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Abstract— This paper studies the quadratic regulation problem as long as the SLS is stabilizable, the closed-loop perfocma
for discrete-time switched linear systems (DSLQR problemjon  of the DSLQR solution can be made arbitrarily close to the
an infinite time horizon. A general relaxation framework is  4htimal one by properly choosing the relaxation parameter.
developed to simplify the computation of the value iteratias. The distance-to-optimality error bound is also derivedyira
Based on this framework, an efficient algorithm is developed . .
to solve the infinite-horizon DSLQR problem with guaranteed ~Cally in terms of the subsystem matrices; and the bound can be
closed-loop stability and suboptimal performance. Due tots evaluateda priori. Moreover, the suboptimal DSLQR solution
stability and suboptimal performance guarantees, the propsed s guaranteed to be a stabilizing controller whenever th§ SL
algorithm can be used as a general controller synthesis todbr g stapilizable. These stability and performance guaesnage
switched linear systems. . .

of fundamental importance and are often not provided by

This paper studies an extension of the classical LQR probther existing optimal control strategies for switchedbitigt
lem to switched linear systems (SLS), which will be referresystems [3], [7], especially on infinite control horizon.
to as the Discrete-Time Switched LQR (DSLQR) Problem. A preliminary version of this work has appeared in an earlier
The goal is to find both the continuous-control and switchingonference paper [9], and has also been successfully dpplie
control strategies to minimize a quadratic cost functianar to study stabilization of SLSs [10]. The main distinction of
an infinite time horizon. The problem is expected to play this paper as compared with [9] lies in the development of
fundamental role in the study of switched and hybrid systerasstationary suboptimal infinite horizon policy rather than a
as the classical LQR problem does for linear systems. receding-horizon type of policy proposed in [9]. In additio

In our earlier work [11], we have proved some analyticgdhe asymptotic stabilizability assumption adopted in fraper
properties for the finite-horizon DSLQR problem. Due to this much weaker than the one in [9] that assumes one of
discrete nature of the switching control sequence, thetex#ite subsystems is stabilizable. These advances are not of
solution to the DSLQR problem is NP hard even for a finittheoretical importance, but also dramatically simplifieg t
time horizon. The main contribution of this paper is the devedesign of DSLQR controllers for a wider range of applicasion
opment of an efficient algorithm to solve the infinite-horizo
DSLQR problem with guaranteed suboptimal performance. |. PROBLEM FORMULATION
The algorithm is based on a relaxation framework that can
yield efficient representations of the (approximate) vdilure-
tions. The key idea is to use convex optimization to identi
and remove matrices that are redundant in characterizimg
vallue. fu.ncti.ons a_nd the corre_sp_onding (sub)optimal sg'rgse z(t+1) = Aypyx(t) + Bypyult), te€Zy, (1)
This is in line with many existing methods on approximate ) ) )
dynamic programming (ADP) ([2], [7], [8]), which aim atWhere a:(f) € R” is the continuous statey(t) € RP is
simplifying the computations by finding compact representi{!€ continuous controly(t) € M := {1,...,M} is the
tions of the value functions up to certain numerical relmrat discrete control that determlnes_ the discrete mode at time
errors. Central to most ADP approaches is the analysis lof 1Ne sequencé(u(t), v(t))};2, is called ahybrid-control
the evolution of the relaxation errors through value iterat. Seduence The hybrid-control action(u(t), v(t)) at time ¢
Most existing error analysis methods for ADP either reqaire!S determined through a state-feedback hybrid-control law
discount factor strictly less than one [2] or assume theiiefin Namely, a functions = (u,») : R" — R? x M that
horizon value function and the running cost function jgintlMaps the continuous state(t) to a hybrid-control action
satisfy some technical conditions that are in general diffic $(*(t)) = (u(f), v(t)). Here,p : R" — R” andv : R" — M
to verify a priori [7]. are ca_lled thestate-feedback) _contlnuous-control land the_

In this paper, by taking advantage of the particular stmectuSWitching-control law respectively. A sequence of hybrid-
of the DSLQR problem, we develop a relaxation framewofontrol laws{&};=, constitutes arinfinite-horizon feedback
that enables error analysis for undiscounted cost funstioR@icy mec = {€0,&1-..}. The closed-loop dynamics driven
under easy-to-check assumptions. Our analysis indichtes Y @ feedback policyro. = {(pt, v¢) }rez, is governed by

Tt +1) = Ay (a0 T(t) + By wyme(z(t)), tE€Zy. (2)
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Letn, M andp be some positive integers, and %t denote
he set of nonnegative integers. We consider a discrete time
itched linear system (SLS) given by:



R, = RT = 0, v € M, are strictly positive definite matrices

of appropriate dimensions. Denote By,i,(-) and Apax(-)

Proof: See the Appendix. ]
The above theorem indicates that under Assumptioh1,

the smallest and largest eigenvalues of a symmetric matiix,a good approximation of * for large k. It turns out that

respectively. Define/\(j2 = min;ey{A\min(Qi)}. The strict
positive definiteness ofQ;};em implies thatA, > 0. For

for DSLQR problems})/, takes a simple analytical form [11].
To see this, letd be the set of all positive semidefinite (p.s.d.)

a given initial stater(0) = z € R", the performance of a matrices, and lefF be the set of all finite subsets of, i.e.,
feedback policyr., is measured through the following costF := {# C A: |H| < oo}, where| - | denotes the cardinality

function:

J(2700) = Y L(a(t), me(x(t), m(z(1))).  (3)
t=0

of a set. Furthermore, we denote py: A — A the Riccati
mappingassociated with subsysteire M, i.e.,

pi(P)=Qi+ATPA,— AT PB;(R:+B] PB;) ‘Bl PA;. (4)

Clearly, the boundedness df-; 7. ) requires the stabiliz- We call the mappingoy : F — F defined by:pm(H) =

ability of system (1). System (1) is callezkponentially sta-
bilizable if Im,b > 1,a € (0,1) such thatl|z(t; 2, 7o )[|? <
bat||z||?, Vt € Z*,z € R". Such a policyr,, is called an

{pi(P) : i € M and P € H}, YH € F, the Switched
Riccati Mapping(SRM) associated with Problem 1. The sets
{Mr}rez, generated iteratively by, 1 = pm(Hi) with

exponentially stabilizing policylt has been proved in [5] that Ho = {0} are called theSwitched Riccati Set6SRSs), and

exponential stability and asymptotic stability are eqléu&

they characterize the finite-horizon value functigi } vcz, .

for SLSs. Hence, without loss of generality, the following Theorem 2 ([11]): The k-horizon value function of the

assumption is adopted throughout this paper.
Assumption 1:System (1) is exponentially stabilizable.

DSLQR problem isVy(z) = minpey, 27 Pz, Vk € Z.
Remark 1:It is beneficial to viewH; as a representation

The goal of this paper is to solve the following optimabf V}, in the spaceF. From this perspectiveyy is essentially

control problem.

Problem 1 (DSLQR problem)Jnder Assumption 1, find

an infinite-horizon policy 7o, that solves: V*(z)
infr_ J(2; 7o), V2 € R™.

a representation of the value iteration opergfoin F.

B. Relaxed Value lteration

Problem 1 is a natural extension of the classical LQR As & increases, the number of matrices ., grows
problem to SLSs and is thus called the (infinite-horizor®xponentially, making the exact characterization Vaf in-

Discrete-Time Switched LQR (DSLQR) Probléthe resulting
infimum costV* will be referred to as thenfinite-horizon
value function of the DSLQR problem.

Il. APPROXIMATE VALUE ITERATION AND ERROR
PROPAGATION

A. Exact Value lteration

creasingly expensive. One way to alleviate this computatio
challenge is to remove matrices #f, that are less important
in terms of characterizind’,. To formalize the idea, we
introduce a few definitions. For arif € F, defineVy(z) =
minpey 27 Pz, ¥z € R™.

Definition 1 ¢-Redundancy)for anye > 0 andH € F,
a matrix P € H is called e-redundantwith respect to# if
Vinp(2) < Vin(2) + €l|z|]?, for any z € R™.

One way to tackle Problem 1 is through dynamic program- pefinition 2 ¢-ES): For anye > 0 and € F, a subset

ming. Denote byG, £ {g: R" — R, U {+occ}} the space
of all nonnegative, extended-valued functions®h. For an
arbitrary control lawg = (i, v) : R™ — RP x M, the operator
Te : G+ — G4 is defined by

Telgl(2) = Lz, u(2), v(2)) + 9(Au(2)2 + Bu(z)u(2)),

for all z € R", g € G;. Minimizing 7¢ over ¢ yields the
one-stage value iteration operatdr : G, — G, i.e.,

Tlol(z)=, jnf | {L(zu,v)+g(Avz+Buu)}.

Denote by7* the composition off” with itself k times, i.e.,
Tk =ToTklforall k=1,2,.... Let V; = 0 and define

HE C H is called ane-Equivalent-Subsete{ES) of H if
Vi (2) < Ve (2) < Vi (2) + €] 2||%, for any z € R™.

To simplify the computation o}, at each stef, we shall
prune out as many redundant matrices as possible from the
corresponding set{;,. However, checking whether a matrix
in My is redundant or not is itself a challenging problem.
Geometrically, any p.s.d. matri® defines an ellipsoid (pos-
sibly degenerate) iR™: {z € R" : z7Px < 1}. It can
be verified thatP € H; is e-redundant if and only if the
ellipsoid corresponding td + eI, is contained in the union
of all the ellipsoids corresponding to the matriceg4p\ { P}.
Since the union of ellipsoids is usually not convex, thenads

Vi := T*[V] as thek-horizon value function of Problem 1_gen_eral way to effici(_er_nly v_erify_this g_e_o_metric condition o
An important consequence of Assumption 1 is the e)(FJ()r1eW[1eé:|u|valently the condition given in Definition 1. Nevertbes,

convergence o¥, to V*.
Theorem 1:Assumption 1 implies (id8 < oo such that
Agllzll? < V*(z) < Bllz]1% and (i) 0 < V*(z) — Vi(2) <

B 2|12 5-(0g)°
avy |z[% forall k € Z,., whereay = — =%~ andyy =

Q
L The constan® can be chosen, in particular, as in (13)

1405 /8’ )
in the Appendix.

a sufficient condition foe-redundancy can be easily derived.
Lemma 1: P € H is e-redundant if there exist nonnegative

constantsuy, . .., oy -1 such thatZ'JZ‘flaj =1landP +

el, = Zyi‘l—l a; PV, Where{P(j)}»Ijz‘l_1 is an enumeration

of H\ {P}.

Proof: Under the condition in the Lemma, for any

z € R", we havez” (P + el,)z > Z'jﬁfl zTajP(j)z >



Algorithm 1 [ES.(H)] Relaxed Value lteration in G,

SetHE = @ & T ~ Rg -
for eachP € H do Vi vy V. vV,
if P does NOT satisfy the condition in Lemma 1 wjth
respect tor* then
HE +— HEU{P} ‘
en?jnf?)rlf Relaxed Value lteration in F
ReturnH¢ ES

H,  —) . (H,f) —) 7,

2T PU=)z, for somej, € {1,...,|H|—1}. Thus, by definition
P is e-redundant in#. |
For given P and 7, the condition in Lemma 1 can beThe functionV, is called thek-horizon approximate value
efficiently verified by solving a convex optimization proile function of Problem 1. The functionVs is an auxiliary
Lemma 2:The condition in Lemma 1 holds if and only if fynction that is useful in studying the propertiesiof. The
the solution of the following convex optimization problem  re|ationships betweeR,c and V¢ and their connections to the

» Fig. 1. Representations of the relaxed value iterationaipein G andF.

max Z|_H\—l o relaxed SRSs are illustrated in Fig. 1. According to the lemm
o1, a1} 9= below, the erro — V;, can be fully controlled by tuning the
. M0, PO) < Pt el (5) relaxation parameter.
subject to: N 2 0.j=1 7] — 1 Lemma 3:For anyz € R" ande > 0, the functions defined
T= T in (7) satisfy:
satisfiesy" ™ a; > 1. 1) Vi(z) < ViE(2) < ViE(2) + €]|22, for k > 1;
Proof: Straightforward. | 2) Vii(2) < (1 +€¢/Ag)Vi(2), for k € Z, whereVi(z) is
The optimization problem in (5) can be easily solved using  the exact value function with no relaxation.
various convex optimization algorithms [4, Chapter 11]s8&h Proof: By Definition 2, we haved < R [Vy](z) —

on the above lemma, an efficient algorithm (Algorithm 1) i$7(2) < €||z|?, VH € F,z € R". This together with the
developed to compute anES for any given set{ € F. fact thatV = Re[f/,j] implies part 1) of this lemma. The
Qualitatively, the algorithm simply removes all the magsc second part can be proved by induction. The result clearly
that satisfy the condition of Lemma 1 and returns the set hblds for k = 0 because/f = V, = 0. Assuming it is true
remaining matrices. Denote S, (#) the e-ES returned by for somek € Z,, we show that it also holds fok + 1.
Algorithm 1. For a fixedz € R”, we have Vs, (z) = T[Ve(z) <

To reduce complexity, starting fror{,, we can apply ian{L(z,u,v)—F(1+e//\§)Vk(sz+Bvu)}. Thus,
ES.(-) after each SRMpy to obtain ane-ES with fewer .
matrices before further propagating the set with the nexISR Vig1(2) = Re o T[Vi(2) < Vi (2) + e[| =[]

T.he SRMpy; followed by Fhe pruning glgonthnESs can be < inf {(1 + 6//\(5) [L(z,u,v) + Vi(Ayz + Bvu)]}
viewed as a relaxed version of the original SRM. uv
Definition 3 ¢-relaxed SRSs)For ¢ > 0, the composite = (1 +¢/Ag)Vi+1(2),

mapping ES. o piy : F — F is called thee-relaxed SRM

of system (1). The set§H; }rez, generated iteratively by: where the second step is due to the fact thét, u, v)

Agllz||? for all u € R” andv € M.
Mo = {0} andHj,,, = EScopm(H}), keZy, (6) Denote by¢;, the hybrid-control law generated By, i.e.,

2
[

are called the-relaxed SRSassociated with Problem 1. &.(2) = (u(2), vk(2))
Just as the SRMy represents the value iteration operator — arg min{L(z, u,v) + Vi (Ayz + Byu)}, ¥z € R".  (8)
T of the DSLQR problem in the spacg, the relaxed SRM (u,v)

ES.opy represents the relaxed value |Ferat|on operator deﬁnqeﬁe functionV¢

by R. o T, whereR. : G+ — G will be referred to as

the relaxation operator with parameter and is defined as

RelVul(2) = Ves. () (2), V2 € R",H € F. Therefore, the K

relaxed value iteration is the exact value iteration fokolby ViE(z) = min 2Pz, V& ()= min 2"Pz,
; PEMH;, Pepu(Hy)

a relaxation step.

and¢i(2) = (= Kig (o) (PE())2,i4.(2))

and the corresponding control lag§ can be
characterized analytically using the relaxed SRg
Theorem 3:For anyk € Z4, z € R® ande > 0, we have

C. Approximate Value Function and Control Law
We introduce two important functions,

Vi = (ReoT)F Vo], and Ve, = TIVEL k€ Zy.  (7)

where

(PIS(Z)JE(Z)) = Argmin 2 pi(P)z, )
7l



and K;(P) is the Kalman gain for subsystentorresponding Here 5 € (0, 00) is the constant given in Theorem 1.
to matrix P, i.e., Proof: 1) Fix an arbitraryz € R™. Inequality (11a)
Ki(P) 2 (R, + BTPB:)~ BT PA,. (10) follows directly from Lemma 3 and part 1) of Theorem 1.

To show inequality (11b), let:(t) := z(t;z,7%F) and let
Proof: The result follows easily by solving explicitly the (a(t),5(t)) be the corresponding hybrid-control sequence.
quadratic optimization problem in (8) followed by a stardjarBy (7’) and (8), we know that for all € Z, , 17,§+1(j:(t)) -
nduction argument " Ve D) = TIVGEW) - Vi@l + D) = Agla)*
Furthermore, by Lemma 3, Theorem 1 and the fact that
1. SUBOPTIMAL PoLICcY WITH PERFORMANCEBOUND Vi(2) > /\Zg||z|i2 for k > 1, we have, fork > 1,
According to a standard result of dynamic programming [1], ~. . < Ve (4 < _ A
the stationary policyr, = {¢*,¢*,...} is an optimal solution Vi (1) < Y’“*l(w(t)) <@+ E/AQ)V’“;("T(LL)) )
to the infinite-horizon DSLQR problem, wherg® is the <(1+€¢/A)V*(2(t)) < (1+€/Ag)(L+avyy /Ag)Vi(E(t))
control law satisfying the Bellman equatiofg- [V*] = V*. <1 3 (10297 Vel < vels o
However, exact characterizations of* and ¢* are often =(1T€¢/Ag) |1+ o R (@) =V @(@0) FerelE)]
impossible for DSLQR problems. A natural solution is to use
the control law¢;, defined in (8) with a sufficiently largé
and smalle in place of&* to construct a stationary policy -2 cn RN
= {€,¢&,...}. In the rest of this section, we shaIIVk (@(t+1) 2 Ve (2(1) — Vi@t + 1)) = ex[[2(0]° =

A +(0)[12 which impli
Irst establish the conditions under whil, is exponentially ) Th|s foIIows d|rectly from part 1) and Theorem 4. ®

stabilizing, and then derive a performance bound for such al_h

stabilizing policy. is tiieorem indicates that as we incre&send reduce, .
the functionV¢ eventually becomes an ELF of system (2) with
an associated stabilizing poliey;,*. To test whethe¥¢ is an

A. Stabilizing Condition with Efficient Test ELF, one shall verify condition (11b). By taking advantage

A sufficient condition forz* to be exponentially stabi- of the piecewise quadratic structure Bf, this verification
lizing is that the correspondmg closed-loop system admiocess can be greatly simplified as follows.
an exponential Lyapunov function. We briefly reccall that a Lemma 4:Inequality (11b) holds for some constant > 0
function g € G, is called anExponential Lyapunov Function if for each P € H; there exist nonnegative constants j =
(ELF) of the closed-loop system (2) if there exist positive finitd: - - - » J*» such that
constantssy, ko, k3 such that * §*

where ¢, . is some constant that can be made arbitrarily
small by choosing largé and smalle. Therefore V¢ (2(t)) —

J
- A pU) _
9(x(t)) — g(a(t + 1)) > wsljz(t)|]?, Vt € Z4,

, _ _ where {P(ﬂ)}J_1 is an enumeration of the set;(#s) and

wherex(t) is an arbitrary trajectory of system (2). Ko = min Apin {K(P)TRK,(P) + Q;}, with K,(P)
Theorem 4 (Lyapunov Theoreni): there exists a policy 1EM,PEH],
o under which system (2) has an ELF with parameteR$ing the Kalman gain defmed in (10).
K1, ko and ks, then the closed-loop trajectomy(t; z, 7o) Of Proonf Recall thatVye, , (2) = minpe,, ) 2" Pz, for
system (2) undefr, is exponentially stable and satisfies all = € R". Clearly, condition (12) implies that
K Vi(2) = Vi (2) = (k3 — ma)||2[1%, vz e R™

latts 2 meo? < 2 (=i ) el Ve € 24,2 € R "

1 —|— Hg/lig .
The above theorem follows easily from standard Lyapun(m

theory [6, Thm 4.1] and its proof is omitted here. We no
show that the approximate value functidji will be an ELF
of system (2) under the policyS* for sufficiently largek and
sufficiently smalle.

Now let z € R™ be arbitrary but fixed. Denote byP, %) the
inimizer in (9) for this fixedz. Suppose that the system
tarts fromz at time 0 and is driven by the policyr<F.
Let@ = —K;(P)z andi; = A;2 + B;a be the continuous
control at time0 and the state at timeé = 1, respectively.
Plugging equations (4) and (10) intg we haveVi’(21) =

Theorem 5:Fix an arbitraryz € R”, and letz(t) = o7
. -P- < Py = P -
(t,z,woo) Under Assumption 1, there exist constan§s> H;IHPGH [xl ] <af . Pein =27 py(P)z - 9 R
0, k € Zy, ¢ > 0 such that for any: > k, € < ¢, 2TQuz < 2Tpp(P)z — mull2])? = = Vi (2) = a2l W?'Ch
. L implies V¢ - Vi(z1) > V¢ - Ve ” >
1) Vi is an ELF of system (2) satisfying Hgﬁ)z|‘2 e(2) = Vi) 2 Vi) = Vi (2) + melle] -
/\ZgHZHQ < VE(z) < B(1 +€/)\é)|iz||2 (11a) Similar to Lemma 1, condition (12) can be verified by

oA €/ n R solving a convex optimization problem as in Lemma 2.
VE@(®) - VE@E+1) = ssl2(®)]% (11b) I P P

2) the policy 5% is exponentially stabilizing, namely, B. Performance Bound fore:k

1+e/A ) .
[2(0)]* < axrlllzl? with o L andy, =  Whenever 79 is exponentially stabilizing, the cost
B(1+e/A5) ha J(-;m$k) will be bounded from above. We now derive an

B(1+e/xg)+rs analytical expression for this bound.



Theorem 6:1f V¢ satisfies the condition in Theorem 5.evolve Hs, according to the relaxed SRM (6) and stop when
then the cost associated witlr$* is bounded from the obtainedt;, verifies condition (12). The resulting policy
above: J(z;m5F) < (1+n(7k)) V*( ), wheren(r$F) = < is guaranteed to be suboptimal with a relative error upper
bound n(r$F). The detailed solution procedure is given in
Algorithm 2 By choosing a proper parameter p@ifkm,ax)
the constants defmed in Theorems 1 and 5. in the algorithm, the returned poliey.* is exponentially sta-

Proof: Fix an arbitraryz € R". Let Z(t) = z(t; 2, 7")  bilizing and can achieve any desired suboptimal performanc
for t € Zy, and let(a(-),o(-)) be the corresponding hybrid-under Assumption 1. It is also worth mentioning that with the

Xy

Ly ayk —%=—. Here 8, av, W, a, and~, are
o —vng

control sequence. Then, returned set{;, the closed-loop control sequences driven by
oo 7&* can also be easily determined using (9). For example, if
J(z; <R :ZL(:E(t),a(t),ﬁ(t)) the state at time is x(¢), then the hybrid-control action at
t=0 this time step isu(t) = —K;(P)z(t) andv(t) = 1, where
= e n o (P,i) = argminpeye jen 2()7 pi(P)z(t).
=3 [ (@) - Vit + 1)) e
=0
f o Algorithm 2 Infinite-Horizon Suboptimal Policy
=V () + ) [Vifﬂ(@(t)) - Vi(f(t))] : Choose: > 0 andkmax € Z., and set; = 0 andH§ = {0}
t=1 for k =1 to kpax do
where the last step follows since the stability of the trajac Hj, — ESc(pm(H],))
Z(t) implies thatV;$ (z(t)) — 0 ast — oo. Using Lemma 3, if 5, satisfies (12fhen
Theorems 1 and 5, and noticing the monotonicity of the value stop and return that characterizesr$* with a
functions, yields relative error bound)(m5*).
o end if
= Vi (2) + 3 [ Vi @) = Vi@ )] end for
t=1
<1+_> 9+Y {(14—6//\5)%“(i:(t))—Vk(:i:(t))} IV. NUMERICAL EXAMPLES
t:1 A. A Simple 2D Example
V*(2) ||ZH +Z Vier1 () = Vi (&(£))] Consider a simple infinite-horizon DSLQR problem with
two second-order subsystems:
— i 2 (21 1 (2 1 1
Suppose that the state and control weights@re= Qs = I>
* B k *
sV*(2)+ (AQ +O‘V7V) < (I4n(eh))V (). andR; = R, = 1, respectively. Both subsystems are unstable

but controllable. Algorithm 2 withe = 10~* is applied to

Remark 2:The error boundy(r<*) is derived based on solve this DSLQR problem. After 5 steps, we have

the worst case scenario and thus may be conservative. The _ . 6.064 1.205 9.084 3.233
conservative bound is of theoretical importance as it inigis Hs = { { 1.205 1.905 } ’ [ 3.233  2.347 ] ’
that the error decays linearly aslecreases, and exponentially 5.107 1.266 7916 2.560
as k increases. Moreover, the error can be made arbitrarily [ 1.266 1.935 ] { 2560 2.106 }}

small by choosing small enough and large enough. ] ] ) -~
We observe that{g contains four matrices and it verifies

condition (12) withxs = 0.996. Therefore, we can stop the
C. Overall Algorithm iteration now with a stabilizing policyrs®> characterized by
If system (1) is exponentially stabilizable, then by ThecHs. The relative error bound of this policy is computed to be
rem 5, it can always be stabilized by:* for sufficiently 7(75°) = 0.13. The actual performance of the policy should
large k and sufficiently smalk. Such a policy can be found be much better than indicated by this conservative bound. Th
by checking condition (11), or more efficiently, by verifgin bound can be improved by carrying out more iterations. For
condition (12) through the solution of a convex optimizatioexample, after 3 more steps, we will have

problem. If the policyn$* is exponentially stabilizing for 6.065 1.206 9.087 3.935
somek ande, its corresponding cosf(z; 7$") is bounded Hs = {{ 1.206 1.905 } [ 3935 9.348 ]
from above for all initial stateg € R™. Theorem 6 implies

that further increasing and decreasingwill eventually result [ 5.108 1.266 ] { 7219 2.561 H
in a policy with any desired suboptimal performance. 1.266 1.935 2.561 2.107

Since the control lav¢j, is completely characterized by theAgain, the setHg still contains only four matrices and all of
relaxed SRSH, a suboptimal policy of the form$* can them are very close to the ones Ht. The setH§ verifies
be obtained through the relaxed SRM. The basic idea is ¢ondition (12) withxz = 0.9962. However, with a larger



2D stat

" state space 4D state space maXiGM{)\max(Qi)}a /\E — maXieM{)\max(Ri)}- and 0.2‘- —
3 maXieM{ )\maX(AiTAi)}. Leto . (-) be the smallespos-
§ E= itive singular value of a honzero matrix. Ifg #+0, letog =
E £ min, ¢+ {o. (Bi)}. Let o be an exponentially stabilizing
® * policy, and leth > 1 anda € (0,1) be the constants such that

@ - | (t; 2, oo ) ||? < bat||z||?. Define

o 10 Ci)nmplexizgy 40 50 % 20 wCom:)DIexityBQ 0 120 b)\g If Ig B @
1—a’ -
Fig. 2. Complexity distributions of the random examples. - (/\CJ;S + /\EQ[GJF(;’DZ]) . b otherwise (13)
o5 1—a’

k = 8, the conservative bound reducesor$®) = 0.009, ) )
which is less than one percent. For this particular exampféart (i) of Theorem 1 can be found in [10, Lemma 4].
the complexity of Algorithm 2 as measured Pyc |, is indeed T0 prove Part (i), we fix an arbitrary € R™ and integer

very small and stays at the maximum valu@s opposed to ¥ > 1. let zj() be the optimalk-horizon trajectory starting
growing exponentially. from z and let (uj(-),v;(-)) be the corresponding optimal

hybrid-control sequence. Then, foe=0,...,k — 1, we have

B. Complexity Statistics of Randomly Generated Examplesvk*t(xi(t))_V’“—St“)(xZ(tJrl)) = L2} (), ui (1), vi (1)) =

— * 2 A * g *
To further demonstrate its effectiveness, Algorithm 2 iéQ”Ik(t)H E TQVk*t(xk(t)) = WQVk—(Hl)(Ik(t + 1)

tested by two sets of randomly generated DSLQR problenfince Ag [z (#)[1> < Vit (2 (1) < _BHCCZ(L‘)HQ’ for t =
The first set consists of 1000 two-dimensional DSLQR proB- - - -, k — 1, the above inequality implies

lems with 10 subsystems. The second set consists of 1000 k—1
four-dimensional DSLQR problems with 4 subsystems. For 2tk —1)|? < ﬁ_ % 22 (14)
both setups, the control horizon is infinite ane= 10~3. All Ao \1+2Ag/8

the instances of these problems are successfully solved l\k?é(te that we can not obtain a similar inequality fof (k)
Algorithm 2 and the distributions of the complexity, namelyalS Vo(zi(k)) = 0. By the optimality of V*, we have
the number of matrices irf{; returned by the algorithm, V*(2) <’“ Zk—Q Lz (6), wl(t), v (b)) + V*(x*(l’f 1)) =
are plotted in Fig. 2. It can be seen from the figure thil/t (Z)_E(x*t(zo_ 1 Z*(k’—kl) ;;*](Ck—l))JrV*(li»c*(k—l)) <
all of the solutions of the two-dimensional problems ree|uirv’“(z)+(ﬂ_’“/\_)Hx*’(k’“_1)||2 ’Tr]:e desired resull'fthen follows
less than50 matrices and a majority of them only need Iesggsily by pluéggingk(14) into.the above inequality;

than 15 matrices. However, a majority of the solutions of thé '
four-dimensional problems need about 40 matrices and some
of them may need more than 100 matrices. In general, the

complexity of Algorithm 2 increases with the state dimensio [1] D-hP- BertsekanDynan;ic (l;rogramming and Optimal Contyalolume 2.
. . . . Athena Scientific, 2nd edition, 2001.
because randomly—generated hlgher-dlmensmnal matares [2] D. P. Bertsekas and J. Tsitsiklipleuro-Dynamic ProgrammingAthena

less likely to be redundant. In a higher dimensional stadéesp Scientific, Sep. 1996.

a larger relaxatiore is usually needed to retain the samel3] F. Borrelli, M. Baotic, A. Bemporad, and M. Morari. ~Dynaen
programming for constrained optimal control of discreteet linear

REFERENCES

CompUtatlonal compIeX|ty. hybrid systemsAutomatica 41:1709-1721, Oct. 2005.
[4] S. Boyd and L. Vandenberghe.Convex Optimization Cambridge
V. CONCLUSION University Press, New York, NY, USA, 2004.

. . [5] J. Hu, J. Shen, and W. Zhang. Generating functions of che
We have developed an efficient algorithm to solve the ~ linear systems: Analysis, computation, and stability &pgibns. IEEE

infinite-horizon DSLQR problem with guaranteed subopti- | Tfansac;iolf? on AIUtomatiC CO“t5056(5)11059”— 1074, May 2011.
. ... [6] H. K. Khalil. Nonlinear SystemsPrentice Hall, 2002.
mal performance. The proposed algorithm together with it 1 B. Lincoln and A. Rantzer. Relaxing dynamic programmintEEE

analysis provides a general controller synthesis framewor = Transactions on Automatic Contrdb1(8):1249—1260, Aug. 2006.

for switched linear systems with quadratic performance inil V\]{ B. POW?"-Alppf?J\i[TateSDynamiC Pﬂégrtfit_rlnming(;| Ssolyi_ng thelCurseS
Lo . . of Dimensionality (Wiley Series in Probability and Statisy Wiley-

dex. A preliminary version of _the propo_sgd alglonthm .has Interscience, 2007.

already been successfully applied to stabilize switcheeali [9] w. zhang, A. Abate, and J. Hu. Efficient suboptimal saot of

systems [10]. Since the LQR controller is widely used to switched LQR problems. IrProceedings of the American Control
Conference St. Louis, MO, Jun. 2009.

achieve local stability for nonlinear systems, our DSLQR_O] W. Zhang, A. Abate, J. Hu, and M. Vitus. Exponential #aftion of

solution can be similarly used to locally stabilize switdhe discrete-time switched linear system&utomatica 45(11):2526—2536,
nonlinear systems. In addition, we also envision the allgori " \')'VOVZ-h2009-J Hu and A. Abate. On the value functions af dhscret

. . . . . . . ang, J. AU, an . ate. On the value tunctions crete-
and its analysis to be ulsefw in quadratic estimation, .mbd% time switched LQR problemlEEE Transactions on Automatic Contyol
control, and model predictive control problems of switched 54(11):2669-2674, Nov. 2009.

linear systems or even general hybrid systems.

APPENDIX

M the set of indices of nonzer®

Denote by I}
{i € M : B; # 0}. Define \}, =

matrices, i.e.,[};

>N



