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Abstract. Increasingly many industrial spheres are enforced by law to
satisfy strict RAMS requirements—reliability, availability, maintainabil-
ity, and safety. Applied to Fault Maintenance Trees (FMTs), formal
methods offer flexible and trustworthy techniques to quantify the re-
silience of (abstract models of) systems. However, the estimated metrics
are relevant only as far as the model reflects the actual system: Refining
an abstract model to reduce the gap with reality is crucial for the use-
fulness of the results. In this work, we take a practical approach at the
challenge by studying a Heating, Ventilation and Air-Conditioning unit
(HVAC), ubiquitous in smart buildings. Using probabilistic and statisti-
cal model checking, we assess RAMS metrics of a basic fault maintenance
tree HVACmodel. We then implement four modifications augmenting the
expressivity of the FMT model, and show that reliability, availability, ex-
pected number of failures, and costs, can vary by orders of magnitude
depending on involved modelling details.

Keywords: Fault Maintenance Trees, Reliability, Availability, Mainte-
nance, Model Checking, PMC, SMC, Smart Buildings, HVAC.

1 Introduction

The current rapid momentum in the number of available sensing devices and
the advances in communication technologies has resulted in a growing interest
towards making things “smart.” This shift has not escaped the building sector,
where engineers and researchers are working towards a new type of building
termed smart buildings. These are equipped with sensors to deliver services that
are cost effective, compliant with rams—reliability, availability, maintainabil-
ity, and safety—requirements, ubiquitous, and ensuring occupant comfort and
productivity, e.g. proper temperature and high air quality. A key element is the
correct application of timely and cost-effective maintenance: Comfort and cor-
rect building operation, i.e. reliable and dependable, can be maintained only as
long as the components are available and operating with sufficient performance.
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In this work we focus on the Heating, Ventilation and Air-Conditioning unit
(hvac) of a smart building, whose optimised operation is essential for the cor-
rect running of the premises. Early fault detection and maintenance can improve
the lifespan and reliability of an hvac. In the literature, maintenance can be
optimised following different methods—see e.g. [17]. Fault maintenance trees
(fmt, [19]) are a novel technique to model and analyse systems, which allow
planning maintenance strategies to balance costs and system (failure) resilience.
fmts extend dynamic fault trees (dft, [11]) encompassing degradation and
maintenance concepts. Degradation modelling represents component health de-
cay via elemental modules known as Extended Basic Events. Maintenance mod-
elling incorporates different maintenance concepts like inspections, repairs, and
replacements. Typically, fmt analysis is performed via statistical model check-
ing (smc, [19]). Analysing (smart buildings using) fmts via probabilistic model
checking (pmc) was introduced in [5]. In that work, component degradation of
an hvac is discretised in time using phases, with a stepwise degradation be-
haviour approximated via Erlang distributions, and using inspection and repair
modules to regulate maintenance actions.

Standing on the fmt model framework introduced in [5], in the following
sections we present a sequence of modelling setups which extend the central
case study of that work. We enhance the modelling and analysis of the hvac
fmt by adding realistic flavours, to attune the maintenance policies towards
their application in the real world. To that aim, we first perform an encoding of
the fmt in terms of continuous-time Markov chains and priced time automata,
which we then respectively analyse using pmc and smc. For each technique we
highlight the trade-offs and limitations encountered. From that basis, we extend
the fmt model in four stages: First, we individualise maintenance actions and
make a clear distinction between cleans and repairs. Second, we drop the Erlang
approximation of time periods in lieu of truly deterministic intervals. Third, we
model component redundancy by introducing spare gates for some elements of
the hvac. Fourth and last, we refine the degradation of some extended basic
events to follow a continuous stochastic (generalised) behaviour.

We use both pmc and smc to analyse the first two modelling setups, i.e. the
basic setting and the first extension; for all other extensions we use only smc.
pmc explores all states of the model (relevant for the current property query)
and does not need statistical bounds to decide convergence. In contrast, smc
uses statistical theory to infer conclusions with arbitrary levels of confidence
and precision. On each stage we demonstrate the implications and the result-
ing modifications needed for analysing system reliability, availability, expected
number of failures, and the total costs. We also delineate the impact on these
key performance indicators w.r.t. the previous models.

This article has the following structure: Sec. 2 presents the fundamental
theoretical basis; Sec. 3 introduces the central case study, an hvac unit, where
the root hvac model inspired in [5] is presented in Sec. 3.1; The four modelling
extensions are introduced and analysed in Secs. 3.2 to 3.5; Sec. 4 concludes this
work and outlines possible tracks of future research.
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2 Preliminaries

Fault Maintenance Trees. Fault trees are directed acyclic graphs describing
combinations of failures in system components, that can lead to a system failure
or Top Level Event (tle) at the root of the tree [21]. The leaves in fault trees
are basic events which denote atomic component failures, typically following the
exponential distribution. The internal nodes or gates describe how failures in
basic events and lower level gates interact, as they propagate towards the tle.
The internal events are labelled as intermediate events (ie). Each gate models
a different interaction: to propagate a failure, and gates require all children to
fail, or gates require any child to fail, etc. [20]. In standard fault trees a closed-
form solution exists for many rams metrics, provided the exact distributions
of the basic events are known. Dynamic fault trees introduce gates with time- or
order-dependent behaviour for which this is no longer true [22]. For instance, the
children in priority-and gates are ordered, and the gate fails if all children fail
from left to right. Other than fmts, there seems to be relatively scarce litera-
ture on dfts that support component health decay combined with preventive
maintenance, e.g. acting before component failure [20]. In [13] a tool is presented
to compute rams metrics from dfts in the presence of a maintenance policy.
fmts offer a formalism for this: They are a superset of dfts which can model
and assess various maintenance concepts [19]. Extensions over dfts include:

– Extended Basic Events (ebes): basic events whose failures follow an Erlang
distribution. Its stepwise degradation allows identifying light decay, allowing
restorations before an actual failure (that may trigger a tle) occurs;

– Repair Modules (rm): perform periodic checks that can trigger maintenance
actions. This encompasses with the phased degradation of ebes, allowing
early detection of degradation and potentially cheaper maintenance, as op-
posed to repair boxes that can repair a component only after it has failed.

Metrics. To measure compliance with rams requirements, it is common to set
a time horizon T > 0 and quantify failures in the time window [0, T ]. Mainte-
nance is also a cost-driven concept, hence the operational and maintenance costs
incurred within the time window provide further insight on how well the system
is performing. The following Key Performance Indicators (kpis) are commonly
used to assess system resilience in the presence of maintenance actions:

– Reliability at time T is the probability of not observing a system failure, i.e.
a tle, in the time window [0, T ];

– Availability at time T is the proportion of time that the system is not failed
in the time window [0, T ];

– Expected number of failures (enf) at time T is the expected number of
times a tle is observed in the time window [0, T ];

– Expected cost at time T is the total expected cost incurred in the time win-
dow, including operational and maintenance costs (such as costs associated
with system inspections and repair of components).
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Modelling and analysis of fmts. fmts can be given semantics via Bayesian
networks, generalised stochastic Petri nets, etc. [14]. We use continuous-time
Markov chains (ctmc) and priced time automata (pta): two widely extended
modelling formalisms with rich tool support, whose expressiveness meets our
modelling requirements. For these semantics, the kpis of interest can be quan-
tified via quantitative model checking [7], a well-established formal verification
technique used to verify the correctness of finite-state automata. Model checking
algorithms take as input (i) a formal model of the system, usually some type of
labelled automaton, and (ii) the property queries to verify, usually expressed in
terms of a temporal logic. To check whether the model satisfies a property, the
algorithms explore exhaustively and automatically all (reachable) states. Quan-
titative model checking is a broad field that comes in different flavours [8]. In
particular we use two (complementary) techniques to analyse our models:

– Probabilistic model checking (pmc, [15]) performs a state space analysis
in probabilistic (finite) state automata. These are usually state transition
models like ctmc, with probability as transitions rates and labels on the
transitions and the states. A probabilistic model checker computes the proba-
bilities of reaching certain states, or the expected reward over a time horizon.

– Statistical model checking (smc, [24]) samples finitely many runs of “model
behaviour,” typically execution traces, and uses statistical analysis to esti-
mate an answer to the query from such (random) sample, where the proba-
bility of converging to an incorrect answer can be arbitrarily bounded.

Thus, using pmc/smc one can analyse e.g. ctmc/pta models of an fmt,
computing (approximate) values for the relevant kpis, which serve to assess the
resilience and rams compliance of the modelled system.

3 Fault Maintenance Tree model of an HVAC system

This work is centred around a Heating, Ventilation and Air-Conditioning unit
(hvac) that regulates the internal environment in smart buildings. hvacs offer
a decomposition in subsystems fitting nicely the fmt approach. The concrete
model studied is taken from [5]: Fig. 1 shows a visual description of the setup.

Fig. 1: hvac system schematic [5].

The hvac is divided in two circuits, one
for air and the other for water flow. Two
valves in the water circuit, one for the sup-
ply air heating coil and one for the radia-
tors, control the water flow rate. A boiler
heats up the supply water, which is then
transferred into the heating coil and the
radiators. The radiators transfer the wa-
ter heat directly into the room (or zone).
The return water goes through the collector
back towards the boiler. In the air circuit,
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the mixer blends outside air with zone air. This goes to the heating coil to warm
it up to the desired temperature. The air is then sent back into the zone via the
supply fan, at a rate controlled by the Air Handling Unit dampers (ahu).

In smart buildings, comfort and running costs depend heavily on the proper
functioning of the hvac unit. Moreover, these are complex machines that can
fail in various ways, and repairs can be quite costly. The trade-off between system
performance and maintenance costs offers a rich scenario to model with fmts,
and to analyse with model checking in order to estimate relevant kpi metrics.

The degree of confidence in, and utility of, the computed metrics is a function
of the realism of the underlying model. With that motivation, the next sections
present five (incremental) versions of the hvac, using fmt models to measure
kpis. We start from the basic case in Sec. 3.1, which mainly corresponds to
the model presented in [5]. In Sec. 3.2 we enhance the model by refining the
maintenance actions. In those two setups deterministic time delays are emulated
via Erlang distributions: In Sec. 3.3 we use true deterministic delays instead.
Finally, in Sec. 3.4 we introduce component redundancy by means of spare gates,
and in Sec. 3.5 we model ebe degradation using continuous stochastic functions.

3.1 hvac-0: The basic setting

In [5], hvac failures can derive from malfunctions in the heating coil, the supply
fan, or the radiators. Similarly, here we decompose the hvac fmt into the
failures affecting its subsystems; see Fig. 2a for a graphical description. The
leaves of the tree are ebes whose degradation behaviour is detailed in Fig. 2b.
Values for N and mttf, which are the number of degradation phases and
mean time to failure respectively, are obtained from [2, 12] and are based on a
real dataset of measurements on an hvac system. For instance, ebe 1 models
the failure of the ahu via a random variable with distribution Erlang(4, 4/20).

We label the degradation phases (states) of ebes to allow differentiated
maintenance actions. With new we label the initial phase of an ebe, correspond-
ing to perfect condition. With failed we label the last phase, e.g. phase 4 for
ebe 1, corresponding to a failure that may propagate in the tree. With thresh
we label all other phases to indicate a degraded—but still functional—condition.

The maintenance policies modelled in [5] distinguish between inspections,
repair checks, and overhauls, which in our setting take place every half, two, and
fifteen years respectively. Deterministic time delays, e.g. for performing these
periodic maintenance checks, are emulated via Erlang distributions. Overhauls
trigger a replace action that renews the whole hvac, sending all ebes back
to their states representing the new phase. Replace actions take one week to
complete. Instead, inspections and repair checks can trigger a clean action, that
reverts one degradation phase in all the ebes. Clean actions take one day to
complete. When an inspection takes place, a clean is triggered if any ebe is in a
thresh state. Similarly, a clean is triggered if any ebe is in a thresh or failed
state during a repair check. Maintenance actions act on all ebes: A clean sends
all ebes back one degradation phase—except those in a new state. Notice these
semantics are a modelling choice and not a general characteristic of fmts.
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Fig. 2: fmt of hvac-0

Failure of
HVAC unit

No heating

7 8

Failure of
heating coil

2 3 4

Failure of
supply fan

Reduced capacity

1 5 6

Insufficient radiator
output power

(a) fmt leaves are ebes, ies reflect the sub-
system affected by failures in the children.

ebe
id

Failure
mode N

mttf
(years)

1 AHU damper broken 4 20

2 Fan motor failure 3 35

3 Supply fan obstructed 4 31

4 Fan bearing failure 6 17

5 Radiator failure 4 25

6 Radiator stuck valve 2 10

7 Heater stuck valve 2 10

8 Heat pump failure 4 20

(b) Detailed ebes; degrada-
tion values from [2,12].

The total costs incurred are divided into operational and maintenance costs.
Operational costs accrue e 1 per day of system uptime and e 4 per day of system
downtime. Maintenance costs are e 5000 per replace action triggered, e 100 per
clean action triggered, and e 5 per periodic inspection. Repair checks and over-
hauls incur no additional costs when they take place. These values are based on
previous research and expert-knowledge applied to an industrial case study [6].

In [5], the hvac fmt is modelled using a ctmc with rewards, and the
kpis are computed with pmc via the prism model checker [16]. A state-space
reduction technique is devised to build “an equivalent abstract ctmc,” allowing
prism to analyse the whole model and estimate (an approximation of) the met-
rics. We reproduce that approach for hvac-0, and extend the analysis repertoire
with smc via the uppaal tool [9]. smc estimates confidence intervals rather
than point values like pmc does. Once a confidence level and termination ep-
silon have been set for smc and pmc respectively, the results yielded by these
techniques coincide if the smc interval contains the pmc value.

uppaal operates with ptas, a proper superset of ctmc that can encode
(general) stochastic and non-linear dynamic behaviour. To substantiate the se-
mantic coincidence of the models encoded in both tools, we first study subsys-
tems of hvac-0 for which the non-reduced (exact) prism model (i.e. without
the state-space reduction technique devised in [5]) can be analysed.

In Fig. 3a we show the metrics for five time horizons in the largest of these
subsystems, where only ebes 2, 3, and 4 (i.e. the supply fan subsystem) are
missing from the model of Fig. 2a. The metrics coincide between smc and pmc
exact, and differ slightly (as expected) for pmc reduced, i.e. using the abstract
ctmc. When studying the full system, pmc exact cannot be used due to the
state space explosion and the physical memory constraints [5,15]. Thus only smc
and pmc reduced can be compared, for which a difference as that observed in
Fig. 3a is expected. This is corroborated in the full system analysis of hvac-0,
as it can be observed in Fig. 3b. The metrics for the total costs are not shown
due to space constrains but they exhibit the same trends.
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Fig. 3: Comparative model checking for fmt of hvac-0
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(a) Metrics for hvac-0 (no supply fan): smc, pmc exact and pmc reduced
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(b) Metrics for hvac-0 (full system): smc and pmc reduced

In Fig. 3a, reliability and enf values for smc are lower than for pmc
reduced, whereas in Fig. 3b they are higher. This is due to an interplay between
the cleaning actions and the state-space reduction, which (for each time horizon)
substitutes or gates by ebes with 4 phases and the mttf of the replaced
subsystem. Only ebe 4 has more than 4 phases—see Fig. 2b. Thus in PMC
reduced the number of phases of all replaced subtrees is greater or equal for the
system of Fig. 3a, but lower for the full hvac-0 of Fig. 3b, viz. for the supply
fan subtree. Therefore, only for pmc reduced of the full system, cleaning actions
have less opportunities to act, which derives in more failures and explains Fig. 3.

3.2 hvac-1: Refinement of maintenance actions

In the basic setting of Sec. 3.1, inspections and repair checks overlap consider-
ably: Both can trigger the same maintenance action, namely a clean, and both
will do so in the same system configurations. The only situations when a clean
would be triggered by a repair check and not by an inspection, is when there is at
least one failed—but no degraded—component. The likelihood of these scenarios
decreases with the amount of ebes and their number of degradation phases.

A more problematic modelling effect is that, when triggered by an inspection,
a clean can “repair” a failed ebe and make it operational again. If e.g. ebe 1 is
failed and ebe 2 is degraded, an inspection will trigger a clean because ebe 2 is
in a thresh state; since cleaning actions are system-wide this also affects ebe 1,
which then moves from its failed to a thresh state, becoming operational.

We argue this is not a realistic behaviour: Thus as first improvement over
hvac-0 we propose a more clear distinction between inspections and repairs.



8 Abate et al.

The former will remain as is, but repair checks will effectively trigger a repair
maintenance action iff some ebe is in its failed state. As opposed to a clean
triggered by an inspection, a repair will only affect failed components, send-
ing them back N − 2 degradation phases. In particular, ebes in a thresh or
new state are not affected by repair actions. Repairs thus restore the health of
failed components significantly albeit not entirely—only replacements triggered
by overhauls leave components “as good as new.” Repairs are necessarily more
complex than cleans: They take longer (2 days) and cost more (e 800).

The intuition behind this modification, code name hvac-1, is that a techni-
cian fixes periodically all broken components, which has been named age repair
or age replacement and is also related to block replacement [1, 4].

Hence, to become operational again, a failed system must now wait for the
next repair check, which takes four times longer than an inspection. This should
increase system downtime and reduce availability. It is less clear how system re-
liability, enf, and costs would be affected: The degradation mechanisms remain
unchanged and the likelihood of failures may not be altered. In turn, total costs
might increase due to the higher cost of repairs w.r.t. cleans.
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Fig. 4: Metrics for hvac-1 (full system): smc and pmc reduced

Fig. 4 shows that system un-availability in hvac-1 is 2 to 3 times higher
than in hvac-0; other metrics are much less affected. Due to space constraints,
enf values are not shown. However, they correlate to those obtained in hvac-0.
Since PMC exact creates a state-space explosion, here we opt for pmc reduced;
the results obtained validate those achieved via smc and highlight the trade-off
between state-space reduction and deviation from smc metrics.

3.3 hvac-2: Deterministic time periods

In the previous section we give a first glimpse of how significantly a model re-
finement can impact a kpi. Here, building on top of hvac-1, we focus on the
modelling of events in time. In the fmts from Secs. 3.1 and 3.2 and following [5],
periodic events like inspections and overhauls are emulated using 3-phase Erlang
distributions. Originally, this was needed because the model had semantics ex-
clusively in terms of ctmcs. For the hvac-2 model presented in this section
we employ (more realistic) deterministic time periods instead [1, 4].

This refinement has a twofold motivation: First, on the modelling side, events
occurring at specific time points are a common maintenance policy—e.g. inspec-
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tions are scheduled exactly every six months. Accurately modelling this is rele-
vant for cost analyses, specially for (high) one-time investments like overhauls.
Second, on the analysis side, Erlang approximations as phase-type distributions
tend to the desired behaviour as the number of phases increases [10]. Thus, to
achieve more deterministic-like delays, the state space of pmc models must
grow, since e.g. Erlang phases are integral variables in the ctmcs of prism.
To reach the desired level of realism, all variables encoding periodic time de-
lays (inspections, cleans, etc.) require > 10 values. This would result in � 108

states, meaning pmc via prism cannot be performed [15]. Therefore, from this
section onwards, we use exclusively pta models of the hvac fmt, which can
naturally encode (true) deterministic time intervals with no impact on the state
space. The kpis can thus be measured using smc alone†.
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Fig. 5: Metrics for hvac-2 (full system): smc

We present the kpis for hvac-2 in Fig. 5: The most prominent modification
w.r.t. hvac-1 are in the maintenance costs. The costs incurred by the overhaul
at 15 years can be clearly appreciated for hvac-2, whereas they are spread-out
and less noticeable for hvac-1. Detailed information like this can be crucial e.g.
when assessing investment portfolios. The difference in the reliability and enf
values estimated for hvac-2 are insignificant when compared to hvac-1. How-
ever, availability is higher for the former. Looking at the individual maintenance
actions triggered in the simulations of uppaal, after 5 years hvac-1 performs
7 inspections on average, whereas hvac-2 performs 10; after 25 years we get
37 vs. 48 respectively, etc. This reveals that, on average, the 3-phase Erlang ap-
proximation of the deterministic time delays in hvac-1 is over-approximating.
Repair checks are thus performed more frequently in hvac-2, where the mainte-
nance protocol is better emulated than in previous models. This is corroborated
by the number of repairs, which is about ten times higher in hvac-2 than in
hvac-1, accounting also for the generally higher maintenance costs in hvac-2.
Consequently, since the probability and number of failures are not altered, sys-
tem downtime is lower in hvac-2 than in hvac-1. This explains the availability
values from Fig. 5. Computation times for these smc analyses increases con-
siderably w.r.t. hvac-0 and hvac-1: While uppaal converged to the desired
values in a matter of minutes for those models, it took several hours to compute
some of the metrics for hvac-2. This is discussed in Sec. 4.

†Support for reward analysis on pta with prism is ongoing research, see Sec. 4.



10 Abate et al.

3.4 hvac-3: Spares for affordable components

In Secs. 3.1 to 3.3 we increasingly refined our model to improve realism. Following
the same goal, in this section we extend the hvac to include spares in some
subsystems. Redundancy is a common practice in high-resilience or safety-critical
systems: raid data storage uses extra disks to keep system availability high,
cars come with a spare wheel, all modern air-conditioned buildings have spare
air filters [3], etc. In hvac-3 we use spare gates (spare) to implement cold
spare components (whose degradation starts only after a fault occurs, [20]) for
the valves in the water circuit, i.e. ebes 6 and 7.

Two reasons motivated the choice of these components: On the one side,
valves are relatively affordable parts (compare them to the boiler or the radi-
ators) for which redundancy should require minor investments. On the other
side, Tab. 2b indicates these ebes fail the most often. The impact observed in
resilience should thus be greatest when providing spares for such components.

We add a spare with one spare component for ebe 6, and another (in-
dependent) spare with two spare components for ebe 7‡. Spare components
are assumed identical to main components, and as soon as the main component
fails, the corresponding spare will switch to a spare without incurring system
downtime∗. When the main component and all spares have failed, the spare
fails and propagates a signal to the rest of the fmt. We set at e 1000 the cost of
using a spare component. This way spares are more expensive than repairing the
valve (e 800), but cheaper than a full system overhaul (e 5000). For all previous
cases, the cost of a triggered maintenance action (e.g. a clean) is independent
of the number of ebes affected by it. For hvac-3, the cost of using n spares
during system operation is n× e 1000.

Spares are replenished during repair checks. Costs of using a spare are not
incurred immediately, but rather in the next repair check occurring after the use
of the spare. The intuition behind this is that the technician that periodically
visits the company to perform repairs, is also in charge of replenishing the spares.
The company pays him then for all pieces that have been used since his last visit.

Unlike in the previous sections, this extension affects only a subsystem of
the hvac, and in particular does not involve the “Supply fan failure” subtree
from Fig. 2a. To highlight the effect of these modifications, we measure the kpis
exclusively for the affected part of the model, i.e. an fmt without ebes 2–4.
Accordingly, when referencing models from previous sections, we allude to the
kpis measured for the corresponding fmts that also disregard fan failures.

The results of our smc analyses on hvac-3 are presented in Fig. 6. To
exercise the capabilities of spares we also study a scenario where maintenance
occurs half as frequently. Thus with “half maintenance,” as opposed to “stnd.
maintenance,” inspections occur every year, repair checks every four years, and
overhauls every thirty years. Notice that here we measure the kpis for seven
time horizons, i.e. for T ∈ {5, 10, 15, . . . , 35} years of system operation.

‡Higher redundancies lead to rare failures that hinder smc analyses, see Sec. 4.
∗Notice that a valve can be replaced in hours, whereas all time horizons are in years.
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Fig. 6: Metrics for hvac-3 (no supply fan): smc

Except for costs, direct comparison of the kpis from hvac-3 and its pre-
decessors is omitted, because hvac-3 is so fault tolerant that its metrics would
appear as flat lines on top of the charts. For hvac-2 with stnd. maintenance,
system availability without fan failures converges to 0.97, similarly to the full-
system metrics from Fig. 5. For hvac-3 availability was always above 0.9998, see
“smc stnd.” in the availability plot of Fig. 6. With half maintenance, availability
for hvac-2 converged around 0.89 and for hvac-3 around 0.997. Comparing
thus hvac-3 with half maintenance against hvac-2 with stnd. maintenance,
viz. 0.997 vs. 0.97, we get that using 1 & 2 spares for ebe 6 & 7, and reducing
maintenance checks to a half, system downtime is reduced by more than 10×.

Reliability exhibits a similar trend: With stnd. maintenance it decreases in
a seemingly linear fashion, reaching the value 0.4078 at the 35 years time hori-
zon for hvac-2, and 0.9919 for hvac-3. With half maintenance the reliability
values of hvac-2 and hvac-3 at 35 years are respectively 0.2053 and 0.9477.
The values computed for enf resemble this ratio: 0.9589 vs. 0.0069 for stnd.
maintenance and 1.6407 vs. 0.0565 for half maintenance.

This tremendous increment in system resilience is explained by the Erlang
degradation modelling in the ebes. With one component we get N exponential
jumps of rate N

mttf each. Adding m− 1 spares identical to the main component
multiplies the number of jumps by m−1, yet keeps the rate constant. Therefore,
having m − 1 spares is equivalent to having an Erlang(mN,N/mttf), whose
expected value ismmttf. In the setting of hvac-3 this means that the mttf
of ebes 6 and 7 changed to 20 and 30 years respectively, with the corresponding
decrease in the probability of failure for a given fixed time window.

Nonetheless, although resilience improved drastically, total costs are actually
lower for hvac-3 than for hvac-2 under both maintenance schemes, see Fig. 6.
This is a consequence of the 4-to-1 cost ratio of system downtime/uptime. In
spite of the extra maintenance costs incurred to keep stocks of spares, operational
costs are much lower due to the very low proportion of system downtime.

It is straightforward to conclude that redundancy (spares) are a must in
high-resilience systems. As final comment we mention that smc analyses took
significantly longer than all previous studies. For instance, computing the un-
reliability at 35 years under stnd. maintenance (0.0081) took 78 hours of wall-
clock computer time. This issue, discussed in Sec. 4, is due to (i) the addition of
two longer time horizons, and (ii) the rarity of observing an event in the time
window considered. In comparison, pmc should be less affected by these causes.
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3.5 hvac-4: Randomised continuous degradation of ebes

In all previous sections the ebes were regarded as atomic elements of the fmt,
and modelling did not differ from the basic setting of hvac-0. Here we refine
the degradation semantics of ebes: Instead of using discrete phases we model
degradation continuously. We focus on the “Supply fan failure” subsystem, mak-
ing the degradation of the fan bearings (ebe 4) resemble a continuous stochastic
process known as Geometric Brownian Motion (gbm).

We use gbm for two reasons: First, recent studies show gbm can appropri-
ately model bearing degradation [23]. Second, when using N discrete phases
of rate λ, time increments between consecutive degradation stages are sam-
pled from N independent and identically distributed (iid) random variables
∼ Exponential(λ). Failure times thus follow an N -phase Erlang distribution
with expectation mttf = N/λ. In contrast, our gbm simulation uses constant
time increments, and for ever smaller time increments the degradation process
is continuous (with probability 1). So degradation is a non-iid non-linear—thus
not linearly phased—process, and changes in degradation between consecutive
instants are partially stochastic. Consequently, the degradation speed of a com-
ponent is a function of time, and since the expectation of gbm is an exponential
function of time, the failure time follows a log-normal distribution.

Technically, gbm is the analytical solution to the stochastic differential equa-
tion S(t) = S(0) exp

((
µ− 1

2σ
2
)
t+ σWt

)
. Next we review its main concepts as

used in this section, and refer the interested reader to the abundant literature
for a deeper insight into gbm. Let S(t) denote the (continuous) degradation of
a system component at time t, with S(0) = 1 and ∆t the time increment. Then
the gbm degradation can be expressed and simulated as

S(t+ ∆t) = S(t) exp

((
µ− 1

2
σ2

)
∆t+ σW∆t

)
. (1)

In eq. (1) W∆t is a Wiener process or “Brownian motion,” meaning W∆t

is normally distributed with zero mean and variance ∆t, and has independent
Gaussian increments. Parameters µ and σ in eq. (1) are respectively the drift
and diffusion coefficients. The expected value and variance of S(t) are given by
E [S(t)] = S(0) exp (µt) and Var [S(t)] = S(0)2 exp(2µt)(exp(σ2t)− 1).

In previous sections, each ebe is characterised by its mean time to fail-
ure (mttf) and number of degradation phases (N). As we now only change
the degradation function, we can express the expected degradation value at
the mttf as: Sfail = E [S(mttf)] = S(0) exp (µmttf). Hence, assuming
Var [S(mttf)] = 1 and setting S(0) = 1 and Sfail = N + 1, this yields

µ =
ln(Sfail)− ln(S(0))

mttf =
ln(N + 1)

mttf (2a)

σ =

√√√√ ln
(

1 + Var[S(mttf)]
S(0)2 exp(2µmttf)

)
mttf =

√√√√ ln
(

1 + 1
(N+1)2

)
mttf . (2b)
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Thus, using eq. (1) with the drift and diffusion from eq. (2) as degrada-
tion function for ebe 4, and keeping ebes 2 and 3 unmodified w.r.t. hvac-2,
we analyse the fmt for the supply fan subsystem. Since the mttf values of
ebes 2–4 are among the highest of the model, failures will be rare in the time
windows considered. In that sense, this scenario is similar to the one from the
previous section, and we thus follow a similar approach: We study a scenario
with half maintenance for time horizons T ∈ {5, 10, . . . , 35}.
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Fig. 7: Metrics for hvac-4 (supply fan): smc

The results of experimentation are shown in Fig. 7. Comparing the kpis
against hvac-2, we observe that hvac-4 models a more resilient system. This
is a direct consequence of using gbm for the degradation of ebe 4, even though
it has the lowestmttf in the subsystem considered. More in detail, the expected
degradation of this component in hvac-4 is continuous and exponentially in-
creasing. The expected time it takes for the gbm to reach a certain degradation
value is thus logarithmic w.r.t. the degradation value. In contrast, degradation
is linearly phased in hvac-2 for all ebes, and thus the corresponding expected
time is linear w.r.t. the degradation state. Because of identical mttf and fail-
ure threshold, the degradation speed in the initial stages of ebe 4 is lower
in hvac-4 than in hvac-2. Therefore, inspections in hvac-4 have a higher
chance of restoring ebe 4 to its initial value, while in hvac-2 it is easier to
have the component degrade by two phases before the inspection can trigger a
clean. As a consequence, given a fixed maintenance scheme and time period, the
chances of ebe 4 failing are lower in hvac-4 than in hvac-2. This explains
the reliability and availability values observed in Fig. 7.

The costs are also an interesting point of comparison. Operational costs are
identical for both models, and thus omitted from Fig. 7. Maintenance costs
however present a major distinction: hvac-4 has nearly no costs incurred by
repairs, whereas repairs in hvac-2 increase linearly from e 123 after 5 years, to
e 1984 after 35 years. This is precisely the expected behaviour as per the argu-
ment presented above: since most degradation is “early caught” by inspections in
hvac-4, maintenance costs are concentrated in cleans, rather than repairs. This
shows, once again, that refining the fmt model can noticeably impact both the
resilience kpis, as well as the costs of system operation and maintenance, in
ways and quantities that may concern the interested parties.
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4 Concluding remarks and future work

In this work, we demonstrate the importance of the semantic details of an fmt
system model, by quantifying the effect of modifications to the model on typi-
cal rams metrics estimated via pmc and smc. We propose four (incremen-
tal) modelling improvements for a basic hvac-0 fmt model. We note that (i)
the localisation of clean actions to only degraded components increases the un-
availability by a factor of ≈ 2.5× (hvac-1, see Fig. 4), (ii) modelling periodic
events with deterministic time delays increases the resilience kpis and greatly
impacts costs (hvac-2, see Fig. 5), (iii) the use of spares reduces the frequency
of maintenance actions while achieving > 100× higher availability and slightly
lower costs (hvac-3, see Fig. 6), and (iv) using gbm to model component
degradation increases resilience metrics (in particular reliability) and reduces
costs, but makes analyses more involved and, arguably, more realistic (hvac-4,
see Fig. 7). It is thus evident that much can be gained by revisiting an otherwise
finished model, and refining any particularly relevant component.

Future work. There are several areas open for further development. First,
from hvac-2 onwards only smc could be used because ctmcs cannot emu-
late deterministic time delays. Current endeavours by the prism community
to measure reward properties on pta models [15] are opening the gate to pmc
studies of the cases presented in Secs. 3.3 to 3.5. Moreover, when the time win-
dow is large w.r.t. the event-time-unit simulated (or when the event of interest
rarely happens), smc suffers from longer computation times due to the duration
of the (resp. required amount of) simulations, see e.g. Secs. 3.4 and 3.5. If pmc
could be used to analyse hvac-3 and hvac-4, the time required to converge
to an estimate should be faster [15]. Rare event simulation offers an alternative,
to apply smc when the event of interest occurs with very low probability [18].
Parallelly, the next natural step to the ebe refinement from Sec. 3.5 is data vali-
dation, i.e. comparing the kpi metrics against measurements from real systems.
However, such measurements are scarce due to the long time horizons involved.
It would also be interesting to experiment with different degradation functions
for distinct ebes, specialised for the behaviour of each component type con-
cerned. Further relevant extensions include measuring the effect of “on-demand”
maintenance in addition to fixed periodic maintenance, and experimenting with
different cost schemes to test the robustness of the final conclusions.
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