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Infinite-Horizon Switched LQR Problems in Discrete Time: A Suboptimal Algorithm With
Performance Analysis

Wei Zhang, Jianghai Hu, and Alessandro Abate

Abstract— This paper studies the quadratic regulation problem
for discrete-time switched linear systems (DSLQR problem)on
an infinite time horizon. A general relaxation framework is
developed to simplify the computation of the value iterations.
Based on this framework, an efficient algorithm is developed
to solve the infinite-horizon DSLQR problem with guaranteed
closed-loop stability and suboptimal performance. Due to its
stability and suboptimal performance guarantees, the proposed
algorithm can be used as a general controller synthesis toolfor
switched linear systems.

This paper studies an extension of the classical LQR prob-
lem to switched linear systems (SLS), which will be referred
to as the Discrete-Time Switched LQR (DSLQR) Problem.
The goal is to find both the continuous-control and switching-
control strategies to minimize a quadratic cost functionalover
an infinite time horizon. The problem is expected to play a
fundamental role in the study of switched and hybrid systems
as the classical LQR problem does for linear systems.

In our earlier work [11], we have proved some analytical
properties for the finite-horizon DSLQR problem. Due to the
discrete nature of the switching control sequence, the exact
solution to the DSLQR problem is NP hard even for a finite
time horizon. The main contribution of this paper is the devel-
opment of an efficient algorithm to solve the infinite-horizon
DSLQR problem with guaranteed suboptimal performance.
The algorithm is based on a relaxation framework that can
yield efficient representations of the (approximate) valuefunc-
tions. The key idea is to use convex optimization to identify
and remove matrices that are redundant in characterizing the
value functions and the corresponding (sub)optimal strategies.
This is in line with many existing methods on approximate
dynamic programming (ADP) ([2], [7], [8]), which aim at
simplifying the computations by finding compact representa-
tions of the value functions up to certain numerical relaxation
errors. Central to most ADP approaches is the analysis of
the evolution of the relaxation errors through value iterations.
Most existing error analysis methods for ADP either requirea
discount factor strictly less than one [2] or assume the infinite-
horizon value function and the running cost function jointly
satisfy some technical conditions that are in general difficult
to verify a priori [7].

In this paper, by taking advantage of the particular structure
of the DSLQR problem, we develop a relaxation framework
that enables error analysis for undiscounted cost functions
under easy-to-check assumptions. Our analysis indicates that
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as long as the SLS is stabilizable, the closed-loop performance
of the DSLQR solution can be made arbitrarily close to the
optimal one by properly choosing the relaxation parameter.
The distance-to-optimality error bound is also derived analyti-
cally in terms of the subsystem matrices; and the bound can be
evaluateda priori. Moreover, the suboptimal DSLQR solution
is guaranteed to be a stabilizing controller whenever the SLS
is stabilizable. These stability and performance guarantees are
of fundamental importance and are often not provided by
other existing optimal control strategies for switched/hybrid
systems [3], [7], especially on infinite control horizon.

A preliminary version of this work has appeared in an earlier
conference paper [9], and has also been successfully applied
to study stabilization of SLSs [10]. The main distinction of
this paper as compared with [9] lies in the development of
a stationarysuboptimal infinite horizon policy rather than a
receding-horizon type of policy proposed in [9]. In addition,
the asymptotic stabilizability assumption adopted in thispaper
is much weaker than the one in [9] that assumes one of
the subsystems is stabilizable. These advances are not of
theoretical importance, but also dramatically simplifies the
design of DSLQR controllers for a wider range of applications.

I. PROBLEM FORMULATION

Let n, M andp be some positive integers, and letZ+ denote
the set of nonnegative integers. We consider a discrete time
switched linear system (SLS) given by:

x(t+ 1) = Av(t)x(t) +Bv(t)u(t), t ∈ Z+, (1)

where x(t) ∈ R
n is the continuous state,u(t) ∈ R

p is
the continuous control,v(t) ∈ M := {1, . . . ,M} is the
discrete control that determines the discrete mode at time
t. The sequence{(u(t), v(t))}∞t=0 is called ahybrid-control
sequence. The hybrid-control action(u(t), v(t)) at time t
is determined through a state-feedback hybrid-control law,
namely, a functionξ , (µ, ν) : R

n → R
p × M that

maps the continuous statex(t) to a hybrid-control action
ξ(x(t)) = (u(t), v(t)). Here,µ : Rn → R

p andν : Rn → M

are called the(state-feedback) continuous-control lawand the
switching-control law, respectively. A sequence of hybrid-
control laws{ξt}∞t=0 constitutes aninfinite-horizon feedback
policy π∞ = {ξ0, ξ1, . . .}. The closed-loop dynamics driven
by a feedback policyπ∞ = {(µt, νt)}t∈Z+

is governed by

x(t + 1) = Aνt(x(t))x(t) +Bνt(x(t))µt(x(t)), t ∈ Z+. (2)

To be more specific, the closed-loop trajectory underπ∞

with initial statez ∈ R
n will be denoted byx(·; z, π∞). Let

L(x, u, v) = xTQvx + uTRvu, ∀x ∈ R
n, u ∈ R

p, v ∈ M,
be the running cost function, whereQv = QT

v ≻ 0 and
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Rv = RT
v ≻ 0, v ∈ M, are strictly positive definite matrices

of appropriate dimensions. Denote byλmin(·) and λmax(·)
the smallest and largest eigenvalues of a symmetric matrix,
respectively. Defineλ−

Q = mini∈M{λmin(Qi)}. The strict
positive definiteness of{Qi}i∈M implies thatλ−

Q > 0. For
a given initial statex(0) = z ∈ R

n, the performance of a
feedback policyπ∞ is measured through the following cost
function:

J(z;π∞) =
∞
∑

t=0

L(x(t), µt(x(t)), νt(x(t))). (3)

Clearly, the boundedness ofJ(·;π∞) requires the stabiliz-
ability of system (1). System (1) is calledexponentially sta-
bilizable if ∃π∞, b ≥ 1, a ∈ (0, 1) such that‖x(t; z, π∞)‖2 ≤
bat‖z‖2, ∀t ∈ Z

+, z ∈ R
n. Such a policyπ∞ is called an

exponentially stabilizing policy. It has been proved in [5] that
exponential stability and asymptotic stability are equivalent
for SLSs. Hence, without loss of generality, the following
assumption is adopted throughout this paper.

Assumption 1:System (1) is exponentially stabilizable.
The goal of this paper is to solve the following optimal

control problem.
Problem 1 (DSLQR problem):Under Assumption 1, find

an infinite-horizon policy π∞ that solves: V ∗(z) =
infπ∞ J(z;π∞), ∀z ∈ R

n.
Problem 1 is a natural extension of the classical LQR

problem to SLSs and is thus called the (infinite-horizon)
Discrete-Time Switched LQR (DSLQR) Problem. The resulting
infimum costV ∗ will be referred to as theinfinite-horizon
value function of the DSLQR problem.

II. A PPROXIMATE VALUE ITERATION AND ERROR

PROPAGATION

A. Exact Value Iteration

One way to tackle Problem 1 is through dynamic program-
ming. Denote byG+ , {g : Rn → R+ ∪ {+∞}} the space
of all nonnegative, extended-valued functions onR

n. For an
arbitrary control lawξ = (µ, ν) : Rn → R

p×M, the operator
Tξ : G+ → G+ is defined by

Tξ[g](z) = L(z, µ(z), ν(z)) + g(Aν(z)z +Bν(z)µ(z)),

for all z ∈ R
n, g ∈ G+. Minimizing Tξ over ξ yields the

one-stage value iteration operatorT : G+ → G+, i.e.,

T [g](z)= inf
u∈Rp,v∈M

{

L(z, u, v)+g(Avz+Bvu)
}

.

Denote byT k the composition ofT with itself k times, i.e.,
T k = T ◦ T k−1 for all k = 1, 2, . . .. Let V0 ≡ 0 and define
Vk := T k[V0] as thek-horizon value function of Problem 1.
An important consequence of Assumption 1 is the exponential
convergence ofVk to V ∗.

Theorem 1:Assumption 1 implies (i)∃β < ∞ such that
λ−
Q‖z‖

2 ≤ V ∗(z) ≤ β‖z‖2, and (ii) 0 ≤ V ∗(z) − Vk(z) ≤

αV γ
k
V ‖z‖

2, for all k ∈ Z+, whereαV =
β2−(λ−

Q)
2

λ−
Q

andγV =

1
1+λ−

Q
/β

. The constantβ can be chosen, in particular, as in (13)

in the Appendix.

Proof: See the Appendix.
The above theorem indicates that under Assumption 1,Vk

is a good approximation ofV ∗ for large k. It turns out that
for DSLQR problems,Vk takes a simple analytical form [11].
To see this, letA be the set of all positive semidefinite (p.s.d.)
matrices, and letF be the set of all finite subsets ofA, i.e.,
F := {H ⊂ A : |H| <∞}, where| · | denotes the cardinality
of a set. Furthermore, we denote byρi : A → A the Riccati
mappingassociated with subsystemi ∈M, i.e.,

ρi(P )=Qi+AT
i PAi−A

T
i PBi(Ri+BT

i PBi)
−1BT

i PAi. (4)

We call the mappingρM : F → F defined by:ρM(H) =
{ρi(P ) : i ∈ M and P ∈ H}, ∀H ∈ F , the Switched
Riccati Mapping(SRM) associated with Problem 1. The sets
{Hk}k∈Z+

generated iteratively byHk+1 = ρM(Hk) with
H0 = {0} are called theSwitched Riccati Sets(SRSs), and
they characterize the finite-horizon value functions{Vk}k∈Z+

.
Theorem 2 ([11]): The k-horizon value function of the

DSLQR problem isVk(z) = minP∈Hk
zTPz, ∀k ∈ Z+.

Remark 1: It is beneficial to viewHk as a representation
of Vk in the spaceF . From this perspective,ρM is essentially
a representation of the value iteration operatorT in F .

B. Relaxed Value Iteration

As k increases, the number of matrices inHk grows
exponentially, making the exact characterization ofVk in-
creasingly expensive. One way to alleviate this computational
challenge is to remove matrices inHk that are less important
in terms of characterizingVk. To formalize the idea, we
introduce a few definitions. For anyH ∈ F , defineVH(z) =
minP∈H zTPz, ∀z ∈ R

n.
Definition 1 (ǫ-Redundancy):For any ǫ > 0 andH ∈ F ,

a matrix P̄ ∈ H is called ǫ-redundantwith respect toH if
VH\P̄ (z) ≤ VH(z) + ǫ‖z‖2, for anyz ∈ R

n.
Definition 2 (ǫ-ES): For any ǫ > 0 andH ∈ F , a subset
Hǫ ⊂ H is called anǫ-Equivalent-Subset (ǫ-ES) of H if
VH(z) ≤ VHǫ(z) ≤ VH(z) + ǫ‖z‖2, for any z ∈ R

n.
To simplify the computation ofVk at each stepk, we shall

prune out as many redundant matrices as possible from the
corresponding setHk. However, checking whether a matrix
in Hk is redundant or not is itself a challenging problem.
Geometrically, any p.s.d. matrix̄P defines an ellipsoid (pos-
sibly degenerate) inRn: {x ∈ R

n : xT P̄x ≤ 1}. It can
be verified thatP̄ ∈ Hk is ǫ-redundant if and only if the
ellipsoid corresponding toP + ǫIn is contained in the union
of all the ellipsoids corresponding to the matrices inHk\{P̄}.
Since the union of ellipsoids is usually not convex, there isno
general way to efficiently verify this geometric condition or
equivalently the condition given in Definition 1. Nevertheless,
a sufficient condition forǫ-redundancy can be easily derived.

Lemma 1: P̄ ∈ H is ǫ-redundant if there exist nonnegative
constantsα1, . . . , α|H|−1 such that

∑|H|−1
j=1 αj = 1 and P̄ +

ǫIn �
∑|H|−1

j=1 αjP
(j), where{P (j)}

|H|−1
j=1 is an enumeration

of H \ {P̄}.
Proof: Under the condition in the Lemma, for any

z ∈ R
n, we havezT (P̄ + ǫIn)z ≥

∑|H|−1
j=1 zTαjP

(j)z ≥
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Algorithm 1
[

ESǫ(H)
]

SetHǫ = ∅.
for eachP ∈ H do

if P does NOT satisfy the condition in Lemma 1 with
respect toHǫ then
Hǫ ← Hǫ ∪ {P}

end if
end for
ReturnHǫ

zTP (jz)z, for somejz ∈ {1, . . . , |H|−1}. Thus, by definition,
P̄ is ǫ-redundant inH.

For given P̄ and H, the condition in Lemma 1 can be
efficiently verified by solving a convex optimization problem.

Lemma 2:The condition in Lemma 1 holds if and only if
the solution of the following convex optimization problem















max
{α1,...,α|H|−1}

∑|H|−1
j=1 αj

subject to:

{

∑|H|−1
j=1 αjP

(j) � P̄ + ǫIn

αj ≥ 0, j = 1, . . . , |H| − 1

(5)

satisfies
∑|H|−1

j=1 αj ≥ 1.
Proof: Straightforward.

The optimization problem in (5) can be easily solved using
various convex optimization algorithms [4, Chapter 11]. Based
on the above lemma, an efficient algorithm (Algorithm 1) is
developed to compute anǫ-ES for any given setH ∈ F .
Qualitatively, the algorithm simply removes all the matrices
that satisfy the condition of Lemma 1 and returns the set of
remaining matrices. Denote byESǫ(H) the ǫ-ES returned by
Algorithm 1.

To reduce complexity, starting fromH0, we can apply
ESǫ(·) after each SRMρM to obtain anǫ-ES with fewer
matrices before further propagating the set with the next SRM.
The SRMρM followed by the pruning algorithmESǫ can be
viewed as a relaxed version of the original SRM.

Definition 3 (ǫ-relaxed SRSs):For ǫ > 0, the composite
mappingESǫ ◦ ρM : F → F is called theǫ-relaxed SRM
of system (1). The sets{Hǫ

k}k∈Z+
generated iteratively by:

Hǫ
0 = {0} andHǫ

k+1 = ESǫ ◦ ρM(H
ǫ
k), k ∈ Z+, (6)

are called theǫ-relaxed SRSsassociated with Problem 1.
Just as the SRMρM represents the value iteration operator
T of the DSLQR problem in the spaceF , the relaxed SRM
ESǫ◦ρM represents the relaxed value iteration operator defined
by Rǫ ◦ T , whereRǫ : G+ → G+ will be referred to as
the relaxation operator with parameterǫ and is defined as
Rǫ[VH](z) = VESǫ(H)(z), ∀z ∈ R

n,H ∈ F . Therefore, the
relaxed value iteration is the exact value iteration followed by
a relaxation step.

C. Approximate Value Function and Control Law

We introduce two important functions,

V ǫ
k = (Rǫ ◦ T )

k [V0], and Ṽ ǫ
k+1 = T [V ǫ

k ], k ∈ Z+. (7)
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Fig. 1. Representations of the relaxed value iteration operator inG+ andF .

The functionV ǫ
k is called thek-horizon approximate value

function of Problem 1. The functionṼ ǫ
k is an auxiliary

function that is useful in studying the properties ofV ǫ
k . The

relationships betweenV ǫ
k and Ṽ ǫ

k and their connections to the
relaxed SRSs are illustrated in Fig. 1. According to the lemma
below, the errorV ǫ

k −Vk can be fully controlled by tuning the
relaxation parameterǫ.

Lemma 3:For anyz ∈ R
n andǫ ≥ 0, the functions defined

in (7) satisfy:

1) Ṽ ǫ
k (z) ≤ V ǫ

k (z) ≤ Ṽ ǫ
k (z) + ǫ‖z‖2, for k ≥ 1;

2) V ǫ
k (z) ≤ (1 + ǫ/λ−

Q)Vk(z), for k ∈ Z+, whereVk(z) is
the exact value function with no relaxation.

Proof: By Definition 2, we have0 ≤ Rǫ[VH](z) −
VH(z) ≤ ǫ‖z‖2, ∀H ∈ F , z ∈ R

n. This together with the
fact that V ǫ

k = Rǫ[Ṽ
ǫ
k ] implies part 1) of this lemma. The

second part can be proved by induction. The result clearly
holds for k = 0 becauseV ǫ

0 = V0 ≡ 0. Assuming it is true
for some k ∈ Z+, we show that it also holds fork + 1.
For a fixed z ∈ R

n, we have Ṽ ǫ
k+1(z) = T [V ǫ

k ](z) ≤
infu,v{L(z, u, v) + (1 + ǫ/λ−

Q)Vk(Avz +Bvu)}. Thus,

V ǫ
k+1(z) = Rǫ ◦ T [V

ǫ
k ](z) ≤ Ṽ ǫ

k+1(z) + ǫ‖z‖2

≤ inf
u,v

{

(1 + ǫ/λ−
Q) [L(z, u, v) + Vk(Avz + Bvu)]

}

= (1 + ǫ/λ−
Q)Vk+1(z),

where the second step is due to the fact thatL(z, u, v) ≥
λ−
Q‖z‖

2 for all u ∈ R
p andv ∈M.

Denote byξǫk the hybrid-control law generated byV ǫ
k , i.e.,

ξǫk(z) = (µk(z), νk(z))

= argmin
(u,v)

{L(z, u, v) + V ǫ
k (Avz +Bvu)}, ∀z ∈ R

n. (8)

The functionV ǫ
k and the corresponding control lawξǫk can be

characterized analytically using the relaxed SRSHǫ
k.

Theorem 3:For anyk ∈ Z+, z ∈ R
n andǫ ≥ 0, we have

V ǫ
k (z) = min

P∈Hǫ
k

zTPz, Ṽ ǫ
k+1(z) = min

P∈ρM(Hǫ
k
)
zTPz,

andξǫk(z) =
(

−Kiǫ
k
(z)(P

ǫ
k(z))z, i

ǫ
k(z)

)

where
(

P ǫ
k(z), i

ǫ
k(z)

)

= argmin
P∈Hǫ

k
,i∈M

zTρi(P )z, (9)
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andKi(P ) is the Kalman gain for subsystemi corresponding
to matrixP , i.e.,

Ki(P ) , (Ri +BT
i PBi)

−1BT
i PAi. (10)

Proof: The result follows easily by solving explicitly the
quadratic optimization problem in (8) followed by a standard
induction argument.

III. SUBOPTIMAL POLICY WITH PERFORMANCEBOUND

According to a standard result of dynamic programming [1],
the stationary policyπ∗

∞ = {ξ∗, ξ∗, . . .} is an optimal solution
to the infinite-horizon DSLQR problem, whereξ∗ is the
control law satisfying the Bellman equation:Tξ∗ [V ∗] = V ∗.
However, exact characterizations ofV ∗ and ξ∗ are often
impossible for DSLQR problems. A natural solution is to use
the control lawξǫk defined in (8) with a sufficiently largek
and smallǫ in place of ξ∗ to construct a stationary policy
πǫ,k
∞ = {ξǫk, ξ

ǫ
k, . . .}. In the rest of this section, we shall

first establish the conditions under whichπǫ,k
∞ is exponentially

stabilizing, and then derive a performance bound for such a
stabilizing policy.

A. Stabilizing Condition with Efficient Test

A sufficient condition forπǫ,k
∞ to be exponentially stabi-

lizing is that the corresponding closed-loop system admits
an exponential Lyapunov function. We briefly reccall that a
function g ∈ G+ is called anExponential Lyapunov Function
(ELF) of the closed-loop system (2) if there exist positive finite
constantsκ1, κ2, κ3 such that

{

κ1‖z‖2 ≤ g(z) ≤ κ2‖z‖2, ∀z ∈ R
n

g(x(t))− g(x(t+ 1)) ≥ κ3‖x(t)‖2, ∀t ∈ Z+,

wherex(t) is an arbitrary trajectory of system (2).
Theorem 4 (Lyapunov Theorem):If there exists a policy

π∞ under which system (2) has an ELF with parameters
κ1, κ2 andκ3, then the closed-loop trajectoryx(t; z, π∞) of
system (2) underπ∞ is exponentially stable and satisfies

‖x(t; z, π∞)‖2 ≤
κ2

κ1

(

1

1 + κ3/κ2

)t

‖z‖2, ∀t ∈ Z+, z ∈ R
n.

The above theorem follows easily from standard Lyapunov
theory [6, Thm 4.1] and its proof is omitted here. We now
show that the approximate value functionV ǫ

k will be an ELF
of system (2) under the policyπǫ,k

∞ for sufficiently largek and
sufficiently smallǫ.

Theorem 5:Fix an arbitrary z ∈ R
n, and let x̂(t) =

x(t; z, πǫ,k
∞ ). Under Assumption 1, there exist constantsκ3 >

0, k̂ ∈ Z+, ǫ̂ > 0 such that for anyk ≥ k̂, ǫ ≤ ǫ̂,

1) V ǫ
k is an ELF of system (2) satisfying

λ−
Q‖z‖

2 ≤ V ǫ
k (z) ≤ β(1 + ǫ/λ−

Q)‖z‖
2 (11a)

V ǫ
k (x̂(t))− V ǫ

k (x̂(t+ 1)) ≥ κ3‖x̂(t)‖
2; (11b)

2) the policy πǫ,k
∞ is exponentially stabilizing, namely,

‖x̂(t)‖2 ≤ αxγ
t
x‖z‖

2, with αx =
β(1+ǫ/λ−

Q
)

λ−
Q

andγx =

β(1+ǫ/λ−
Q
)

β(1+ǫ/λ−
Q
)+κ3

.

Hereβ ∈ (0,∞) is the constant given in Theorem 1.
Proof: 1) Fix an arbitraryz ∈ R

n. Inequality (11a)
follows directly from Lemma 3 and part 1) of Theorem 1.
To show inequality (11b), let̂x(t) := x(t; z, πǫ,k

∞ ) and let
(û(t), v̂(t)) be the corresponding hybrid-control sequence.
By (7) and (8), we know that for allt ∈ Z+, Ṽ ǫ

k+1(x̂(t)) −
V ǫ
k (x̂(t + 1)) = T [V ǫ

k ](x̂(t)) − V ǫ
k (x̂(t + 1)) ≥ λ−

Q‖x̂(t)‖
2.

Furthermore, by Lemma 3, Theorem 1 and the fact that
Vk(z) ≥ λ−

Q‖z‖
2 for k ≥ 1, we have, fork ≥ 1,

Ṽ ǫ
k+1(x̂(t)) ≤ V ǫ

k+1(x̂(t)) ≤ (1 + ǫ/λ−
Q)Vk+1(x̂(t))

≤(1+ǫ/λ−
Q)V

∗(x̂(t)) ≤ (1+ǫ/λ−
Q)(1+αV γ

k
V /λ

−
Q)Vk(x̂(t))

≤(1+ǫ/λ−
Q)

(

1+
αV γk

V

λ−
Q

)

V ǫ
k (x̂(t))≤V ǫ

k (x̂(t))+ck,ǫ‖x̂(t)‖
2,

where ck,ǫ is some constant that can be made arbitrarily
small by choosing largek and smallǫ. Therefore,V ǫ

k (x̂(t))−
V ǫ
k (x̂(t + 1)) ≥ Ṽ ǫ

k+1(x̂(t)) − V ǫ
k (x̂(t + 1)) − ck,ǫ‖x̂(t)‖2 ≥

(λ−
Q − ck,ǫ)‖x̂(t)‖2, which implies (11b).
2) This follows directly from part 1) and Theorem 4.
This theorem indicates that as we increasek and reduceǫ,

the functionV ǫ
k eventually becomes an ELF of system (2) with

an associated stabilizing policyπǫ,k
∞ . To test whetherV ǫ

k is an
ELF, one shall verify condition (11b). By taking advantage
of the piecewise quadratic structure ofV ǫ

k , this verification
process can be greatly simplified as follows.

Lemma 4: Inequality (11b) holds for some constantκ3 > 0
if for eachP ∈ Hǫ

k there exist nonnegative constantsαj , j =
1, . . . , j∗, such that

j∗
∑

j=1

αj = 1 and P �

j∗
∑

j=1

αj

(

P̂ (j) + (κ3 − κ∗)In

)

, (12)

where{P̂ (j)}j
∗

j=1 is an enumeration of the setρM(Hǫ
k) and

κ∗ = min
i∈M,P∈Hǫ

k

λmin

{

Ki(P )TRiKi(P ) +Qi

}

, with Ki(P )

being the Kalman gain defined in (10).
Proof: Recall thatṼ ǫ

k+1(z) = minP∈ρM(Hǫ
k
) z

TPz, for
all z ∈ R

n. Clearly, condition (12) implies that

V ǫ
k (z)− Ṽ ǫ

k+1(z) ≥ (κ3 − κ∗)‖z‖
2, ∀z ∈ R

n.

Now let z ∈ R
n be arbitrary but fixed. Denote by(P̂ , î) the

minimizer in (9) for this fixedz. Suppose that the system
starts fromz at time 0 and is driven by the policyπǫ,k

∞ .
Let û = −Kî(P̂ )z and x̂1 = Aîz + Bîû be the continuous
control at time0 and the state at timet = 1, respectively.
Plugging equations (4) and (10) intôu, we haveV ǫ

k (x̂1) =
minP∈Hǫ

k

[

x̂T
1 · P · x̂1

]

≤ x̂T
1 · P̂ · x̂1 = zTρî(P̂ )z− ûTRîû−

zTQîz ≤ zTρî(P̂ )z − κ∗‖z‖
2 = Ṽ ǫ

k+1(z) − κ∗‖z‖
2. which

implies V ǫ
k (z) − V ǫ

k (x̂1) ≥ V ǫ
k (z) − Ṽ ǫ

k+1(z) + κ∗‖z‖2 ≥
κ3‖z‖2.

Similar to Lemma 1, condition (12) can be verified by
solving a convex optimization problem as in Lemma 2.

B. Performance Bound forπǫ,k
∞

Whenever πǫ,k
∞ is exponentially stabilizing, the cost

J(·;πǫ,k
∞ ) will be bounded from above. We now derive an

analytical expression for this bound.
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Theorem 6:If V ǫ
k satisfies the condition in Theorem 5,

then the cost associated withπǫ,k
∞ is bounded from

above:J(z;πǫ,k
∞ ) ≤

(

1 + η(πǫ,k
∞ )
)

V ∗(z), where η(πǫ,k
∞ ) =

(

ǫβ

λ−
Q

+ αV γ
k
V

)

αx

(1−γx)λ
−
Q

. Here β, αV , γV , αx and γx are

the constants defined in Theorems 1 and 5.
Proof: Fix an arbitraryz ∈ R

n. Let x̂(t) = x(t; z, πǫ,k
∞ )

for t ∈ Z+, and let(û(·), v̂(·)) be the corresponding hybrid-
control sequence. Then,

J(z;πǫ,k
∞ ) =

∞
∑

t=0

L(x̂(t), û(t), v̂(t))

=

∞
∑

t=0

[

Ṽ ǫ
k+1(x̂(t)) − V ǫ

k (x̂(t+ 1))
]

=Ṽ ǫ
k+1(z) +

∞
∑

t=1

[

Ṽ ǫ
k+1(x̂(t))− V ǫ

k (x̂(t))
]

,

where the last step follows since the stability of the trajectory
x̂(t) implies thatV ǫ

k (x(t)) → 0 as t → ∞. Using Lemma 3,
Theorems 1 and 5, and noticing the monotonicity of the value
functions, yields

J(z;πǫ,k
∞ ) = Ṽ ǫ

k+1(z) +

∞
∑

t=1

[

Ṽ ǫ
k+1(x̂(t))− V ǫ

k (x̂(t))
]

≤

(

1+
ǫ

λ−
Q

)

V ∗(z)+
∞
∑

t=1

[

(1+ǫ/λ−
Q)Vk+1(x̂(t))−Vk(x̂(t))

]

≤V ∗(z)+
ǫβ

λ−
Q

‖z‖2+
∞
∑

t=1

[Vk+1(x̂(t))−Vk(x̂(t))]

+

∞
∑

t=1

ǫβ

λ−
Q

‖x̂(t)‖2

≤V ∗(z)+

(

ǫβ

λ−
Q

+αV γ
k
V

)

αx

1−γx
‖z‖2≤(1+η(πǫ,k

∞ ))V ∗(z).

Remark 2:The error boundη(πǫ,k
∞ ) is derived based on

the worst case scenario and thus may be conservative. The
conservative bound is of theoretical importance as it indicates
that the error decays linearly asǫ decreases, and exponentially
as k increases. Moreover, the error can be made arbitrarily
small by choosingǫ small enough andk large enough.

C. Overall Algorithm

If system (1) is exponentially stabilizable, then by Theo-
rem 5, it can always be stabilized byπǫ,k

∞ for sufficiently
largek and sufficiently smallǫ. Such a policy can be found
by checking condition (11), or more efficiently, by verifying
condition (12) through the solution of a convex optimization
problem. If the policyπǫ,k

∞ is exponentially stabilizing for
somek and ǫ, its corresponding costJ(z;πǫ,k

∞ ) is bounded
from above for all initial statesz ∈ R

n. Theorem 6 implies
that further increasingk and decreasingǫ will eventually result
in a policy with any desired suboptimal performance.

Since the control lawξǫk is completely characterized by the
relaxed SRSHǫ

k, a suboptimal policy of the formπǫ,k
∞ can

be obtained through the relaxed SRM. The basic idea is to

evolveHǫ
k according to the relaxed SRM (6) and stop when

the obtainedHǫ
k verifies condition (12). The resulting policy

πǫ
∞ is guaranteed to be suboptimal with a relative error upper

bound η(πǫ,k
∞ ). The detailed solution procedure is given in

Algorithm 2. By choosing a proper parameter pair(ǫ, kmax)
in the algorithm, the returned policyπǫ,k

∞ is exponentially sta-
bilizing and can achieve any desired suboptimal performance
under Assumption 1. It is also worth mentioning that with the
returned setHǫ

k, the closed-loop control sequences driven by
πǫ,k
∞ can also be easily determined using (9). For example, if

the state at timet is x(t), then the hybrid-control action at
this time step is:u(t) = −Kî(P̂ )x(t) and v(t) = î, where
(P̂ , î) = argminP∈Hǫ

k
,i∈M

x(t)T ρi(P )x(t).

Algorithm 2 Infinite-Horizon Suboptimal Policy

Chooseǫ > 0 andkmax ∈ Z+, and setk = 0 andHǫ
0 = {0}

for k = 1 to kmax do
Hǫ

k ← ESǫ(ρM(Hǫ
k))

if Hǫ
k satisfies (12)then

stop and returnHǫ
k that characterizesπǫ,k

∞ with a
relative error boundη(πǫ,k

∞ ).
end if

end for

IV. N UMERICAL EXAMPLES

A. A Simple 2D Example

Consider a simple infinite-horizon DSLQR problem with
two second-order subsystems:

A1=

[

2 1
0 1

]

, B1=

[

1
1

]

, A2=

[

2 1
0 0.5

]

, B2=

[

1
2

]

.

Suppose that the state and control weights areQ1 = Q2 = I2
andR1 = R2 = 1, respectively. Both subsystems are unstable
but controllable. Algorithm 2 withǫ = 10−4 is applied to
solve this DSLQR problem. After 5 steps, we have

Hǫ
5 =

{[

6.064 1.205
1.205 1.905

]

,

[

9.084 3.233
3.233 2.347

]

,

[

5.107 1.266
1.266 1.935

]

,

[

7.216 2.560
2.560 2.106

]}

.

We observe thatHǫ
5 contains four matrices and it verifies

condition (12) withκ3 = 0.996. Therefore, we can stop the
iteration now with a stabilizing policyπǫ,5

∞ characterized by
Hǫ

5. The relative error bound of this policy is computed to be
η(πǫ,5

∞ ) = 0.13. The actual performance of the policy should
be much better than indicated by this conservative bound. The
bound can be improved by carrying out more iterations. For
example, after 3 more steps, we will have

Hǫ
8 =

{[

6.065 1.206
1.206 1.905

]

,

[

9.087 3.235
3.235 2.348

]

,

[

5.108 1.266
1.266 1.935

]

,

[

7.219 2.561
2.561 2.107

]}

.

Again, the setHǫ
8 still contains only four matrices and all of

them are very close to the ones inHǫ
5. The setHǫ

8 verifies
condition (12) with κ3 = 0.9962. However, with a larger
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Fig. 2. Complexity distributions of the random examples.

k = 8, the conservative bound reduces toη(πǫ,8
∞ ) = 0.009,

which is less than one percent. For this particular example,
the complexity of Algorithm 2 as measured by|Hǫ

k|, is indeed
very small and stays at the maximum value4 as opposed to
growing exponentially.

B. Complexity Statistics of Randomly Generated Examples

To further demonstrate its effectiveness, Algorithm 2 is
tested by two sets of randomly generated DSLQR problems.
The first set consists of 1000 two-dimensional DSLQR prob-
lems with 10 subsystems. The second set consists of 1000
four-dimensional DSLQR problems with 4 subsystems. For
both setups, the control horizon is infinite andǫ = 10−3. All
the instances of these problems are successfully solved by
Algorithm 2 and the distributions of the complexity, namely,
the number of matrices inHǫ

k returned by the algorithm,
are plotted in Fig. 2. It can be seen from the figure that
all of the solutions of the two-dimensional problems require
less than50 matrices and a majority of them only need less
than 15 matrices. However, a majority of the solutions of the
four-dimensional problems need about 40 matrices and some
of them may need more than 100 matrices. In general, the
complexity of Algorithm 2 increases with the state dimension
because randomly-generated higher-dimensional matricesare
less likely to be redundant. In a higher dimensional state space,
a larger relaxationǫ is usually needed to retain the same
computational complexity.

V. CONCLUSION

We have developed an efficient algorithm to solve the
infinite-horizon DSLQR problem with guaranteed subopti-
mal performance. The proposed algorithm together with its
analysis provides a general controller synthesis framework
for switched linear systems with quadratic performance in-
dex. A preliminary version of the proposed algorithm has
already been successfully applied to stabilize switched linear
systems [10]. Since the LQR controller is widely used to
achieve local stability for nonlinear systems, our DSLQR
solution can be similarly used to locally stabilize switched
nonlinear systems. In addition, we also envision the algorithm
and its analysis to be useful in quadratic estimation, robust
control, and model predictive control problems of switched
linear systems or even general hybrid systems.

APPENDIX

Denote by I+B ⊂ M the set of indices of nonzeroB
matrices, i.e.,I+B , {i ∈ M : Bi 6= 0}. Define λ+

Q =

maxi∈M{λmax(Qi)}, λ
+
R = maxi∈M{λmax(Ri)}, and σ+

A =

maxi∈M

{

√

λmax(AT
i Ai)

}

. Let σ+
min(·) be the smallestpos-

itive singular value of a nonzero matrix. IfI+B 6= ∅, let σ̂B =
mini∈I+

B
{σ+

min(Bi)}. Let π∞ be an exponentially stabilizing
policy, and letb ≥ 1 anda ∈ (0, 1) be the constants such that
‖x(t; z, π∞)‖2 ≤ bat‖z‖2. Define

β =







bλ+

Q

1−a , if I+B = ∅
(

λ+
Q + λ+

R
2[a+(σ+

A
)2]

σ̂2
B

)

·
b

1− a
, otherwise;

(13)

Part (i) of Theorem 1 can be found in [10, Lemma 4].
To prove Part (ii), we fix an arbitraryz ∈ R

n and integer
k > 1, let x∗

k(·) be the optimalk-horizon trajectory starting
from z and let (u∗

k(·), v
∗
k(·)) be the corresponding optimal

hybrid-control sequence. Then, fort = 0, . . . , k − 1, we have
Vk−t(x

∗
k(t))−Vk−(t+1)(x

∗
k(t+1)) = L(x∗

k(t), u
∗
k(t), v

∗
k(t)) ≥

λ−
Q‖x

∗
k(t)‖

2 ≥
λ−
Q

β Vk−t(x
∗
k(t)) ≥

λ−
Q

β Vk−(t+1)(x
∗
k(t + 1)).

Since λ−
Q‖x

∗
k(t)‖

2 ≤ Vk−t(x
∗
k(t)) ≤ β‖x∗

k(t)‖
2, for t =

0, . . . , k − 1, the above inequality implies

‖x∗
k(k − 1)‖2 ≤

β

λ−
Q

(

1

1 + λ−
Q/β

)k−1

‖z‖2. (14)

Note that we can not obtain a similar inequality forx∗
k(k)

as V0(x
∗
k(k)) ≡ 0. By the optimality of V ∗, we have

V ∗(z) ≤
∑k−2

t=0 L(x∗
k(t), u

∗
k(t), v

∗
k(t)) + V ∗(x∗

k(k − 1)) =
Vk(z)−L(x∗

k(k−1), u∗
k(k−1), v∗k(k−1))+V ∗(x∗

k(k−1)) ≤
Vk(z)+(β−λ−

Q)‖x
∗
k(k−1)‖

2. The desired result then follows
easily by plugging (14) into the above inequality.
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