pv,Mv) as the average of the258

2000 simulations. The experiments are divided in five batches: in the first, we uniformly modify the three259

perturbation parameters; in the following four, we fix two of the three parameters and modify the remaining260

one by using values that match those of the first batch of experiments. The monotonicity of the performance261

outputs of the algorithm with respect to the perturbation level provides evidence of the consistency of the262

procedure (see first set of simulations). The results of the last four groups of simulations “lie within” those263

of the first batch (the comparison ought to be done by looking at the accrued percentages for true and false264

value pairs). By comparing the third result of each group of experiment with the first two, one can observe265

that the elimination of edges or vertices affects the quality of the outcomes more than the perturbation266

of the spatial coordinates of the vertices. This is despite the fact that spatial perturbations can result in267
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Figure 2: Synthetic graph generation and perturbation. The original graph (left) contains 50 nodes. The perturbed graph

(right) was generated using Pe = Pv = Mv = 15.00%. The blue labels mark the nodes and provide the ground truth

correspondence.

Figure 3: Outcomes of the matching procedure for the synthetic graphs of Figure 2. Here the blue labels indicate correctly

matched nodes (true matches), whereas red labels shows the wrongly matched ones. Nodes without labels are correct single

nodes.

feature crossover. Furthermore, as intuitive, the elimination of an edge (first result of the last four groups)268

affects the results more than that of a vertex (second result).269
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Perturbation Output Performance

Pe Pv Mv
true

matches

true

singles

false

matches

false

singles

15.00% 15.00% 15.00% 71.01% 7.50% 19.37% 3.12%

12.00% 12.00% 12.00% 79.83% 6.66% 12.07% 1.44%

9.00% 9.00% 9.00% 87.65% 4.37% 7.10% 0.88%

6.00% 6.00% 6.00% 93.06% 3.38% 3.36% 0.20%

3.00% 3.00% 3.00% 97.09% 1.82% 1.04% 0.05%

12.00% 15.00% 15.00% 72.40% 7.21% 18.59% 2.80%

15.00% 12.00% 15.00% 73.17% 6.05% 18.64% 2.14%

15.00% 15.00% 12.00% 78.07% 8.94% 12.19% 1.90%

9.00% 12.00% 12.00% 80.29% 6.71% 11.41% 1.59%

12.00% 9.00% 12.00% 82.31% 4.32% 12.05% 1.32%

12.00% 12.00% 9.00% 84.49% 6.64% 7.80% 1.07%

6.00% 9.00% 9.00% 87.86% 5.62% 6.03% 0.49%

9.00% 6.00% 9.00% 89.31% 3.32% 6.72% 0.65%

9.00% 9.00% 6.00% 90.86% 5.23% 3.42% 0.59%

3.00% 6.00% 6.00% 93.26% 3.60% 2.78% 0.36%

6.00% 3.00% 6.00% 95.17% 1.68% 2.99% 0.16%

6.00% 6.00% 3.00% 94.86% 3.70% 1.20% 0.24%

Table 2: Outcomes of the matching procedure tested on sets of randomly generated and successively perturbed graphs. We

have run 2000 simulation for each configuration of perturbation parameters and reported the average of the outcomes. For

each of the 2000 simulations we have first generated a graph, then perturbed it. The perturbation level is tuned via three

parameters: Pe, the probability that an edge is erased from the original graph; Pv, the probability that a vertex is eliminated

from the original graph; Mv, the level of spatial perturbation applied to a vertex of the original graph.

3.3. Image Registration of Biological Data: The Drosophila Wing Case Study270

This experimental study aims at matching two network structures extracted from biological data.1 Each271

network describes the cellular epithelium of a wing of Drosophila melanogaster, the common fruit fly. The272

experimental data are obtained with confocal microscopy techniques a few hours after puparium formation.273

It is of interest for the developmental biologist to have access to quantitative data relating to the network274

structure of the epithelium. The graphical structure is extracted from single frames that belong to time-275

lapse movies of the epithelium. The details of the computer vision technique used to extract the network276

from a single frame are formally presented in [16]. Along with the collection of the graphical structures277

corresponding to each frame, it is important to match the networks extracted from pairs of frames that are278

1The images have been provided by the Axelrod Lab, at the Department of Pathology, Stanford University School of

Medicine, Stanford, USA. Members of the Lab have also contributed in the interpretation of the outcomes of the registration

procedure.
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successive in time. This procedure is also known as the registration of the frames of the movie.279

The experimental data consist of 50 frames consecutive in time, corresponding to 49 pairs of images.280

Figure 4 shows frames (frame 22 and 23) taken from the wet lab experimental data.

Figure 4: Frames 22 and 23 considered for the matching procedure. The images are part of a 40 frame movie and refer to a

section of the epithelium of the Drosophila melanogaster wing. The polygonal structures are 2-d sections of the epithelial cells.

281

For the instance under study, we have employed the metrics d1 and d5. The use of d5 is dictated by282

the availability of an actual image containing meaningful information for the matching. The intra-metrics283

d2, d3 and d4 are discarded, which is explained by observing the similarity of the neighborhood structure284

for most of the nodes in the graph. In other words, if most of the internal nodes have a similar number of285

connected edges, then the information provided by the metric d4 is redundant. Similar considerations hold286

for the metrics d2, d3.287

Figure 5 displays the graphical structures extracted from the frames in Figure 4, and labeled with the288

outcome of the matching procedure. Unlike the study in Section 3.2, the ground truth has been provided289

by manual observation from an independent and unbiased observer. Table 3 displays the outcomes of the290

procedure, averaged over the 49 tests. The results appear to be rather good when compared to others in291

the biology literature [9], especially given the complexity of the structures and of the dynamics under study292

(cells both appear do to divide and to exit the epithelium, the frames are subject to translation, and the293

images are quite noisy — the last two are known issues for algorithms as in [13]).294

3.4. Point Set Matching over a Literature Benchmark: The “CMU House”295

We have finally tested our procedure on a known benchmark from the computer vision literature, known296

as the “CMU House” [1]. This benchmark contains a set of 110 pictures of a toy house, taken over a black297

background. We have extracted a set of features from each image by applying a corner detector [24]. The298
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Figure 5: The matching procedure applied to the networks of Figure 4. The yellow labels over the nodes correspond to matches

(both correct and wrong ones). The unlabelled nodes are single nodes (both correct and wrong ones).

Figure 6: A particular of the matching procedure from Figure 5, involving a topological change. The green circle highlights a

difficult match that is correctly resolved.

Output Performance

true

matches

true

singles

false

matches

false

singles

88.23% 3.61% 7.92% 0.24%

Table 3: Outcomes of the matching procedure tested on 49 pairs of networks extracted from 50 successive frames of a movie.

The results are averages over the 49 tests. The movie refers to the morphogenesis and the dynamics of a section of the wing

of Drosophila melanogaster.

obtained sets have a cardinality that is very similar to the sets used in [4, 22] for the same benchmark, which299

leads to a fair comparison with those results.300
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We have tested our algorithm on two experimental setups. Firstly, we have matched the 109 sequential301

pairs of images (1-2, 2-3, . . . , 109-110). Figure 7 displays the output of one such pairing: the green labels are302

obtained from the matching procedure. Secondly, we have matched 109 pairs of distinct images, randomly303

chosen from the set. Figure 8 displays the output of one such matching: in green are the correct labels304

obtained from the matching procedure, whereas in red are the wrong outcomes.305

The first study is meant to test the robustness of the method with respect to positional jitter, while the306

second targets the performance against large transformations and the presence of feature occlusions. (Both307

studies focus on known issues reported for algorithms as in [13].) Table 4 displays the results as averages308

over the 109 tests. The outcomes of both studies appear to sensibly improve those in [4], and to remarkably309

improve those in [22]. Notice that the performance measure in [4, 22] is based exclusively on the second310

component of the pair of images, and hence slightly differs from the one used in this work, which we believe311

is more accurate. Also, the statistics in both [4, 22] are quite limited in sample size and image range.312

Figure 7: Two successive images (frames 1 and 2) from the CMU House benchmark [1]. The green labels are obtained from

the matching procedure. The outcome is in this case perfect.

Figure 8: Two random images (frames 1 and 67) considered for the matching procedure over the CMU House benchmark [1].

The green labels correspond to correctly matched points (true matches and true singles), whereas the red labels mark wrong

outcomes (false matches and false singles)
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Input Output Performance

image

pairs

true

matches

true

singles

false

matches

false

singles

sequential 93.32% 5.48% 0.73% 0.47%

random 75.86% 16.20% 5.68% 2.26%

Table 4: Outcomes of the matching procedure tested on 109 pairs of feature sets extracted from 110 images in [1]. The results

are averages over the 109 tests. The top line refers to the 109 pairs of sequential images, whereas the bottom one to 109 pairs

of randomly extracted images.

4. Conclusions and Future Work313

This article has proposed a versatile technique to perform point set matching over features extracted314

from images. The approach combines a number of ideas from related approaches in the literature. Its315

overall flexibility results from the possibility to define a library of metrics, from which similarity measures316

are selected and later employed over the specific matching problem. These heterogeneous measures are317

combined into a single pairing matrix, which is then manipulated via spectral techniques to obtain the318

actual matching.319

The method has been tested on a number of different experimental studies, which have highlighted its320

performance, its robustness, as well as its computational scalability.321

It is of future interest to come up with novel, descriptive metrics that can extend the applicability of the322

library and its usefulness to new domains of study.323

References324

[1] http://vasc.ri.cmu.edu/idb/html/motion/house/index.html.325

[2] S. S. Beauchemin and J. L. Barron. The computation of optical flow. ACM Computing Surveys (CSUR), 27:433–466,326

1995.327

[3] V.D. Blondel, A. Gajardo, M. Heymans, P. Senellart, and P. van Dooren. A measure of similarity between graph vertices:328

Applications to synonym extraction and web searching. SIAM Review, 46(4):647–666, 2004.329

[4] M. Carcassoni and E.R. Hancock. Correspondence matching with modal clusters. IEEE Transactions on Pattern Analalysis330

and Machine Intelligence, 25(12):1609–1615, 2003.331

[5] H. Chui and A. Rangarajan. A new point matching algorithm for non-rigid registration. Computer Vision and Image332

Understanding, 89(2-3):114–141, 2003.333

[6] G. Golub and C. Reinsch. Singular value decomposition and least squares solutions. Numerische Mathematik, 14(5):403–334

420, April 1970.335

[7] D.P. Huttenlocher and W.J. Rucklidge. A multi-resolution technique for comparing images using the Hausdorff distance.336

In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR 93), pages 705–706, Jun 1993.337

[8] B. Jain and B.C. Vemuri. A robust algorithm for point set registration using mixture of gaussians. In Proceedings of the338

International Conference on Computer Vision (ICCV 05), pages 1246–1251, 2005.339

16



[9] D. Ma, K. Amonlirdviman, R. Raffard, A. Abate, C.J. Tomlin, and J.D. Axelrod. Cell packing influences planar cell340

polarity signaling. The Proceedings of the National Academy of Sciences, 105(48):18800–18805, December 2008.341

[10] A. Myronenko, X. Song, and M. Carreira-Perpinan. Non-rigid point set registration: Coherent point drift. In B. Schölkopf,342

J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems (NIPS) 19, pages 1009–1016. MIT343

Press, Cambridge, MA, 2007.344

[11] M. Pilu. A direct method for stereo correspondence based on singular value decomposition. In Proceedings of the Computer345

Vision and Pattern Recognition Conference (CVPR 97), pages 261–266, Jun 1997.346

[12] S. Sclaroff and A.P. Pentland. Modal matching for correspondence and recognition. IEEE Transactions on Pattern347

Analysis and Machine Intelligence, 17(6):545–561, 1995.348

[13] G.L. Scott and H.C. Longuet-Higgins. An algorithm for associating the features of two images. Proceedings of the Royal349

Society London, B-244:21–26, 1991.350

[14] L.S. Shapiro and J.M. Brady. Feature-based correspondence: An eigenvector approach. Image and Vision Computing,351

10(5):283–288, June 1992.352

[15] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge University Press, New York, NY,353

USA, 2004.354

[16] A. Silletti, A. Cenedese, and A. Abate. The emergent structure of the Drosophila wing: a dynamic model generator. In355

Proceedings of the International Conference on Computer Vision, Theory and Applications (VISAPP 09), pages 406–410,356

Lisboa, PT, February 2009.357

[17] S. H. Srinivasan and M. Kankanhalli. Wide baseline spectral matching. In Proceedings of the 2003 International Conference358

on Multimedia and Expo (ICME 03), pages 93–96, Washington, DC, USA, 2003.359

[18] L. Torresani, V. Kolmogorov, and C. Rother. Feature correspondence via graph matching: Models and global optimization.360

In Proceedings of the European Conference on Computer Vision (ECCV 08), pages 596–609, 2008.361

[19] S. Ullman. The Interpretation of Visual Motion. MIT Press, Cambridge, MA, USA, 1979.362

[20] S. Umeyama. An eigendecomposition approach to weighted graph matching problems. IEEE Transactions on Pattern363

Analysis and Machine Intelligence, 10(5):695–703, 1988.364

[21] H.F. Wang and E.R. Hancock. A kernel view of spectral point pattern matching. In Structural, Syntactic, and Statistical365

Pattern Recognition, volume 3138 of Lecture Notes in Computer Science, pages 361–369. Springer Verlag, 2004.366

[22] H.F. Wang and E.R. Hancock. Correspondence matching using kernel principal components analysis and label consistency367

constraints. Pattern Recognition, 39(6):1012–1025, 2006.368

[23] W.M. Wells. Statistical approaches to feature-based object recognition. International Journal of Computer Vision,369

21(1-2):63–98, 1997.370

[24] C.H. Xiao and H. C.Y. Nelson. Corner detector based on global and local curvature properties. Optical Engineering,371

47(5):057008,1–12, 2008.372

17


