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Abstract. We present a sound and automated approach to synthesize
safe digital feedback controllers for physical plants represented as linear,
time-invariant models. Models are given as dynamical equations with
inputs, evolving over a continuous state space and accounting for errors
due to the digitization of signals by the controller. Our counterexample
guided inductive synthesis (CEGIS) approach has two phases: We syn-
thesize a static feedback controller that stabilizes the system but that
may not be safe for all initial conditions. Safety is then verified either
via BMC or abstract acceleration; if the verification step fails, a coun-
terexample is provided to the synthesis engine and the process iterates
until a safe controller is obtained. We demonstrate the practical value of
this approach by automatically synthesizing safe controllers for intricate
physical plant models from the digital control literature.

1 Introduction

Linear Time Invariant (LTI) models represent a broad class of dynamical sys-
tems with significant impact in numerous application areas such as life sciences,
robotics, and engineering [4, 13]. The synthesis of controllers for LTI models
is well understood, however the use of digital control architectures adds new
challenges due to the effects of finite-precision arithmetic, time discretization,
and quantization noise, which is typically introduced by Analogue-to-Digital
(ADC) and Digital-to-Analogue (DAC) conversion. While research on digital
control is well developed [4], automated and sound control synthesis is challenging,
particularly when the synthesis objective goes beyond classical stability. There
are recent methods for verifying reachability properties of a given controller [14].
However, these methods have not been generalized to control synthesis. Note
that a synthesis algorithm that guarantees stability does not ensure safety: the
system might transitively visit an unsafe state resulting in unrecoverable failure.

We propose a novel algorithm for the synthesis of control algorithms for
LTI models that are guaranteed to be safe, considering both the continuous
dynamics of the plant and the finite-precision discrete dynamics of the controller,
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as well as the hybrid elements that connect them. We account for the presence
of errors originating from a number of sources: quantisation errors in ADC and
DAC, representation errors (from the discretization introduced by finite-precision
arithmetic), and roundoff and saturation errors in the verification process (from
finite-precision operations). Due to the complexity of such systems, we focus
on linear models with known implementation features (e.g., number of bits,
fixed-point arithmetic). We expect a safety requirement given as a reachability
property. Safety requirements are frequently overlooked in conventional feedback
control synthesis, but play an important role in systems engineering.

We give two alternative approaches for synthesizing digital controllers for
state-space physical plants, both based on CounterExample Guided Inductive
Synthesis (CEGIS) [30]. We prove their soundness by quantifying errors caused
by digitization and quantization effects that arise when the digital controller
interacts with the continuous plant.

The first approach uses a näıve technique that starts by devising a digital
controller that stabilizes the system while remaining safe for a pre-selected time
horizon and a single initial state; then, it verifies unbounded safety by unfolding
the dynamics of the system, considering the full hyper-cube of initial states, and
checking a completeness threshold [17], i.e., the number of iterations required to
sufficiently unwind the closed-loop state-space system such that the boundaries
are not violated for any larger number of iterations. As it requires unfolding up
to the completeness threshold, this approach is computationally expensive.

Instead of unfolding the dynamics, the second approach employs abstract
acceleration [7] to evaluate all possible progressions of the system simultaneously.
Additionally, the second approach uses abstraction refinement, enabling us to
always start with a very simple description regardless of the dynamics complexity,
and only expand to more complex models when a solution cannot be found.

We provide experimental results showing that both approaches are able to
efficiently synthesize safe controllers for a set of intricate physical plant models
taken from the digital control literature: the median run-time for our benchmark
set is 7.9 seconds, and most controllers can be synthesized in less than 17.2 seconds.
We further show that, in a direct comparison, the abstraction-based approach
(i.e., the second approach) lowers the median run-time of our benchmarks by a
factor of seven over the first approach based on the unfolding of the dynamics.

Contributions

1. We compute state-feedback controllers that guarantee a given safety property.
Existing methods for controller synthesis rely on transfer function represen-
tations, which are inadequate to prove safety requirements.

2. We provide two novel algorithms: the first, näıve one, relies on an unfolding
of the dynamics up to a completeness threshold, while the second one is
abstraction-based and leverages abstraction refinement and acceleration
to improve scalability while retaining soundness. Both approaches provide
sound synthesis of state-feedback systems and consider the various sources
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of imprecision in the implementation of the control algorithm and in the
modeling of the plant.

3. We develop a model for different sources of quantization errors and their
effect on reachability properties. We give bounds that ensure the safety of
our controllers in a hybrid continuous-digital domain.

2 Related Work

CEGIS - Program synthesis is the problem of computing correct-by-design
programs from high-level specifications. Algorithms for this problem have made
substantial progress in recent years, for instance [16] to inductively synthesize
invariants for the generation of desired programs.

Program synthesizers are an ideal fit for the synthesis of digital controllers,
since the semantics of programs capture the effects of finite-precision arithmetic
precisely. In [27], the authors use CEGIS for the synthesis of switching controllers
for stabilizing continuous-time plants with polynomial dynamics. The work
extends to affine systems, but is limited by the capacity of the state-of-the-art
SMT solvers for solving linear arithmetic. Since this approach uses switching
models instead of linear dynamics for the digital controller, it avoids problems
related to finite precision arithmetic, but potentially suffers from state-space
explosion. Moreover, in [28] the same authors use a CEGIS-based approach for
synthesizing continuous-time switching controllers that guarantee reach-while-stay
properties of closed-loop systems, i.e., properties that specify a set of goal states
and safe states (constrained reachability). This solution is based on synthesizing
control Lyapunov functions for switched systems that yield switching controllers
with a guaranteed minimum dwell time in each mode. However, both approaches
are unsuitable for the kind of control we seek to synthesize.

The work in [2] synthesizes stabilizing controllers for continuous plants given as
transfer functions by exploiting bit-accurate verification of software-implemented
digital controllers [5]. While this work also uses CEGIS, the approach is restricted
to digital controllers for stable closed-loop systems given as transfer function
models: this results in a static check on their coefficients. By contrast, in the
current paper we consider a state-space representation of the physical system,
which requires ensuring the specification over actual traces of the model, alongside
the numerical soundness required by the effects of discretisation and finite-
precision errors. A state-space model has known advantages over the transfer
function representation [13]: it naturally generalizes to multivariate systems (i.e.,
with multiple inputs and outputs); and it allows synthesis of control systems with
guarantees on the internal dynamics, e.g., to synthesize controllers that make
the closed-loop system safe. Our work focuses on the safety of internal states,
which is usually overlooked in the literature. Moreover, our work integrates an
abstraction/refinement (CEGAR) step inside the main CEGIS loop.

The tool Pessoa [21] synthesizes correct-by-design embedded control software
in a Matlab toolbox. It is based on the abstraction of a physical system to an
equivalent finite-state machine and on the computation of reachability properties
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thereon. Based on this safety specification, Pessoa can synthesize embedded
controller software for a range of properties. The embedded controller software
can be more complicated than the state-feedback control we synthesize, and
the properties available cover more detail. However, relying on state-space dis-
cretization Pessoa is likely to incur in scalability limitations. Along this research
line, [3, 20] studies the synthesis of digital controllers for continuous dynamics,
and [34] extends the approach to the recent setup of Network Control Systems.

Discretization Effects - The classical approach to control synthesis has often
disregarded digitalization effects, whereas more recently modern techniques have
focused on different aspects of discretization, including delayed response [10] and
finite word length (FWL) semantics, with the goal either to verify (e.g., [9]) or
to optimize (e.g., [24]) given implementations.

There are two different problems that arise from FWL semantics. The first is
the error in the dynamics caused by the inability to represent the exact state
of the physical system, while the second relates to rounding and saturation
errors during computation. In [12], a stability measure based on the error of
the digital dynamics ensures that the deviation introduced by FWL does not
make the digital system unstable. A more recent approach [33] uses µ-calculus to
directly model the digital controller so that the selected parameters are stable by
design. The analyses in [29, 32] rely on an invariant computation on the discrete
system dynamics using Semi-Definite Programming (SDP). While the former uses
bounded-input and bounded-output (BIBO) properties to determine stability, the
latter uses Lyapunov-based quadratic invariants. In both cases, the SDP solver
uses floating-point arithmetic and soundness is checked by bounding the error.
An alternative is [25], where the verification of given control code is performed
against a known model by extracting an LTI model of the code by symbolic
execution: to account for rounding errors, an upper bound is introduced in the
verification phase. The work in [26] introduces invariant sets as a mechanism to
bound the quantization error effect on stabilization as an invariant set that always
converges toward the controllable set. Similarly, [19] evaluates the quantization
error dynamics and bounds its trajectory to a known region over a finite time
period. This technique works for both linear and non-linear systems.

3 Preliminaries

3.1 State-space representation of physical systems

We consider models of physical plants expressed as ordinary differential equations
(ODEs), which we assume to be controllable and under full state information
(i.e., we have access to all the model variables):

ẋ(t) = Ax(t) +Bu(t), x ∈ Rn, u ∈ Rm, A ∈ Rn×n, B ∈ Rn×m, (1)

where t ∈ R+
0 , where A and B are matrices that fully specify the continuous

plant, and with initial states set as x(0). While ideally we intend to work on the
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continuous-time plant, in this work Eq. (1) is soundly discretized in time [11] into

xk+1 = Adxk +Bduk (2)

where k ∈ N and x0 = x(0) is the initial state. Ad and Bd denote the matrices that
describe the discretized plant dynamics, whereas A and B denote the continuous
plant dynamics. We synthesize for requirements over this discrete-time domain.
Later, we will address the issue of variable quantization, as introduced by the
ADC/DAC conversion blocks (Fig. 1).
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Fig. 1. Closed-loop digital control system

3.2 Controller synthesis via state feedback

Models (1) and (2) depend on external non-determinism in the form of input
signals u(t) and uk, respectively. Feedback architectures can be employed to
manipulate the properties and behaviors of the continuous process (the plant).
We are interested in the synthesis of digital feedback control algorithms, as
implemented on Field-Programmable Gate Arrays or Digital Signal Processors.
The most basic feedback architecture is the state feedback one, where the control
action uk (notice we work with the discretized signal) is computed by:

uk = rk −Kxk. (3)

Here, K ∈ Rm×n is a state-feedback gain matrix, and rk is a reference signal
(again digital). The closed-loop model then takes the form

xk+1 = (Ad −BdK)xk +Bdrk. (4)

The gain matrix K can be set so that the closed-loop discrete dynamics are shaped
as desired, for instance according to a specific stability goal or around a specific
dynamical behavior [4]. As argued later in this work, we will target more complex
objectives, such as quantitative safety requirements, which are not typical in
the digital control literature. Further, we will embrace the digital nature of the
controller, which manipulates quantized signals as discrete quantities represented
with finite precision.
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3.3 Stability of closed-loop systems

In this work we employ asymptotic stability in the CEGIS loop, as an objective
for guessing controllers that are later proven sound over safety requirements.
Asymptotic stability is a property that amounts to convergence of the model
executions to an equilibrium point, starting from any states in a neighborhood of
the point (see Figure 3 for the portrait of a stable execution, converging to the
origin). In the case of linear systems as in (4), considered with a zero reference
signal, the equilibrium point of interest is the origin.

A discrete-time LTI system as (4) is asymptotically stable if all the roots of its
characteristic polynomial (i.e., the eigenvalues of the closed-loop matrix Ad−BdK)
are inside the unity circle of the complex plane, i.e., their absolute values are
strictly less than one [4] (this simple sufficient condition can be generalised,
however this is not necessary in our work). In this paper, we express this stability
specification φstability in terms of a check known as Jury’s criterion [11]: this is
an easy algebraic formula to select the entries of matrix K so that the closed-loop
dynamics are shaped as desired.

3.4 Safety specifications for dynamical systems

We are not limited to the synthesis of digital stabilizing controllers – a well known
task in the literature on digital control systems – but target safety requirements
with an overall approach that is sound and automated. More specifically, we
require that the closed-loop system (4) meets given safety specifications. A safety
specification gives raise to a requirement on the states of the model, such that the
feedback controller (namely the choice of the gains matrix K) must ensure that
the state never violates the requirement. Note that a stable, closed-loop system
is not necessarily a safe system: indeed, the state values may leave the safe part
of the state space while they converge to the equilibrium, which is typical in the
case of oscillatory dynamics. In this work, the safety property is expressed as:

φsafety ⇐⇒ ∀k ≥ 0.

n∧
i=1

xi ≤ xi,k ≤ xi, (5)

where xi and xi are lower and upper bounds for the i-th coordinate xi of state
x ∈ Rn at the k-th instant, respectively. This means that the states will always
be within an n-dimensional hyper-box.

Furthermore, it is practically relevant to consider the constraints φinput on
the input signal uk and φinit on the initial states x0, which we assume have given
bounds: φinput = ∀k.u ≤ uk ≤ u, φinit =

∧n
i=1 xi,0 ≤ xi,0 ≤ xi,0. For the former,

this means that the control input might saturates in view of physical constraints.

3.5 Numerical representation and soundness

The models we consider have two sources of error that are due to numerical
representation. The first is the numerical error introduced by the fixed-point
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numbers employed to model the plant, i.e., to represent the plant dynamics
Ad, Bd and xk. The second is the quantization error introduced by the digital
controller, which performs operations on fixed-point numbers. In this section we
outline the notation for the fixed-point representation of numbers, and briefly
describe the errors introduced. A formal discussion is in Appendix B.1.

Let F〈I,F 〉(x) denote a real number x represented in a fixed point domain,
with I bits representing the integer part and F bits representing the decimal
part. The smallest number that can be represented in this domain is cm = 2−F .
Any mathematical operations performed at the precision F〈I,F 〉(x) will introduce
errors, for which an upper bound can be given [6].

We will use F〈Ic,Fc〉(x) to denote a real number x represented at the fixed-point
precision of the controller, and F〈Ip,Fp〉(x) to denote a real number x represented
at the fixed-point precision of the plant model (Ic and Fc are determined by the
controller. We pick Ip and Fp for our synthesis such that Ip ≥ Ic and Fp ≥ Fc).
Thus any mathematical operations in our modelled digital controller will be in
the range of F〈Ic,Fc〉, and all other calculations in our model will be carried out
in the range of F〈Ip,Fp〉. The physical plant operates in the reals, which means
our verification phase must also account for the numerical error and quantization
errors caused by representing the physical plant at the finite precision F〈Ip,Fp〉.

Effect on safety specification and stability Let us first consider the effect
of the quantization errors on safety. Within the controller, state values are
manipulated at low precision, alongside the vector multiplication Kx. The inputs
are computed using the following equation:

uk = −(F〈Ic,Fc〉(K) · F〈Ic,Fc〉(xk)).

This induces two types of the errors detailed above: first, the truncation error
due to representing xk as F〈Ic, Fc〉(xk); and second, the rounding error introduced
by the multiplication operation. We represent these errors as non-deterministic
additive noise.

An additional error is due to the representation of the plant dynamics, namely

xk+1 = F〈Ip,Fp〉(Ad)F〈Ip,Fp〉(xk) + F〈Ip,Fp〉(Bd)F〈Ip,Fp〉(uk).

We address this error by use of interval arithmetic [22] in the verification phase.

Previous studies [18] show that the FWL affects the poles and zeros positions,
degrading the closed-loop dynamics, causing steady-state errors (see Appendix B
for details) and eventually de-stabilizing the system [5]. However, since in this
paper we require stability only as a precursor to safety, it is sufficient to check
that the (perturbed, noisy) model converges to a neighborhood of the equilibrium
within the safe set (see Appendix A.1).

In the following, we shall disregard these steady-state errors (caused by FWL
effects) when stability is ensured by synthesis, and then verify its safety accounting
for the finite-precision errors.
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4 CEGIS of Safe Controllers for LTI Systems

In this section, we describe our technique for synthesizing safe digital feedback
controllers using CEGIS. For this purpose, we first provide the synthesizer’s
general architecture, followed by describing our two approaches to synthesizing
safe controllers: the first one is a baseline approach that relies on a näıve unfolding
of the transition relation, whereas the second uses abstraction to evaluate all
possible executions of the system.

4.1 General architecture of the program synthesizer

The input specification provided to the program synthesizer is of the form
∃P.∀a. σ(a, P ), where P ranges over functions (where a function is represented
by the program computing it), a ranges over ground terms, and σ is a quantifier-
free formula. We interpret the ground terms over some finite domain D. The
design of our synthesizer consists of two phases, an inductive synthesis phase
and a validation phase, which interact via a finite set of test vectors inputs
that is updated incrementally. Given the aforementioned specification σ, the
inductive synthesis procedure tries to find an existential witness P satisfying the
specification σ(a, P ) for all a in inputs (as opposed to all a ∈ D). If the synthesis
phase succeeds in finding a witness P , this witness is a candidate solution to the
full synthesis formula. We pass this candidate solution to the validation phase,
which checks whether it is a full solution (i.e., P satisfies the specification σ(a, P )
for all a ∈ D). If this is the case, then the algorithm terminates. Otherwise,
additional information is provided to the inductive synthesis phase in the form of
a new counterexample that is added to the inputs set and the loop iterates again.
More details about the general architecture of the synthesizer can be found in [8].

4.2 Synthesis problem: statement (recap) and connection to
program synthesis

At this point, we recall the the synthesis problem that we solve in this work:
we seek a digital feedback controller K (see Eq. 3) that makes the closed-loop
plant model safe for initial state x0, reference signal rk and input uk as defined
in Sec. 3.4. We consider non-deterministic initial states within a specified range,
the reference signal to be set to zero, saturation on the inputs, and account for
digitization and quantization errors introduced by the controller.

When mapping back to the notation used for describing the general architec-
ture of the program synthesizer, the controller K denotes P , (x0, uk) represents
a and φstability ∧ φinput ∧ φinit ∧ φsafety denotes the specification σ.

4.3 Näıve Approach: CEGIS with multi-staged verification

An overview of the algorithm for controller synthesis is given in Fig. 2. One
important observation is that we verify and synthesize a controller over k time
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1.Synthesize
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Fig. 2. CEGIS with multi-staged verification

steps. We then compute a completeness threshold k [17] for this controller, and
verify correctness for k time steps. Essentially, k is the number of iterations
required to sufficiently unwind the closed-loop state-space system, which ensures
that the boundaries are not violated for any other k>k.

Theorem 1. There exists a finite k such that it is sufficient to unwind the
closed-loop state-space system up to k in order to ensure that φsafety holds.

Proof. A stable control system is known to have converging dynamics. Assume
the closed-loop matrix eigenvalues are not repeated (which is sensible to do, since
we select them). The distance of the trajectory from the reference point (origin)
decreases over time within subspaces related to real-valued eigenvalues; however,
this is not the case in general when dealing with complex eigenvalues. Consider
the closed-loop matrix that updates the states in every discrete time step, and
select the eigenvalue ϑ with the smallest (non-trivial) imaginary value. Between
every pair of consecutive time steps k Ts and (k + 1)Ts, the dynamics projected
on the corresponding eigenspace rotate ϑTs radians. Thus, taking k as the ceiling
of 2π

ϑTs
, after k≥k steps we have completed a full rotation, which results in a

point closer to the origin. The synthesized k is the completeness threshold. ut

Next, we describe the different phases in Fig. 2 (blocks 1 to 4) in detail.

1. The inductive synthesis phase (synthesize) uses BMC to compute a can-
didate solution K that satisfies both the stability criteria (Sec. 3.3) and
the safety specification (Sec. 3.4). To synthesize a controller that satisfies
the stability criteria, we require that a computed polynomial satisfies Jury’s
criterion [11]. The details of this calculation can be found in the Appendix.
Regarding the second requirement, we synthesize a safe controller by unfolding
the transition system k steps and by picking a controller K and a single
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initial state, such that the states at each step do not violate the safety criteria.
That is, we ask the bounded model checker if there exists a K that is safe
for at least one x0 in our set of all possible initial states. This is sound if the
current k is greater than the completeness threshold. We also assume some
precision 〈Ip, Fp〉 for the plant and a sampling rate. The checks that these
assumptions hold are performed by subsequent verify stages.

Algorithm 1 Safety check

1: function safetyCheck()
2: assert(u ≤ u ≤ u)
3: set x0 to be a vertex state, e.g., [x0, x0]
4: for (c = 0; c < 2Num States ; c++) do
5: for (i = 0; i < k; i++) do
6: u = (plant typet)((controller typet)K ∗ (controller typet)x)
7: x = A ∗ x+B ∗ u
8: assert(x ≤ x ≤ x )
9: end for

10: set x0 to be a new vertex state
11: end for
12: end function

2. The first verify stage, safety, checks that the candidate solution K, which
we synthesized to be safe for at least one initial state, is safe for all possible
initial states, i.e., does not reach an unsafe state within k steps where
we assume k to be under the completeness threshold. After unfolding the
transition system corresponding to the previously synthesized controller k
steps, we check that the safety specification holds for any initial state. This
is shown in Alg. 1.

3. The second verify stage, precision, restores soundness with respect to the
plant’s precision by using interval arithmetic [22] to validate the operations
performed by the previous stage.

4. The third verify stage, complete, checks that the current k is large enough
to ensure safety for any k′>k. Here, we compute the completeness threshold
k for the current candidate controller K and check that k≥k. This is done
according to the argument given above and illustrated in Fig. 3.

Checking that the safety specification holds for any initial state can be
computationally expensive if the bounds on the allowed initial states are large.

Theorem 2. If a controller is safe for each of the corner cases of our hypercube
of allowed initial states, it is safe for any initial state in the hypercube.

Thus we only need to check 2n initial states, where n is the dimension of the
state space (number of continuous variables).

Proof. Consider the set of initial states, X0, which we assume to be convex since
it is a hypercube. Name vi its vertexes, where i = 1, . . . , 2n. Thus any point
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Fig. 3. Completeness threshold for multi-staged verification. Ts is the time step for the
time discretization of the control matrices.

x ∈ X0 can be expressed by convexity as x =
∑2n

i=1 αivi, where
∑2n

i=1 αi = 1.
Then if x0 = x, we obtain

xk = (Ad −BdK)kx = (Ad −BdK)k
2n∑
i=1

αivi =

2n∑
i=1

αi(Ad −BdK)kvi =

2n∑
i=1

αix
i
k,

where xik denotes the trajectories obtained from the single vertex vi. We conclude
that any k-step trajectory is encompassed, within a convex set, by those generated
from the vertices. ut

Illustrative Example We illustrate our approach with an example, extracted
from [13]. Since we have not learned any information about the system yet, we
pick an arbitrary candidate solution (we always choose K = [0 0 0]T in our
experiments to simplify reproduction), and a precision of Ip = 13, Fp = 3. In the
first verify stage, the safety check finds the counterexample x0 = [−0.5 0.5 0.5].
After adding the new counterexample to its sets of inputs, synthesize finds the
candidate solution K = [0 0 0.00048828125]T , which prompts the safety verifier
to return x0 = [−0.5 − 0.5 − 0.5] as the new counterexample.

In the subsequent iteration, the synthesizer is unable to find further suitable
candidates and it returns UNSAT, meaning that the current precision is insuf-
ficient. Consequently, we increase the precision the plant is modelled with to
Ip = 17, Fp = 7. We increase the precision by 8 bits each step in order to be
compliant with the CBMC type API. Since the previous counterexamples were
obtained at lower precision, we remove them from the set of counterexamples.
Back in the synthesize phase, we re-start the process with a candidate solution
with all coefficients 0. Next, the safety verification stage provides the first
counterexample at higher precision, x0 = [−0.5 0.5 0.5] and synthesize finds
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K = [0 0.01171875 0.015625]T as a candidate that eliminates this counterexample.
However, this candidate triggers the counterexample x0 = [0.5 −0.5 −0.5] found
again by the safety verification stage. In the next iteration, we get the candidate
K = [0 0 − 0.015625], followed by the counterexample x0 = [0.5 0.5 0.5]. Finally,
synthesize finds the candidate K = [0.01171875 −0.013671875 −0.013671875]T ,
which is validated as a final solution by all verification stages.

4.4 Abstraction-based CEGIS

The näıve approach described in Sec. 4.3 synthesizes a controller for an indi-
vidual initial state and input with a bounded time horizon and, subsequently,
it generalizes it to all reachable states, inputs, and time horizons during the
verification phase. Essentially, this approach relies on the symbolic simulation
over a bounded time horizon of individual initial states and inputs that form
part of an uncountable space and tries to generalize it for an infinite space over
an infinite time horizon.

Conversely, in this section, we find a controller for a continuous initial set
of states and set of inputs, over an abstraction of the continuous dynamics [7]
that conforms to witness proofs at specific times. Moreover, this approach uses
abstraction refinement enabling us to always start with a very simple description
regardless of the complexity of the overall dynamics, and only expand to more
complex models when a solution cannot be found.

The CEGIS loop for this approach is illustrated in Fig. 4.

1. We start by doing some preprocessing:

(a) Compute the characteristic polynomial of the matrix (Ad − BdK) as
Pa(z) = zn +

∑n
i=1 (ai − ki)zn−i.

(b) Calculate the noise set N from the quantizer resolutions and estimated
round-off errors:

N =
{
ν1 + ν2 + ν3 : ν1 ∈

[
−q1

2

q1

2

]
∧ ν2 ∈

[
−q2

2

q2

2

]
∧ ν3 ∈ [−q3 q3]

}
where q1 is the error introduced by the truncation in the ADC, q2 is the
error introduced by the DAC and q3 is the maximum truncation and
rounding error in uk = −K ·F〈Ic,Fc〉(xk) as discussed in Section 3.5. More
details on how to model quantization as noise are given in Appendix B.2.

(c) Calculate a set of initial bounds onK, φKinit , based on the input constraints

(φinit ∧ φinput ∧ uk = −Kxk)⇒ φKinit

Note that these bounds will be used by the synthesize phase to reduce
the size of the solution space.

2. In the synthesize phase, we synthesize a candidate controller K ∈ R〈Ic, Fc〉n
that satisfies φstability ∧ φsafety ∧ φKinit by invoking a SAT solver. If there is
no candidate solution we return UNSAT and exit the loop.
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3. Once we have a candidate solution, we perform a safety verification of the
progression of the system from φinit over time, xk |= φsafety . In order to
compute the progression of point x0 at iteration k, we accelerate the dynamics
of the closed-loop system and obtain:

x =(Ad −BdK)kx0 +

k−1∑
i=0

(Ad −BdK)iBn(ν1 + ν2 + ν3) : Bn = [1 · · · 1]T (6)

As this still requires us to verify the system for every k up to infinity, we
use abstract acceleration again to obtain the reach-tube, i.e., the set of all
reachable states at all times given an initial set φinit :

X̂# = AX0 + BnN, X0 = {x : x |= φinit} , (7)

where A =
⋃∞
k=1(Ad − BdK)k,Bn =

⋃∞
k=1

∑k
i=0(Ad − BdK)iBn are ab-

stract matrices for the closed-loop system [7], whereas the set N is non-
deterministically chosen.
We next evaluate X̂# |= φsafety . If the verification holds we have a solution,
and exit the loop. Otherwise, we find a counterexample iteration k and
corresponding initial point x0 for which the property does not hold, which we
use to locally refine the abstraction. When the abstraction cannot be further
refined, we provide them to the abstract phase.

4. If we reach the abstract phase, it means that the candidate solution is not
valid, in which case we must refine the abstraction used by the synthesizer.
(a) Find the constraints that invalidate the property as a set of counterex-

amples for the eigenvalues, which we define as φΛ. This is a constraint in
the spectrum i.e., transfer function) of the closed loop dynamics.

(b) We use φΛ to further constrain the characteristic polynomial zn +∑n
i=1(ai − ki)z

n−i =
∏n
i=1(z − λi) : |λi| < 1 ∧ λi |= φΛ. These con-

straints correspond to specific iterations for which the system may be
unsafe.

(c) Pass the refined abstraction φ(K) with the new constraints and the list
of iterations k to the synthesize phase.

Illustrative Example Let us consider the following example with discretized
dynamics

Ad =

2.6207 −1.1793 0.65705
2 0 0
0 0.5 0

 , Bd =

8
0
0


Using the initial state bounds x0 = −0.9 and x0 = 0.9, the input bounds
u = −10 and u = 10, and safety specifications xi = −0.92 and xi = 0.92,
the synthesize phase in Fig. 4 generates an initial candidate controller K =
[ 0.24609375 −0.125 0.1484375 ]. This candidate is chosen for its closed-loop stable
dynamics, but the verify phase finds it to be unsafe and returns a list of iterations
with an initial state that fails the safety specification (k, x0)∈{(2, [ 0.9 −0.9 0.9 ]),
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(3, [ 0.9 −0.9 −0.9 ])}. This allows the abstract phase to create a new safety
specification that considers these iterations for these initial states to constrain
the solution space. This refinement allows synthesize to find a new controller
K = [ 0.23828125 −0.17578125 0.109375 ], which this time passes the verification
phase, resulting in a safe system.

1. pre-
processing

4. abstract

2. synthesize 3. verify (φ)

PASS
Done

Program
Search

Abstract
Acceleration

Abstraction
Verifier

Pa, N ,
φk
init

(φ(K), k)

K

K (φ(K), k)

X̂#

(k, x0)

X̂#K

(k, x0)

Fig. 4. Abstraction-based CEGIS

5 Experimental Evaluation

5.1 Description of the benchmarks

A set of state-space models for different classes of systems has been taken from
the literature [1, 13,23,31] and employed for validating our methodology.

DC Motor Rate plants describes the angular velocity of a DC Motor, respec-
tively. The Automotive Cruise System plant represents the speed of a motor
vehicle. The Helicopter Longitudinal Motion plant provides the longitudinal mo-
tion model of a helicopter. The Inverted Pendulum plant describes a pendulum
model with its center of mass above its pivot point. The Magnetic Suspension
plant provides a physical model for which a given object is suspended via a mag-
netic field. The Magnetized Pointer plant describes a physical model employed in
analogue gauges and indicators that is rotated through interaction with magnetic
fields. The 1/4 Car Suspension plant presents a physical model that connects a
car to its wheels and allows relative motion between the two parts. The Computer
Tape Driver plant describes a system to read and write data on a storage device.

Our benchmarks are SISO models (Section 3). The Inverted Pendulum appears
to be a two-output system, but it is treated as two SISO models during the
experiments. All the state measurements are assumed to be available (current
work targets the extension of our framework to observer-based synthesis).

All benchmarks are discretized with different sample times [11]. All experi-
ments are performed considering xi = −1 and xi = 1 and the reference inputs
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rk = 0,∀k > 0. We conduct the experimental evaluation on a 12-core 2.40 GHz
Intel Xeon E5-2440 with 96 GB of RAM and Linux OS. We use the Linux times
command to measure CPU time used for each benchmark. The runtime is limited
to one hour per benchmark.

5.2 Objectives

Using the state-space models given in Section 5.1, our evaluation has the following
two experimental goals:

EG1 (CEGIS) Show that both the multi-staged and the abstraction-based CEGIS
approaches are able to generate FWL digital controllers in a reasonable
amount of time.

EG2 (sanity check) Confirm the stability and safety of the synthesized controllers
outside of our model.

5.3 Results

We provide the results in Table 1. Here Benchmark is the name of the respective
benchmark, Order is the number of continuous variables, F〈Ip,Fp〉 is the fixed-
point precision used to model the plant, while Time is the total time required to
synthesize a controller for the given plant with one of the two methods. Timeouts
are indicated by 7. The precision for the controller, F〈Ic,Fc〉, is chosen to be
Ic = 8, Fc = 8.

For the majority of our benchmarks, we observe that the abstraction-based
back-end is faster than the basic multi-staged verification approach, and finds one
solution more (9) than the multi-staged back-end (8). In direct comparison, the
abstraction-based approach is on average able to find a solution in approximately
70% of the time required using the multi-staged back-end, and has a median
run-time 1.4 s, which is seven times smaller than the multi-staged approach. The
two back-ends complement each other in benchmark coverage and together solve
all benchmarks in the set. On average our engine spent 52% in the synthesis and
48% in the verification phase.

The median run-time for our benchmark set is 9.4 s. Overall, the average
synthesis time amounts to approximately 15.6 s. We consider these times short
enough to be of practical use to control engineers, and thus affirm EG1.

There are a few instances for which the system fails to find a controller. For
the näıve approach, the completeness threshold may be too large, thus causing a
timeout. On the other hand, the abstraction-based approach may require a very
precise abstraction, resulting in too many refinements and, consequently, in a
timeout. Yet another source of incompleteness is the inability of the synthesize
phase to use a large enough precision for the plant model.

The synthesized controllers are confirmed to be safe outside of our model
representation using MATLAB, achieving EG2. A link to the full experimental
environment, including scripts to reproduce the results, all benchmarks and
the tool, is provided in the footnote as an Open Virtual Appliance (OVA).3

3 www.cprover.org/DSSynth/controller-synthesis-cav-2017.tar.gz
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# Benchmark Order Multi-staged Abstraction
F〈Ip,Fp〉 Time F〈Ip,Fp〉 Time

1 Cruise Control 1 8,16 8.40 s 16,16 2.17 s
2 DC Motor 2 8,16 9.45 s 20,20 2.06 s
3 Helicopter 3 7 7 16,16 1.37 s
4 Inverted Pendulum 4 8,16 9.65 s 16,16 0.56 s
5 Magnetic Pointer 2 7 7 28,28 44.14 s
6 Magnetic Suspension 2 12,20 10.41 s 16,16 0.61 s
7 Pendulum 2 8,16 14.02 s 16,16 0.60 s
8 Suspension 2 12,20 73.66 s 7 7

9 Tape Driver 3 8,16 10.10 s 16,16 68.24 s
10 Satellite 2 8,16 9.43 s 16,16 0.67 s

Table 1. Experimental results

The provided experimental environment runs multiple discretisations for each
benchmark, and lists the fastest as the result synthesis time.

5.4 Threats to validity

Benchmark selection: We report an assessment of both our approaches over a
diverse set of real-world benchmarks. Nevertheless, this set of benchmarks is
limited within the scope of this paper and the performance may not generalize
to other benchmarks.
Plant precision and discretization heuristics: Our algorithm to select suitable
FWL word widths to model the plant behavior increases the precision by 8 bits
at each step in order to be compliant with the CBMC type API. Similarly, for
discretization, we run multiple discretizations for each benchmark and retain the
fastest run. This works sufficiently well for our benchmarks, but performance
may suffer in some cases, for example if the completeness threshold is high.
Abstraction on other properties: The performance gain from abstract acceleration
may not hold for more complex properties than safety, for instance “eventually
reach and always remain in a given safe set”.

6 Conclusion

We have presented two automated approaches to synthesize digital state-feedback
controllers that ensure both stability and safety over the state-space representa-
tion. The first approach relies on unfolding of the closed-loop model dynamics up
to a completeness threshold, while the second one applies abstraction refinement
and acceleration to increase speed whilst retaining soundness. Both approaches
are novel within the control literature: they give a fully automated synthesis
method that is algorithmically and numerically sound, considering various error
sources in the implementation of the digital control algorithm and in the compu-
tational modeling of plant dynamics. Our experimental results show that both
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approaches are able to synthesize safe controllers for most benchmarks within a
reasonable amount of time fully automatically. In particular, both approaches
complement each other and together solve all benchmarks, which have been
derived from the control literature.

Future work will focus the extension of these approaches to the continuous-
time case, to models with output-based control architectures (with the use of
observers), and to the consideration of more complex specifications.
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A Stability of Closed-loop Models

A.1 Stability of closed-loop models with fixed-point controller error

The proof of Jury’s criterion [11] relies on the fact that the relationship between
states and next states is defined by xk+1 = (Ad−BdK)xk, all computed at infinite
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precision. When we employ a FWL digital controller, the operation becomes:

xk+1 = Ad · xk − (F〈Ic,Fc〉(K) · F〈Ic,Fc〉(xk)).

xk+1 = (Ad −BdK) · xk +BdKδ,

where δ is the maximum error that can be introduced by the FWL controller in
one step, i.e., by reading the states values once and multiplying by K once. We
derive the closed form expression for xn as follows:

x1 = (Ad −BdK)x0 +BdKδ

x2 = (Ad −BdK)2x0 + (Ad −BdK)BdKδ +BdKδ

xn = (Ad −BdK)nx0 + (Ad −BdK)n−1BdKδ + ...+ (Ad −BdK)1BdKδ +BdKδ

= (Ad −BdK)nx0 +

i=n−1∑
i=0

(Ad −BdK)iBdkδ.

The definition of asymptotic stability is that the system converges to a
reference signal, in this case we use no reference signal so an asymptotically
stable system will converge to the origin. We know that the original system with
an infinite-precision controller is stable, because we have synthesized it to meet
Jury’s criterion. Hence, (Ad −BdK)nx0 must converge to zero.

The power series of matrices converges [15] iff the eigenvalues of the matrix
are less than 1 as follows:

∑∞
i=0 T

i = (I − T )−1, where I is the identity matrix
and T is a square matrix. Thus, our system will converge to the value

0 + (I −Ad +BdK)−1Bdkδ .

As a result, if the value (I − Ad + BdK)−1Bdkδ is within the safe space, then
the synthesized fixed-point controller results in a safe closed-loop model. The
convergence to a finite value, however, will not make it asymptomatically stable.

B Errors in LTI models

B.1 Errors due to numerical representation

We have used F〈I,F 〉(x) denote a real number x represented in a fixed point
domain, with I bits representing the integer part and F bits representing the
decimal part. The smallest number that can be represented in this domain
is cm = 2−F . The following approximation errors will arise in mathematical
operations and representation:

1. Truncation: Let x be a real number, and F〈I,F 〉(x) be the same number
represented in a fixed-point domain as above. Then F〈I,F 〉(x) = x− δT where
the error δT = x %cm x̃, and %cm is the modulus operation performed on
the last bit. Thus, δT is the truncation error and it will propagate across
operations.



20 Abate et al.

2. Rounding: The following errors appear in basic operations. Let c1, c2 and
c3 be real numbers, and δT1 and δT2 be the truncation errors caused by
representing c1 and c2 in the fixed-point domain as above.
(a) Addition/Subtraction: these operations only propagate errors coming

from truncation of the operands, namely F〈I,F 〉(c1)±F〈I,F 〉(c2) = c3 +δ3
with |δ3| ≤ |δT1|+ |δT2|.

(b) Multiplication: F〈I,F 〉(c1)·F〈I,F 〉(c2) = c3+δ3 with |δ3| ≤ |δT1·F〈I,F 〉(c2)|
+ |δT2 · F〈I,F 〉(c1)|+ cm, where cm = 2−F as above.

(c) Division: the operations performed by our controllers in the FWL domain
do not include division. However, we do use division in computations at
the precision of the plant. Here the error depends on whether the divisor
is greater or smaller than the dividend: F〈I,F 〉(c1)/F〈I,F 〉(c2) = c3 + δT3

where δT3 is (δT2 · c1 − δT1 · c2)/(δ2
T2 − δT2c2),

3. Overflow: The maximum size of a real number x that can be represented in
a fixed point domain as F〈I,F 〉(x) is ±(2I−1 + 1 − 2−F ). Numbers outside
this range cannot be represented by the domain. We check that overflow does
not occur.

B.2 Modeling quantization as noise

During any given ADC conversion, the continuous signal will be sampled in the
real domain and transformed by F〈Ic, Fc〉(x) (assuming the ADC discretization
is the same as the digital implementation). This sampling uses a threshold which
is defined by the less significant bit (qc = cmc

= 2−Fc) of the ADC and some
non-linearities of the circuitry. The overall conversion is

F〈Ic, Fc〉(y(t)) = yk : yk ∈
[
y(t)− qc

2
y(t) +

qc
2

]
.

If we denote the error in the conversion by νk = yk − y(t) where t = nk, and n is
the sampling time and k the number of steps, then we may define some bounds
for it νk ∈ [− qc2

qc
2 ].

We will assume, for the purposes of this analysis, that the domain of the ADC
is that of the digital controller (i.e, the quantizer includes any digital gain added
in the code). The process of quantization in the DAC is similar except that it is
calculating F〈Idac, Fdac〉(F〈Ic, Fc〉(x)). If these domains are the same (Ic = Idac,
Fc = Fdac), or if the DAC resolution in higher than the ADCs, then the DAC
quantization error is equal to zero. From the above equations we can now define
the ADC and DAC quantization noises ν1k ∈ [− q12

q1
2 ] and ν2k ∈ [− q22

q2
2 ], where

q1 = qc and q2 = qdac . This is illustrated in Fig. 3.2 where Q1 is the quantizer of
the ADC and Q2 the quantizer for the DAC. These bounds hold irrespective of
whether the noise is correlated, hence we may use them to over-approximate the
noise effect on the state space progression over time. The resulting dynamics are

xk+1 = Adxk +Bd(uk + ν2k), uk = −Kxk + ν1k,

which result in the following closed-loop dynamics:

xk+1 = (Ad −BdKd)xk +Bdν2k + ν1k .


