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Symbolic control of stochastic systems via
approximately bisimilar finite abstractions

Majid Zamani, Peyman Mohajerin Esfahani, Rupak Majumdar, Alessandro Abate, and John Lygeros

Abstract—Symbolic approaches to the control design over
complex systems employ the construction of finite-state models
that are related to the original control systems, then use tech-
niques from finite-state synthesis to compute controllers satisfying
specifications given in a temporal logic, and finally translate
the synthesized schemes back as controllers for the concrete
complex systems. Such approaches have been successfully de-
veloped and implemented for the synthesis of controllers over
non-probabilistic control systems. In this paper, we extend the
technique to probabilistic control systems modelled by controlled
stochastic differential equations. We show that for every stochas-
tic control system satisfying a probabilistic variant of incremental
input-to-state stability, and for every given precision ε > 0,
a finite-state transition system can be constructed, which is ε-
approximately bisimilar to the original stochastic control system.
Moreover, we provide results relating stochastic control systems
to their corresponding finite-state transition systems in terms of
probabilistic bisimulation relations known in the literature. We
demonstrate the effectiveness of the construction by synthesizing
controllers for stochastic control systems over rich specifications
expressed in linear temporal logic. The discussed technique
enables a new, automated, correct-by-construction controller
synthesis approach for stochastic control systems, which are
common mathematical models employed in many safety critical
systems subject to structured uncertainty and are thus relevant
for cyber-physical applications.

I. INTRODUCTION, LITERATURE BACKGROUND, AND
CONTRIBUTIONS

The design of controllers for complex control systems with
respect to general temporal specifications in a reliable, yet
cost-effective way, is a grand challenge in cyber-physical
systems research. One promising direction is the use of
symbolic models: symbolic models are discrete and finite
approximations of the continuous dynamics constructed in
a way that controllers designed for the approximations can
be refined to controllers for the original dynamics. When
finite symbolic models exist and can be constructed, one
can leverage the apparatus of finite-state reactive synthesis
[26] towards the problem of designing hybrid controllers.
The formal notion of approximation is captured using ε-
approximate bisimulation relations [15], which guarantee that
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{mohajerin,lygeros}@control.ee.ethz.ch.

R. Majumdar is with the Max Planck Institute for Software Systems, 67663
Kaiserslautern, Germany. Email: rupak@mpi-sws.org.

A. Abate is with the Department of Computer Science,
University of Oxford, OX1 3QD Oxford, United Kingdom. Email:
alessandro.abate@cs.ox.ac.uk.

each trace of the continuous system can be matched by a trace
of the symbolic model up to a precision ε, and vice versa.

The effective construction of finite symbolic models has
been studied extensively for non-probabilistic control systems.
Examples include work on piecewise-affine and multi-affine
systems with constant control distribution [7], [17], abstrac-
tions based on convexity of reachable sets for sufficiently
small sampling time [36], the use of incremental input-to-state
stability [9], [16], [25], [34], [35], non-uniform abstractions of
nonlinear systems over a finite-time horizon [40], and finally
sound abstractions for unstable nonlinear control systems
[45]. Together with automata-theoretic controller synthesis
algorithms [26], effective symbolic models form the basis of
controller synthesis tools such as Pessoa [27].

However, much less is known about continuous stochastic
control systems. Existing results for probabilistic systems
include the construction of finite abstractions for continuous-
time stochastic dynamical systems under contractivity as-
sumptions [1], for discrete-time stochastic hybrid dynamical
systems endowed with certain continuity and ergodicity prop-
erties [3], and for discrete-time stochastic dynamical systems
complying with a notion of bisimulation function [5]. While
providing finite bisimilar abstractions, all the cited techniques
are restricted to autonomous models (i.e., with no control
inputs). As such, they are of interest for verification purposes,
but fall short towards controller synthesis goals. On the
other hand, for non-autonomous models there exist techniques
to check if an infinite abstraction is formally related to a
concrete stochastic control system via a notion of stochastic
(bi)simulation function [19], however these results do not
extend to the construction of approximations nor they deal
with finite abstractions, and appear to be computationally
intractable in the non-autonomous case because one requires to
solve a game to compute stochastic (bi)simulation functions.
Further, for specific temporal properties such as (probabilistic)
invariance, there exist techniques to compute finite abstractions
of discrete-time stochastic control systems [2], however their
generalization to general properties in linear temporal logic is
not obvious, nor their applicability to continuous-time models.
The work in [38] provides algorithms for the verification
and control problems restricted to probabilistic rectangular
automata, in which random behaviors occur only over the
discrete components – this limits their application to models
with continuous probability laws. The work in [22] presents a
finite Markov decision process approximation of a continuous-
time linear stochastic control system for the verification of
given temporal properties, however the relationship between
abstract and concrete model is not quantitative. Along the same
lines, classical discretization results in the literature [21] offer
approximations of stochastic control systems that are related to
the concrete models only asymptotically, rather than according



2

to formal bisimulation or simulation notions that are in the
end required to ensure the correspondence of controllers for
temporal logic specifications over model trajectories.

In summary, to the best of our knowledge there is no
comprehensive work on the construction of finite bisimilar
abstractions for continuous-time continuous-space stochastic
control systems. These systems offer a natural modeling
framework for cyber-physical systems operating in an uncer-
tain or noisy environment, and automated controller synthesis
methodologies can enable more reliable system development
at lower costs and times.

In this paper, we show the existence of ε-approximate bisim-
ilar symbolic models (in the sense of moments) for continuous-
time stochastic control systems satisfying a probabilistic ver-
sion of the incremental input-to-state stability property [4],
for any given parameter ε > 0. The symbolic models are
finite if the continuous states lie within a bounded set. We also
provide a simple way to construct the symbolic abstractions
by quantizing the state and input sets. By guaranteeing the
existence of an ε-approximate bisimulation relation among
concrete and abstract models, we show that there exists a
controller enforcing a desired specification on the symbolic
model if and only if there exists a controller enforcing an
ε-related specification on the original stochastic control sys-
tem. The construction generalizes results for non-probabilistic
systems [16], [25], [34], and reduces to these ones in the
special case of dynamics with no noise. Moreover, it provides
a framework upon which the new abstraction techniques can
be developed for stochastic systems such as the recent results
on stochastic control systems without any stability assumption
[44]; on incrementally stable stochastic switched systems
[42]; on incrementally stable randomly switched systems [43],
and finally on incrementally stable stochastic control systems
which do not require discretization of the set of states but only
the set of inputs [47].

Furthermore, we provide quantitative results showing pre-
cisely how the proposed ε-approximate bisimulation relations
among concrete stochastic control systems and abstract sym-
bolic models are related to known probabilistic bisimulation
notions recently developed in the literature. We also show
the description of the proposed incremental stability in terms
of a so-called incremental Lyapunov function. The derived
notions are extensions of similar ones developed for non-
probabilistic control systems [4], in the sense that the results
for non-probabilistic control systems can be recovered in the
framework of this paper by setting the diffusion term to zero.

We finally illustrate our results on two case studies, where
controllers are synthesized over (non-linear) stochastic control
systems with respect to rich linear temporal logic specifica-
tions of practical relevance.

II. STOCHASTIC CONTROL SYSTEMS

A. Notations
The identity map on a set A is denoted by 1A. If A is a

subset of B we denote by ıA : A ↪→ B or simply by ı the
natural inclusion map taking any a ∈ A to ı(a) = a ∈ B. The
symbols N, N0, Z, R, R+, and R+

0 denote the set of natural,
nonnegative integer, integer, real, positive, and nonnegative
real numbers, respectively. The symbols In, 0n, and 0n×m
denote the identity matrix, the zero vector, and zero matrix in
Rn×n, Rn, and Rn×m, respectively. Given a vector x ∈ Rn,

we denote by xi the i–th element of x, and by ‖x‖ the
infinity norm of x, namely ‖x‖ = max{|x1|, |x2|, ..., |xn|},
where |xi| denotes the absolute value of xi. Given a matrix
M = {mij} ∈ Rn×m, we denote by ‖M‖ the infinity norm
of M , namely, ‖M‖ = max1≤i≤n

∑m
j=1 |mij |, and by ‖M‖F

the Frobenius norm of M , namely, ‖M‖F =
√

Tr (MMT ),
where Tr(P ) =

∑n
i=1 pii for any P = {pij} ∈ Rn×n.

We denote by λmin(A) and λmax(A) the minimum and
maximum eigenvalues of matrix A, respectively. The diagonal
set ∆ ⊂ R2n is defined as: ∆ = {(x, x) | x ∈ Rn}. Given
a set W ⊆ Rn and ε ∈ R+

0 , we denote by W ε the ε-
inflation of W , namely, W ε = {x ∈ Rn | ‖x‖W ≤ ε}, where
‖x‖W = infw∈W ‖x− w‖.

The closed ball centered at x ∈ Rn with radius λ is defined
by Bλ(x) = {y ∈ Rn | ‖x− y‖ ≤ λ}. A set B ⊆ Rn is called
a box if B =

∏n
i=1[ci, di], where ci, di ∈ R with ci < di

for each i ∈ {1, . . . , n}. The span of a box B is defined
as span(B) = min {|di − ci| | i = 1, . . . , n}. By defining
[Rn]η = {a ∈ Rn | ai = kiη, ki ∈ Z, i = 1, . . . , n}, the set⋃
p∈[Rn]η

Bλ(p) is a countable covering of Rn for any η ∈ R+

and λ ≥ η/2. For a box B ⊆ Rn and η ≤ span(B), define
the η-approximation [B]η = [Rn]η ∩ B. Note that [B]η 6= ∅
for any η ≤ span(B). Geometrically, for any η ∈ R+ with
η ≤ span(B) and λ ≥ η, the collection of sets {Bλ(p)}p∈[B]η
is a finite covering of B, i.e., B ⊆

⋃
p∈[B]η

Bλ(p). We extend
the notions of span and of approximation to finite unions of
boxes as follows. Let A =

⋃M
j=1Aj , where each Aj is a box.

Define span(A) = min {span(Aj) | j = 1, . . . ,M}, and for
any η ≤ span(A), define [A]η =

⋃M
j=1[Aj ]η .

Given a measurable function f : R+
0 → Rn, the (essen-

tial) supremum of f is denoted by ‖f‖∞; we recall that
‖f‖∞ := (ess)sup{‖f(t)‖, t ≥ 0}. A function f is essentially
bounded if ‖f‖∞ < ∞. For a given time s ∈ R+, define
fs so that fs(t) = f(t), for any t ∈ [0, s), and fs(t) = 0
elsewhere; f is said to be locally essentially bounded if
for any s ∈ R+, fs is essentially bounded. A continuous
function γ : R+

0 → R+
0 , is said to belong to class K if it is

strictly increasing and γ(0) = 0; γ is said to belong to class
K∞ if γ ∈ K and γ(r) → ∞ as r → ∞. A continuous
function β : R+

0 × R+
0 → R+

0 is said to belong to class KL
if, for each fixed s, the map β(r, s) belongs to class K
with respect to r and, for each fixed nonzero r, the map
β(r, s) is decreasing with respect to s and β(r, s) → 0 as
s→∞. We identify a relation R ⊆ A×B with the map
R : A→ 2B defined by b ∈ R(a) iff (a, b) ∈ R. Given a
relation R ⊆ A×B, R−1 denotes the inverse relation defined
by R−1 = {(b, a) ∈ B ×A : (a, b) ∈ R}. Given a twice con-
tinuously differentiable function V : Rn × Rn → R+

0 , we
denote by H(V )(x, x′) the value of Hessian matrix of V at
(x, x′) ∈ Rn × Rn.

B. Stochastic control systems
Let (Ω,F ,P) be a probability space endowed with a

filtration F = (Fs)s≥0 satisfying the usual conditions of
completeness and right continuity [30]. Let (Ws)s≥0 be a p-
dimensional F-Brownian motion.

Definition 2.1: A stochastic control system is a tuple Σ =
(Rn,U,U , f, σ), where
• Rn is the state space;
• U ⊆ Rm is an input set;
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• U is a subset of the set of all measurable, locally
essentially bounded functions of time from R+

0 to U;
• f : Rn × U → Rn satisfies the following Lipschitz

assumption: there exist constants Lx, Lu ∈ R+ such that:
‖f(x, u)− f(x′, u′)‖ ≤ Lx‖x−x′‖+Lu‖u−u′‖ for all
x, x′ ∈ Rn and all u, u′ ∈ U;

• σ : Rn → Rn×p satisfies the following Lipschitz
assumption: there exists a constant Z ∈ R+

0 such that:
‖σ(x)− σ(x′)‖ ≤ Z‖x− x′‖ for all x, x′ ∈ Rn.

A stochastic process ξ : Ω× R+
0 → Rn is said to be a

solution process of Σ if there exists υ ∈ U satisfying:

d ξ = f(ξ, υ) d t+ σ(ξ) dWt, (II.1)

P-almost surely (P-a.s.), where f is known as the drift, σ as
the diffusion, and again Wt is Brownian motion. We also write
ξaυ(t) to denote the value of the solution process at time t ∈
R+

0 under the input signal υ from initial condition ξaυ(0) = a
P-a.s., in which a is a random variable that is measurable in
F0. Let us remark that F0 in general is not a trivial sigma-
algebra, and thus the stochastic control system Σ can start
from a random initial condition. Let us emphasize that the
solution process is uniquely determined, since the assumptions
on f and σ ensure its existence and uniqueness [30, Theorem
5.2.1, p. 68].

III. A NOTION OF INCREMENTAL STABILITY

This section introduces a stability notion for stochastic
control systems, which generalizes the notion of incremental
input-to-state stability (δ-ISS) [4] for non-probabilistic control
systems. The main results presented in this work rely on the
stability assumption discussed in this section.

A. Incremental stability and its description
Definition 3.1: A stochastic control system Σ is incremen-

tally input-to-state stable in the qth moment (δ-ISS-Mq), where
q ≥ 1, if there exist a KL function β and a K∞ function γ
such that for any t ∈ R+

0 , any Rn-valued random variables
a and a′ that are measurable in F0, and any υ, υ′ ∈ U , the
following condition is satisfied:

E [‖ξaυ(t)− ξa′υ′(t)‖q] ≤ β
(
E
[∥∥a− a′∥∥q] , t)+γ (∥∥υ − υ′∥∥∞) .

(III.1)
It can be easily checked that a δ-ISS-Mq stochastic control

system Σ is δ-ISS in the absence of any noise as in the
following:

‖ξaυ(t)− ξa′υ′(t)‖ ≤ β (‖a− a′‖ , t) + γ (‖υ − υ′‖∞) ,
(III.2)

for a, a′ ∈ Rn, some β ∈ KL, and some γ ∈ K∞. Moreover,
whenever f(0n, 0m) = 0n and σ(0n) = 0n×p (i.e., the
drift and diffusion terms vanish at the origin), then δ-ISS-Mq

implies input-to-state stability in the qth moment (ISS-Mq)
[37] and global asymptotic stability in the qth moment (GAS-
Mq) [10].

Similar to the use of δ-ISS Lyapunov functions in the non-
probabilistic case [4], we now describe δ-ISS-Mq in terms of
the existence of incremental Lyapunov functions, as defined
next.

Definition 3.2: Consider a stochastic control system Σ and
a continuous function V : Rn × Rn → R+

0 that is twice
continuously differentiable on {Rn × Rn}\∆. The function
V is called an incremental input-to-state stability in the qth

moment (δ-ISS-Mq) Lyapunov function for Σ, where q ≥ 1,
if there exist K∞ functions α, α, ρ, and a constant κ ∈ R+,
such that
(i) α (resp. α) is a convex (resp. concave) function;

(ii) for any x, x′ ∈ Rn,
α (‖x− x′‖q) ≤ V (x, x′) ≤ α (‖x− x′‖q);

(iii) for any x, x′ ∈ Rn, x 6= x′, and for any u, u′ ∈ U,

Lu,u
′
V (x, x′) := [∂xV ∂x′V ]

[
f(x, u)
f(x′, u′)

]
+

1

2
Tr
([

σ(x)
σ(x′)

] [
σT (x) σT (x′)

] [
∂x,xV ∂x,x′V
∂x′,xV ∂x′,x′V

])
≤ −κV (x, x′) + ρ(‖u− u′‖),

where Lu,u′ is the infinitesimal generator associated to the
stochastic control system (II.1) [30, Section 7.3], which in
this case depends on two separate controls u, u′. The symbols
∂x and ∂x,x′ denote first- and second-order partial derivatives
with respect to x and x′, respectively.

Roughly speaking, condition (ii) implies that the growth
rate of functions α and α are linear, as a concave function is
supposed to dominate a convex one. However, these conditions
do not restrict the behavior of α and α to only linear functions
on a compact subset of Rn. Note that condition (i) is not
required in the context of non-probabilistic control systems.
The following theorem clarifies why such a requirement is
instead necessary for a stochastic control system, and describes
δ-ISS-Mq in terms of the existence of δ-ISS-Mq Lyapunov
functions.

Theorem 3.3: A stochastic control system Σ is δ-ISS-Mq if
it admits a δ-ISS-Mq Lyapunov function.

The proof of Theorem 3.3 is provided in the Appendix.
One can resort to available software tools, such as SOS-

TOOLS [31, Subsection 4.2], to search for appropriate, non-
trivial δ-ISS-Mq Lyapunov functions of the form of poly-
nomial. Satisfaction of conditions (i) and (ii) of Definition
3.2 globally on Rn may require α and α to be piecewise
polynomial functions. However, as long as one is interested in
the dynamics of Σ on a compact subset of Rn, those conditions
can be still satisfied by α and α of the form of polynomial.

Now we look into special instances where function V can be
easily computed based on the model dynamics. The first result
provides a sufficient condition for a particular function V to be
a δ-ISS-Mq Lyapunov function for a stochastic control system
Σ, when q = 1, 2 (that is, in the first or second moment).

Lemma 3.4: Consider a stochastic control system Σ. Let
q ∈ {1, 2}, P ∈ Rn×n be a symmetric positive definite matrix,
and the function V : Rn × Rn → R+

0 be defined as follows:

V (x, x′) :=
(
Ṽ (x, x′)

) q
2

=

(
1

q

(
x− x′

)T
P
(
x− x′

)) q
2

,

(III.3)

and satisfy

(x− x′)TP (f(x, u)− f(x′, u))+
1

2

∥∥∥√P (σ(x)− σ(x′)
)∥∥∥2
F

≤ −κ̃
(
V (x, x′)

) 2
q , (III.4)

or, if f is differentiable with respect to x, satisfy

(x− x′)TP∂xf(z, u)(x− x′)+1

2

∥∥∥√P (σ(x)− σ(x′)
)∥∥∥2
F

≤ −κ̃
(
V (x, x′)

) 2
q , (III.5)
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for all x, x′, z ∈ Rn, for all u ∈ U, and for some constant
κ̃ ∈ R+. Then V is a δ-ISS-Mq Lyapunov function for Σ.

The proof of Lemma 3.4 is provided in the Appendix.
The next result provides a condition that is equivalent to

(III.4) or (III.5) for linear stochastic control systems Σ (that
is, for systems with linear drift and diffusion terms) in the
form of a linear matrix inequality (LMI), which can be easily
solved numerically.

Corollary 3.5: Consider a stochastic control system Σ,
where for all x ∈ Rn, and u ∈ U, f(x, u) := Ax +
Bu, for some A ∈ Rn×n, B ∈ Rn×m, and σ(x) :=
[σ1x σ2x · · · σpx], for some σi ∈ Rn×n. Then, function
V in (III.3) is a δ-ISS-Mq Lyapunov function for Σ, when
q ∈ {1, 2}, if there exists a constant κ̂ ∈ R+ satisfying the
following LMI:

PA+ATP +

p∑
i=1

σTi Pσi � −κ̂P. (III.6)

Proof: The corollary is a particular case of Lemma 3.4.
It suffices to show that for linear dynamics, the LMI in
(III.6) yields the condition in (III.4) or (III.5). First it is
straightforward to observe that∥∥∥√P (σ(x)− σ(x′)

)∥∥∥2
F

= Tr
((
σ(x)− σ(x′)

)T
P
(
σ(x)− σ(x′)

))
=
(
x− x′

)T p∑
i=1

σTi Pσi(x− x′),

and that

(x−x′)TP∂xf(z, u)(x−x′) =
1

2
(x−x′)T

(
PA+ATP

)
(x−x′),

for any x, x′, z ∈ Rn and any u ∈ U. Now suppose there exists
κ̂ ∈ R+ such that (III.6) holds. It can be readily verified that
the desired requirements in (III.4) and (III.5) are verified by
choosing κ̃ = qκ̂

2 .
Remark 3.6: By considering both κ̂ and P as decision

variables, inequality (III.6) is not an LMI anymore as the right
hand side is bilinear. However, one may resort to iterative
schemes (e.g. bisection algorithm on scaler variable κ̂) to
optimize over the parameters κ̂ and P , separately. Note that
seeking appropriate matrix P and constant κ̂ can provide
tighter upper bounds in (III.1).

Remark 3.7: Consider a stochastic control system Σ. As-
sume that f is differentiable with respect to x and that, for any
x ∈ Rn, σ(x) := [σ1x σ2x . . . σpx], for some σi ∈ Rn×n.
Then, the function V in (III.3) is a δ-ISS-Mq Lyapunov
function for Σ, when q ∈ {1, 2}, if there exists a constant
κ̂ ∈ R+ satisfying the following matrix inequality:

P∂xf(z, u) + (∂xf(z, u))
T
P +

p∑
i=1

σTi Pσi � −κ̂P, (III.7)

for any z ∈ Rn and any u ∈ U. One can easily verify that
condition (III.7) corresponds to the contractivity conditions
(with respect to the states) in [46], obtained with contraction
metric P , and to the Demidovich’s condition in [32] for a
system Σ in the absence of any noise, i.e. σi = 0n×n for all
i = 1, . . . , p. 2

B. Noisy and noise-free trajectories

In order to introduce a symbolic model in Section V for the
stochastic control system Σ, we need the following technical
results, which provide an upper bound on the distance (in

the qth moment) between the solution processes of Σ and
those of the corresponding non-probabilistic control system,
i.e. Σ = (Rn,U,U , f, 0n×p), obtained by disregarding the
diffusion term (that is, σ). From now on, we use the notation
ξxυ to denote the trajectory of Σ under the input signal υ from
initial condition x.

Lemma 3.8: Consider a stochastic control system Σ such
that f(0n, 0m) = 0n and σ(0n) = 0n×p. Suppose that q ≥ 2
and there exists a δ-ISS-Mq Lyapunov function V for Σ such
that its Hessian is a positive semidefinite matrix in R2n×2n

and ∂x,xV (x, x′) ≤ P , for any x, x′ ∈ Rn and some positive
semidefinite matrix P ∈ Rn×n. Then for any x in a compact
set D ⊂ Rn and any υ ∈ U , we have

E
[∥∥ξxυ(t)− ξxυ(t)

∥∥q] ≤ h(σ, t), (III.8)

where the nonnegative valued function h tends to zero as t→
0, t→ +∞, or as Z → 0, where Z is the Lipschitz constant,
introduced in Definition 2.1.

The proof of Lemma 3.8 is provided in the Appendix.
One can compute explicitly the function h using equation

(IX.7) in the Appendix. Although function h in (IX.7) is only
an explicit function of time t, with a slight abuse of notation,
we prefer to keep σ as one of the arguments of h to show later
how the results in non-probabilistic cases in the literature can
be recovered by setting σ = 0 in function h.

Remark 3.9: In the previous lemma, if V is a polynomial,
then the condition H(V )(x, x′) � 02n×2n for all x, x′ ∈ Rn
is equivalent to V being a convex function [11]. Furthermore,
if we assume that for all x, x′ ∈ Rn, H(V )(x, x′) =
M(x, x′)TM(x, x′), where M(x, x′) ∈ Rs×2n is a polyno-
mial matrix for some s ∈ N, then V is a sum of squares
which can be efficiently searched through convex linear matrix
inequalities optimizations [11], and using some available tools,
such as SOSTOOLS [31, Subsection 4.2]. 2

The following lemma provides an explicit result in line
with that of Lemma 3.8 for a model Σ admitting a δ-ISS-Mq

Lyapunov function V as in (III.3), where q ∈ {1, 2}.
Lemma 3.10: Consider a stochastic control system Σ such

that f(0n, 0m) = 0n and σ(0n) = 0n×p. Suppose that the
function V in (III.3) satisfies (III.4) or (III.5) for Σ. For
any x in a compact set D ⊂ Rn and any υ ∈ U , we have
E
[∥∥ξxυ(t)− ξxυ(t)

∥∥2
]
≤ h(σ, t), where

h(σ, t) =
2
∥∥∥√P∥∥∥2 n2 min{n, p}Z2e

−2κ̃t
q

λ2min(P )κ̃
·λmax(P )

(
1− e

−κ̃t
2

)
sup
x∈D

{
‖x‖2

}
+

∥∥∥√P∥∥∥2 L2
u

eκ̃
sup
u∈U

{
‖u‖2

}
t

 ,

Z is the Lipschitz constant, as introduced in Definition 2.1. It
can be readily verified that the nonnegative valued function h
tends to zero as t→ 0, t→ +∞, or as Z → 0.

The proof of Lemma 3.10 is provided in the Appendix.
For a linear stochastic control system Σ, the following corol-

lary tailors the result in Lemma 3.10 obtaining possibly a less
conservative expression for function h, based on parameters
of drift and diffusion.

Corollary 3.11: Consider a stochastic control system Σ,
where for all x ∈ Rn and u ∈ Rm, f(x) := Ax+Bu, for some
A ∈ Rn×n, B ∈ Rn×m, and σ(x) := [σ1x σ2x · · · σpx],
for some σi ∈ Rn×n. Suppose that the function V in (III.3)
satisfies (III.6) for Σ. For any x in a compact set D and any
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υ ∈ U , we have E
[∥∥ξxυ(t)− ξxυ(t)

∥∥2
]
≤ h(σ, t), where

h(σ, t) =

nλmax

(
p∑
i=1

σTi Pσi

)
e−κ̂t

λmin(P )
·∫ t

0

(∥∥∥eAs∥∥∥ sup
x∈D
{‖x‖}+

(∫ s

0

∥∥∥eArB∥∥∥ dr) sup
u∈U
{‖u‖}

)2

ds.

The proof of Corollary 3.11 is provided in the Appendix.

IV. SYMBOLIC MODELS

A. Systems

We employ the notion of system [39] to describe both
stochastic control systems as well as their symbolic models.

Definition 4.1: A system S is a tuple S = (X,X0, U,−→
, Y,H), where X is a set of states, X0 ⊆ X is a set of initial
states, U is a set of inputs, −→⊆ X × U ×X is a transition
relation, Y is a set of outputs, and H : X → Y is an output
map.

A transition (x, u, x′) ∈−→ is also denoted by x
u- x′.

For a transition x
u- x′, state x′ is called a u-successor,

or simply a successor, of state x. For technical reasons, we
assume that for any x ∈ X , there exists some u-successor of
x, for some u ∈ U – let us remark that this is always the case
for the considered systems later in this paper.

System S is said to be
• metric, if the output set Y is equipped with a metric

d : Y × Y → R+
0 ;

• finite (or symbolic), if X and U are finite sets;
• deterministic, if for any state x ∈ X and any input u,

there exists at most one u-successor.
For a system S = (X,X0, U,−→, Y,H) and given

any initial state x0 ∈ X0, a finite state run gen-
erated from x0 is a finite sequence of transitions:
x0

u0- x1
u1- x2

u2- · · · un−2- xn−1
un−1- xn, such

that xi
ui- xi+1 for all 0 ≤ i < n. A finite state run can be

directly extended to an infinite state run as well.

B. System relations

We recall the notion of approximate (bi)simulation relation,
introduced in [15], which is useful when analyzing or synthe-
sizing controllers for deterministic systems.

Definition 4.2: Let Sa = (Xa, Xa0, Ua,
a
- , Ya, Ha)

and Sb = (Xb, Xb0, Ub,
b
- , Yb, Hb) be metric systems

with the same output sets Ya = Yb and metric d. For ε ∈ R+
0 ,

a relation R ⊆ Xa ×Xb is said to be an ε-approximate
simulation relation from Sa to Sb if the following three
conditions are satisfied:
(i) for every xa0 ∈ Xa0, there exists xb0 ∈ Xb0 with

(xa0, xb0) ∈ R;
(ii) for every (xa, xb) ∈ R, we have d(Ha(xa), Hb(xb)) ≤ ε;

(iii) for every (xa, xb) ∈ R, we have that xa
ua

a
- x′a in Sa

implies the existence of xb
ub

b
- x′b in Sb satisfying

(x′a, x
′
b) ∈ R.

A relation R ⊆ Xa×Xb is said to be an ε-approximate bisim-
ulation relation between Sa and Sb if R is an ε-approximate

simulation relation from Sa to Sb and R−1 is an ε-approximate
simulation relation from Sb to Sa.

System Sa is ε-approximately simulated by Sb, or Sb ε-
approximately simulates Sa, denoted by Sa �εS Sb, if there
exists an ε-approximate simulation relation from Sa to Sb.
System Sa is ε-approximate bisimilar to Sb, denoted by
Sa ∼=ε

S Sb, if there exists an ε-approximate bisimulation re-
lation between Sa and Sb.

Note that when ε = 0, condition (ii) in the above definition
changes as (xa, xb) ∈ R if and only if Ha(xa) = Hb(xb), and
R becomes an exact simulation relation, as introduced in [29].
Similarly, whenever ε = 0, R becomes an exact bisimulation
relation.

V. SYMBOLIC MODELS FOR STOCHASTIC CONTROL
SYSTEMS

This section contains the main contribution of the paper.
We show that for any stochastic control system Σ admitting a
δ-ISS-Mq Lyapunov function, and for any precision level ε ∈
R+, we can construct a finite system that is ε-approximately
bisimilar to Σ. In order to do so, we use the notion of system
as an abstract representation of a stochastic control system,
capturing all the information contained in it. More precisely,
given a stochastic control system Σ, we define an associated
metric system S(Σ) = (X,X0, U, - , Y,H), where:
• X is the set of all Rn-valued random variables defined

on the probability space (Ω,F ,P);
• X0 is the set of all Rn-valued random variables that are

measurable over the trivial sigma-algebra F0, i.e., the
system starts from a non-probabilistic initial condition,
which is equivalently a random variable with a Dirac
probability distribution;

• U = U ;
• x

υ- x′ if x and x′ are measurable in Ft and Ft+τ ,
respectively, for some t ∈ R+

0 and τ ∈ R+, and there
exists a solution process ξ : Ω×R+

0 → Rn of Σ satisfying
ξ(t) = x and ξxυ(τ) = x′ P-a.s.;

• Y is the set of all Rn-valued random variables defined
on the probability space (Ω,F ,P);

• H = 1X .
We assume that the output set Y is equipped with the metric
d(y, y′) =

(
E
[
‖y − y′‖q

]) 1
q , for any y, y′ ∈ Y and some

q ≥ 1. Let us remark that the set of states of S(Σ) is
uncountable and that S(Σ) is a deterministic system in the
sense of Definition 4.1, since (cf. Subsection II-B) the solution
process of Σ is uniquely determined.

The results in this section rely on additional assumptions on
model Σ that are described next (however such assumptions
are not required for the definitions and results in Sections II,
III, and IV). We restrict our attention to stochastic control
systems Σ with f(0n, 0m) = 0n, σ(0n) = 0n×p, and input
sets U that are assumed to be finite unions of boxes. We
further restrict our attention to sampled-data stochastic control
systems, where input signals belong to set Uτ which contains
only signals that are constant over intervals of length τ ∈ R+,
i.e.

Uτ =
{
υ ∈ U | υ(t) = υ((k − 1)τ), t ∈ [(k − 1)τ, kτ [, k ∈ N

}
.

Let us denote by Sτ (Σ) a sub-system of S(Σ) obtained by
selecting those transitions of S(Σ) corresponding to solution
processes of duration τ and to control inputs in Uτ . This
can be seen as the time discretization or as the sampling of
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a process. More precisely, given a stochastic control system
Σ = (Rn,U,Uτ , f, σ), we define the associated metric system
Sτ (Σ) =

(
Xτ , Xτ0, Uτ ,

τ
- , Yτ , Hτ

)
, where Xτ = X ,

Xτ0 = X0, Uτ = Uτ , Yτ = Y , Hτ = H , and

• xτ
υτ

τ
- x′τ if xτ and x′τ are measurable, respectively,

in Fkτ and F(k+1)τ for some k ∈ N0, and there exists
a solution process ξ : Ω × R+

0 → Rn of Σ satisfying
ξ(kτ) = xτ and ξxτυτ (τ) = x′τ P-a.s..

Notice that a finite state run
x0

υ0

τ
- x1

υ1

τ
- · · · υN−1

τ
- xN , of Sτ (Σ), where

υi ∈ Uτ and xi = ξxi−1υi−1
(τ) P-a.s. for i = 1, . . . , N ,

captures the solution process of the stochastic control system
Σ at times t = 0, τ, . . . , Nτ , started from the non-probabilistic
initial condition x0 and resulting from a control input υ
obtained by the concatenation of the input signals υi

(
i.e.

υ(t) = υi−1(t) for any t ∈ [(i− 1)τ, i τ [
)
, for i = 1, . . . , N .

Let us proceed introducing a fully symbolic system for the
concrete model Σ. Consider a stochastic control system Σ =
(Rn,U,Uτ , f, σ) and a triple q = (τ, η, µ) of quantization
parameters, where τ is the sampling time, η is the state space
quantization, and µ is the input set quantization. Given Σ and
q, consider the following system:

Sq(Σ) = (Xq, Xq0, Uq,
q
- , Yq, Hq), (V.1)

consisting of (cf. Notation in Subsection II-A):

• Xq = [Rn]η;
• Xq0 = [Rn]η;
• Uq = [U]µ;
• xq

uq

q
- x′q if there exists a x′q ∈ Xq such that∥∥∥ξxquq

(τ)− x′q
∥∥∥ ≤ η;

• Yq is the set of all Rn-valued random variables defined
on the probability space (Ω,F ,P);

• Hq = ı : Xq ↪→ Yq.

Note that we have abused notation by identifying uq ∈ [U]µ
with the constant input signal with domain [0, τ [ and value uq.
Notice that the proposed abstraction Sq(Σ) is a deterministic
system in the sense of Definition 4.1. In order to establish an
approximate bisimulation relation, the output set Yq is defined
similarly to the stochastic system Sτ (Σ). Therefore, in the
definition of Hq, the inclusion map ı is meant, with a slight
abuse of notation, as a mapping from a non-probabilistic grid
point to a random variable with a Dirac probability distribution
centered at that grid point. As argued in [39], there is no
loss of generality to alternatively assume that Yq = Xq and
Hq = 1Xq . For later use, we denote by Xxq0u : N0 → Xq a
state run of Sq(Σ) from initial condition Xxq0u(0) = xq0 and
under input sequence u : N0 → [U]µ.

The transition relation of Sq(Σ) is well defined in the sense
that for every xq ∈ [Rn]η and every uq ∈ [U]µ there always
exists x′q ∈ [Rn]η such that xq

uq

q
- x′q. This can be seen

since by definition of [Rn]η , for any x̂ ∈ Rn there always
exists a state x̂′ ∈ [Rn]η such that ‖x̂ − x̂′‖ ≤ η. Hence,
for ξxquq

(τ) there always exists a state x′q ∈ [Rn]η satisfying∥∥∥ξxquq
(τ)− x′q

∥∥∥ ≤ η.

A. Main results

In order to show the first main result of this work, we
raise a supplementary assumption on the δ-ISS-Mq Lyapunov
function V as follows:

|V (x, y)− V (x, z)| ≤ γ̂(‖y − z‖), (V.2)

for any x, y, z ∈ Rn, and some K∞ and concave function γ̂.
This assumption is not restrictive, provided V is restricted to a
compact subset of Rn×Rn. Indeed, for all x, y, z ∈ D, where
D ⊂ Rn is compact, by applying the mean value theorem to
the function y → V (x, y), one gets

|V (x, y)− V (x, z)| ≤ γ̂ (‖y − z‖) ,

where γ̂(r) =

(
max

x,y∈D\∆

∥∥∥∥∂V (x, y)

∂y

∥∥∥∥) r.
In particular, for the δ-ISS-M1 Lyapunov function V defined
in (III.3), we obtain explicitly that γ̂(r) = λmax(P )√

λmin(P )
r [39,

Proposition 10.5] satisfying (V.2) globally over Rn ×Rn. We
can now present the first main result of the paper, which
relates the existence of a δ-ISS-Mq Lyapunov function to the
construction of a symbolic model.

Theorem 5.1: Consider a stochastic control system Σ, ad-
mitting a δ-ISS-Mq Lyapunov function V , of the form of (III.3)
or the one explained in Lemma 3.8. For any ε ∈ R+ and
any triple q = (τ, η, µ) of quantization parameters satisfying
µ ≤ span(U) and

α (ηq) ≤ α (εq) , (V.3)

e−κτα (εq) +
1

eκ
ρ(µ) + γ̂

(
(h(σ, τ))

1
q + η

)
≤ α (εq) , (V.4)

we have that Sq(Σ) ∼=ε
S Sτ (Σ).

The proof of Theorem 5.1 is provided in the Appendix.
It can be readily seen that when we are interested in the

dynamics of Σ, initialized on a compact D ⊂ Rn of the form
of finite union of boxes and for a given precision ε, there
always exists a sufficiently large value of τ and small enough
values of η and µ, such that η ≤ span(D) and such that the
conditions in (V.3) and (V.4) are satisfied. On the other hand,
for a given fixed sampling time τ , one can find sufficiently
small values of η and µ satisfying η ≤ span(D), (V.3) and
(V.4), as long as the precision ε is lower bounded by:

ε >

α−1

 γ̂
(

(h(σ, τ))
1
q

)
1− e−κτ


1
q

. (V.5)

One can easily verify that the lower bound on ε in (V.5) goes
to zero as τ goes to infinity or as Z → 0, where Z is the
Lipschitz constant, introduced in Definition 2.1. Furthermore,
one can try to minimize the lower bound on ε in (V.5) by
appropriately choosing a δ-ISS-Mq Lyapunov function V (cf.
Section III).

Note that different δ-ISS-Mq Lyapunov functions V result
in different quantization parameters q satisfying (V.3) and
(V.4). Hence, one can seek appropriate δ-ISS-Mq Lyapunov
functions to provide less conservative quantization parameters
q (cf. Remark 3.6). For example, one can leverage the existing
techniques in the literature such as [23] to construct polyhedral
incremental Lyapunov functions which are less conservative
compared to quadratic ones.

Note that the results in [16], as in the following corollary,
are fully recovered by the statement in Theorem 5.1 if the
stochastic control system Σ is not affected by any noise,
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implying that h(σ, τ) is identically zero and that the δ-ISS-Mq

property reduces to the δ-ISS property.
Corollary 5.2: Let Σ, the non-probabilistic version of Σ, be

a δ-ISS control system admitting a δ-ISS Lyapunov function
V . For any ε ∈ R+, and any triple q = (τ, η, µ) of quantization
parameters satisfying µ ≤ span(U) and

α (η) ≤ α(ε), (V.6)

e−κτα(ε) +
1

eκ
ρ(µ) + γ̂ (η) ≤ α(ε), (V.7)

one obtains Sq (Σ) ∼=ε
S Sτ

(
Σ
)
.

Note that since any non-probabilistic point can be regarded
as a random variable with a Dirac probability distribution
centered at that point, the output set of Sτ

(
Σ
)
, which is

Rn, can be embedded in the output set of Sq (Σ). Hence,
without loss of generality, one can assume that the output sets
of Sτ

(
Σ
)

and Sq (Σ) are equal. The same remark holds for
Corollary 5.4.

The next main theorem provides a result that is similar
to that in Theorem 5.1, which is however not obtained by
explicit use of the parameters of δ-ISS-Mq Lyapunov functions
(e.g. α, α, κ, ρ, γ̂), but by using functions β and γ as in
(III.1). Note that the symbolic models computed by using
the quantization parameters q provided in the next theorem,
whenever existing, is likely to have fewer states than the ones
computed by using the quantization parameters q provided in
Theorem 5.1 based on our experiences in different simulations
and the non-probabilistic version of this theorem as recalled
in Corollary 5.4. It also may provide a better lower bound on
ε for a fixed sampling time τ . We refer the interested reader to
the case studies section for a comparison between the results
of Theorem 5.1 and of the next theorem on some practical
examples.

Theorem 5.3: Consider a δ-ISS-Mq stochastic control sys-
tem Σ, satisfying (III.8). For any ε ∈ R+, and any triple q =
(τ, η, µ) of quantization parameters satisfying µ ≤ span(U)
and

(β (εq, τ) + γ(µ))
1
q + (h(σ, τ))

1
q + η ≤ ε, (V.8)

we have Sq(Σ) ∼=ε
S Sτ (Σ).

The proof of Theorem 5.3 is provided in the Appendix.
It can be readily seen that when we are interested in the

dynamics of Σ, initialized on a compact D ⊂ Rn of the form
of finite union of boxes and for a given precision ε, there
always exists a sufficiently large value of τ and small values
of η and µ such that η ≤ span(D) and the condition in (V.8)
are satisfied. However, unlike the result in Theorem 5.1, notice
that here for a given fixed sampling time τ , one may not find
any values of η and µ satisfying (V.8) because the quantity
(β (εq, τ))

1
q may be larger than ε. As long as there exists a

triple q, satisfying (V.8), the lower bound of precision ε can
be computed by solving the following inequality with respect
to ε: ε − (β (εq, τ))

1
q > (h(σ, τ))

1
q . In this case, one can

easily verify that the lower bound on ε goes to zero as τ goes
to infinity, as τ goes to zero (only if (β (εq, 0))

1
q ≤ ε), or

as Z → 0, where Z is the Lipschitz constant introduced in
Definition 2.1.

Note that the results in [34], as in the following corollary,
are fully recovered by the results in Theorem 5.3 if the
stochastic control system Σ is not affected by any noise,
implying that h(σ, τ) is identically zero and that the δ-ISS-Mq

property becomes the δ-ISS property.
Corollary 5.4: Let Σ, the corresponding non-probabilistic

version of Σ, be a δ-ISS control system (i.e. satisfying (III.2)).
For any ε ∈ R+, and any triple q = (τ, η, µ) of quantization
parameters satisfying µ ≤ span(U) and

β(ε, τ) + γ(µ) + η ≤ ε, (V.9)

we have Sq (Σ) ∼=ε
S Sτ

(
Σ
)
.

Based upon the proposed symbolic models in Theorems 5.1
and 5.3, one can leverage the automata-theoretic controller
synthesis algorithms [26] to synthesize hybrid controllers
enforcing complex logic specifications (e.g. LTL) on the
original stochastic control systems. Particularly, we refer the
interested readers to Proposition 11.10 in [39] elucidating how
a controller synthesized to solve a simulation game over a
symbolic model can be refined to a controller for the original
system; for detailed definitions of syntax and semantics of
LTL, see also [6, Chapter 5].

Although Sτ (Σ) inherits a classical trace-based semantics
[39], the outputs of Sτ (Σ) being random variables makes it
less trivial especially in terms of satisfaction of temporal logic
specifications, e.g. LTL. Let us focus on the following exam-
ple. Assume W ⊂ Rn to be the safe set of our interest, i.e.
the LTL formula 2W . Suppose we are able to find a control
strategy over the abstraction Sq(Σ) enforcing an output run of
Sq(Σ) to satisfy 2W . Since the output run consists of points
y ∈ Yq = Yτ such that y ∈W ⊂ Rn, y is a degenerate random
variable. On the other hand, assume that Sτ (Σ) ∼=ε

S Sq(Σ).
By interpreting the result 2W obtained over the abstrac-
tion, one can guarantee that the corresponding output run of
Sτ (Σ) satisfies 2Wε, where Wε = {y ∈ Yτ | d (y,W ) ≤ ε},
d (y,W ) = infw∈W d (y, w), and d is the qth moment metric.
Note that although the original set W is a subset of Rn, its ε-
inflation in the qth moment metric, i.e. Wε, is not a subset of
Rn anymore and contains non-degenerate random variables.
As a result, although satisfying 2Wε does not necessarily
mean that a trajectory of Σ always stays within some non-
probabilistic set, it means that the associated random variables
always belong to Wε and hence are ε-close to the non-
probabilistic set W with respect to the qth moment metric.

Remark 5.5: Although we assume that the set U is infinite,
Theorems 5.1 (resp. Corollary 5.2) and 5.3 (resp. Corollary
5.4) still hold when the set U is finite, with the following
modifications. First, the system Σ (resp. Σ) is required to
satisfy the property (III.1) (resp. (III.2)) for υ = υ′. Second,
take Uq = U in the definition of Sq(Σ). Finally, in the
conditions (V.4) (resp. (V.7)) and (V.8) (resp. (V.9)) set µ = 0.
2

If the stochastic control system Σ is not δ-ISS-Mq , one can
use the results in [44], providing symbolic models that are
only sufficient in the sense that the refinement of any controller
synthesized for the symbolic model enforces the same desired
specifications on the original stochastic control system (in the
sense of moments). However, they can no longer guarantee, as
it was the case in this paper, that the existence of a controller
for the original stochastic control system leads to the existence
of a controller for the symbolic model. 2

Remark 5.6: A detailed computational complexity analysis
of symbolic controller synthesis using the proposed abstrac-
tions is provided in Section V in [33]. In particular, both Al-
gorithms 1 and 2 in [33] can be applied to synthesize symbolic
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controllers based upon the proposed symbolic abstractions in
this paper.

B. Relationship with notions of probabilistic bisimulation in
the literature

In the remainder of this section, we relate the (approximate)
equivalence relations introduced in this work with known
probabilistic concepts in the literature.

The approximate bisimulation notion in Definition 4.2 is
structurally different from the probabilistic version discussed
for finite state, discrete-time labeled Markov chains in [13],
which is also extended to continuous-space processes as in
[12] and hinges on the absolute difference between transition
probabilities over sets covering the state space. The notion
in this work can be instead related to the approximate prob-
abilistic bisimulation notion discussed in [19], which lower
bounds the probability that the Euclidean distance between
any trace of the abstract model and the corresponding one of
the concrete model and vice versa remains close: both notions
hinge on distances over trajectories, rather than over transition
probabilities as in [12], [13].

We make the above statement more precise with the follow-
ing results, which do not require the assumptions f(0n, 0m) =
0n and σ(0n) = 0n×p anymore.

Proposition 5.7: Let Σ be a stochastic control system.
Assume that there exists a stochastic bisimulation function
φ : Rn × Rn → R+

0 , as defined in [19], between Σ and its
corresponding non-probabilistic control system Σ, and assume
that Σ is δ-ISS. For any ε ∈ R+, any triple q = (τ, η, µ) of
quantization parameters, satisfying µ ≤ span(U) and (V.9) (or
(V.6) and (V.7)), and for any state run ξxτ0υ of Sτ (Σ), there
exists a state run Xxq0u of Sq(Σ), and vice versa, such that
the following relation holds:

P

{
sup
k∈N0

∥∥ξxτ0υ(kτ)− Xxq0u(k)
∥∥ > ε | xτ0

}
(V.10)

≤
√
φ(xτ0, xτ0) + ε

ε
.

The proof of Proposition 5.7 is provided in the Appendix.
Theorem 3 in [19] provides a similar result as in Proposition

5.7, however it is limited to hold over two infinite systems
rather than a finite and an infinite one as in this work. As
explained in [19], in order to compute a stochastic bisimulation
function, one requires to solve a game, which is computa-
tionally difficult even for linear stochastic control systems.
On the other hand, if the set of input is a singleton (i.e.,
U = {0m}), which results in the verification of stochastic
dynamical systems, then a stochastic bisimulation function
φ can be efficiently computed by solving some LMIs, as
explained in [19, equations (39) and (40)] for linear stochastic
control systems. Alternatively, the stochastic contractivity of
the model can be used for this goal [1].

Remark 5.8: Let us further comment on the relationship be-
tween δ-ISS-Mq Lyapunov functions in this work and stochas-
tic bisimulation ones in [19]. Let Σ = (Rn, {0m},Uτ , f, σ) be
a stochastic control system admitting a δ-ISS-Mq Lyapunov
function V , and such that f(0n, 0m) = 0n, σ(0n) = 0n×p, and
0n×n � ∂x,xV (0n, x) for all x ∈ Rn. It can be readily verified
that the function φ(x, x) = V (x, 0n) + V (0n, x), for all
x, x ∈ Rn, is a stochastic bisimulation function between Σ and

the corresponding non-probabilistic control system Σ, under
the following modification in condition (i) in [19, Definition
2]: (i) φ(x, x) ≥ α̃ (‖x− x‖), for some convex α̃ ∈ K∞ and
all x, x ∈ Rn. Using this new condition on φ, one can readily
revise the relation (V.10) correspondingly. 2

The next theorem, which is computationally more tractable
for stochastic control systems and does not require the exis-
tence of stochastic bisimulation functions as in [19], provides
a similar result as in Proposition 5.7, but applies only over a
finite time horizon.

Proposition 5.9: Let Σ be a stochastic control system.
Suppose there exist a δ-ISS-Mq Lyapunov function V for Σ
and α ∈ R+

0 such that

Tr(σ(x)T∂x,xV (x, y)σ(x))

− Tr

([
σ (x)
σ (y)

] [
σT (x) σT (y)

]
H(V )(x, y)

)
≤ α,

for all x, y ∈ Rn. For any ε ∈ R+, any triple q = (τ, η, µ)
of quantization parameters, satisfying µ ≤ span(U) and (V.9)
(or (V.6), and (V.7)), and for any state run ξxτ0υ of Sτ (Σ),
there exists a state run Xxq0u of Sq(Σ), and vice versa, such
that the following relations hold:

P

{
sup

0≤k≤N

∥∥ξxτ0υ(kτ)− Xxq0u(k)
∥∥ > ε+ ε | xτ0

}
(V.11)

≤ 1− e−
αNτ

2α(εq) , if α (εq) ≥ α

2κ
,

P

{
sup

0≤k≤N

∥∥ξxτ0υ(kτ)− Xxq0u(k)
∥∥ > ε+ ε | xτ0

}
(V.12)

≤
(
eNτκ − 1

)
α

2κα (εq) eNτκ
, if α (εq) ≤ α

2κ
.

The proof of Proposition 5.9 is provided in the Appendix.
As an alternative to the two results above, we now intro-

duce a probabilistic approximate bisimulation relation between
Sτ (Σ) and Sq(Σ) point-wise in time: this relation is sufficient
to work with LTL specifications for which satisfiability can be
ascertained at single time instances, such as for next (©) and
eventually (♦). Please look at the explanation after the proof
of Proposition 5.11 for more details.

Definition 5.10: Consider two systems Sτ (Σ) and Sq(Σ),
and precisions ε ∈ R+ and ε̂ ∈ [0, 1]. A relation R ⊆ Xτ ×Xq

is said to be an (ε, ε̂)-approximate simulation relation from Sτ
to Sq, if the following three conditions are satisfied:
(i) for every xτ0 ∈ Xτ0, there exists xq0 ∈ Xq0 with

(xτ0, xq0) ∈ R;
(ii) for every (xτ , xq) ∈ R, we have

P {‖Hτ (xτ )−Hq(xq)‖ ≥ ε} ≤ ε̂;
(iii) for every (xτ , xq) ∈ R, we have that xτ

υτ

τ
- x′τ in Sτ

implies the existence of xq
uq

q
- x′q in Sq satisfying

(x′τ , x
′
q) ∈ R.

A relation R ⊆ Xτ ×Xq is said to be an (ε, ε̂)-approximate
bisimulation relation between Sτ and Sq if R is an (ε, ε̂)-
approximate simulation relation from Sτ to Sq and R−1 is an
(ε, ε̂)-approximate simulation relation from Sq to Sτ .

System Sτ is (ε, ε̂)-approximately simulated by Sq, or Sq

(ε, ε̂)-approximately simulates Sτ , denoted by Sτ �(ε,ε̂)
S Sq,

if there exists an (ε, ε̂)-approximate simulation relation from
Sτ to Sq. System Sτ is (ε, ε̂)-approximate bisimilar to Sq,
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denoted by Sτ ∼=(ε,ε̂)
S Sq, if there exists an (ε, ε̂)-approximate

bisimulation relation between Sτ and Sq.
We show next the existence of symbolic models with respect

to the notion of approximate bisimulation relation in Definition
5.10.

Proposition 5.11: Let Σ be a stochastic control system. For
any ε ∈ R+ and ε̂ ∈ [0, 1], we have Sτ (Σ) ∼=(ε,ε̂)

S Sq(Σ) if
Sτ (Σ) ∼=ε

S Sq(Σ) for ε = εε̂.
Proof: The proof is a simple consequence of Theorems

5.1 or 5.3 and Markov inequality [30], used as the following:

P {‖Hτ (xτ )−Hq(xq)‖ ≥ ε} ≤
E [‖Hτ (xτ )−Hq(xq)‖]

ε

≤ (E [‖Hτ (xτ )−Hq(xq)‖q])
1
q

ε
≤ ε

ε
= ε̂.

Let us clarify the use of the previous proposition in a simple
example. Given a stochastic control system Σ, assume there
exists a symbolic model Sq(Σ) such that Sτ (Σ) ∼=ε

S Sq(Σ). If
there exists an output run Xxq0u of Sq(Σ) reaching a set W , i.e.
satisfying the LTL formula 3W , then for the corresponding
output run ξxτ0υ of Sτ (Σ), one has

P {ξxτ0υ |= 3W ε} := P {∃N ∈ N s.t. ξxτ0υ(Nτ) ∈W ε}

≥ sup
M∈N

P {ξxτ0υ(Mτ) ∈W ε} ≥ 1− ε

ε
, (V.13)

where the last inequality results from Proposition 5.11. Hence,
one can leverage the result of Proposition 5.11 to provide
a lower bound on the probability of satisfaction of logic
specifications for which satisfiability can be obtained at sin-
gle time instances. Note that this is not the case for logic
specifications including the (bounded) quantifier “∀” such as
always (2) or even until (U). By taking out the quantifier ∀
from the probability operator, the first inequality sign in (V.13)
reverses and hence we cannot provide the lower bound on the
probability of satisfaction anymore.

VI. CASE STUDIES

We now experimentally demonstrate the effectiveness of
the discussed results. In the examples below, the computation
of the abstract systems Sq(Σ) have been implemented by
the software tool Pessoa [27] on a laptop with CPU 2GHz
Intel Core i7. We have assumed that the control inputs are
piecewise constant of duration τ and that Uτ is finite and
contains signals taking values in [U]µ. Hence, as explained in
Remark 5.5, µ = 0 is to be used in the conditions (V.4) and
(V.8). The controllers enforcing the specifications of interest
have been found by standard algorithms from game theory
[26], as implemented in Pessoa. In both examples, the terms
W i
t , i = 1, 2, denote the standard Brownian motion terms.

Although we used Pessoa to construct bisimilar symbolic
models for the examples below, one can use the constructed
symbolic models as an input for other existing synthesis
toolboxes such as SPIN [18] to synthesize symbolic controllers
enforcing larger classes of LTL specifications rather than the
limited ones supported by Pessoa.

A. Nonlinear model, 2nd moment, “sequential target track-
ing” property

Consider the nonlinear model of a pendulum on a cart
borrowed from [9], which is now affected by noise. The model

is described by:

Σ :

{
d ξ1 = ξ2 d t+ 0.03ξ1 dW 1

t ,
d ξ2 =

(
− gl sin(ξ1)− k

mξ2 + 1
ml2 υ

)
d t+ 0.03ξ2 dW 1

t ,
(VI.1)

where ξ1 and ξ2 represent the angular position and the velocity
of the point mass on the pendulum, υ is the torque applied
to the cart, g = 9.8 is acceleration due to gravity, l = 0.5 is
the length of the shaft, m = 0.6 is the mass, and k = 2 is
the friction coefficient. All the constants and the variables are
considered in SI units. We assume that U = [−1.5 1.5] and
that Uτ contains signals taking values in [U]0.5. We work on
the subset D = [−1 1]× [−1 1] of the state space of Σ. Using
the Lyapunov function V (x, x′) = (x−x′)TP (x−x′), for all
x, x′ ∈ R2, proposed in [9], where P = [1.5 0.3; 0.3 1.5], it
can be readily verified that V satisfies conditions (i) and (ii) in
Definition 3.2 with α(r) = 1.2 r, and α(r) = 3.6 r, for q = 2.
Moreover, V satisfies condition (iii) in Definition 3.2 with
κ = 0.7691, and ρ(r) = 8.76 r, for all x, x′ ∈ D, and again
q = 2. Therefore, Σ is δ-ISS-M2, equipped with the δ-ISS-
M2 Lyapunov function V , as long as we are interested in its
dynamics, initialized on D. Using the results in Theorem 3.3,
one obtains that functions β(r, s) = 3e−κs and γ(r) = 3.49 r
satisfy property (III.1) for Σ.

For a given fixed sampling time τ = 3, the precision ε
is lower bounded by 0.0778 and 0.4848 using the results
in Theorems 5.3 and 5.1, respectively. Hence, the results
in Theorem 5.3 provide a symbolic model which is much
less conservative than the one provided by Theorem 5.1. By
selecting ε = 0.085, the parameter η for Sq(Σ) based on the
results in Theorem 5.3 is obtained as 0.0033. The resulting
cardinality of the state and input sets for Sq(Σ) are 370881
and 7, respectively. The CPU time taken for computing the
abstraction Sq(Σ) has amounted to 17278 seconds.

Now, consider the objective to design a controller forc-
ing the trajectories of Σ, starting from the initial condition
x0 = (0, 0), to first sequentially visit two regions of interest
W1 = [0.48 0.58]×[−1 1], and W2 = [−0.58 −0.48]×[−1 1];
then, once the system has visited the regions, to return to the
first region W1 and remain there forever. The LTL formula1

encoding this goal is 32W1 ∧ 3 (W1 ∧3W2). The CPU
time taken for synthesizing the controller has amounted to
3.02 seconds. Figure 1 displays a few realizations of the
closed-loop solution process ξx0υ stemming from the initial
condition x0 = (0, 0), as well as the corresponding evolution
of the input signal. In Figure 2, we show the square root
of the average value (over 100 experiments) of the squared
distance in time of the solution process ξx0υ to the sets W1

and W2, namely, ‖ξx0υ(t)‖2W1
and ‖ξx0υ(t)‖2W2

. Notice that
the square root of this empirical (averaged) squared distances
is significantly lower than the selected precision ε = 0.085, as
expected since the conditions based on Lyapunov functions
can lead to conservative bounds. (We have discussed that
the bounds can be improved by seeking optimized Lyapunov
functions.)

Notice that using the chosen quantization parameters and
(V.9), we obtain a precision ε = 0.005 to be used in (V.11) or
(V.12). As long as we are interested in dynamics of Σ on D,
we have an α = 0.0032 in Proposition 5.9. Using the result

1Note that the semantics of LTL are defined over the output behaviors of
Sq(Σ).
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in Proposition 5.9, one can conclude that the refinement of a
control policy satisfying a bounded horizon LTL (BLTL) for-
mula2 ϕ over a discrete time horizon spanning {0, 3, . . . , 27}
seconds for Sq(Σ) (e.g. ϕ = 32W1 ∧ 3 (W1 ∧3W2)) to
the system Sτ (Σ) satisfies the “inflated formula”3 ϕ0.31 (e.g.
ϕ0.31 = 32W 0.31

1 ∧ 3
(
W 0.31

1 ∧3W 0.31
2

)
) with probability

at least 70%. To get the better lower bound for the aforemen-
tioned probability, one can reduce the time horizon, increase
the inflation factor, or do both of them simultaneously. For ex-
ample, by considering the discrete time horizon {0, 3, . . . , 15}
rather than {0, 3, . . . , 27} and inflation factor 0.5 rather than
0.31, the lower bound of the previous probability will be 92%.
The same observation works for the next example as well.

Furthermore, employing the result in Proposition 5.11, one
can conclude that the refinement of a controller satisfying 3W
for Sq(Σ) to system Sτ (Σ) satisfies 3W ε with probability at
least 1−ε/ε. For example, refinement of a controller, satisfying
3W1 for Sq(Σ), to the system Sτ (Σ) satisfies 3W 0.28

1 with
probability at least 70%. By changing the inflation factor from
0.28 to 0.6, the lower bound of the previous probability will
be 0.86%.
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Fig. 1. Example 1: A few realizations of the closed-loop solution process
ξx0υ with initial condition x0 = (0, 0) (bottom panel) and the evolution of
the input signal υ (top panel).

0 10 20 30 40 500

0.5

1

time

(E
[||
j x

0p
(t)
||2 W

1])
1/
2

0 10 20 30 40 500

0.5

1

1.5

time

(E
[||
j x

0p
(t)
||2 W

2])
1/
2

0 10 20 30 40 500

0.02

0.04

0.06

0.08

time

(E
[||
j x

0p
(t)
||2 W

1])
1/
2

0 10 20 30 40 500

0.02

0.04

0.06

0.08

time

(E
[||
j x

0p
(t)
||2 W

2])
1/
2

¡

¡ ¡

¡

Fig. 2. Example 1: Square root of the average values (over 100 experiments)
of the squared distance of the solution process ξx0υ to the sets W1 (left
panels) and W2 (right panels), in two different vertical scales (top vs bottom
panels).

2To compute the probability of satisfaction of logic specifications based
on the result of Proposition 5.9, we need to restrict ourselves to the bounded
horizon specifications (e.g. BLTL). We refer the readers to [8] for the detailed
definition of bounded LTL (BLTL).

3We refer the interested readers to [24, Definition 1] for a detailed definition
of the inflated version of a BLTL formula.

B. Linear model, 1st moment, “reach-and-stay, while staying”
property

Consider a linear DC motor borrowed from [28], now
affected by noise and described by:

Σ :

{
d ξ1 =

(
− b
J ξ1 + K

J ξ2
)

d t+ 0.15ξ1 dW 1
t ,

d ξ2 =
(
−KL ξ1 −

R
L ξ2 + 1

Lυ
)

d t+ 0.15ξ2 dW 2
t ,
(VI.2)

where ξ1 is the angular velocity of the motor, ξ2 is the current
through an inductor, υ is the voltage signal, b = 10−4 is the
damping ratio of the mechanical system, J = 25×10−5 is the
moment of inertia of the rotor, K = 5×10−2 is the electromo-
tive force constant, L = 3×10−4 is the electric inductance, and
R = 0.5 is the electric resistance. All constants and variables
are considered in the SI units. It can be readily verified that the
system Σ satisfies condition (III.6) with constant κ̂ = 40 and
matrix P = [1.2201 0.2224; 0.2224 1.2248]. Therefore, Σ is
δ-ISS-Mq and equipped with the δ-ISS-Mq Lyapunov function
V (x, x′) in (III.3), where q ∈ {1, 2}. In this example, we use
q = 1.

We assume that U = [−0.5 0.5] and that Uτ contains signals
taking values in [U]0.1. We work on the subset D = [−5 5]×
[−5 5] of the state space of Σ. For a given precision ε = 1
and fixed sampling time τ = 0.01, the parameter η of Sq(Σ)
based on the results in Theorem 5.1 is equal to 0.01. Note that
for sampling times τ < 0.026, and in particular for a choice
τ = 0.01, the results in Theorem 5.3 cannot be applied here
because (β (εq, τ))

1
q > ε and condition (V.8) in Theorem 5.3

is not fulfilled. The resulting cardinality of the state and input
sets for Sq(Σ) amounts to 1002001 and 11, respectively. The
CPU time used for computing the abstraction has amounted
to 148.092 seconds.

Now, consider the objective to design a controller forcing
the trajectories of Σ to reach and stay within W = [4.5 5]×
[−0.25 0.25], while ensuring that the current through the
inductor is restricted between −0.25 and 0.25. This corre-
sponds to the LTL specification 32W ∧ 2Z, where Z =
[−5 5] × [−0.25 0.25]. The CPU time used for synthesizing
the controller has been of 3.88 seconds. Figure 3 displays
a few realizations of the closed-loop solution process ξx0υ

stemming from the initial condition x0 = (−5, − 0), as well
as the corresponding evolution of the input signal. In Figure
4, we show the average value (over 100 experiments) of the
distance in time of the solution process ξx0υ to the sets W
and Z, namely ‖ξx0υ(t)‖W and ‖ξx0υ(t)‖Z . Notice that the
empirical average distances are as expected significantly lower
than the precision ε = 1.

Note that using the selected quantization parameters in (V.6)
and (V.7), we obtain a value ε = 0.08 in (V.10), (V.11) or
(V.12). Further, using the result in Proposition 5.7, one obtains
that, as long as we are interested in dynamics of Σ, initialized
on D and U = {0m}, there exists a state run Xxq0u of Sq(Σ)
satisfying an LTL formula ϕ if and only if there exists a state
run ξxτ0υ of Sτ (Σ) satisfying ϕ1 with probability at least 79%,
where ϕ1 is the 1-inflation of ϕ.

Moreover, using the result in Proposition 5.9, one can
conclude that, as long as we are interested in dynamics of
Σ on Z, implying that α = 0.6917 in Proposition 5.9, the
refinement of a controller, satisfying a BLTL formula ϕ for
Sq(Σ) (e.g. ϕ = 32W ∧ 2Z) to the system Sτ (Σ) satisfies
ϕ1 (e.g. ϕ1 = 32W 1 ∧ 2Z1) with probability at least 70%



11

over a discrete time horizon spanning {0, 0.01, 0.02, . . . , 1}
seconds.

Fig. 3. Example 2: A few realizations of the closed-loop solution process
ξx0υ with initial condition x0 = (−5, 0) in different scales (left and middle
panel), and the evolution of the input signal υ (right panel).

0 0.5 1 1.5 2
0

5

10

E[
||j
x 0
p
(t)
|| W
]

0 0.5 1 1.5 20

0.5

1

E[
||j
x 0
p
(t)
|| Z
]

0 0.5 1 1.5 20

0.5

1

time

E[
||j
x 0
p
(t)
|| W
]

0 0.5 1 1.5 20

0.02

0.04

0.06

time

E[
||j
x 0
p
(t)
|| Z
]¡

¡

¡

Fig. 4. Example 2: Average values (over 100 experiments) of the distance
of the solution process ξx0υ to the sets W (left panels) and Z (right panels),
in two different vertical scales (top vs bottom panels).

VII. CONCLUSIONS

This work has shown that any stochastic sampled-data
control system, admitting a δ-ISS-Mq Lyapunov function,
and initializing within a compact set of states, admits a
finite approximately bisimilar symbolic model (in the sense
of moments or probability). The constructed symbolic model
can be used to synthesize controllers enforcing complex logic
specifications, expressed via linear temporal logic or as au-
tomata on infinite strings.

The main limitation of the design methodology developed
in this paper lies in the cardinality of the set of states of the
computed symbolic model. The authors are currently investi-
gating several different techniques to address this limitation.
For example, the recent work in [47] by some of the authors,
based upon the results of this article, provides a new way of
constructing bisimilar symbolic abstractions which does not
require discretization of the set of states but only the set of
inputs. Hence, it can be potentially more tractable.
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IX. APPENDIX

Proof of Theorem 3.3: The proof is a consequence of the
application of Gronwall’s inequality and of Ito’s lemma [30, pp. 80
and 123]. Assume that there exists a δ-ISS-Mq Lyapunov function in
the sense of Definition 3.2. For any t ∈ R+

0 , any υ, υ′ ∈ U , and any
Rn-valued random variables a and a′ that are measurable in F0, we
obtain

E [V (ξaυ(t), ξa′υ′ (t))]

= E

[
V (a, a′) +

∫ t

0
Lυ(s),υ

′(s)V (ξaυ(s), ξa′υ′ (s))ds

]
≤ E

[
V (a, a′) +

∫ t

0

(
−κV (ξaυ(s), ξa′υ′ (s)) + ρ(‖υ(s)− υ′(s)‖)

)
ds

]
≤ −κ

∫ t

0
E [V (ξaυ(s), ξa′υ′ (s))] ds+ E[V (a, a′)] + ρ(‖υ − υ′‖∞)t,

which, by virtue of Gronwall’s inequality, leads to

E [V (ξaυ(t), ξa′υ′ (t))] ≤ E[V (a, a′)]e−κt + te−κtρ(‖υ − υ′‖∞)

≤ E[V (a, a′)]e−κt +
1

eκ
ρ(‖υ − υ′‖∞). (IX.1)

Hence, using property (ii) in Definition 3.2, we have

α (E [‖ξaυ(t)− ξa′υ′ (t)‖q ]) ≤ E [α (‖ξaυ(t)− ξa′υ′ (t)‖q)]

≤ E [V (ξaυ(t), ξa′υ′ (t))] ≤ E[V (a, a′)]e−κt +
1

eκ
ρ(‖υ − υ′‖∞)

≤ E
[
α
(
‖a− a′‖q

)]
e−κt +

1

eκ
ρ(‖υ − υ′‖∞)

≤ α
(
E
[
‖a− a′‖q

])
e−κt +

1

eκ
ρ(‖υ − υ′‖∞), (IX.2)

where the first and last inequalities follow from property (i) and
Jensen’s inequality [30, p. 310]. Since α ∈ K∞, the inequality (IX.2)
yields

E [‖ξaυ(t)− ξa′υ′ (t)‖q ]

≤ α−1

(
α
(
E
[
‖a− a′‖q

])
e−κt +

1

eκ
ρ(‖υ − υ′‖∞)

)
≤ α−1

(
α
(
E
[
‖a− a′‖q

])
e−κt + α

(
E
[
‖a− a′‖q

])
e−κt

)
+ α−1

(
1

eκ
ρ(‖υ − υ′‖∞) +

1

eκ
ρ(‖υ − υ′‖∞)

)
≤ α−1

(
2α
(
E
[
‖a− a′‖q

])
e−κt

)
+ α−1

(
2

eκ
ρ(‖υ − υ′‖∞)

)
.

Therefore, by introducing functions β and γ as

β
(
E
[
‖a− a′‖q

]
, t
)

:= α−1
(
2α
(
E
[
‖a− a′‖q

])
e−κt

)
,

γ
(
‖υ − υ′‖∞

)
:= α−1

(
2

eκ
ρ(‖υ − υ′‖∞)

)
,

condition (III.1) is satisfied. Hence, the system Σ is δ-ISS-Mq .
Note that if α is linear, one can substitute the coefficients 2 in the
aforementioned expressions of β and γ with 1 to get less conservative
upper bound in (III.1).

Proof of Lemma 3.4: It is not difficult to check that the function
V in (III.3) satisfies properties (i) and (ii) of Definition 3.2 with

functions α(y) :=
(

1
q
λmin (P )

) q
2
y and α(y) :=

(
n
q
λmax (P )

) q
2
y.

It then suffices to verify property (iii). We verify property (iii) for the
case that f is differentiable and using condition (III.5). The proof,
using condition (III.4), follows similarly by removing the inequalities
in the proof including derivative of f . By the definition of V in (III.3),
for any x, x′ ∈ Rn such that x 6= x′, and for q ∈ {1, 2}, one has

∂xV = −∂x′V = (x− x′)TP
(
Ṽ (x, x′)

) q
2
−1

,

∂x,xV = ∂x′,x′V = −∂x,x′V

= P
(
Ṽ (x, x′)

) q
2
−1

+
q − 2

q
P (x− x′)(x− x′)TP

(
Ṽ (x, x′)

) q
2
−2

.

Therefore, following the definition of Lu,u
′
, and for any

x, x′, z ∈ Rn such that x 6= x′, and any u, u′ ∈ U, one obtains the
chain of (in)equalities in (IX.3). In (IX.3), z ∈ Rn and the mean value
theorem [14] is applied to the differentiable function x 7→ f(x, u) at
points x, x′ for a given input value u ∈ U and Lu is the Lipschitz
constant, as introduced in Definition 2.1. Therefore, the function V in
(III.3) satisfies property (iii) of Definition 3.2 with positive constant

κ = κ̃
q

and K∞ function ρ(r) =
n
q
2 Lqu
κ̃q−1

∥∥∥√P∥∥∥q rq .

Proof of Lemma 3.8: In the proof, we use the notation σσT (x)
instead of σ(x)σT (x) and H(V )(x, x′) for the value of the Hessian
matrix of V at (x, x′) ∈ R2n. We drop the arguments of ∂x,xV , ∂xV ,
∂x′V , and H(V ) for the sake of simplicity. In view of Ito’s formula,
Jensen’s inequality, and similar to the calculations in Lemma 3.4, we
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———————————————————————————————————————————————————-
Lu,u

′
V (x, x

′
) = (x − x′)T P

(
Ṽ (x, x

′
)
) q
2
−1 (

f(x, u) − f(x′, u′)
)

+
1

2
Tr
([
σ(x)

σ(x′)

] [
σ
T

(x) σ
T

(x
′
)
] [ ∂x,xV −∂x,xV
−∂x,xV ∂x,xV

])
= (x − x′)T P

(
Ṽ (x, x

′
)
) q
2
−1 (

f(x, u) − f(x′, u′)
)

+
1

2
Tr
((
σ(x) − σ(x′)

) (
σ
T

(x) − σT (x
′
)
)
∂x,xV

)
= (x − x′)T P

(
Ṽ (x, x

′
)
) q
2
−1 (

f(x, u) − f(x′, u′)
)

+
1

2

∥∥∥√P (σ(x) − σ(x′))∥∥∥2
F

(
Ṽ (x, x

′
)
) q
2
−1

+
q − 2

q

∥∥∥(x − x′)T P (σ(x) − σ(x′))∥∥∥2
F

(
Ṽ (x, x

′
)
) q
2
−2

≤ (x − x′)T P
(
Ṽ (x, x

′
)
) q
2
−1 (

f(x, u) − f(x′, u) + f(x
′
, u) − f(x′, u′)

)
+

1

2

∥∥∥√P (σ(x) − σ(x′))∥∥∥2
F

(
Ṽ (x, x

′
)
) q
2
−1

≤ (x − x′)T P
(
Ṽ (x, x

′
)
) q
2
−1

∂xf(z, u)(x − x
′
) + (x − x′)T P

(
Ṽ (x, x

′
)
) q
2
−1 (

f(x
′
, u) − f(x′, u′)

)
+

1

2

∥∥∥√P (σ(x) − σ(x′))∥∥∥2
F

(
Ṽ (x, x

′
)
) q
2
−1

≤
(
(x − x′)T P∂xf(z, u)(x − x

′
) +

1

2

∥∥∥√P (σ(x) − σ(x′))∥∥∥2
F

) (
Ṽ (x, x

′
)
) q
2
−1

+
√
n
(
(x − x′)T P (x − x′)

) 1
2
∥∥∥√P∥∥∥Lu ∥∥∥u − u′∥∥∥ (Ṽ (x, x

′
)
) q
2
−1

≤ −κ̃V (x, x
′
) + (q − 1)

κ̃

2
V (x, x

′
) +

n
q
2 L

q
u

κ̃q−1

∥∥∥√P∥∥∥q ∥∥∥u − u′∥∥∥q = −
κ̃

q
V (x, x

′
) +

n
q
2 L

q
u

κ̃q−1

∥∥∥√P∥∥∥q ∥∥∥u − u′∥∥∥q . (IX.3)

———————————————————————————————————————————————————-

have

α
(
E
[∥∥∥ξxυ(t)− ξxυ(t)

∥∥∥q]) ≤ E [α(∥∥∥ξxυ(t)− ξxυ(t)
∥∥∥q)]

≤ E
[
V
(
ξxυ(t), ξxυ(t)

)]
=

∫ t

0
E
[
Lυ(s),υ(s)V

(
ξxυ(s), ξxυ(s)

)]
ds

=

∫ t

0
E

[
[∂xV ∂x′V ]

[
f (ξxυ(s), υ(s))

f
(
ξxυ(s), υ(s)

)]

+
1

2
Tr
(
σσT (ξxυ(s)) ∂x,xV

)]
ds

=

∫ t

0
E

[
[∂xV ∂x′V ]

[
f (ξxυ(s), υ(s))

f
(
ξxυ(s), υ(s)

)]

+
1

2
Tr

([
σ (ξxυ(s))

σ
(
ξxυ(s)

)] [
σT (ξxυ(s)) σT

(
ξxυ(s)

)]
H(V )

)

+
1

2
Tr
(
σσT (ξxυ(s)) ∂x,xV

)
(IX.4)

−
1

2
Tr

([
σ (ξxυ(s))

σ
(
ξxυ(s)

)] [
σT (ξxυ(s)) σT

(
ξxυ(s)

)]
H(V )

)]
ds

≤
∫ t

0
−κE

[
V
(
ξxυ(s), ξxυ(s)

)]
ds (IX.5)

+

∫ t

0
E

[
1

2
Tr
(
σσT (ξxυ(s)) ∂x,xV

)
−

1

2
Tr

([
σ (ξxυ(s))

σ
(
ξxυ(s)

)] [
σT (ξxυ(s)) σT

(
ξxυ(s)

)]
H(V )

)]
ds

≤
∫ t

0
−κE

[
V (ξxυ(s), ξxυ(s))

]
ds (IX.6)

+

∫ t

0
E

[
1

2
Tr
(
σσT (ξxυ(s)) ∂x,xV

)]
ds ≤ ĥ(σ, t)e−κt,

where the function ĥ can be computed as ĥ(σ, t) :=∫ t
0 E

[
1
2

∥∥√∂x,xV σ (ξxυ(s))
∥∥2
F

]
ds. Inequality (IX.5) is a straightfor-

ward consequence of V satisfying the condition (iii) in Definition 3.2,
and (IX.6) follows from Gronwall’s inequality. Using the Lipschitz
continuity assumption on the diffusion term σ, we get:∫ t

0
E

[
1

2

∥∥∥√∂x,xV σ (ξxυ(s))
∥∥∥2
F

]
ds ≤

1

2

∥∥∥√P∥∥∥2 nmin{n, p}Z2

∫ t

0
E
[
‖ξxυ(s)‖2

]
ds.

Since V is a δ-ISS-Mq Lyapunov function, q ≥ 2, f(0n, 0m) = 0n,
σ(0n) = 0n×p, and using functions β and γ in (III.1), one can verify
that:(
E
[
‖ξxυ(t)‖2

]) q
2 ≤ E

[(
‖ξxυ(t)‖2

) q
2

]
= E [‖ξxυ(t)‖q ]

≤ β (‖x‖q , t) + γ (‖υ‖∞) ≤ β
(

sup
x∈D
{‖x‖q} , t

)
+ γ

(
sup
u∈U
{‖u‖}

)
,

hence,

E
[
‖ξxυ(t)‖2

]
≤
(
β

(
sup
x∈D
{‖x‖q} , t

)
+ γ

(
sup
u∈U
{‖u‖}

)) 2
q

.

Therefore, we have

ĥ(σ, t) ≤
1

2

∥∥∥√P∥∥∥2 nmin{n, p}Z2

·
∫ t

0

(
β

(
sup
x∈D
{‖x‖q} , s

)
+ γ

(
sup
u∈U
{‖u‖}

)) 2
q

ds.

By defining:

h(σ, t) = α−1

(
1

2

∥∥∥√P∥∥∥2 nmin{n, p}Z2e−κt (IX.7)

·
∫ t

0

(
β

(
sup
x∈D
{‖x‖q} , s

)
+ γ

(
sup
u∈U
{‖u‖}

)) 2
q

ds

)
,

we obtain E
[∥∥∥ξxυ(t)− ξxυ(t)

∥∥∥q] ≤ h(σ, t). It is not hard to observe
that the proposed function h meets the conditions of the lemma.

Proof of Lemma 3.10: In the proof, we use the notation σσT (x)
instead of σ(x)σT (x) for the sake of simplicity. In view of Ito’s
formula and similar to the calculations in Lemma 3.8, we have

1

2
λmin(P )E

[∥∥∥ξxυ(t)− ξxυ(t)
∥∥∥2] ≤ q

2
E
[
V

2
q

(
ξxυ(t), ξxυ(t)

)]
=

∫ t

0
E

[(
ξxυ(s)− ξxυ(s)

)T
P
(
f (ξxυ(s), υ(s))− f

(
ξxυ(s), υ(s)

))
+

1

2
Tr
(
σσT (ξxυ(s))P

)]
ds

=

∫ t

0
E

[(
ξxυ(s)− ξxυ(s)

)T
P
(
f (ξxυ(s), υ(s))− f

(
ξxυ(s), υ(s)

))
+

1

2
Tr
(
σσT

(
ξxυ(s)− ξxυ(s)

)
P
)

+
1

2
Tr
(
σσT (ξxυ(s))P − σσT

(
ξxυ(s)− ξxυ(s)

)
P
)]
ds

≤
∫ t

0
−κ̃E

[
V

2
q

(
ξxυ(s), ξxυ(s)

)]
ds (IX.8)

+
1

2

∫ t

0
E
[
Tr
(
σσT (ξxυ(s))P − σσT

(
ξxυ(s)− ξxυ(s)

)
P
)]
ds

≤
∫ t

0
−κ̃E

[
V

2
q

(
ξxυ(s), ξxυ(s)

)]
ds (IX.9)

+
1

2

∫ t

0
E
[
Tr
(
σσT (ξxυ(s))P

)]
ds ≤ ĥ(σ, t)e

−2κ̃t
q ,

where the function ĥ can be computed as ĥ(σ, t) :=

1
2

∫ t
0 E

[∥∥∥√Pσ(ξxυ(s)
)∥∥∥2
F

]
ds. Inequality (IX.8) is a straightforward

consequence of (III.4), and (IX.9) follows from Gronwall’s inequality.
Using the Lipschitz continuity assumption on the diffusion term σ,
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we get:

1

2

∫ t

0
E

[∥∥∥√Pσ(ξxυ(s)
)∥∥∥2
F

]
ds

≤
1

2

∥∥∥√P∥∥∥2 nmin{n, p}Z2

∫ t

0
E
[
‖ξxυ(s)‖2

]
ds.

Since V
2
q is a δ-ISS-M2 Lyapunov function, f(0n, 0m) = 0n,

σ(0n) = 0n×p, and using functions β and γ in (III.1), obtained
by the δ-ISS-Mq Lyapunov function V

2
q , one can verify that:

E
[
‖ξxυ(t)‖2

]
≤
nλmax(P )

λmin(P )
‖x‖2e

−κ̃t
2 +

2n
∥∥∥√P∥∥∥2 L2

u

eκ̃2λmin(P )
‖υ‖2∞.

Therefore, one obtains:

ĥ(σ, t) ≤

∥∥∥√P∥∥∥2 n2 min{n, p}Z2

λmin(P )κ̃
·λmax(P )

(
1− e

−κ̃t
2

)
sup
x∈D

{
‖x‖2

}
+

∥∥∥√P∥∥∥2 L2
u

eκ̃
sup
u∈U

{
‖u‖2

}
t

 .

By defining:

h(σ, t) =
2
∥∥∥√P∥∥∥2 n2 min{n, p}Z2e

−2κ̃t
q

λ2min(P )κ̃
· (IX.10)λmax(P )

(
1− e

−κ̃t
2

)
sup
x∈D

{
‖x‖2

}
+

∥∥∥√P∥∥∥2 L2
u

eκ̃
sup
u∈U

{
‖u‖2

}
t

 ,

we obtain E

[∥∥∥ξxυ(t)− ξxυ(t)
∥∥∥2] ≤ h(σ, t). It is not hard to observe

that the proposed function h meets the conditions of the lemma.

Proof of Corollary 3.11: Motivated by inequality (IX.8), one
can obtain

E
[
Tr
(
σσT (ξxυ(s))P − σσT

(
ξxυ(s)− ξxυ(s)

)
P
)]

= E

[
ξTxυ(s)

(
p∑
i=1

σTi Pσi

)
ξxυ(s)

−
(
ξxυ(s)− ξxυ(s)

)T ( p∑
i=1

σTi Pσi

)(
ξxυ(s)− ξxυ(s)

)]

= ξ
T
xυ(s)

(
p∑
i=1

σTi Pσi

)
ξxυ(s) ≤ nλmax

(
p∑
i=1

σTi Pσi

)∥∥∥ξxυ(s)
∥∥∥2 .

It can be readily verified that∥∥∥ξxυ(t)
∥∥∥ ≤ ∥∥∥eAt∥∥∥ ‖x‖+

(∫ t

0

∥∥∥eAsB∥∥∥ ds) ‖υ‖∞ (IX.11)

≤
∥∥∥eAt∥∥∥ sup

x∈D
{‖x‖}+

(∫ t

0

∥∥∥eAsB∥∥∥ ds) sup
u∈U
{‖u‖} .

The above approximation, together with (IX.8), leads to a more
explicit bound in terms of the system parameters as follows:

E

[∥∥∥ξxυ(t)− ξxυ(t)
∥∥∥2] ≤ nλmax

(
p∑
i=1

σTi Pσi

)
e−κ̂t

λmin(P )
· (IX.12)∫ t

0

(∥∥∥eAs∥∥∥ sup
x∈D
{‖x‖}+

(∫ s

0

∥∥∥eArB∥∥∥ dr) sup
u∈U
{‖u‖}

)2

ds,

where κ̂ = 2κ̃
q

.

Proof of Theorem 5.1: We start by proving that
Sτ (Σ) �εS Sq(Σ). Consider the relation R ⊆ Xτ × Xq defined
by (xτ , xq) ∈ R if and only if E [V (Hτ (xτ ), Hq(xq))] =
E [V (xτ , xq)] ≤ α (εq). Since Xτ0 ⊆

⋃
p∈[Rn]η Bη(p), for every

xτ0 ∈ Xτ0 there always exists xq0 ∈ Xq0 such that ‖xτ0−xq0‖ ≤ η.

Then,

E [V (xτ0, xq0)] = V (xτ0, xq0) ≤ α(‖xτ0 − xq0‖q)
≤ α (ηq) ≤ α (εq) ,

because of (V.3) and since α is a K∞ function. Hence,
(xτ0, xq0) ∈ R and condition (i) in Definition 4.2 is satisfied. Now
consider any (xτ , xq) ∈ R. Condition (ii) in Definition 4.2 is satisfied
because

(E [‖xτ − xq‖q ])
1
q ≤

(
α−1 (E [V (xτ , xq)])

) 1
q ≤ ε. (IX.13)

We used the convexity assumption of α and the Jensen inequality
[30] to show the inequalities in (IX.13). Let us now show that
condition (iii) in Definition 4.2 holds. Consider any υτ ∈ Uτ . Choose
an input uq ∈ Uq satisfying

‖υτ − uq‖∞ = ‖υτ (0)− uq(0)‖ ≤ µ. (IX.14)

Note that the existence of such uq is guaranteed by U being
a finite union of boxes and by the inequality µ ≤ span(U)
which guarantees that U ⊆

⋃
p∈[U]µ Bµ(p). Consider the transition

xτ
υτ

τ
- x′τ = ξxτυτ (τ) P-a.s. in Sτ (Σ). Since V is a δ-ISS-Mq

Lyapunov function for Σ, in light of (IX.1) as well as (IX.14), we
have

E
[
V (x′τ , ξxquq (τ))

]
≤ E [V (xτ , xq)] e

−κτ +
1

eκ
ρ(‖υτ − uq‖∞)

≤ α (εq) e−κτ +
1

eκ
ρ(µ). (IX.15)

Since Rn ⊆
⋃
p∈[Rn]η Bη(p), there exists a x′q ∈ Xq such that∥∥∥ξxquq

(τ)− x′q
∥∥∥ ≤ η, (IX.16)

which, by the definition of Sq(Σ), implies the existence of
xq

uq

q
- x′q in Sq(Σ). Using Lemmas 3.8 or 3.10, the concavity

of γ̂, the Jensen inequality [30], the inequalities (V.2), (V.4), (IX.15),
(IX.16), and triangle inequality, we obtain

E
[
V (x′τ , x

′
q)
]

= E
[
V (x′τ , ξxquq (τ)) + V (x′τ , x

′
q)− V (x′τ , ξxquq (τ))

]
= E

[
V (x′τ , ξxquq (τ))

]
+ E

[
V (x′τ , x

′
q)− V (x′τ , ξxquq (τ))

]
≤ α (εq) e−κτ +

1

eκ
ρ(µ) + E

[
γ̂
(∥∥ξxquq (τ)− x′q

∥∥)]
≤ α (εq) e−κτ +

1

eκ
ρ(µ)

+ γ̂
(
E
[∥∥∥ξxquq (τ)− ξxquq

(τ) + ξxquq
(τ)− x′q

∥∥∥])
≤ α (εq) e−κτ +

1

eκ
ρ(µ)

+ γ̂
(
E
[∥∥∥ξxquq (τ)− ξxquq

(τ)
∥∥∥]+

∥∥∥ξxquq
(τ)− x′q

∥∥∥)
≤ α (εq) e−κτ +

1

eκ
ρ(µ) + γ̂

(
(h(σ, τ))

1
q + η

)
≤ α (εq) .

Therefore, we conclude that
(
x′τ , x

′
q

)
∈ R and that condition (iii) in

Definition 4.2 holds.

Now we prove Sq(Σ) �εS Sτ (Σ) implying that R−1 is a suitable
ε-approximate simulation relation from Sq(Σ) to Sτ (Σ). Consider
the relation R ⊆ Xτ ×Xq, defined in the first part of the proof. For
every xq0 ∈ Xq0, by choosing xτ0 = xq0, we have V (xτ0, xq0) = 0
and (xτ0, xq0) ∈ R and condition (i) in Definition 4.2 is satisfied.
Now consider any (xτ , xq) ∈ R. Condition (ii) in Definition 4.2 is
satisfied because

(E [‖xτ − xq‖q ])
1
q ≤

(
α−1 (E [V (xτ , xq)])

) 1
q ≤ ε. (IX.17)

We used the convexity assumption of α and the Jensen inequality
[30] to show the inequalities in (IX.17). Let us now show that
condition (iii) in Definition 4.2 holds. Consider any uq ∈ Uq. Choose
the input υτ = uq and consider x′τ = ξxτυτ (τ) P-a.s. in Sτ (Σ).
Since V is a δ-ISS-Mq Lyapunov function for Σ, one obtains:

E
[
V (x′τ , ξxquq (τ))

]
≤ e−κτE[V (xτ , xq)] ≤ e−κτα (εq) . (IX.18)
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Using Lemmas 3.8 or 3.10, the definition of Sq(Σ), the concavity
of γ̂, the Jensen inequality [30], the inequalities (V.2), (V.4), (IX.18),
and the triangle inequality, we obtain

E
[
V
(
x′τ , x

′
q

)]
= E

[
V
(
x′τ , ξxquq (τ)

)
+ V

(
x′τ , x

′
q

)
− V

(
x′τ , ξxquq (τ)

)]
= E

[
V (x′τ , ξxquq (τ))

]
+ E

[
V (x′τ , x

′
q)− V (x′τ , ξxquq (τ))

]
≤ e−κτα (εq) + E

[
γ̂
(∥∥ξxquq (τ)− x′q

∥∥)]
≤ e−κτα (εq) + γ̂

(
E
[∥∥∥ξxquq (τ)− ξxquq

(τ) + ξxquq
(τ)− x′q

∥∥∥])
≤ e−κτα (εq) + γ̂

(
E
[∥∥∥ξxquq (τ)− ξxquq

(τ)
∥∥∥]+

∥∥∥ξxquq
(τ)− x′q

∥∥∥)
≤ e−κτα (εq) + γ̂

(
(h(σ, τ))

1
q + η

)
≤ α (εq) .

Therefore, we conclude that (x′τ , x
′
q) ∈ R and condition (iii) in

Definition 4.2 holds.

Proof of Theorem 5.3: We start by proving Sτ (Σ) �εS Sq(Σ).
Consider the relation R ⊆ Xτ × Xq defined by (xτ , xq) ∈ R if
and only if (E [‖Hτ (xτ )−Hq(xq)‖q])

1
q = (E [‖xτ − xq‖q])

1
q ≤ ε.

Since Xτ0 ⊆
⋃
p∈[Rn]η Bη(p), for every xτ0 ∈ Xτ0 there always

exists xq0 ∈ Xq0 such that ‖xτ0 − xq0‖ ≤ η. Then,

(E [‖xτ0 − xq0‖q ])
1
q = (‖xτ0 − xq0‖q)

1
q ≤ η ≤ ε,

because of (V.8). Hence, (xτ0, xq0) ∈ R and condition (i) in Defini-
tion 4.2 is satisfied. Now consider any (xτ , xq) ∈ R. Condition (ii)
in Definition 4.2 is satisfied by the definition of R. Let us now show
that condition (iii) in Definition 4.2 holds. Consider any υτ ∈ Uτ .
Choose an input uq ∈ Uq satisfying

‖υτ − uq‖∞ = ‖υτ (0)− uq(0)‖ ≤ µ. (IX.19)

Note that the existence of such uq is guaranteed by U being
a finite union of boxes and by the inequality µ ≤ span(U)
which guarantees that U ⊆

⋃
p∈[U]µ Bµ(p). Consider the transition

xτ
υτ

τ
- x′τ = ξxτυτ (τ) P-a.s. in Sτ (Σ). It follows from the δ-ISS-

Mq assumption on Σ and (IX.19) that:

E
[∥∥x′τ − ξxquq (τ)

∥∥q] ≤ β (E [‖xτ − xq‖q ] , τ) + γ(‖υτ − uq‖∞)

≤ β (εq , τ) + γ(µ). (IX.20)

Since Rn ⊆
⋃
p∈[Rn]η Bη(p), there exists x′q ∈ Xq such that∥∥∥ξxquq

(τ)− x′q
∥∥∥ ≤ η, (IX.21)

which, by the definition of Sq(Σ), implies the existence of
xq

uq

q
- x′q in Sq(Σ). Using Lemmas 3.8 or 3.10, (V.8), (IX.20),

(IX.21), and triangle inequality, we obtain(
E
[∥∥x′τ − x′q∥∥q]) 1

q

=
(
E
[∥∥∥x′τ − ξxquq (τ) + ξxquq (τ)− ξxquq

(τ) + ξxquq
(τ)− x′q

∥∥∥q]) 1
q

≤
(
E
[∥∥x′τ − ξxquq (τ)

∥∥q]) 1
q +

(
E
[∥∥∥ξxquq (τ)− ξxquq

(τ)
∥∥∥q]) 1

q

+
(
E
[∥∥∥ξxquq

(τ)− x′q
∥∥∥q]) 1

q

≤ (β (εq , τ) + γ(µ))
1
q + (h(σ, τ))

1
q + η ≤ ε.

Therefore, we conclude that
(
x′τ , x

′
q

)
∈ R and that condition (iii) in

Definition 4.2 holds.
Now we prove Sq(Σ) �εS Sτ (Σ) implying that R−1 is a suitable

ε-approximate simulation relation from Sq(Σ) to Sτ (Σ). Consider
the relation R ⊆ Xτ ×Xq, defined in the first part of the proof. For
every xq0 ∈ Xq0, by choosing xτ0 = xq0, we have ‖xτ0 − xq0‖q =
0 and (xτ0, xq0) ∈ R and condition (i) in Definition 4.2 is satisfied.
Now consider any (xτ , xq) ∈ R. Condition (ii) in Definition 4.2 is
satisfied by the definition of R. Let us now show that condition (iii)
in Definition 4.2 holds. Consider any uq ∈ Uq. Choose the input
υτ = uq and consider x′τ = ξxτυτ (τ) P-a.s. in Sτ (Σ). Since Σ is
δ-ISS-Mq , one obtains:

E
[∥∥x′τ − ξxquq (τ)

∥∥q] ≤ β (E[‖xτ − xq‖q ], τ) ≤ β (εq , τ) . (IX.22)

Using Lemmas 3.8 or 3.10, the definition of Sq(Σ), (V.8), (IX.22),
and the triangle inequality, we obtain(
E
[∥∥x′τ − x′q∥∥q]) 1

q

=
(
E
[∥∥∥x′τ − ξxquq (τ) + ξxquq (τ)− ξxquq

(τ) + ξxquq
(τ)− x′q

∥∥∥q]) 1
q

≤
(
E
[∥∥x′τ − ξxquq (τ)

∥∥q]) 1
q +

(
E
[∥∥∥ξxquq (τ)− ξxquq

(τ)
∥∥∥q]) 1

q

+
(
E
[∥∥∥ξxquq

(τ)− x′q
∥∥∥q]) 1

q ≤ (β (εq , τ))
1
q + (h(σ, τ))

1
q + η ≤ ε.

Therefore, we conclude that (x′τ , x
′
q) ∈ R and condition (iii) in

Definition 4.2 holds.

Proof of Proposition 5.7: Following the definition of stochastic
bisimulation function in [19], for any input signal υ ∈ Uτ , there exists
an input signal υ ∈ Uτ such that φ

(
ξxτ0υ, ξxτ0υ

)
is a nonnegative

supermartingale [30, Appendix C]. Furthermore, using the chosen
triple q = (τ, η, µ) of quantization parameters, we have: Sτ

(
Σ
) ∼=ε
S

Sq(Σ), implying that for a state run ξxτ0υ of Sτ
(
Σ
)
, there exists a

state run Xxq0u of Sq(Σ) such that:

sup
k∈N0

∥∥∥ξxτ0υ(kτ)− Xxq0u(k)
∥∥∥ ≤ ε.

The above statement follows by direct application of Definition
4.2. Since an increasing concave function of a supermartingale is
a supermartingale [41, Theorem 5.11], we have the following chain
of (in)equalities:

P

{
sup
k∈N0

∥∥ξxτ0υ(kτ)− Xxq0u(k)
∥∥ > ε | xτ0

}
=

P

{
sup
k∈N0

∥∥∥ξxτ0υ(kτ)− ξxτ0υ(kτ)

+ ξxτ0υ(kτ)− Xxq0u(k)
∥∥∥ > ε | xτ0

}
≤

P

{
sup
k∈N0

{∥∥∥ξxτ0υ(kτ)− ξxτ0υ(kτ)
∥∥∥

+
∥∥∥ξxτ0υ(kτ)− Xxq0u(k)

∥∥∥} > ε | xτ0

}
≤

P

{
sup
k∈N0

{(∥∥∥ξxτ0υ(kτ)− ξxτ0υ(kτ)
∥∥∥2) 1

2

}
+ ε > ε | xτ0

}
≤

P

{
sup
k∈N0

{(
φ
(
ξxτ0υ(kτ), ξxτ0υ(kτ)

)) 1
2

}
+ ε > ε | xτ0

}
≤√

φ (xτ0, xτ0) + ε

ε
.

In a similar way, we can prove that for any state run Xxq0u of Sq(Σ),
there exists a state run ξxτ0υ of Sτ (Σ) such that the relation in (V.10)
holds.

Proof of Proposition 5.9: As argued in the proof of Proposition
5.7, for any state run ξxτ0υ of Sτ

(
Σ
)

(notice that here the non-
probabilistic model is excited with the same input υ of Σ), there
exists a state run Xxq0u of Sq(Σ) such that:

sup
k∈N0

∥∥∥ξxτ0υ(kτ)− Xxq0u(k)
∥∥∥ ≤ ε.
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Hence, one obtains the following chain of (in)equalities:

P

{
sup

0≤k≤N

∥∥ξxτ0υ(kτ)− Xxq0u(k)
∥∥ > ε+ ε | xτ0

}
=

P

{
sup

0≤k≤N

∥∥∥∥ξxτ0υ(kτ)− ξxτ0υ(kτ)

+ ξxτ0υ(kτ)− Xxq0u(k)

∥∥∥∥ > ε+ ε | xτ0

}
≤

P

{
sup

0≤k≤N

{∥∥∥ξxτ0υ(kτ)− ξxτ0υ(kτ)
∥∥∥

+
∥∥∥ξxτ0υ(kτ)− Xxq0u(k)

∥∥∥} > ε+ ε | xτ0

}
≤

P

{
sup

0≤k≤N

{
α
(∥∥∥ξxτ0υ(kτ)− ξxτ0υ(kτ)

∥∥∥q)} > α (εq) | xτ0

}
≤

P

{
sup

0≤k≤N

{
V
(
ξxτ0υ(kτ), ξxτ0υ(kτ)

)}
> α (εq) | xτ0

}
. (IX.23)

As showed for the δ-ISS-Mq Lyapunov function V in the proof of
Lemma 3.8, we have:

Lυ(t),υ(t)V
(
ξxτ0υ(t), ξxτ0υ(t)

)
≤ −κV

(
ξxτ0υ(t), ξxτ0υ(t)

)
+

1

2
Tr
(
σ(ξxτ0υ(t))T ∂x,xV (ξxτ0υ(t), ξxτ0υ(t))σ(ξxτ0υ(t))

)
−

1

2
Tr

([
σ (ξxτ0υ(t))

σ
(
ξxτ0υ(t)

)] [
σT (ξxτ0υ(t)) σT

(
ξxτ0υ(t)

)]
.

H(V )
(
ξxτ0υ(t), ξxτ0υ(t)

))
≤ −κV

(
ξxτ0υ(t), ξxτ0υ(t)

)
+
α

2
, (IX.24)

for any υ ∈ Uτ and any xτ0 ∈ Rn. Using inequalities (IX.23),
(IX.24), and Theorem 1 in [20, Chapter III], one obtains the relations
(V.11) and (V.12). In a similar way, we can prove that for any state
run Xxq0u of Sq(Σ), there exists a state run ξxτ0υ of Sτ (Σ) such
that the relations in (V.11) and (V.12) hold.
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