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Abstract Formal synthesis approaches over stochastic systems have received sig-
nificant attention in the past few years, in view of their ability to provide provably
correct controllers for complex logical specifications in an automated fashion. Ex-
amples of complex specifications include properties expressed as formulae in linear
temporal logic (LTL) or as automata on infinite strings. A general methodology to
synthesize controllers for such properties resorts to symbolic models of the given
stochastic systems. Symbolic models are finite abstractions of the given concrete
systems with the property that a controller designed on the abstraction can be re-
fined (or implemented) into a controller on the original system. Although the recent
development of techniques for the construction of symbolic models has been quite
encouraging, the general goal of formal synthesis over stochastic control systems is
by no means solved. A fundamental issue with the existing techniques is the known
“curse of dimensionality,” which is due to the need to discretize state and input sets.
Such discretization generally results in an exponential complexity over the number
of state and input variables in the concrete system. In this work we propose a novel
abstraction technique for incrementally stable stochastic control systems, which does
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not require state-space discretization but only input set discretization, and that can be
potentially more efficient (and thus scalable) than existing approaches. We elucidate
the effectiveness of the proposed approach by synthesizing a schedule for the coor-
dination of two traffic lights under some safety and fairness requirements for a road
traffic model. Further we argue that this 5-dimensional linear stochastic control sys-
tem cannot be studied with existing approaches based on state-space discretization
due to the very large number of generated discrete states.

Keywords Stochastic control systems · Formal controller synthesis · Finite
abstractions · Approximate bisimulation

1 Introduction

In the last decade many techniques have been developed providing controllers for
control systems (both deterministic and, more recently, stochastic) in a formal and
automated fashion against some complex logical specifications. Examples of such
specifications include properties expressed as formulae in linear temporal logic (LTL)
or as automata on infinite strings [3], and as such they are not tractable by classical
techniques for control systems. A general scheme for providing such controllers is
by leveraging symbolic models of original concrete systems. Symbolic models are
discrete abstractions of the original systems in which each symbol represents an ag-
gregate of continuous variables. When such symbolic models exist for the concrete
systems, one can leverage the algorithmic machinery for automated synthesis of dis-
crete models [1,14] to automatically synthesize discrete controllers which can be
refined to hybrid controllers for the original systems.

The construction of symbolic models for continuous-time deterministic systems
has been thoroughly investigated in the past few years. This includes results on the
construction of approximately bisimilar symbolic models for incrementally stable
control systems [15,18], incrementally stable switched systems [7], and control sys-
tems with disturbances [19], non-uniform abstractions of nonlinear systems over a
finite-time horizon [26], as well as the construction of sound abstractions based on
the convexity of reachable sets [20], feedback refinement relations [21], robustness
margins [13], and approximate alternating simulation relation [32]. Recently, there
have been some results on the construction of symbolic models for continuous-time
stochastic systems, including the construction of finite Markov decision process of
linear stochastic control system, without providing a quantitative relationship be-
tween abstract and concrete model [12], approximately bisimilar symbolic models
for incrementally stable stochastic control systems [31], stochastic switched systems
[29], and randomly switched stochastic systems [28], as well as abstractions for un-
stable stochastic control systems [30].

Note that all the techniques provided in [15,18,7,19,26,20,21,13,32,12,31,28,
30] are fundamentally based on the discretization of continuous states. Therefore,
they suffer severely from the curse of dimensionality due to gridding those sets, which
is especially irritating for models with high-dimensional state spaces. In this work we
propose a novel approach for the construction of approximately bisimilar symbolic
models for incrementally stable stochastic control systems not requiring any state set
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discretization but only input set discretization. Therefore, it can be potentially more
efficient than the proposed approaches in [31] when dealing with higher dimensional
stochastic control systems. In particular, we provide a theoretical comparison with the
approach in [31] and a simple criterion that helps choosing the most suitable among
two approaches (in terms of the sizes of the symbolic models) for a given stochastic
control system.

Another advantage of the technique proposed here is that it allows us to con-
struct symbolic models with probabilistic output values, resulting in less conservative
symbolic abstractions than those proposed in [31,28,30] that allow for deterministic
output values exclusively. We then explain how the proposed symbolic models with
probabilistic output values can be used for synthesizing hybrid controllers enforcing
logic specifications. The proposed approaches in [29] also provide symbolic models
with probabilistic output values and without any state set discretization. However,
the results in [29] are for stochastic switched systems rather than stochastic control
systems as in this work and they do not provide any intuition behind the control syn-
thesis over symbolic models with probabilistic output values. The effectiveness of the
proposed results is illustrated by synthesizing a schedule for the coordination of two
traffic lights under some safety and fairness requirements for a model of road traf-
fic which is a 5-dimensional linear stochastic control system. We also show that this
example is not amenable to be dealt with the approaches proposed in [31]. Although
the main proposed results in this work are for incrementally stable stochastic control
systems, the similar results for incrementally stable deterministic control systems can
be recovered in the same framework by simply setting the diffusion term to zero.

Alongside the relationship with and extension of [29,31], this paper provides a
detailed and extended elaboration of the results first announced in [34], including the
proofs of the main results, a detailed discussion on how to deal with probabilistic
output values and a generalization of the corresponding result with no requirement
on compactness, and finally discussing a new case study on road traffic control.

Similar to this contribution, the results in [23,25] also use sequences of symbols
as symbolic states to provide finite abstractions of concrete systems. However, the
results in [23,25] apply to discrete-time deterministic control systems, rather than
continuous-time stochastic control systems. Furthermore, the results in [25] do not
provide a constructive approach for the synthesis of finite abstractions, and the rela-
tionships established between abstractions and concrete systems do not necessarily
preserve LTL properties. The results in [23] provide asynchronous `-complete finite
abstractions which are generally incomparable to the approximate bisimilar finite ab-
stractions proposed in this work.

2 Stochastic Control Systems

2.1 Notation

The identity map over a set B is denoted by 1B. The symbols N, N0, Z, R, R+, and R+
0

denote the set of natural, nonnegative integer, integer, real, positive, and nonnegative
real numbers, respectively. The symbols In, 0n, and 0n×m denote the identity matrix,
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the zero vector, and the zero matrix in Rn×n, Rn, and Rn×m, respectively. Given a
vector x ∈ Rn, we denote by xi the i–th element of x, and by ‖x‖ the infinity norm of
x. Given a matrix P = {pi j} ∈ Rn×n, we denote by Tr(P) = ∑

n
i=1 pii the trace of P.

Given a symmetric matrix A, we denote by λmin(A) and λmax(A) the minimum and
maximum eigenvalues of A, respectively. The diagonal set ∆ ⊂Rn×Rn is defined as:
∆ = {(x,x) | x ∈ Rn}.

The closed ball centered at u ∈ Rm with radius λ is defined by Bλ (u) = {v ∈
Rm |‖u− v‖ ≤ λ}. A set B ⊆ Rm is called a box if B = ∏

m
i=1[ci,di], where ci,di ∈ R

with ci < di for each i ∈ {1, . . . ,m}. The span of a box B is defined as span(B) =
min{|di − ci| | i = 1, . . . ,m}. For a box B ⊆ Rm and µ ≤ span(B), define the µ-
approximation [B]µ = [Rm]µ ∩ B, where [Rm]µ = {a ∈ Rm | ai = kiµ,ki ∈ Z, i =
1, . . . ,m}. Remark that [B]µ 6=∅ for any µ ≤ span(B). Geometrically, for any µ ∈R+

with µ ≤ span(B) and λ ≥ µ , the collection of sets {Bλ (p)}p∈[B]µ is a finite cov-
ering of B, i.e. B⊆

⋃
p∈[B]µ Bλ (p). We extend the notions of span and approxima-

tion to finite unions of boxes as follows. Let A =
⋃M

j=1 A j, where each A j is a box.
Define span(A) = min{span(A j) | j = 1, . . . ,M}, and for any µ ≤ span(A), define
[A]µ =

⋃M
j=1[A j]µ .

Given a measurable function f : R+
0 → Rn, the (essential) supremum of f is de-

noted by ‖ f‖∞ := (ess)sup{‖ f (t)‖, t ≥ 0}. A continuous function γ : R+
0 → R+

0 is
said to belong to class K if it is strictly increasing and γ(0) = 0; γ is said to belong to
class K∞ if γ ∈K and γ(r)→∞ as r→∞. A continuous function β : R+

0 ×R+
0 → R+

0
is said to belong to class K L if, for each fixed s, the map β (r,s) belongs to class
K with respect to r and, for each fixed nonzero r, the map β (r,s) is decreasing
with respect to s and β (r,s)→ 0 as s→ ∞. We identify a relation R⊆ A×B with the
map R : A→ 2B defined by b ∈ R(a) iff (a,b) ∈ R. Given a relation R⊆ A×B, R−1

denotes the inverse relation defined by R−1 = {(b,a) ∈ B×A : (a,b) ∈ R}. Given a
finite sequence S, we denote by σ := (S)ω the infinite sequence generated by repeat-
ing S infinitely, i.e. σ := SSSSS . . ..

2.2 Stochastic control systems

Let (Ω ,F ,P) be a probability space equipped with a filtration F= (Fs)s≥0 satisfy-
ing the usual conditions of completeness and right continuity [10, p. 48]. Let (Ws)s≥0
be a p-dimensional F-adapted Brownian motion.

Definition 1 A stochastic control system Σ is a tuple Σ = (Rn,U,U , f ,σ), where
Rn is the state space, U⊆ Rm is a bounded input set, and

– U is a subset of the set of all measurable functions from R+
0 to U;

– f : Rn×U→ Rn satisfies the following Lipschitz assumption: there exist con-
stants Lx,Lu ∈R+ such that ‖ f (x,u)− f (x′,u′)‖ ≤ Lx‖x−x′‖+Lu‖u−u′‖ for all
x,x′ ∈ Rn and all u,u′ ∈ U;

– σ : Rn → Rn×p satisfies the following Lipschitz assumption: there exists a con-
stant Z ∈ R+ such that: ‖σ(x)−σ(x′)‖ ≤ Z‖x− x′‖ for all x,x′ ∈ Rn. ut
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A continuous-time stochastic process ξ : Ω ×R+
0 → Rn is said to be a solution

process of Σ if there exists υ ∈ U satisfying the following stochastic differential
equation (SDE) P-almost surely (P-a.s.):

dξ = f (ξ ,υ)d t +σ(ξ )dWt , (1)

where f is known as the drift and σ as the diffusion. We also denote by ξaυ(t) the
value of the solution process at time t ∈ R+

0 under the input curve υ from initial
condition ξaυ(0) = a P-a.s., where a is a F0-measurable random variable. Let us
emphasize that the solution process is unambiguously determined, since the assump-
tions on f and σ ensure its existence and uniqueness [16, Theorem 5.2.1, p. 68].

Example 1 For a linear stochastic control system Σ =(Rn,U,U , f ,σ), one has f (x,u) :=
Ax+Bu, for some matrices A ∈ Rn×n and B ∈ Rn×m; and σ(x) := [σ1x . . . σpx] for
some matrices σi ∈ Rn×n.

3 Incremental Stability

We recall a stability notion for stochastic control systems, introduced in [31], on
which the main results presented in this work rely.

Definition 2 A stochastic control system Σ is incrementally input-to-state stable in
the qth moment (δ -ISS-Mq), where q ≥ 1, if there exist a function β ∈K L and
a function γ ∈K∞ such that for any t ∈ R+

0 , any Rn-valued F0-measurable random
variables a and a′, and any υ , υ ′ ∈U , the following condition is satisfied:

E [‖ξaυ(t)−ξa′υ ′(t)‖q]≤ β
(
E
[∥∥a−a′

∥∥q]
, t
)
+ γ
(∥∥υ−υ

′∥∥
∞

)
. (2)

It can be easily verified that a δ -ISS-Mq stochastic control system Σ is δ -ISS [2]
in the absence of any noise as in the following:

‖ξaυ(t)−ξa′υ ′(t)‖ ≤ β
(∥∥a−a′

∥∥ , t)+ γ
(∥∥υ−υ

′∥∥
∞

)
, (3)

for a,a′ ∈ Rn, some β ∈K L , and some γ ∈K∞.

Remark 1 For linear stochastic control systems Σ , as in Example 1, δ -ISS-M2 is the
same as asymptotic stability in the mean square sense (cf. [33, Lemma 5.1]). How-
ever, for nonlinear stochastic control systems, δ -ISS-Mq is a much stronger property
than the usual stability in the qth moment [9].

Similar to the characterization of δ -ISS in terms of the existence of so-called δ -
ISS Lyapunov functions in [2], one can describe δ -ISS-Mq in terms of the existence
of so-called δ -ISS-Mq Lyapunov functions, as shown in [31] and defined next.

Definition 3 Consider a stochastic control system Σ and a continuous function V :
Rn×Rn→ R+

0 that is twice continuously differentiable on {Rn×Rn}\∆ . The func-
tion V is called a δ -ISS-Mq Lyapunov function for Σ , where q ≥ 1, if there exist
functions α,α,ρ ∈K∞, and a constant κ ∈ R+, such that
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(i) α (resp. α) is a convex (resp. concave) function;
(ii) for any x,x′ ∈ Rn, α (‖x− x′‖q)≤V (x,x′)≤ α (‖x− x′‖q);

(iii) for any x,x′ ∈ Rn, x 6= x′, and for any u,u′ ∈ U,

L u,u′V (x,x′) := [∂xV ∂x′V ]

[
f (x,u)

f (x′,u′)

]
+

1
2

Tr
([

σ(x)
σ(x′)

][
σ

T (x) σ
T (x′)

][∂x,xV ∂x,x′V
∂x′,xV ∂x′,x′V

])
≤−κV (x,x′)+ρ(‖u−u′‖),

where L u,u′ is the infinitesimal generator associated to the process V (ξ ,ξ ′) and ξ

and ξ ′ are solution processes of the SDE (1) [16, Section 7.3]. The symbols ∂x and
∂x,x′ denote first- and second-order partial derivatives with respect to x and (x,x′),
respectively. ut

Condition (ii) in the above definition implies that the growth rate of functions α

and α is linear. Remark that this condition does not limit the behavior of α and α to
linear ones on a compact subset of Rn. Observe that condition (i) is not required in
the context of deterministic control systems for the corresponding δ -ISS Lyapunov
functions [2]. The following theorem, borrowed from [31], describes δ -ISS-Mq in
terms of the existence of δ -ISS-Mq Lyapunov functions.

Theorem 1 A stochastic control system Σ is δ -ISS-Mq if it admits a δ -ISS-Mq Lya-
punov function. ut

One can resort to available optimization software tools, such as SOSTOOLS [17],
to search for appropriate δ -ISS-Mq Lyapunov functions for systems Σ of polynomial
type (polynomial drift and diffusion). We refer the interested readers to the results
in [31] for the discussion of special instances where these functions can be easily
computed.

As an example, for linear stochastic control systems Σ , as in Example 1, one can
search for δ -ISS-Mq Lyapunov functions of the form V (x,x′) := 1

q ((x− x′)T P(x−
x′))

q
2 , for some positive definite P ∈ Rn×n and q ∈ {1,2}, by solving the following

linear matrix inequality (LMI):

AT P+PA+
p

∑
i=1

σ
T
i Pσi �−κ̂P, (4)

for some positive constant κ̂ . We refer the interested readers to [31, Corollary 3.5]
for more details.

3.1 Noisy and noise-free trajectories

In order to introduce the symbolic models with deterministic output values in Sub-
section 5.2 (Theorems 2 and 3) for a stochastic control system, we need the fol-
lowing technical result, borrowed from [31]. The following result provides an up-
per bound on the distance (in the qth moment) between the solution process of
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Σ and the solution of a derived deterministic control system Σ obtained by disre-
garding the diffusion term σ in Σ . From now on, we denote by ξ xυ the solution of
Σ = (Rn,U,U , f ,0n×p)

1, starting from the deterministic initial condition x = ξ xυ(0)
and under the input curve υ , which satisfies the ordinary differential equation (ODE)
ξ̇ xυ = f (ξ xυ ,υ).

Lemma 1 Consider a stochastic control system Σ such that f (0n,0m) = 0n and
σ(0n) = 0n×p. Suppose that q ≥ 2 and that there exists a δ -ISS-Mq Lyapunov func-
tion V for Σ such that its Hessian is a positive semidefinite matrix in R2n×2n and
∂x,xV (x,x′) ≤ P, for any x,x′ ∈ Rn, and some positive semidefinite matrix P ∈ Rn×n.
Then for any x ∈ Rn and any υ ∈U , we have

E
[∥∥∥ξxυ(t)−ξ xυ(t)

∥∥∥q]
≤ hx(t), (5)

where

hx(t) = α
−1

(
1
2

∥∥∥√P
∥∥∥2

nmin{n, p}Z2e−κt
∫ t

0

(
β (‖x‖q ,s)+ γ

(
sup
u∈U
{‖u‖}

)) 2
q

ds

)
,

and Z is the Lipschitz constant, introduced in Definition 1, and β is the K L function
appearing in (2). ut

It can be readily seen that the nonnegative-valued function hx tends to zero as
t→ 0, t→+∞, or as Z→ 0, and is identically zero if the diffusion term is identically
zero (i.e. Z = 0, which is the case for Σ ). The interested readers are referred to [31]
providing (possibly less conservative) results in line with that of Lemma 1 for (lin-
ear) stochastic control systems Σ admitting a specific type of δ -ISS-Mq Lyapunov
functions.

4 Systems and Approximate Equivalence Relations

4.1 Systems

We employ the abstract and general notion of “system,” as introduced in [24], to
describe both stochastic control systems and their symbolic models.

Definition 4 A system S is a tuple S= (X ,X0,U, - ,Y,H), where X is a (possibly
infinite) set of states, X0⊆X is a (possibly infinite) set of initial states, U is a (possibly
infinite) set of inputs, - ⊆ X×U×X is a transition relation, Y is a set of outputs,
and H : X → Y is an output map. A transition (x,u,x′) ∈ - is also denoted by

x
u- x′. For a transition x

u- x′, state x′ is called a u-successor, or simply a
successor, of state x. We denote by Postu(x) the set of all u-successors of a state x. A
system S is said to be

– metric, if the output set Y is equipped with a metric d : Y ×Y → R+
0 ;

1 Here, we have abused notation by identifying 0n×p with the map σ : x→ 0n×p ∀x ∈ Rn.
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– finite (or symbolic), if X and U are finite sets;
– deterministic, if for any state x ∈ X and any input u ∈U , |Postu(x)| ≤ 1. ut

For technical reasons, we assume that for any x ∈ X , there exists some u-successor of
x, for some u ∈U — note that this is always the case for the considered systems in
this paper.

Given a system S = (X ,X0,U, - ,Y,H) and any initial state x0 ∈ X0, a finite
state run generated from x0 is a finite sequence of transitions:

x0
u0- x1

u1- · · · un−2- xn−1
un−1- xn, (6)

such that xi
ui- xi+1 for all 0 ≤ i < n. A finite state run can be directly extended

to an infinite state run as well. A finite output run is a sequence {y0,y1, . . . ,yn} such
that there exists a finite state run of the form (6) with yi = H(xi), for i = 0, . . . ,n. A
finite output run can also be directly extended to an infinite output run as well.

4.2 Relations among systems

We recall the notion of approximate (bi)simulation relation, introduced in [6], which
is crucial when analyzing or synthesizing controllers for deterministic systems.

Definition 5 Consider two metric systems Sa = (Xa,Xa0,Ua, a
- ,Ya,Ha) and Sb =

(Xb,Xb0,Ub, b
- ,Yb,Hb) with the same output sets Ya = Yb and metric d. For

ε ∈ R+
0 , a relation R⊆ Xa×Xb is said to be an ε-approximate simulation relation

from Sa to Sb if, for all (xa,xb) ∈ R, the following two conditions are satisfied:

(i) d(Ha(xa),Hb(xb))≤ ε;

(ii) for any xa
ua

a
- x′a ∈ a

- there exists xb
ub

b
- x′b ∈ b

- such that

(x′a,x
′
b) ∈ R.

A relation R ⊆ Xa×Xb is called an ε-approximate bisimulation relation between Sa
and Sb if R is an ε-approximate simulation relation from Sa to Sb and R−1 is an ε-
approximate simulation relation from Sb to Sa.

System Sa is ε-approximately simulated by Sb, or Sb ε-approximately simulates
Sa, denoted by Sa �ε

S Sb, if there exists an ε-approximate simulation relation R from
Sa to Sb such that:

– for every xa0 ∈ Xa0, there exists xb0 ∈ Xb0 such that (xa0,xb0) ∈ R.

System Sa is ε-approximately bisimilar to Sb, denoted by Sa ∼=ε

S Sb, if there exists an
ε-approximate bisimulation relation R between Sa and Sb such that:

– for every xa0 ∈ Xa0, there exists xb0 ∈ Xb0 such that (xa0,xb0) ∈ R;
– for every xb0 ∈ Xb0, there exists xa0 ∈ Xa0 such that (xa0,xb0) ∈ R. ut
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5 Symbolic Models for Stochastic Control Systems

5.1 Describing stochastic control systems as metric systems

In order to show the main results of the paper, we use the notion of system introduced
in Definition 4 to abstractly represent a stochastic control system. More precisely,
given a stochastic control system Σ , we define an associated metric system S(Σ) =
(X ,X0,U, - ,Y,H), where:

– X is the set of all Rn-valued random variables defined on the probability space
(Ω ,F ,P);

– X0 is a subset of the set of Rn-valued random variables that are measurable over
F0;

– U = U ;
– x

υ- x′ if x and x′ are measurable in Ft and Ft+τ , respectively, for some
t ∈ R+

0 and τ ∈ R+, and there exists a solution process ξ : Ω ×R+
0 → Rn of Σ

satisfying ξ (t) = x and ξxυ(τ) = x′ P-a.s.;
– Y = X ;
– H = 1X .

We assume that the output set Y is equipped with the qth moment metric d(y,y′) =
(E [‖y− y′‖q])

1
q , for any y,y′ ∈ Y and some q ≥ 1. One can readily observe that the

set of states and inputs of S(Σ) are uncountable and that S(Σ) is a deterministic
system in the sense of Definition 4, since (cf. Subsection 2.2) the solution process
of Σ is uniquely determined. For the case of deterministic control system Σ , one
obtains S(Σ) = (X ,X0,U, - ,Y,H), where X =Rn, X0 is a subset of Rn, U = U ,

x
υ- x′ iff x′ = ξ xυ(τ) for some τ ∈ R+, Y = X , H = 1X , and the metric on the

output set reduces to the natural infinity one: d(y,y′) = ‖y− y′‖, for any y,y′ ∈ Y .
Since the concrete system S(Σ) is uncountably infinite, it does not allow for

a straightforward symbolic controller synthesis with the discrete techniques in the
literature [1,14]. We are thus interested in finding a finite abstract system that is
(bi)similar to the concrete one S(Σ). In order to discuss approximate (bi)simulation
relations between two metric systems, they have to share the output space (cf. Def-
inition 5). System S(Σ) inherits a classical trace-based semantics [3] (cf. definition
of output run after (6)), however the outputs of S(Σ) (and necessarily those of any
approximately (bi)similar one) are random variables. This fact is especially important
due to the metric d that the output set is endowed with: for any deterministic point
one can always find a non-degenerate random variable that is as close as desired to
the original point in the metric d.

To further elaborate the discussion in the previous paragraph, let us consider the
following example. Let A ⊂ Rn be a set (of deterministic points). Consider a safety
problem, formulated as the satisfaction of the LTL formula2 �ϕA, where ϕA is a label
(or proposition) characterising the set A. Suppose that over the abstract system we are
able to synthesize a control strategy that makes an output run of the abstraction satisfy

2 We refer the interested readers to [3, Subsection 5.1.2] for the formal trace-based semantic of LTL
formulae.
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�ϕA, which means that the output run of the abstraction is always inside the set A.
Although the run would in general be consisting of random variables y : Ω →Rn, the
fact that y ∈ A means that, with a slight abuse of notation, y : Ω̂ →{y} where Ω̂ ⊂Ω

and |Ω̂ |= 1. Hence, y has a Dirac probability distribution centered at y, that is y ∈ Y
is a degenerate random variable that can be identified with a point in A ⊂ Rn ⊂ Y .
Since any deterministic point can be regarded as a random variable with a Dirac
probability distribution centered at that point, Rn can be embedded in Y , which we
denote as Rn⊂Y with a slight abuse of notation. As a result, satisfying �ϕA precisely
means that the output run of the abstraction indeed stays in the set A ⊂ Rn forever.
On the other hand, suppose that the original system is ε-approximate bisimilar to the
abstraction. If we want to interpret the result �ϕA obtained over the abstraction, we
can guarantee that the corresponding output run of the original system satisfies �ϕAε

,
that is any output y of the run of the original system is within ε d-distance from the
set A: d(y,A) = infa∈A d(y,a) ≤ ε . Although the original set A ⊂ Y is a subset of
Rn ⊂ Y , its ε-inflation Aε = {y ∈ Y : d(y,A) ≤ ε} is not a subset of Rn anymore
and hence contains non-degenerate random variables. In particular, Aε 6= {y ∈ Rn :
infa∈A ‖y− a‖ ≤ ε} and is in fact bigger than the latter set of deterministic points.
As a result, although satisfying �ϕAε

does not necessarily mean that a trajectory of
Σ always stays within some deterministic set, it means that the associated random
variables always belong to Aε and, hence, are close to the deterministic set A with
respect to the qth moment metric.

We are now able to provide two versions of finite abstractions: one whose outputs
are always deterministic points – that is degenerate random variables, elements of
Rn ⊂ Y , and one whose outputs can be non-degenerate random variables. Recall,
however, that in both cases the output set is still the whole Y and the semantics is the
same as for the original system S(Σ).

5.2 Main results

This subsection contains the main contributions of the paper. We show that for any δ -
ISS-Mq (resp. δ -ISS) stochastic control system Σ (resp. deterministic control system
Σ ), and for any precision level ε ∈ R+, we can construct a finite system that is ε-
approximate bisimilar to Σ (resp. Σ ) without any state set discretization. The results
in this subsection rely on additional assumptions on the model Σ that are described
next. We restrict our attention to stochastic control systems Σ with input sets U that
are assumed to be finite unions of boxes (cf. Subsection 2.1). We further restrict our
attention to sampled-data stochastic control systems, where input curves belong to
set Uτ , which contains exclusively curves that are constant over intervals of length
τ ∈ R+, i.e.

Uτ =
{

υ ∈U | υ(t) = υ((k−1)τ), t ∈ [(k−1)τ,kτ[,k ∈ N
}
.

Let us denote by Sτ(Σ) a sub-system of S(Σ) obtained by selecting those transitions
of S(Σ) corresponding to solution processes of duration τ and to control inputs in Uτ .
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This can be seen as the sampled version of Σ . More precisely, given a stochastic con-
trol system Σ and the corresponding metric system S(Σ), we define a new associated
metric system

Sτ(Σ) =
(

Xτ ,Xτ0,Uτ ,
τ

- ,Yτ ,Hτ

)
,

where Xτ =X , Xτ0 =X0, Uτ =Uτ , Yτ =Y , Hτ =H, and xτ

υτ

τ

- x′τ ∈
τ

- if xτ and

x′τ are measurable, respectively, in Fkτ and F(k+1)τ for some k ∈N0, and there exists
a solution process ξ : Ω ×R+

0 → Rn of Σ satisfying ξ (kτ) = xτ and ξxτ υτ
(τ) = x′τ

P-a.s..
Similarly, one can define Sτ(Σ) as the time discretization of Σ . Observe that a

finite state run x0
υ0

τ

- x1
υ1

τ

- · · · υN−1

τ

- xN of Sτ(Σ), where υi−1 ∈ Uτ and

xi = ξxi−1υi−1(τ) P-a.s. for i = 1, . . . ,N, captures the solution process of Σ at times
t = 0,τ, . . . ,Nτ , started from the initial condition x0 and resulting from a control input
υ obtained by the concatenation of the input curves υi−1

(
i.e. υ(t) = υi−1(t) for any

t ∈ [(i−1)τ, iτ[
)
, for i = 1, . . . ,N.

Now, we have all the ingredients to introduce two fully symbolic systems for the
concrete model Σ . Consider a stochastic control system Σ and a tuple q= (τ,µ,N,xs)
of parameters, where τ is the sampling time, µ is the input set quantization, N ∈N is
a temporal horizon, and xs ∈Rn is a source state. Given Σ and q, let us introduce the
following two symbolic systems:

Sq(Σ) = (Xq,Xq0,Uq,
q
- ,Yq,Hq),

Sq(Σ) = (Xq,Xq0,Uq,
q
- ,Yq,Hq),

where

– Xq =
{
(u1, . . . ,uN) ∈

N times︷ ︸︸ ︷
[U]µ ×·· ·× [U]µ

}
;

– Xq0 = Xq;
– Uq = [U]µ ;

– xq
uq

q
- x′q, where xq = (u1,u2, . . . ,uN), if and only if x′q = (u2, . . . ,uN ,uq);

– Yq is the set of all Rn-valued random variables defined on the probability space
(Ω ,F ,P);

– Hq(xq) = ξxsxq(Nτ)
(

Hq(xq) = ξ xsxq(Nτ)
)

.

Note that the transition relation in Sq(Σ) admits a compact representation in the
form of a shift operator. We have abused notation by identifying uq ∈ [U]µ with the
constant input curve with domain [0,τ[ and value uq, and by identifying xq ∈ [U]Nµ
with the concatenation of N control inputs ui ∈ [U]µ

(
i.e. xq(t) = ui for any t ∈ [(i−

1)τ, iτ[
)

for i = 1, . . . ,N. Notice that the proposed abstraction Sq(Σ)
(
resp. Sq(Σ)

)
is

a deterministic system in the sense of Definition 4. We point out that Hq and Hq are
mappings from a deterministic point xq to the random variable ξxsxq(Nτ) and to the
one with a Dirac probability distribution centered at ξ xsxq(Nτ), respectively. Finally,
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(0,0,0)

ξxs(0,0,0)(3τ)

(0,0,1)

ξxs(0,0,1)(3τ)

(0,1,1)

ξxs(0,1,1)(3τ)

(1,1,1)

ξxs(1,1,1)(3τ)

(1,1,0)

ξxs(1,1,0)(3τ)

(1,0,1)

ξxs(1,0,1)(3τ)

(0,1,0)

ξxs(0,1,0)(3τ)

(1,0,0)

ξxs(1,0,0)(3τ)

1

0

1

0

1

0
0

1

1

0

0

1

0

1

0
1

Fig. 1 Example of abstraction Sq(Σ) with N = 3 and Uq = {0,1}. The lower part of the states are their
output values. Initial states are targets of sourceless arrows.

in the case of a deterministic control system Σ , one obtains the symbolic system
Sq(Σ) = (Xq,Xq0,Uq,

q
- ,Yq,Hq), where Xq, Xq0, Uq,

q
- , and Hq are the

same as before, but the output set reduces to Yq = Rn.
The main idea behind the definitions of symbolic models Sq(Σ) and Sq(Σ) hinges

on the δ -ISS-Mq property. Given an input υ ∈U , all solution processes of Σ under
the input υ forget the mismatch between their initial conditions and converge to each
other with respect to the qth moment metric. Therefore, the longer the applied inputs
are, the less relevant is the mismatch between initial conditions. Then, the fundamen-
tal idea of the introduced abstractions consists in taking the N consequitive applied
inputs as the state of the symbolic model.

The control synthesis over Sq(Σ) (resp. Sq(Σ)) is simple as the outputs are deter-
ministic points, whereas for Sq(Σ) it is perhaps less intuitive. Hence, we discuss it in
more details later in Subsection 5.3.

Example 2 An example of an abstraction Sq(Σ) with N = 3 and Uq = {0,1} is de-
picted in Figure 1, where the initial states are shown as targets of sourceless arrows.
Regardless of the size of the state set and of its dimension, Sq(Σ) only has eight
possible states, namely:

Xq = {(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)}.

In order to obtain some of the main results of this work, we raise an assumption
on the δ -ISS-Mq Lyapunov function V which we will work with, as follows:

|V (x,y)−V (x,z)| ≤ γ̂(‖y− z‖), (7)
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for any x,y,z ∈ Rn, and for some concave function γ̂ ∈ K∞. The function γ̂ in (7)
can be easily computed as long as one is interested to work in a compact subset of
Rn. Particularly, for all x,y,z ∈D, where D⊂Rn is compact, one can apply the mean
value theorem to the function y→V (x,y) to get

|V (x,y)−V (x,z)| ≤ γ̂ (‖y− z‖) , where γ̂(r) =
(

max
x,y∈D\∆

∥∥∥∥∂V (x,y)
∂y

∥∥∥∥)r.

In particular, for the δ -ISS-M1 Lyapunov function V (x,x′) :=
√

(x− x′)T P(x− x′),
for some positive definite matrix P ∈ Rn×n and for all x,x′ ∈ Rn, one obtains γ̂(r) =√

λmax (P)r due to the triangle inequality, which satisfies (7) globally on Rn. Remark
that for deterministic control systems, the concavity assumption of γ̂ is not required.

Before providing the main results of the paper, we need the following technical
results.

Lemma 2 Consider a stochastic control system Σ , admitting a δ -ISS-Mq Lyapunov
function V , and consider its corresponding symbolic model Sq(Σ). We have that

η ≤
(

α
−1
(
e−κNτ max

uq∈Uq

V
(

ξ xsuq(τ),xs

)))1/q

, (8)

where

η := max
uq∈Uq,xq∈Xq

x′q∈Postuq (xq)

∥∥∥ξ Hq(xq)uq(τ)−Hq

(
x′q
)∥∥∥ . (9)

The proof of Lemma 2 is provided in the Appendix. The next lemma provides
similar result as the one in Lemma 2, but without explicitly using any Lyapunov
function.

Lemma 3 Consider a δ -ISS-Mq stochastic control system Σ and its corresponding
symbolic model Sq(Σ). We have:

η ≤
(

β

(
max

uq∈Uq

∥∥∥ξ xsuq(τ)− xs

∥∥∥q
,Nτ

))1/q

, (10)

where η is given in (9) and β is the K L function appearing in (2). ut

The proof of Lemma 3 is provided in the Appendix. The next two lemmas provide
similar results as Lemmas 2 and 3, but by using the symbolic model Sq(Σ) rather than
Sq(Σ).

Lemma 4 Consider a stochastic control system Σ , admitting a δ -ISS-Mq Lyapunov
function V , and consider its corresponding symbolic model Sq(Σ). One has:

η̂ ≤
(

α
−1
(
e−κNτ max

uq∈Uq

E
[
V
(
ξxsuq(τ),xs

)]))1/q

, (11)

where

η̂ := max
uq∈Uq,xq∈Xq

x′q∈Postuq (xq)

E
[∥∥∥ξHq(xq)uq(τ)−Hq

(
x′q
)∥∥∥] . (12)
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Proof The proof is similar to the one of Lemma 2 and can be shown by using con-
vexity of α and Jensen inequality [16]. ut
Lemma 5 Consider a δ -ISS-Mq stochastic control system Σ and its corresponding
symbolic model Sq(Σ). We have:

η̂ ≤
(

β

(
max

uq∈Uq

E
[∥∥ξxsuq(τ)− xs

∥∥q]
,Nτ

))1/q

, (13)

where η̂ is given in (12) and β is the K L function appearing in (2). ut
Proof The proof is similar to the one of Lemma 3 and can be shown by using Jensen
inequality [16]. ut
Remark 2 It can be readily verified that by choosing N sufficiently large, η and η̂

can be made arbitrarily small. One can as well try to reduce the upper bound for η

(in (8) for example) by selecting the source state xs as follows:

xs = arg min
x∈Rn

max
uq∈Uq

V (ξ xuq(τ),x). (14)

We can now present the first main result of the paper, which relates the existence
of a δ -ISS-Mq Lyapunov function to the construction of an approximately bisimilar
symbolic model.

Theorem 2 Consider a stochastic control system Σ with f (0n,0m) = 0n and σ(0n) =
0n×p, admitting a δ -ISS-Mq Lyapunov function V , of the form of the one explained in
Lemma 1, such that (7) holds for some concave γ̂ ∈K∞. Let η be given by (9). For
any ε ∈R+ and any tuple q= (τ,µ,N,xs) of parameters satisfying µ ≤ span(U) and

e−κτ
α (εq)+

1
eκ

ρ(µ)+ γ̂

(
(hxs((N +1)τ))

1
q +η

)
≤ α (εq) , (15)

the relation (cf. Definition 5)

R =
{
(xτ ,xq) ∈ Xτ ×Xq | E

[
V
(
xτ ,Hq(xq)

)]
≤ α (εq)

}
is an ε-approximate bisimulation relation between Sq(Σ) and Sτ(Σ). ut

The proof can be found in the Appendix. By choosing N sufficiently large and
using the results in Lemmas 1 and 2, one can enforce hxs((N + 1)τ) and η in (15)
to be sufficiently small. Hence, for a given precision ε ∈ R+

0 , there always exists
a sufficiently small value of µ and a large value of N, such that the condition in
(15) is satisfied. A result similar as that in Theorem 2 can be recovered for a δ -ISS
deterministic control system Σ , as provided in the following corollary.

Corollary 1 Consider a deterministic control system Σ admitting a δ -ISS Lyapunov
function V such that (7) holds for some γ̂ ∈K∞. Let η be given by (9). For any ε ∈R+

and any tuple q= (τ,µ,N,xs) of parameters satisfying µ ≤ span(U) and

e−κτ
α (ε)+

1
eκ

ρ(µ)+ γ̂ (η)≤ α (ε) , (16)

the relation
R =

{
(xτ ,xq) ∈ Xτ ×Xq |V

(
xτ ,Hq(xq)

)
≤ α (ε)

}
is an ε-approximate bisimulation relation between Sq(Σ) and Sτ(Σ). ut
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The proof is similar to the one of Theorem 2. In order to mitigate the conserva-
tiveness that might rise from using Lyapunov functions, the next theorem provides
a result that is similar to the one of Theorem 2, which is however not obtained by
explicit use of δ -ISS-Mq Lyapunov functions, but by using functions β and γ as in
(2).

Theorem 3 Consider a δ -ISS-Mq stochastic control system Σ , satisfying the result
of Lemma 1. Let η be given by (9). For any ε ∈R+, and any tuple q= (τ,µ,N,xs) of
parameters satisfying µ ≤ span(U) and

(β (εq,τ)+ γ(µ))
1
q +(hxs((N +1)τ))

1
q +η ≤ ε, (17)

the relation

R =

{
(xτ ,xq) ∈ Xτ ×Xq |

(
E
[∥∥xτ −Hq(xq)

∥∥q]) 1
q ≤ ε

}
is an ε-approximate bisimulation relation between Sq(Σ) and Sτ(Σ). ut

The proof can be found in the Appendix. By choosing N sufficiently large and
using the results in Lemmas 1 and 3, one can force hxs((N + 1)τ) and η in (17) to
be sufficiently small. Hence, for a given precision ε , there always exist a sufficiently
large value of τ and N and a small enough value of µ such that the condition in (17)
is satisfied. However, unlike the result in Theorem 2, here for a given fixed sampling
time τ , one may not find any values of N and µ satisfying (17) because the quantity

(β (εq,τ))
1
q may be larger than ε . The symbolic model Sq(Σ), computed using the

parameter q provided in Theorem 3 (whenever existing), is likely to have fewer states
than the one computed using the parameter q provided in Theorem 2 – a similar
fact has been experienced in the first example in [31]. A result similar to the one
in Theorem 3 can be fully recovered for a δ -ISS deterministic control system Σ , as
provided in the following corollary.

Corollary 2 Consider a δ -ISS deterministic control system Σ . Let η be given by (9).
For any ε ∈R+, and any tuple q= (τ,µ,N,xs) of parameters satisfying µ ≤ span(U)
and3

β (ε,τ)+ γ(µ)+η ≤ ε, (18)

the relation
R =

{
(xτ ,xq) ∈ Xτ ×Xq |

∥∥xτ −Hq(xq)
∥∥≤ ε

}
is an ε-approximate bisimulation relation between Sq(Σ) and Sτ(Σ). ut

The proof is similar to the one of Theorem 3. The next two theorems provide
results that are similar to those of Theorems 2 and 3, but by using the symbolic model
Sq(Σ) rather than Sq(Σ).

3 Here, β and γ are the K L and K∞ functions, respectively, appearing in (3).
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Theorem 4 Consider a stochastic control system Σ , admitting a δ -ISS-Mq Lyapunov
function V such that (7) holds for some concave γ̂ ∈K∞. Let η̂ be given by (12). For
any ε ∈R+ and any tuple q= (τ,µ,N,xs) of parameters satisfying µ ≤ span(U) and

e−κτ
α (εq)+

1
eκ

ρ(µ)+ γ̂ (η̂)≤ α (εq) , (19)

the relation

R = {(xτ ,xq) ∈ Xτ ×Xq | E [V (xτ ,Hq(xq))]≤ α (εq)}

is an ε-approximate bisimulation relation between Sq(Σ) and Sτ(Σ). ut

The proof is similar to the one of Theorem 2.

Theorem 5 Consider a δ -ISS-Mq stochastic control system Σ . Let η̂ be given by
(12). For any ε ∈ R+, and any tuple q = (τ,µ,N,xs) of parameters satisfying µ ≤
span(U) and

(β (εq,τ)+ γ(µ))
1
q + η̂ ≤ ε, (20)

the relation

R =
{
(xτ ,xq) ∈ Xτ ×Xq | (E [‖xτ −Hq(xq)‖q])

1
q ≤ ε

}
is an ε-approximate bisimulation relation between Sq(Σ) and Sτ(Σ). ut

The proof is similar to the one of Theorem 3.

Remark 3 The symbolic model Sq(Σ), proposed in Theorem 4 (resp. Theorem 5), has
fewer (or at most equal number of) states than the symbolic model Sq(Σ), proposed in
Theorem 2 (resp. Theorem 3) while having the same precision. However, the states in
Sq(Σ) have probabilistic output values, rather than deterministic ones, which is likely
to make control synthesis procedures more involved (cf. Subsection 5.3). ut

Remark 4 Although we assume that the set U is infinite, Theorems 2, 3, 4, and 5 and
Corollaries 1 and 2 still hold when the set U is finite, with the following modifications.
First, the systems Σ and Σ are required to satisfy properties (2) and (3), respectively,
for υ = υ ′. Second, take Uq = U in the definitions of Sq(Σ) (resp. Sq(Σ)) and Sq(Σ).
Finally, in the conditions (15), (16), (17), (18), (19), and (20) set µ = 0. ut

Finally, we establish the results on the existence of symbolic models Sq(Σ) (resp.
Sq(Σ)) and Sq(Σ) such that Sq(Σ)∼=ε

S Sτ(Σ) (resp. Sq(Σ)∼=ε

S Sτ(Σ)) and Sq(Σ)∼=ε

S
Sτ(Σ).

Theorem 6 Consider the results in Theorem 2. If we select

Xτ0 =

{
x ∈ Rn|

∥∥x−Hq(xq0)
∥∥≤ (α−1 (α (εq))

) 1
q ,∃xq0 ∈ Xq0

}
,

then we have Sq(Σ)∼=ε

S Sτ(Σ). ut
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Proof We start by proving that Sτ(Σ)�ε

S Sq(Σ). For every xτ0 ∈ Xτ0 there always

exists xq0 ∈ Xq0 such that ‖xτ0−Hq(xq0)‖ ≤
(
α
−1 (α (εq))

) 1
q . Then,

E
[
V
(
xτ0,Hq(xq0)

)]
=V

(
xτ0,Hq(xq0)

)
≤ α(‖xτ0−Hq(xq0)‖q)≤ α (εq) ,

since α is a K∞ function. Hence, (xτ0,xq0) ∈ R implying that Sτ(Σ)�ε

S Sq(Σ). In a
similar way, we can show that Sq(Σ)�ε

S Sτ(Σ) which completes the proof. ut

The next theorem provides a similar result in line with the one of previous theo-
rem, but by using a different relation.

Theorem 7 Consider the results in Theorem 3. If we select

Xτ0 =
{

x ∈ Rn |
∥∥x−Hq(xq0)

∥∥≤ ε, ∃xq0 ∈ Xq0
}
,

then we have Sq(Σ)∼=ε

S Sτ(Σ). ut

Proof We start by proving that Sτ(Σ)�ε

S Sq(Σ). For every xτ0 ∈ Xτ0 there always

exists xq0 ∈ Xq0 such that ‖xτ0−Hq(xq0)‖ ≤ ε and
(
E
[∥∥xτ0−Hq(xq0)

∥∥q]) 1
q ≤ ε .

Hence, (xτ0,xq0) ∈ R implying that Sτ(Σ)�ε

S Sq(Σ). In a similar way, we can show
that Sq(Σ)�ε

S Sτ(Σ) which completes the proof. ut

The next two corollaries provide similar results as the ones of Theorems 6 and 7,
but for deterministic control systems Σ .

Corollary 3 Consider the results in Corollary 1. If we select

Xτ0 =
{

x ∈ Rn|
∥∥x−Hq(xq0)

∥∥≤ (α−1 (α (ε))
)
,∃xq0 ∈ Xq0

}
,

then we have Sq(Σ)∼=ε

S Sτ(Σ). ut

The proof is similar to the one of Theorem 6.

Corollary 4 Consider the results in Corollary 2. If we select

Xτ0 =
{

x ∈ Rn |
∥∥x−Hq(xq0)

∥∥≤ ε, ∃xq0 ∈ Xq0
}
,

then we have Sq(Σ)∼=ε

S Sτ(Σ). ut

The proof is similar to the one of Theorem 7. The next two theorems provide
similar results as the ones of Theorems 6 and 7, but by using the symbolic model
Sq(Σ).

Theorem 8 Consider the results in Theorem 4. Let A denote the set of all Rn-valued
random variables, measurable over F0. If we select

Xτ0 =

{
a ∈A |(E [‖a−Hq(xq0)‖q])

1
q ≤

(
α
−1 (α (εq))

) 1
q ,∃xq0 ∈ Xq0

}
,

then we have Sq(Σ)∼=ε

S Sτ(Σ). ut
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The proof is similar to the one of Theorem 6.

Theorem 9 Consider the results in Theorem 5. Let A denote the set of all Rn-valued
random variables, measurable over F0. If we select

Xτ0 =
{

a ∈A | (E [‖a−Hq(xq0)‖q])
1
q ≤ ε, ∃xq0 ∈ Xq0

}
,

then we have Sq(Σ)∼=ε

S Sτ(Σ). ut

The proof is similar to the one of Theorem 7.

5.3 Control synthesis over Sq(Σ)

Note that both Sq(Σ) and Sq(Σ) are finite systems. The only difference is that the
outputs of the former system are always deterministic points, whereas those of the
latter can be non-degenerate random variables. Let us describe the control synthesis
for these systems over quantitative specifications, and for example over the safety
formula �ϕA, for A⊂Rn ⊂Y (as already been used in Subsection 5.1). Clearly, since
the original system Sτ(Σ) is stochastic in the sense that its outputs are non-degenerate
random variables similarly to Sq(Σ), it would be too conservative to require that it
satisfies the formula exactly. Thus, we are rather interested in an input policy that
makes Sτ(Σ) satisfy �ϕAε

with some ε > 0: recall from Subsection 5.1 that the latter
LTL formula can be satisfied by non-degenerate random variables, in contrast to �ϕA.
Let us recap how to use abstractions for this task, and let us start with Sq(Σ) belonging
to a more familiar type of systems in which the outputs of states are deterministic.

We label a state xq of Sq(Σ) with A if Hq(xq) ∈ A and, say, with B otherwise. As
a result, we obtain a transition system with labels over the states and can synthesize
a control strategy by solving a safety game [24] that makes an output run of Sq(Σ)
satisfy �ϕA. After that, we can exploit ε-approximate bisimilarity to guarantee that
the refined input policy makes the corresponding output run of the original system
Sτ(Σ) satisfy �ϕAε

.
The main subtlety in the case of Sq(Σ) is how to label its states. We cannot do

this as for Sq(Σ), since Hq(xq) may never be an element of A for any xq ∈ Xq: indeed,
the latter is a set of deterministic points, whereas all the outputs of Sq(Σ) can happen
to be non-degenerate random variables. In order to cope with this issue, we propose
to relax the original problem and at the same time to strengthen the quality of the
abstraction. Namely, we can consider a relaxed problem �ϕAδ

over the abstraction
Sq(Σ), for some δ ∈]0 ε[, where the latter is now required to be (ε−δ )-approximate
(rather than ε-approximate) bisimilar to the original system. Clearly (Aδ )ε−δ

⊆ Aε ,
so that whenever the control policy for �ϕAδ

is synthesized over Sq(Σ), its refined
version is guaranteed to enforce �ϕAε

over the original system. Thanks to the fact
that Aδ contains non-degenerate random variables, we eliminate the conservativeness
presented before in the sense that it is likely that there are now points xq ∈ Xq in
Sq(Σ) such that Hq(xq) ∈ Aδ . The only remaining question is how to check whether
Hq(xq) ∈ Aδ . To answer this question, we check that the distance

d(Hq(xq),A) = inf
a∈A

(
E‖ξxsxq(Nτ)−a‖q)1/q (21)
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is smaller than δ , which involves both computing the expectation over the solution of
the SDE, and optimizing the value of this expectation. Clearly, such a computation in
general cannot be done analytically, and the evaluation of the expectation itself is a
highly non-trivial task unless the SDE has a very special form.

We propose a Monte Carlo approach to compute an approximation of the quantity
in (21) by means of empirical expectations. Using such an approach, we can estimate
d(Hq(xq),A) only up to some precision, say θ . If the estimated distance is less than
δ − θ , we are safe to label xq with A, whereas all other states are labeled by B.
Furthermore, since this result is based on a Monte Carlo method, it holds true only
with a certain confidence level 1−π where π ∈ [0 1]. The benefit of our approach is
that it is not only valid asymptotically (as the number of samples grows to infinity),
but we are also able to provide a number of simulations that is sufficient to estimate
d(Hq(xq),A) with any given precision θ and with any given confidence 1−π . This
can be considered as an extension of the well-known Hoeffding’s inequality [8] to the
case when one has to deal with an optimization problem. Note that like in other cases
when using Monte-Carlo for distance estimation, there are two levels of error. First,
in Aε the ε still refers to the precision of symbolic model in the qth moment metric,
but now also a level of (lack of) confidence π ∈ [0 1] is added on top of it.

Regardless of the specification of interest, the main task over Sq(Σ) is always to
compute some distance as in (21) for any set that appears in the specification, so the
method below applies not only to the safety formula �ϕA, but also to more general
formulae, which are left as object of the future research.

Suppose that A as in (21) is a compact subset of Rn, and let Ar be the smallest
subset of [Rn]r such that A⊆

⋃
p∈Ar B r

2
(p). Let M be the number of samples and let

dr
M := min

a∈Ar

(
1
M

M

∑
i=1

∥∥∥ξ
i
xsxq(Nτ)−a

∥∥∥q
) 1

q

,

where the superscript i denotes the index of samples. Now, we have the following
theorem.

Theorem 10 For any stochastic control system Σ one has |d(Hq(xq),A)−dr
M| ≤ θ

with confidence of at least 1−π , given that r < 2θ and that

M ≥ |A
r|b(a∗,2q)

π(θ − r/2)2q ,

where b(a, p) := (1+ |xs−a|p)ep(p+1)max{Lx,Z}Nτ and a∗ ∈ argmaxa′∈Ar ‖xs−a′‖.
ut

The proof can be found in the Appendix. Let us make some comments on Theo-
rem 10. First of all, no matter how many distances one has to evaluate, one can always
use the same samples ξ i and there is no need to generate new samples. Second, to
the best of our knowledge, logarithmic bounds on M (as per [11]) are not available in
this general case due to the fact that we deal with an unbounded state space.
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5.4 Relationship with existing results in the literature

Note that given any precision ε ∈R+ and sampling time τ , one can always use the re-
sults in Theorem 6 to construct a symbolic model Sq(Σ) that is ε-approximate bisim-
ilar to Sτ(Σ) without any state set discretization, but only input set discretization. The
results in Theorem 5.1 in [31] also provide symbolic models that are ε-approximate
bisimilar to Sτ(Σ). However, the results in [31] require both state and input set dis-
cretization and cannot be applied for any sampling time τ if the precision ε is lower
than the thresholds introduced in inequality (5.5) in [31]. Furthermore, while the re-
sults in [31] only provide symbolic models with states having deterministic output
values, the ones in this work provide symbolic models with states having probabilis-
tic output values as well, which can result in less conservative symbolic models (cf.
Remark 3).

One can compare the results provided in Theorems 2 (corr. 6) and 3 (corr. 7)
with the results provided in Theorems 5.1 and 5.3 in [31] in terms of the size of
the generated symbolic models. It can be readily verified that the precisions of the
symbolic models proposed here and the ones proposed in [31] are approximately
the same as long as both use the same input set quantization parameter µ and the
state space quantization parameter, called here ν , in [31] is equal to the param-
eter η in (9), i.e. ν ≤ (α−1(e−κNτ η0))

1/q, where η0 = maxuq∈Uq V (ξ xsuq(τ),xs).
The reason their precisions are approximately (rather than exactly) the same is be-
cause we use hxs (σ ,(N +1)τ) in conditions (15) and (17) in this paper rather than
h(τ) = supx∈D hx(τ) that is being used in conditions 5.4 and 5.14 in [31] for a com-

pact set D ⊂ Rn. By assuming that hxs (σ ,(N +1)τ)
1
q and h(τ)

1
q are much smaller

than η and ν , respectively, or hxs (σ ,(N +1)τ) ≈ h(τ), one should expect to get the
same precisions for the symbolic models provided here and those provided in [31].

The number of states of the proposed symbolic model in this paper is |[U]µ |N .
Assume that we are interested in the dynamics of Σ on a compact set D⊂ Rn. Since
the set of states of the proposed symbolic model in [31] is [D]

ν
, its size is |[D]

ν
|= K

νn ,
where K is a positive constant proportional to the volume of D. Hence, it is more
convenient to use the proposed symbolic model here rather than the one proposed in
[31] as long as:

|[U]µ |N ≤
K

(α−1 (e−κNτ η0))
n/q .

Without loss of generality, one can assume that α(r) = r for any r ∈ R+
0 . Hence, for

sufficiently large value of N, the size of the proposed symbolic model here is smaller
than the one proposed in [31] as long as:

|[U]µ |e
−κτn

q ≤ 1. (22)

One can readily verify that if the state-space dimension of Σ is very large, i.e. n>> 1,
or Σ is “strongly” δ -ISS-Mq, i.e. κ >> 1, inequality (22) is most likely satisfied.

Finally, remark that the framework proposed in this paper lets us to construct less
conservative symbolic models with probabilistic output values while the proposed
one in [31] only provides symbolic models with deterministic output values.



Towards Scalable Synthesis of Stochastic Control Systems 21

6 Example

We show the effectiveness of the results presented in this work by constructing a
bisimilar symbolic model for the model of a road network. The road is divided in 5
cells of 250 meters with 2 entries and 2 ways out, as depicted schematically in Figure
2. The model is borrowed from [5], explained in details in [27], however it is now
affected by noise and described in continuous time.

1 2 3 4 5

u1

u2

Fig. 2 Model of a road divided in 5 cells with 2 entries and 2 ways out.

The two entries are controlled by traffic lights, denoted by u1 and u2, that enable
(green light) or not (red light) the vehicles to pass. In this model the length of a cell is
in kilometres (0.25 km), and the flow speed of the vehicles is 70 kilometers per hour
(km/h). Moreover, during the sampling time interval τ , it is assumed that 6 vehicles
pass the entry controlled by the light u1, 8 vehicles pass the entry controlled by the
light u2, and one quarter of vehicles that leave cell 1 goes out on the first exit. We
assume that both lights cannot be red at the same time. The model of Σ is described
by:

dξ = (Aξ +Bυ)d t +ξ dWt , (23)

where

A = 104×


−0.0541 0 0 0 0
0.3224 −0.1370 0 0 0
−0.7636 0.3224 −0.0541 0 0
2.1122 −0.7636 0.1260 −0.0541 0
−6.2132 2.1122 −0.2205 0.1260 −0.0541

 ,

B = 104×


0.0696 0
−0.2743 0
0.7075 0.0696
−2.0081 −0.0924
5.9802 0.1911

 ,

U= {u0,u1,u2}= {[6 8]T , [6 0]T , [0 8]T}, and ξi is the number of vehicles in cell i of
the road. We point out that Uτ contains curves taking values in U. Since U is finite, as
explained in Remark 4, µ = 0 is to be used in (15), (17), (19), and (20). Using LMI
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(4), one can verify that the function V (x,x′) = (x− x′)T P(x− x′), for any x,x′ ∈ R5,
where

P = 104×


76763.4393 −2101.1583 3790.9182 −155.6576 −125.9871
−2101.1583 10676.9437 1237.3552 −86.6855 100.5718
3790.9182 1237.3552 1823.02431 171.1549 −71.1162
−155.6576 −86.6855 171.1549 229.2134 −5.5649
−125.9871 100.5718 −71.1162 −5.5649 33.3977

 ,

satisfies conditions (i)-(iii) in Definition 3 with q = 2, κ = 300, α(r) = 1
2 λmin(P)r,

α(r) = 1
2 λmax(P)r, ρ(r) = 5‖B‖2‖P‖

2κ
r2, ∀r ∈ R+

0 . Hence, Σ is δ -ISS-M2, equipped
with the δ -ISS-M2 Lyapunov function V . Using the results of Theorem 1, provided
in [31], one gets that functions β (r,s) = α−1 (α(r)e−κs) and γ(r) = α−1

( 1
eκ

ρ(r)
)

satisfy property (2) for Σ . We choose the source state as the one picked in [5], i.e.
xs = [3.8570 3.3750 3.3750 8.5177 8.5177]T .

For a given precision ε = 0.5 and fixed sampling time τ = 0.00277 h (10 sec),
the parameter N for Sq(Σ), based on inequality (15) in Theorem 2, is obtained as
14. Therefore, the resulting cardinality of the set of states for Sq(Σ) is |U|14 = 314 =
4782969. Using the aforementioned parameters, one gets η ≤ 6.0776×10−6, where
η is given in (9). Remark that the results in Theorems 3 and 5 cannot be applied here
because (β (εq,τ))

1
q > ε . Using criterion (22), one has |U|e

−κτn
q = 0.37, implying

that the proposed approach in this paper is more efficient in terms of the size of the
abstraction than the one proposed in [31]. We elaborate more on this at the end of the
section.

Remark 5 By considering the deterministic control system Σ and using the results in
Corollary 1 and the same parameters q as the ones in Sq(Σ), one obtains ε = 0.01 in
(16). Therefore, as expected, Sq(Σ) (i.e. symbolic model for the deterministic control
system Σ ) provides much smaller precision than Sq(Σ) (i.e. symbolic model for the
stochastic control system Σ ) while having the same size as Sq(Σ).

Now the objective, as inspired by the one suggested in [5], is to design a sched-
ule for the coordination of traffic lights enforcing Σ to satisfy a safety and a fairness
property. The safety part is to keep the density of traffic lower than 16 vehicles per
cell which can be encoded via the LTL specification 2ϕW , where W = [0 16]5 and ϕW
is a label characterizing the set W . The fairness part requires to alternate the accesses
between the two traffic lights and to allow only 3 identical consecutive modes of red
light ensuring fairness between two traffic lights. We implemented the proposed tech-
niques in this paper on top of the recently developed synthesis toolbox SCOTS [22]
on an iMac with CPU 3.5GHz Intel Core i7. The CPU time used for computing the ab-
straction and synthesizing the controller have amounted to 68 and 5 seconds, respec-
tively. Starting from the initial condition x0 = [1.417 4.993 10.962 9.791 14.734]T ,
we obtain a periodic schedule υ = (u0u0u0u2u1u0u0u2u1u0u0u2u1u2)

ω keeping u0
as much as possible in each period in order to maximize number of vehicles access-
ing the road. One can readily verify from the computed schedule υ that the fairness
property is satisfied.
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Figure 3 displays a few realizations of the closed-loop solution process ξx0υ .
In Figure 3 bottom right, we show the average value (over 100000 experiments)
of the distance (in the 2nd moment metric) in time of the solution process ξx0υ to
the set W , namely

∥∥ξx0υ(t)
∥∥

W , where the point-to-set distance is defined as ‖x‖W =
infw∈W ‖x−w‖. Observe that the empirical average distance is as expected lower than
the precision ε = 0.5 due to the conservative nature of δ -ISS-M2 function V .
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Time
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Fig. 3 A few realizations of the closed-loop solution process ξx0υ (top panel and the first two figures
from the left in the bottom panel) and the average values (over 100000 experiments) of the distance of the
solution process ξx0υ to the set W (bottom right panel).

To compute exactly the size of the symbolic model, proposed in Theorem 5.1
in [31], we consider the dynamics of Σ over the subset D = [0 16]5 of R5. Remark

that Theorem 5.3 in [31] cannot be applied here because (β (εq,τ))
1
q > ε . Using the

same precision ε = 0.5 and sampling time τ = 0.00277 as the ones here, and the
inequalities (5.3) and (5.4) in [31], we obtain the state space quantization parameter
as ν ≤ 6.0776× 10−6. Therefore, if one uses ν = 6.0776× 10−6, the cardinality of
the state set of the symbolic model, provided by the results in Theorem 5.1 in [31],
is equal to

( 16
ν

)5
= 1.2645×1032 which is practically not tractable and much higher

than the one proposed here, amounting instead to 4782969 states.

7 Conclusions

In this paper we have proposed a symbolic abstraction technique for incrementally
stable stochastic control systems (and corresponding deterministic model), which fea-
tures only the discretization of the input set. The proposed approach is potentially
more scalable than the one proposed in [31] for higher dimensional stochastic control
systems.



24 Majid Zamani et al.

Future work will concentrate on efficient implementations of the symbolic models
proposed in this work on top of the recently developed synthesis toolbox SCOTS
[22], as well as on more efficient controller synthesis techniques by using binary
search trees data structure. The current implementation is not computationally very
efficient for the closed-loop implementation of the synthesized symbolic controllers
for deterministic control systems because one requires to loop over the symbolic
states to find the ones with the outputs ε-close to the current measured state of the
concrete system in each feedback iteration.
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Appendix

Proof of Lemma 2: Let xq ∈ Xq, where xq = (u1,u2, . . . ,uN), and uq ∈ Uq. Using
the definition of Sq(Σ), one obtains x′q = (u2, . . . ,uN ,uq) ∈ Postuq(xq). Since V is a
δ -ISS-Mq Lyapunov function for Σ , we have:

α

(∥∥∥ξ Hq(xq)uq(τ)−Hq

(
x′q
)∥∥∥q)

≤V (ξ Hq(xq)uq(τ),Hq

(
x′q
)
)

=V (ξ
ξ xsxq (Nτ)uq

(τ),ξ xsx′q
(Nτ)) =V (ξ

ξ xsu1
(τ)(u2,...,uN ,uq)

(Nτ),ξ xs(u2,...,uN ,uq)(Nτ))

≤ e−κNτV (ξ xsu1
(τ),xs). (24)

We refer the interested readers to the proof of Theorem 1 in [31] to see how we
derived the inequality (24). Hence, one gets

‖ξ Hq(xq)uq(τ)−Hq

(
x′q
)
‖ ≤ (α−1(e−κNτV (ξ xsu1

(τ),xs)))
1/q, (25)

because of α ∈K∞. Since the inequality (25) holds for all xq ∈ Xq and uq ∈Uq, and
α ∈K∞, inequality (8) holds.
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Proof of Lemma 3: Let xq ∈ Xq, where xq = (u1,u2, . . . ,uN), and uq ∈ Uq. Using
the definition of Sq(Σ), one obtains x′q = (u2, . . . ,uN ,uq) ∈ Postuq(xq). Since Σ is
δ -ISS-Mq and using inequality (2), we have:

‖ξ Hq(xq)uq(τ)−Hq

(
x′q
)
‖q = ‖ξ

ξ xsxq (Nτ)uq
(τ)−ξ xsx′q

(Nτ)‖q

= ‖ξ
ξ xsu1

(τ)(u2,...,uN ,uq)
(Nτ)−ξ xs(u2,...,uN ,uq)(Nτ)‖q ≤ β (‖ξ xsu1

(τ)− xs‖q,Nτ).

Hence, one gets

‖ξ Hq(xq)uq(τ)−Hq(x′q)‖ ≤ (β (‖ξ xsu1
(τ)− xs‖q,Nτ))1/q. (26)

Since the inequality (26) holds for all xq ∈ Xq and all uq ∈Uq, and β is a K∞ function
with respect to its first argument when the second one is fixed, inequality (10) holds.

ut

Proof of Theorem 2: We start by proving that R is an ε-approximate simulation rela-
tion from Sτ(Σ) to Sq(Σ). Consider any (xτ ,xq) ∈ R. Condition (i) in Definition 5 is
satisfied because

(E[‖xτ −Hq(xq)‖q])
1
q ≤ (α−1(E[V (xτ ,Hq(xq))]))

1
q ≤ ε. (27)

We used the convexity assumption of α and the Jensen inequality [16] to show the in-
equalities in (27). Let us now show that condition (ii) in Definition 5 holds. Consider
any υτ ∈Uτ . Choose an input uq ∈Uq satisfying

‖υτ −uq‖∞ = ‖υτ(0)−uq(0)‖ ≤ µ. (28)

Note that the existence of such uq is guaranteed by U being a finite union of boxes
and by the inequality µ ≤ span(U) which guarantees that U⊆

⋃
p∈[U]µ Bµ(p). Con-

sider the transition xτ

υτ

τ

- x′τ = ξxτ υτ
(τ) P-a.s. in Sτ(Σ). Since V is a δ -ISS-Mq

Lyapunov function for Σ and using inequality (28), we have (cf. equation (3.3) in
[31])

E[V (x′τ ,ξHq(xq)uq(τ))]≤ E[V (xτ ,Hq(xq))]e
−κτ+

1
eκ

ρ(‖υτ −uq‖∞)≤ α (εq)e−κτ +
1
eκ

ρ(µ). (29)

Observe that existence of uq, by the definition of Sq(Σ), implies the existence of

xq
uq

q
- x′q in Sq(Σ). Using Lemma 1, the concavity of γ̂ , the Jensen inequality [16],
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equation (9), the inequalities (7), (15), (29), and triangle inequality, we obtain

E[V (x′τ ,Hq(x′q))] = E[V (x′τ ,ξHq(xq)uq(τ))+V (x′τ ,Hq(x′q))−V (x′τ ,ξHq(xq)uq(τ))]

= E[V (x′τ ,ξHq(xq)uq(τ))]+E[V (x′τ ,Hq(x′q))−V (x′τ ,ξHq(xq)uq(τ))]

≤ α(εq)e−κτ +
1
eκ

ρ(µ)+E[γ̂(‖ξHq(xq)uq(τ)−Hq(x′q)‖)]

≤ α(εq)e−κτ +
1
eκ

ρ(µ)

+ γ̂(E[‖ξHq(xq)uq(τ)−ξ Hq(xq)uq(τ)+ξ Hq(xq)uq(τ)−Hq(x′q)‖])

≤ α(εq)e−κτ +
1
eκ

ρ(µ)

+ γ̂(E[‖ξHq(xq)uq(τ)−ξ Hq(xq)uq(τ)‖]+‖ξ Hq(xq)uq(τ)−Hq(x′q)‖)

≤ α(εq)e−κτ +
1
eκ

ρ(µ)+ γ̂((hxs((N +1)τ))
1
q +η)≤ α(εq).

Therefore, we conclude that
(
x′τ ,x

′
q

)
∈ R and that condition (ii) in Definition 5 holds.

Now we prove that R−1 is an ε-approximate simulation relation from Sq(Σ) to
Sτ(Σ). Consider any (xτ ,xq) ∈ R (or equivalently (xq,xτ) ∈ R−1). As showed in the
first part of the proof, condition (i) in Definition 5 is satisfied. Let us now show that
condition (ii) in Definition 5 holds. Consider any uq ∈Uq. Choose the input υτ = uq
and consider x′τ = ξxτ υτ

(τ) P-a.s. in Sτ(Σ). Since V is a δ -ISS-Mq Lyapunov func-
tion for Σ , one obtains (cf. equation 3.3 in [31]):

E[V (x′τ ,ξHq(xq)uq(τ))]≤ e−κτE[V (xτ ,Hq(xq))]≤ e−κτ
α (εq) . (30)

Using Lemma 1, the definition of Sq(Σ), the concavity of γ̂ , the Jensen inequality
[16], equation (9), the inequalities (7), (15), (30), and triangle inequality, we obtain

E[V (x′τ ,Hq(x′q))] = E[V (x′τ ,ξHq(xq)uq(τ))+V (x′τ ,Hq(x′q))−V (x′τ ,ξHq(xq)uq(τ))]

= E[V (x′τ ,ξHq(xq)uq(τ))]+E[V (x′τ ,Hq(x′q))−V (x′τ ,ξHq(xq)uq(τ))]

≤ e−κτ
α(εq)+E[γ̂(‖ξHq(xq)uq(τ)−Hq(x′q)‖)]

≤ e−κτ
α(εq)+ γ̂(E[‖ξHq(xq)uq(τ)−ξ Hq(xq)uq(τ)+ξ Hq(xq)uq(τ)−Hq(x′q)‖])

≤ e−κτ
α(εq)+ γ̂(E[‖ξHq(xq)uq(τ)−ξ Hq(xq)uq(τ)‖]+‖ξ Hq(xq)uq(τ)−Hq(x′q)‖)

≤ e−κτ
α(εq)+ γ̂((hxs((N +1)τ))

1
q +η)≤ α(εq).

Therefore, we conclude that (x′τ ,x
′
q) ∈ R (or equivalently

(
x′q,x

′
τ

)
∈ R−1) and condi-

tion (ii) in Definition 5 holds. ut

Proof of Theorem 3: We start by proving that R is an ε-approximate simulation re-
lation from Sτ(Σ) to Sq(Σ). Consider any (xτ ,xq) ∈ R. Condition (i) in Definition 5
is satisfied by the definition of R. Let us now show that condition (ii) in Definition 5
holds. Consider any υτ ∈Uτ . Choose an input uq ∈Uq satisfying

‖υτ −uq‖∞ = ‖υτ(0)−uq(0)‖ ≤ µ. (31)
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Note that the existence of such uq is guaranteed by U being a finite union of boxes and
by the inequality µ ≤ span(U) which guarantees that U ⊆

⋃
p∈[U]µ Bµ(p). Consider

the transition xτ

υτ

τ

- x′τ = ξxτ υτ
(τ) P-a.s. in Sτ(Σ). It follows from the δ -ISS-Mq

assumption on Σ and (31) that:

E[‖x′τ −ξHq(xq)uq(τ)‖
q]≤β (E[‖xτ −Hq(xq)‖q],τ)+

γ(‖υτ −uq‖∞)≤ β (εq,τ)+ γ(µ). (32)

Existence of uq, by the definition of Sq(Σ), implies the existence of xq
uq

q
- x′q in

Sq(Σ). Using equation (9), the inequalities (5), (17), (32), and triangle inequality, we
obtain

(E[‖x′τ −Hq(x′q)‖q])
1
q = (E[‖x′τ −ξHq(xq)uq(τ)+ξHq(xq)uq(τ)

−ξ Hq(xq)uq(τ)+ξ Hq(xq)uq(τ)−Hq(x′q)‖q])
1
q

≤ (E[‖x′τ −ξHq(xq)uq(τ)‖
q])

1
q +(E[‖ξHq(xq)uq(τ)−ξ Hq(xq)uq(τ)‖

q])
1
q

+(E[‖ξ Hq(xq)uq(τ)−Hq(x′q)‖q])
1
q

≤ (β (εq,τ)+ γ(µ))
1
q +(hxs((N +1)τ))

1
q +η ≤ ε.

Therefore, we conclude that
(
x′τ ,x

′
q

)
∈ R and that condition (ii) in Definition 5 holds.

Now we prove that R−1 is an ε-approximate simulation relation from Sq(Σ) to
Sτ(Σ). Consider any (xτ ,xq) ∈ R (or equivalently (xq,xτ) ∈ R−1). Condition (i) in
Definition 5 is satisfied by the definition of R. Let us now show that condition (ii)
in Definition 5 holds. Consider any uq ∈Uq. Choose the input υτ = uq and consider
x′τ = ξxτ υτ

(τ) P-a.s. in Sτ(Σ). Since Σ is δ -ISS-Mq, one obtains:

E[‖x′τ −ξHq(xq)uq(τ)‖
q]≤ β (E[‖xτ −Hq(xq)‖q],τ)≤ β (εq,τ). (33)

Using definition of Sq(Σ), equation (9), the inequalities (5), (17), (33), and the trian-
gle inequality, we obtain

(E[‖x′τ −Hq(x′q)‖q])
1
q = (E[‖x′τ −ξHq(xq)uq(τ)+ξHq(xq)uq(τ)

−ξ Hq(xq)uq(τ)+ξ Hq(xq)uq(τ)−Hq(x′q)‖q])
1
q

≤ (E[‖x′τ −ξHq(xq)uq(τ)‖
q])

1
q +(E[‖ξHq(xq)uq(τ)−ξ Hq(xq)uq(τ)‖

q])
1
q

+(E[‖ξ Hq(xq)uq(τ)−Hq(x′q)‖q])
1
q

≤ (β (εq,τ))
1
q +(hxs((N +1)τ))

1
q +η ≤ ε.

Therefore, we conclude that (x′τ ,x
′
q) ∈ R (or equivalently

(
x′q,x

′
τ

)
∈ R−1) and condi-

tion (ii) in Definition 5 holds. ut
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Proof of Theorem 10: Denote θ̂ := θ−r/2> 0, and dM(a) :=
(

1
M

M
∑

i=1
‖ξ i

xsxq −a‖q
) 1

q

for all a ∈ Rn. It follows from [11, Theorem 4.5.4] that for all p≥ 1 and a ∈ Rn

E
[
‖ξxsxq(Nτ)−a‖p]≤ b(a, p).

Since we do not assume that the set of continuous states is bounded, the distance can
be any positive real number, and the usual method of applying Hoeffding’s inequality
does not work in this case. Instead we use Chernoff-type inequality (e.g. see above
formula (1) in [4]), which implies that for any a′ ∈ Ar :

P
(∣∣(d(Hq(xq),a′)

)q− (dM(a′))q∣∣≥ θ̂
)
≤ b(a′,2q)

Mθ̂ 2
.

Furthermore, since x 7→ xq is Hölder continuous with power q,

P
(∣∣d(Hq(xq),a′)−dM(a′)

∣∣≥ θ̂
)
≤ b(a′,2q)

Mθ̂ 2q
.

Thus, for the union of such events over a′ ∈ Ar, we have

P
(
∃a′ ∈ Ar s.t.

∣∣d(Hq(xq),a′)−dM(a′)
∣∣≥ θ̂

)
≤ |A

r|b(a∗,2q)
Mθ̂ 2q

, (34)

due to the fact that the probability of a union is dominated by the sum of probabilities.
Let [·] : A→ Ar be any surjective map such that ‖a− [a]‖ ≤ r/2 for all a ∈ A, i.e. [·]
chooses an r/2-close point in the grid Ar. Using this map, we can extrapolate the
inequality (34) to the whole set A since

|d(Hq(xq),a)−dM([a])| ≤ |d(Hq(xq),a)−d(Hq(xq), [a])|+ |d(Hq(xq), [a])−dM([a])|
≤ r/2+ |d(Hq(xq), [a])−dM([a])| ,

where we used the fact that |d(Hq(xq),a)−d(Hq(xq), [a])| ≤ ‖a− [a]‖ by the triangle
inequality. As a result, the following inequality holds:

P(∃a ∈ A s.t. |d(Hq(xq),a)−dM([a])| ≥ θ)

≤ P
(
∃a′ ∈ Ar s.t.

∣∣d(Hq(xq),a′
)
−dM

(
a′
)∣∣≥ θ̂

)
.

(35)

On the other hand, since for any two functions f ,g : A→ R it holds that∣∣∣∣ inf
a∈A

f (a)− inf
a∈A

g(a)
∣∣∣∣≤ sup

a∈A
| f (a)−g(a)|,

we obtain that

P(|d(Hq(xq),A)−dr
M| ≥ θ)≤ P(∃a ∈ A s.t. |d(Hq(xq),a)−dM([a])| ≥ θ) .

Combining the latter inequality with (34) and (35) yields:

P(|d(Hq(xq),A)−dr
M| ≥ θ)≤ |A

r|b(a∗,2q)
Mθ̂ 2q

,

and in case M satisfies the assumption of the theorem, the right-hand side is bounded
above by π as desired. ut


