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Abstract. The combination of data-driven learning methods with formal
reasoning has seen a surge of interest, as either area has the potential to
bolstering the other. For instance, formal methods promise to expand the
use of state-of-the-art learning approaches in the direction of certification
and sample efficiency. In this work, we propose a deep Reinforcement
Learning (RL) method for policy synthesis in continuous-state/action
unknown environments, under requirements expressed in Linear Temporal
Logic (LTL). We show that this combination lifts the applicability of deep
RL to complex temporal and memory-dependent policy synthesis goals.
We express an LTL specification as a Limit Deterministic Büchi Automa-
ton (LDBA) and synchronise it on-the-fly with the agent/environment.
The LDBA in practice monitors the environment, acting as a modular
reward machine for the agent: accordingly, a modular Deep Deterministic
Policy Gradient (DDPG) architecture is proposed to generate a low-level
control policy that maximises the probability of the given LTL formula.
We evaluate our framework in a cart-pole example and in a Mars rover
experiment, where we achieve near-perfect success rates, while baselines
based on standard RL are shown to fail in practice.

Keywords: Model-Free Reinforcement Learning · Deep Learning · Lin-
ear Temporal Logic · Continuous-State and Continuous-Action Markov
Decision Processes

1 Introduction

Deep Reinforcement Learning (RL) is an emerging paradigm for autonomous
decision-making tasks in complex and unknown environments. Deep RL has
achieved impressive results over the past few years, but often the learned solution
is evaluated only by statistical testing and there is no systematic method to
guarantee that the policy synthesised using RL meets the expectations of the
designer of the algorithm. This particularly becomes a pressing issue when
applying RL to safety-critical systems.

Furthermore, tasks featuring extremely sparse rewards are often difficult to
solve by deep RL if exploration is limited to low-level primitive action selection.
Despite its generality, deep RL is not a natural representation for how humans
perceive sparse reward problems: humans already have prior knowledge and
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associations regarding elements and their corresponding function in a given envi-
ronment, e.g. “keys open doors” in video games. Given useful domain knowledge
and associations, a human expert can find solutions to problems involving sparse
rewards, e.g. when the rewards are only received when a task is eventually fulfilled
(e.g., finally unlocking a door). These assumed high-level associations can provide
initial knowledge about the problem, whether in abstract video games or in
numerous real world applications, to efficiently find the global optimal policies,
while avoiding an exhaustive unnecessary exploration, particularly in early stages.

The idea of separating the learning process into two (or more) synchronised
low- and high-level learning steps has led to hierarchical RL, which specifically
targets sparse reward problems [49]. Practical approaches in hierarchical RL, e.g.
options [43], depend on state representations and on the underlying problem
simplicity and/or structure, such that suitable reward signals can be effectively
engineered by hand. These methods often require detailed supervision in the
form of explicitly specified high-level actions or intermediate supervisory signals
[2, 9, 29, 30, 43, 52]. Furthermore, most hierarchical RL approaches either only
work in discrete domains, or require pre-trained low-level controllers. HAC [32],
a state-of-the-art method in hierarchical RL for continuous-state/action Markov
Decision Processes (MDPs), introduces the notion of Universal MDPs, which
have an augmented state space that is obtained by a set of strictly sequential
goals.

This contribution extends our earlier work [19, 20, 22, 57] and proposes a
one-shot1 and online deep RL framework, where the learner is presented with
a modular high-level mission task over a continuous-state/action MDP. Unlike
hierarchical RL, the mission task is not limited to sequential tasks, and is
instead specified as a Linear Temporal Logic (LTL) formula, namely a formal, un-
grounded, and high-level representation of the task and of its components. Without
requiring any supervision, each component of the LTL property systematically
structures a complex mission task into partial task “modules”. The LTL property
essentially acts as a high-level exploration guide for the agent, where low-level
planning is handled by a deep RL architecture. LTL is a temporal logic that
allows to formally express tasks and constraints in interpretable form: there exists
a substantial body of research on extraction of LTL properties from natural
languages [16, 38, 55].

We synchronise the high-level LTL task with the agent/environment: we
first convert the LTL property to an automaton, namely a finite-state machine
accepting sequences of symbols [3]; we then construct on-the-fly2 a synchronous
product between the automaton and the agent/environment; we also define a
reward function based on the structure of the automaton. With this automated
reward-shaping procedure, an RL agent learns to accomplish the LTL task with
max probability, and with no supervisory assistance: this is in general hard, if at all

1 One-shot means that there is no need to master easy tasks first, then compose them
together to accomplish a more complex tasks.

2 On-the-fly means that the algorithm tracks (or executes) the state of an underlying
structure (or a function) without explicitly constructing it.



Deep Reinforcement Learning with Temporal Logics 3

possible, by conventional or handcrafted RL reward shaping methods [43, 49, 52].
Furthermore, as elaborated later, the structure of the product partitions the state
space of the MDP, so that partitions are solely relevant to specific task modules.
Thus, when dealing with sparse-reward problems, the agent’s low-level exploration
is efficiently guided by task modules, saving the agent from exhaustively searching
through the whole state space.

Related Work The closest lines of work comprise model-based [4, 8, 12, 13, 14,
15, 24, 25, 44, 42] and model-free [7, 11, 17, 27, 28, 51] RL approaches, aiming
to synthesise policies abiding by a given temporal logic property. In model-
based RL, a model of the MDP is firstly inferred and later an optimal policy
is generated over the learned model. This approach is known to hardly scale
to large-dimensional problems, which are in practice studied with model-free
RL. Additionally, in standard work on RL for LTL, formulae are translated to
Deterministic Rabin Automata (DRA), which are known to be doubly exponential
in the size of the original LTL formula. Conversely, in this work we use a specific
Limit Deterministic Büchi Automaton (LDBA) [45], which we have employed
in the context of RL in [18]: this is only an exponential-sized automaton for
LTL\GU (a fragment of LTL), and has otherwise the same size as DRA for the
rest of LTL. This can significantly enhance the convergence rate of RL. Other
variants of LDBAs have been employed in cognate work [7, 17, 28, 39].

Another closely-related line of work is the “curriculum learning” approach
[2], in which the agent masters easier instruction-based sub-tasks first, to then
compose them together in order to accomplish a more complex task. In this
work, instead, the complex task is expressed as an LTL property, which guides
learning and directly generates policies: it thus has no need to start from easier
sub-tasks and to later compose corresponding policies together. In other words,
the proposed method learns policies for the general complex task in a “one-shot”
scenario.

To the best of authors’ knowledge, no research has so far enabled model-free
RL to generate policies for general LTL properties over continuous-state/action
MDPs: relevant results are applicable to finite MDPs [8, 11, 12, 17, 21, 44, 51], or
are focused on sub-fragments of LTL [10, 23, 26, 31, 33, 42], such as finite-horizon
formulae. Many practical problems require continuous, real-valued actions to be
taken in over uncountable state variables: the simplest approach to solve such
problems is to discretise state and action spaces of the MDP [1]. However, beyond
requiring the knowledge of the MDP itself, discretisation schemes are expected
to suffer from the trade off between accuracy and curse of dimensionality.

Contributions To tackle the discussed issues and push the envelope of state of
the art in RL, in this work and propose a modular Deep Deterministic Policy
Gradient (DDPG) based on [34, 47]. This modular DDPG is an actor-critic
architecture that uses deep function approximators, which can learn policies in
continuous state and action spaces, optimising over task-specific LTL satisfaction
probabilities. The contributions of this work are as follows:
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• We deal with continuous-state/action, unknown MDPs. The proposed model-
free RL algorithm significantly increases the applicability of RL for LTL
synthesis.

• The use of LTL (and associated LDBAs) with deep RL allows us to efficiently
solve problems with sparse rewards, by exploiting relationships between sub-
tasks. Rewards are automatically assigned on-the-fly with no supervision,
allowing one to automatically modularise a global complex task into easy
sub-tasks.

• The use of LDBA in DDPG introduces technical issues to the learning process,
such as non-determinism, which are addressed in this work.

2 Problem Framework

The environment with which the agent interacts is assumed to be an unknown
black-box. We describe the underlying agent/environment model as an MDP,
however we emphasise that the MDP is unknown and the learning agent is unaware
of the transition (i.e., the dynamics) and the spatial labels (environmental features
grounded to tasks). This works assumes that the dynamics of the interaction are
Markovian, namely memory-less.

Definition 1 (General MDP [5]). The tuple M = (S,A, s0, P,AP, L) is a
general MDP over a set of continuous states S = Rn, where A = Rm is a set of
continuous actions, and s0 ∈ S is the initial state. P : B(Rn) × S × A → [0, 1]
is a Borel-measurable conditional transition kernel which assigns to any pair of
state s ∈ S and action a ∈ A a probability measure P (·|s, a) on the Borel space
(Rn,B(Rn)), where B(Rn) is the set of all Borel sets on Rn. AP is a finite set
of atomic propositions and a labelling function L : S→ 2AP assigns to each state
s ∈ S a set of atomic propositions L(s) ⊆ 2AP.

Definition 2 (Path). An infinite path ρ starting at s0 is a sequence of states

ρ = s0
a0−→ s1

a1−→ ... such that every transition si
ai−→ si+1 is allowed in M, i.e.

si+1 belongs to the smallest Borel set B such that P (B|si, ai) = 1.

At each state s ∈ S, an agent behaviour is determined by a Markov policy π,
which is a mapping from states to a probability distribution over the actions, i.e.
π : S→ P(A). If P(A) is a degenerate distribution then the policy π is said to be
deterministic.

Definition 3 (Expected Discounted Return [49]). For a policy π on an
MDP M, the expected discounted return is defined as:

Uπ(s) = Eπ[

∞∑
n=0

γn R(sn, an)|s0 = s],

where Eπ[·] denotes the expected value given that the agent follows policy π,
γ ∈ [0, 1) (γ ∈ [0, 1] when episodic) is a discount factor, R : S × A → R is the
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reward, and s0, a0, s1, a1, . . . is the sequence of state-action pairs generated by
policy π.

It has been shown that constant discount factors might yield sub-optimal
policies [7, 17]. In general the discount factor γ is a hyper-parameter that has
to be tuned. There is standard work in RL on state-dependent discount factors
[37, 40, 54, 56], that is shown to preserve convergence and optimality guarantees.
A possible tuning strategy to resolve the issues of constant discounting is as
follows:

γ(s) =

{
η if R(s, a) > 0,
1 otherwise,

(1)

where 0 < η < 1 is a constant. Hence, Definition 3 is reduced to [37]:

Uπ(s) = Eπ[

∞∑
n=0

γ(sn)N(sn) R(sn, π(sn))|s0 = s], 0 ≤ γ ≤ 1, (2)

where N(sn) is the number of times a positive reward has been observed at sn.
The function Uπ(s) is often referred to as value function (under the policy π).

Another crucial notion in RL is action-value function Qπ(s, a), which describes
the expected discounted return after taking an action a in state s and thereafter
following policy π:

Qπ(s, a) = Eπ[

∞∑
n=1

γn R(sn, an)|s0 = s, a0 = a].

Accordingly, the recursive form of the action-value function can be obtained as:

Qπ(s, a) = R(s, a) + γQπ(s1, a1), (3)

where a1 = π(s1). Q-learning (QL) [53] is the most extensively used model-free
RL algorithm built upon (3), for MDPs with finite-state and finite-action spaces.
For all state-action pairs QL initializes a Q-function Qβ(s, a) with an arbitrary
finite value, where β is an arbitrary stochastic policy.

Qβ(s, a)← Qβ(s, a) + µ[R(s, a) + γ max
a′∈A

(Qβ(s′, a′))−Qβ(s, a)]. (4)

where Qβ(s, a) is the Q-value corresponding to state-action (s, a), 0 < µ ≤ 1 is
called learning rate (or step size), R(s, a) is the reward function, γ is the discount
factor, and s′ is the state reached after performing action a. The Q-function
for the remaining of the state-action pairs is not changed in this operation. QL
is an off-policy RL scheme, namely policy β has no effect on the convergence
of the Q-function, as long as every state-action pair is visited infinitely many
times. Thus, for the sake of simplicity, we may drop the policy index β from the
action-value function. Under mild assumptions, QL converges to a unique limit,
and a greedy policy π∗ can be obtained as follows:

π∗(s) = argmax
a∈A

Q(s, a), (5)
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and π∗ corresponds to the optimal policy that is generated by dynamic program-
ming [6] to maximise the expected return, if the MDP was fully known:

π∗(s) = argsup
π∈D

Uπ(s), (6)

where D is the set of stationary deterministic policies over the state space S. The
Deterministic Policy Gradient (DPG) algorithm [47] introduces a parameterised
function µ(s|θµ) called actor to represent the current policy by deterministically
mapping states to actions, where θµ is the function approximation parameters
for the actor function. Further, an action-value function Q(s, a|θQ) is called critic
and is learned as described next.

Assume that at time step t the agent is at state st, takes action at, and
receives a scalar reward R(st, at). In case when the agent policy is deterministic,
the action-value function update can be approximated by parameterising Q
using a parameter set θQ, i.e. Q(st, at|θQ), and by minimizing the following loss
function:

L(θQ) = Eπst∼ρβ [(Q(st, at|θQ)− yt)2], (7)

where ρβ is the probability distribution of state visits over S, under any given
arbitrary stochastic policy β, and yt = R(st, at) + γQ(st+1, at+1|θQ) such that
at+1 = π(st+1).

The actor parameters are updated along the derivative of the expected return,
which [47] has shown to be a policy gradient, as follows:

∇θµUµ(st) ≈ Est∼pβ [∇θµQ(s, a|θQ)|s=st,a=µ(st|θµ)]
= Est∼pβ [∇aQ(s, a|θQ)|s=st,a=µ(st)∇θµµ(s|θµ)|s=st ].

(8)

DDPG further extends DPG by employing a deep neural network as function
approximator and updating the network parameters via a “soft update” method,
which is explained later in the paper.

2.1 Linear Temporal Logic (LTL)

We employ LTL to encode the structure of the high-level mission task and to
automatically shape the reward function. LTL formulae ϕ over a given set of
atomic propositions AP are syntactically defined as [41]:

ϕ ::= true | α ∈ AP | ϕ ∧ ϕ | ¬ϕ | © ϕ | ϕ U ϕ, (9)

where the operators © and U are called “next” and “until”, respectively. For a
given path ρ, we define the i-th state of ρ to be ρ[i] where ρ[i] = si, and the i-th

suffix of ρ to be ρ[i..] where ρ[i..] = si
ai−→ si+1

ai+1−−−→ si+2 . . .
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Definition 4 (LTL Semantics [41]). For an LTL formula ϕ and for a path
ρ, the satisfaction relation ρ |= ϕ is defined as

ρ |= α ∈ AP ⇐⇒ α ∈ L(ρ[0]),

ρ |= ϕ1 ∧ ϕ2 ⇐⇒ ρ |= ϕ1 ∧ ρ |= ϕ2,

ρ |= ¬ϕ ⇐⇒ ρ 6|= ϕ,

ρ |=©ϕ ⇐⇒ ρ[1..] |= ϕ,

ρ |= ϕ1Uϕ2 ⇐⇒ ∃j ≥ 0 : ρ[j..] |= ϕ2 ∧ ∀i, 0 ≤ i < j, ρ[i..] |= ϕ1.

The operator next © requires ϕ to be satisfied starting from the next-state
suffix of ρ. The operator until U is satisfied over ρ if ϕ1 continuously holds
until ϕ2 becomes true. Using the until operator U we can define two temporal
modalities: (1) eventually, ♦ϕ = true U ϕ; and (2) always, �ϕ = ¬♦¬ϕ. LTL
extends propositional logic using the temporal modalities until U, eventually ♦,
and always �. For instance, constraints such as “eventually reach this point”,
“visit these points in a particular sequential order”, or “always stay safe” are
expressible by these modalities. Further, these modalities can be combined with
logical connectives and nesting to provide more complex task specifications.
Any LTL task specification ϕ over AP expresses the following set of words
Words(ϕ) = {σ ∈ (2AP)ω s.t. σ |= ϕ}, where (2AP)ω is set of all infinite words
over 2AP. The set of associated words Words(ϕ) is expressible using a finite-state
machine [3]. Limit Deterministic Büchi Automata (LDBA) [45] are shown to be
succinct finite-state machines for this purpose [46]. We first define a Generalized
Büchi Automaton (GBA), then we formally introduce LDBA.

Definition 5 (Generalized Büchi Automaton). A GBA A = (Q, q0, Σ,F,
∆) is a state machine, where Q is a finite set of states, q0 ⊆ Q is the set of
initial states, Σ = 2AP is a finite alphabet, F = {F1, ..., Ff} is the set of accepting
conditions where Fj ⊆ Q, 1 ≤ j ≤ f , and ∆ : Q×Σ → 2Q is a transition relation.

Let Σω be the set of all infinite words over Σ. An infinite word w ∈ Σω is
accepted by a GBA A if there exists an infinite run θ ∈ Qω starting from q0
where θ[i+ 1] ∈ ∆(θ[i], ω[i]), i ≥ 0 and, for each Fj ∈ F, inf (θ) ∩ Fj 6= ∅, where
inf (θ) is the set of states that are visited infinitely often in the sequence θ.

Definition 6 (LDBA [45]). A GBA A = (Q, q0, Σ,F, ∆) is limit-deterministic
if Q is composed of two disjoint sets Q = QN ∪ QD, such that:

• ∆(q, α) ⊂ QD and |∆(q, α)| = 1 for every state q ∈ QD and for every α ∈ Σ,
• for every Fj ∈ F, Fj ⊆ QD,
• q0 ∈ QN , and all the transitions from QN to QD are non-deterministic ε-

transitions. An ε-transition allows an automaton to change its state without
reading any atomic proposition.

Intuitively, the defined LDBA is a GBA that has two components, an initial (QN )
and an accepting one (QD). The accepting component includes all the accepting
states and has deterministic transitions. As it will be further elaborated below,
ε-transitions between QN and QD can be interpreted as “guesses” on reaching
QD. We finally introduce the following notion.
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Definition 7 (Non-accepting Sink Component). A non-accepting sink com-
ponent of the LDBA A is a directed graph induced by a set of states Q ⊆ Q such
that (1) the graph is strongly connected; (2) it does not include all of the accepting
sets Fk, k = 1, ..., f that are necessary to satisfy the associated LTL formula;
and (3) there exist no other strongly connected set Q′ ⊆ Q, Q′ 6= Q such that
Q ⊆ Q′. We denote the union of all non-accepting sink components of A as N.
The set N includes those components in the automaton that are non-accepting
and impossible to escape from. Thus, a trace reaching them is doomed to not
satisfy the given LTL property.

3 Modular DDPG

We consider an RL problem in which we exploit the structural information
provided by the LTL specification, by constructing sub-policies for each state
of the associated LDBA. The proposed approach learns a satisfying policy
without requiring any information about the grounding of the LTL task to be
specified explicitly. Namely, the labelling assignment (as in Definition 1) is a-priori
unknown, and the algorithm solely relies on experience samples gathered online.

Given an LTL mission task and an unknown black-box continuous-state/action
MDP, we aim to synthesise a policy that satisfies the LTL specification with max
probability. For the sake of clarity and to explain the core ideas of the algorithm,
for now we assume that the MDP graph and the transition kernel are known:
later these assumptions are entirely removed, and we stress that the algorithm
can be run model-free. We relate the MDP and the automaton by synchronising
them, in order to create a new structure that is firstly compatible with deep RL
and that secondly encompasses the given logical property.

Definition 8 (Product MDP). Given an MDP M = (S,A, s0, P,AP, L) and
an LDBA A = (Q, q0, Σ,F, ∆) with Σ = 2AP, the product MDP is defined as
MA = M⊗A = (S⊗,A, s⊗0 , P

⊗,AP⊗, L⊗,F⊗), where S⊗ = S× Q, s⊗0 = (s0, q0),
AP⊗ = Q, L⊗ : S⊗ → 2Q such that L⊗(s, q) = q and F⊗ ⊆ S⊗ is the set of
accepting states F⊗ = {F⊗1 , ..., F

⊗
f }, where F⊗j = S× Fj. The transition kernel

P⊗ is such that given the current state (si, qi) and action a, the new state (sj , qj)
is obtained such that sj ∼ P (·|si, a) and qj ∈ ∆(qi, L(sj)).
In order to handle ε-transitions we make the following modifications to the above
definition of product MDP:

• for every potential ε-transition to some state q ∈ Q we add a corresponding
action εq in the product:

A⊗ = A ∪ {εq, q ∈ Q}.

• The transition probabilities corresponding to ε-transitions are given by

P⊗((si, qi), εq, (sj , qj)) =

{
1 if si = sj , qi

εq−→ qj = q,
0 otherwise.
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Remark 1. Recall that an ε-transition between QN and QD corresponds to a
guess on reaching QD without reading a label and changing a state in the MDP
M (see the definition of P⊗ above). This entails that if, after an ε-transition,
the associated label in the accepting set of the automaton cannot be read
or no accepting state in QD is visited, then the guess was wrong, hence the
automaton must have entered the non-accepting sink component N (Def. 7).
These semantics are leveraged in the case studies, and are generally applicable
when the constructed LDBA contains ε-transitions. ut

By constructing the product MDP, we synchronise the current state of the
agent with that of the automaton. This allows to evaluate partial satisfaction of
the corresponding LTL property, and consequently to modularise the high-level
LTL task into sub-tasks. Hence, with a proper reward assignment based on the
LTL property and its associated LDBA, the agent can break down a complex
task into a set of easier sub-tasks. We elaborate further on task modularisation
in the next subsection.

In the following we define an LTL-based reward function, emphasising that the
agent does not need to know the model structure or the transition probabilities
(or their product). Before introducing a reward assignment for the RL agent, we
need to present the ensuing function:

Definition 9 (Accepting Frontier Function). For an LDBA A = (Q, q0, Σ,
F, ∆), we define Acc : Q × 2Q → 2Q as the accepting frontier function, which
executes the following operation over a given set F ⊂ 2Q for every Fj ∈ F:

Acc(q,F) =


F \{Fj} (q ∈ Fj) ∧ (F 6= Fj),

{Fk}fk=1 \{Fj} (q ∈ Fj) ∧ (F = Fj),

F otherwise.

In words, once the state q ∈ Fj and the set F are introduced to the function
Acc, it outputs a set containing the elements of F minus Fj . However, if F = Fj ,
then the output is the family set of all accepting sets of the LDBA, minus the
set Fj . Finally, if the state q is not an accepting state then the output of Acc
is F. The accepting frontier function excludes from F the accepting set that is
currently visited, unless it is the only remaining accepting set. Otherwise, the
output of Acc(q,F) is F itself. Owing to the automaton-based structure of the
Acc function, we are able to shape a reward function (as detailed next) without
any supervision and regardless of the dynamics of the MDP.

We propose a reward function that observes the current state s⊗, the current
action a, and the subsequent state s⊗

′
, to provide the agent with a scalar value

according to the current automaton state:

R(s⊗, a) =

 rp if q
′ ∈ A, s⊗′ = (s′, q′),

rn if q
′ ∈ N, s⊗′ = (s′, q′),

0, otherwise.

(10)

Here rp is a positive reward and rn is a negative reward. A positive reward rp is
assigned to the agent when it takes an action that leads to a state, the label of
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which is in A, and a negative reward rn is given upon reaching N (Definition
7). The set A is called the accepting frontier set, is initialised as the family set

A = {Fk}fk=1, and is updated by the following rule every time after the reward
function is evaluated: A ← Acc(q′,A). The set N is the set of non-accepting
sink components of the automaton, as per Definition 7.

Remark 2. The intuition underlying (10) is that set A contains those accepting
states that are visited at a given time. Thus, the agent is guided by the above
reward assignment to visit these states and once all of the sets Fk, k = 1, ..., f,
are visited, the accepting frontier A is reset. As such, the agent is guided to visit
the accepting sets infinitely often, and consequently, to satisfy the given LTL
property. We shall discuss issues of reward sparseness in Section 3.1. ut

Given the product MDP structure in Definition 8 and the automatic formal
reward assignment in (10), any algorithm that synthesises a policy maximising
the associated expected discounted return over the product MDP, maximises
the probability of satisfying the property ϕ. Note that, unlike the case of finite
MDPs [18], proving the aforementioned claim is not trivial as we cannot leverage
notions that are specific to finite MDPs, such as that of Accepting Max End
Component (AMEC). Thus, the probability of satisfaction cannot be equated to
the probability of reaching a set of states in the product MDP (i.e., the AMEC)
and we have to directly reason over the accepting condition of the LDBA.

Theorem 1. Let ϕ be a given LTL formula and MA be the product MDP con-
structed by synchronising the MDP M with the LDBA A expressing ϕ. Then
the optimal stationary Markov policy on MA that maximises the expected return,
maximises the probability of satisfying ϕ and induces a finite-memory policy on
the MDP M.

Remark 3. Please see the Appendix for the proof. Note that the optimality of
the policy generated by the DDPG scheme depends on a number of factors,
such as its structure, number of hidden layers, and activation functions. The
quantification of the sub-optimality of the policy generated by DDPG is out of
the scope of this work. ut

3.1 Task Modularisation

In this section we explain how a complex task can be broken down into simple
composable sub-tasks or modules. Each state of the automaton in the product
MDP is a “task divider” and each transition between these states is a “sub-task”.
For example consider a sequential task of visit a and then b and finally c, i.e.
♦(a ∧ ♦(b ∧ ♦c)). The corresponding automaton for this LTL task is given in
Fig. 1. The entire task is modularised into three sub-tasks, i.e. reaching a, b, and
then c, and each automaton state acts as a divider. By synchronising the MDP
M and the LDBA A, each automaton state divides those parts of the state space
S, whose boundaries are sub-tasks, namely automaton transitions. Furthermore,
the LDBA specifies the relations between subs-tasks, e.g. ordering and repetition.
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q1start q2 q3 q4

¬a

a

¬b

b

¬c

c

true

Fig. 1: LDBA for a sequential task expressed by ♦(a ∧ ♦(b ∧ ♦c)).

By exploiting the relationship between sub-tasks, and also limiting the agent
exploration to the relevant regions of the state space for each sub-task, it can
efficiently guide the learning to solve problems with sparse rewards.

Given an LTL task and its LDBA A = (Q, q0, Σ,F, ∆), we propose a modular
architecture of n = |Q| separate actor and critic neural networks, along with
their own replay buffer. A replay buffer is a finite-sized cache in which transitions
sampled from exploring the environment are stored. The replay buffer is then
used to train the actor and critic networks. The set of neural nets acts as a
global modular actor-critic deep RL architecture, which allows the agent to jump
from one sub-task to another by just switching between the set of neural nets.
For each automaton state qi an actor function µqi(s|θµqi ) represents the current
policy by deterministically mapping states to actions, where θµqi is the vector of
parameters of the function approximation for the actor. The critic Qqi(s, a|θQqi )
is learned based on (7).

The modular DDPG algorithm is detailed in Algorithm 1. Each actor-critic
network set in this algorithm is associated with its own replay buffer Rqi , where
qi ∈ Q (line 4, 12). Experience samples are stored in Rqi in the form of

(s⊗i , ai, Ri, s
⊗
i+1) = ((si, qi), ai, Ri, (si+1, qi+1)).

When the replay buffer reaches its maximum capacity, the samples are discarded
based on a first-in/first-out policy. At each time-step, actor and critic are updated
by sampling a mini-batch of size M uniformly from Rqi . Therefore, in the algorithm
the actor-critic network set corresponding to the current automaton state qt, is
trained based on experience samples in Rqt (line 12-17).

Further, directly implementing the update of the critic parameters as in (7) is
shown to be potentially unstable, and as a result the Q-update (line 14) is prone
to divergence [36]. Hence, instead of directly updating the networks weights, the
standard DDPG [34] introduces two “target networks”, µ′ and Q′, which are
time-delayed copies of the original actor and critic networks µ and Q, respectively.
DDPG uses “soft” target updates to improve learning stability, which means that
µ′ and Q′ slowly track the learned networks, µ and Q. These target actor and
critic networks are used within the algorithm to gather evidence (line 13) and
subsequently to update the actor and critic networks. In our algorithm, for each

automaton state qi we make a copy of the actor and the critic network: µ′qi(s|θ
µ′qi )

and Q′qi(s, a|θ
Q′qi ) respectively. The weights of both target networks are then

updated as θ′ = τθ + (1− τ)θ′ with a rate of τ < 1 (line 18). Summarising, to
increase stability and robustness in learning, for each automaton state qi we
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Algorithm 1: Modular DDPG

input :LTL task ϕ, a black-box agent/environment
output : trained actor and critic networks

1 convert the LTL property ϕ to LDBA A = (Q, q0, Σ,F,∆)

2 randomly initialise |Q| actors µi(s|θµi) and critic Qi(s, a|θQi) networks with

weights θµi and θQi , for each qi ∈ Q, and all state-action pairs (s, a)

3 initialize |Q| target networks µ′i and Q′i with weights θµ
′
i = θµi , θQ

′
i = θQi

4 initialise |Q| replay buffers Ri
5 repeat
6 initialise |Q| random processes Ni

7 initialise state s⊗1 = (s0, q0)
8 for t = 1 to max iteration number do
9 choose action at = µqt(st|θµqt ) + Nqt

10 observe reward rt and the new state (st+1, qt+1)
11 store ((st, qt), at, Rt, (st+1, qt+1)) in Rqt
12 sample a random mini-batch of M transitions

((si, qi), ai, Ri, (si+1, qi+1)) from Rqt

13 set yi = Ri + γQ′qi+1
(si+1, µ

′
qi+1

(si+1|θ
µ′qi+1 )|θQ

′
qi+1 )

14 update critic Qqt and θQqt by minimizing the loss:

L = 1/|M|
∑
i(yi −Qqt(si, ai|θ

Qqt ))2

15 update the actor policy µqt and θµqt by maximizing the sampled policy
gradient:

16 ∇θµqt Uµqt ≈ 1/|M|
∑
i[∇aQqt(s, a|θ

Qqt )|s=si,a=µqt (si|θµqt )
17 ∇θµqt µqt(s|θµqt )|s=si ]
18 update the target networks: θQ

′
qt ← τθQqt + (1− τ)θQ

′
qt

θµ
′
qt ← τθµ

qt
+ (1− τ)θµ

′
qt

19 end

20 until end of trial

have a pair of actor and critic networks, namely µqi(s|θµqi ), µ′qi(s|θ
µ′qi ) and

Q′qi(s, a|θ
Q′qi ), Qqi(s, a|θQqi ) respectively.

4 Experiments

In this section we showcase the simulation results of Modular DDPG in two case
studies: a cart-pole setup and in a mission planning problem for a Mars rover.

In the cart-pole example (Fig. 2) a pendulum is attached to a cart, which
moves horizontally along a friction-less track [50]. The agent applies a horizontal
force to the cart. The pendulum starts upright, and the goal is (1) to prevent
the pendulum from falling over, and (2) to move the cart between the yellow and
green regions while avoiding the red (unsafe) parts of the track.

The second case study deals with a Mars rover, exploring areas around the
Melas Chasma [35] and the Victoria crater [48]. The Melas Chasma area displays
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Fig. 2: Cart-pole case study (a.k.a. inverted pendulum on a cart) [50].

a number of signs of potential presence of water, with possible river valleys and
lakes (Fig. 3. a). The blue dots, provided by NASA, indicate Recurring Slope
Lineae (RSL) on the surface of Mars [35], which are possible locations of liquid
water. The agent task is to first visit low-risk RSL (on the right of the area)
and then to visit high-risk RSL (on the left), while avoiding unsafe red regions.
The Victoria crater (Fig. 3. b) is an impact crater located near the equator
of Mars. Layered sedimentary rocks are exposed along the wall of the crater,
providing information about the ancient surface condition of Mars [48]. A NASA
Mars rover has been operating around the crater and its mission path is given in
Fig. 3. b. The scenario of interest in this work is to train an RL agent that can
autonomously control the rover to accomplish the safety-critical complex task.

In each experiment, we convert tasks expressed as LTL properties into cor-
responding LDBAs, and use them to monitor the modular DDPG algorithm,
thus implicitly forming a product automaton. For each actor/critic structure, we
have used a feed-forward neural net with 2 fully connected hidden layers and 400
ReLu units in each layer.

MDP structure In the cart-pole experiment the pendulum starts upright with
an initial angle between −0.05 and 0.05 rads. The mass of the cart is 1 kg and
that of the pole is 100 g. The length of the pole is 1 m. The force applied by
the agent to the cart ranges from −10 to 10 N . A learning episode terminates if
the pendulum deviates more than 0.21 rad from the vertical position, or if the
cart enters any of the red regions at any time. The yellow region ranges from
−2.15 to −1.85 m, and symmetrically the green region is from 1.85 to 2.15 m.
The unsafe red region lies at the left of −4 m and at the right of 4 m.

In the Mars rover experiments, let the area of each image be the state space
S of the MDP, where the rover location is a state s ∈ S. At each state s the rover
has a continuous range of actions A = [0, 2π): when the rover takes an action it
moves to another state (e.g., s′) towards the direction of the action and within a
range that is randomly drawn within the interval (0, D], unless the rover hits the
boundary of the image, which restarts the learning episode.
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(a) (b)

(c) (d)

Fig. 3: (a) Melas Chasma in the Coprates quadrangle, map color spectrum
represents elevation, where red is high (unsafe) and blue is low. (b) Victoria
crater and Opportunity rover mission traverse map [48], (c) replicated points of
interest, and (d) unsafe area (red). Image courtesy of NASA, JPL, Cornell, and
Arizona University.
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Fig. 4: LDBAs expressing formula (11) in (a), (12) in (b), and (13) in (c).

In the actual Melas Chasma exploration mission (Fig. 3. a), the rover is de-
ployed on a landing location that is not precisely known. We therefore encompass
randomness over the initial state s0. Conversely, in the second experiment (Fig.
3. b) the rover is supposed to have already landed and it starts its mission from
a known state.

The dimension of the area of interest in Fig. 3. a is 456.98 × 322.58 km,
whereas in Fig. 3. b is 746.98× 530.12 m. Other parameters in this numerical
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Fig. 5: LDBA expressing the LTL formula in (14).

example have been set as D = 2 km for Melas Chasma, D = 10 m for the
Victoria crater. We have used the satellite image with additive noise as the
black-box MDP for the experiment. Note that the rover only needs its current
state (coordinates in this case), the state label (without seeing the entire map),
and the LTL task (Algorithm 1, line 11). The given maps in the paper are for
illustration purposes and to elucidate the performance of the output policy.

Specifications In the cart-pole setup the properties of interest are expressed by
the following two LTL formulae:

♦�y ∨ ♦�g, (11)

�♦y ∧�♦g ∧�¬u, (12)

where y is the label of the yellow region, g denotes the green region, and u is the
label denoting when either the pendulum falls or when the cart enters the red
regions on the track. We call the experiment with (11) Cart-pole-1 and that with
(12) Cart-pole-2. Note that the task in Cart-pole-2 is a surveillance finite-memory
specification: such tasks can be easily expressed in LTL and achieved by the
modular DDPG architecture, but are impossible to solve with conventional RL.

In the first of the Mars rover case studies, over the Melas Chasma area (Fig. 3.
a) the control objective is expressed by the following LTL formula:

♦(t1 ∧ ♦t2) ∧�(¬u), (13)

where t1 stands for “target 1”, t2 stands for “target 2” and u stands for “unsafe”
(the red region in Fig. 3. d). Target 1 corresponds to the RSL (blue dots) on the
right with a lower risk of the rover going to unsafe region, whereas the “target 2”
label goes on the left RSL that are a bit riskier to explore. Conforming to (13),
the rover has to visit any of the right dots at least once and then proceed to
the any of the left dots, while avoiding unsafe areas. From (13) we build the
associated LDBA as in Fig. 4.

The mission task for the Victoria crater is taken from a NASA rover mission
[48] and is expressed by the following LTL formula:

♦(t1 ∧ ♦(t2 ∧ ♦(t3 ∧ ♦(t4 ∧ ♦(... ∧ ♦(t12)))) ∧�(¬u), (14)
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where ti represents the “i-th target”, and u represents “unsafe” regions. The i-th
target in Fig. 3. c is the i-th red circle from the bottom left along the crater
rim. According to (14) the rover is required to visit the checkpoints from the
bottom left to the top right sequentially, while avoiding a fall into the crater,
which mimicks the actual path in Fig. 3. b. From (14), we build the associated
LDBA as shown in Fig 5.

(a) (b)

Fig. 6: Learning curves (dark blue) obtained averaging over 10 randomly initialised
experiments in the cart-pole setup with the task specified in (11) for (a) and in
(12) for (b). Shaded areas (light blue) represent the envelopes of the 10 generated
learning curves.

(a) Coordinates (2,2) (b) Coordinates (113,199)

(c) Coordinates (14,165) (d) Coordinates (122,113)

Fig. 7: Paths generated by the learnt policy in the Melas Chasma experiment.
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Experimental Outcomes In each cart-pole experiment we have employed three
actor-critic neural network pairs and ran simulations for 10,000 episodes. We have
then tested the trained network across 200 runs. Modular DDPG has achieved
a success rate of 100% (Table 1) and Fig. 6 shows the learning progress. The
learning run time has been 57 minutes.

In the Melas Chasma experiment we have employed 4 actor-critic neural
network pairs and ran simulations for 10,000 episodes. We have then tested
the trained network for all safe starting position. Our algorithm has achieved a
success rate of 98.8% across 18,202 landing positions, as reported Table 1. Fig. 7
gives the example paths generated by our algorithm. The learning run time has
been 5 hours.

In the Victoria crater experiment we have used 13 actor-critic neural network
pairs. We have ran simulations for a total of 17,000 episodes, at which point it
had already converged. The learning run time was 2 days. We have then tested
the trained network across 200 runs. Our algorithm has achieved a success rate
of 100% across all runs starting from t1 (Table 1). Fig. 8 shows a generated path
that bends away from the crater, due to the back-propagation of the negative
reward in (10) associated with violating the safety constraint.

Discussion In all the experiments, the modular DDPG algorithm has been able
to automatically modularise the given LTL task and to synthesise a successful
policy. We have employed stand-alone DDPG as a baseline for comparison. In the
cart-pole example, without synchronising the LDBA with the actor/environment,
stand-alone DDPG cannot learn a policy for the non-Markovian task in (12).
Hierarchical RL methods, e.g. [32], are able to generate goal-oriented policies, but
only when the mission task is sequential and not particularly complex: as such,
they would not be useful for (12). Furthermore, in state-of-the-art hierarchical
RL there are a number of extra hyper-parameters to tune, such as the sub-goal
horizons and the number of hierarchical levels, which conversely the one-shot
modular DDPG does not have. The task in (11) is chosen to elucidate how the

(a) (b)

Fig. 8: (a) Path generated by the policy learnt via modular DDPG around the
Victoria crater, vs (b) the actual Mars rover traverse map [48].
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Table 1: Success Rates: statistics are taken over at least 200 trials
Case Study Algorithm Success Rate

Cart-pole-1
Stand-alone DDPG 100%

Modular DDPG 100%

Cart-pole-2
Stand-alone DDPG 0 %

Modular DDPG 100%

Melas Chasma∗
Stand-alone DDPG 21.4%

Modular DDPG 98.8%

Victoria Crater
Stand-alone DDPG 0%

Modular DDPG 100%

*The statistics for the M. Chasma study are taken over different initial positions

modular DDPG algorithm can handle cases in which the generated LDBA has
non-deterministic ε-transitions.

In the Mars rover examples, the reward function for the stand-alone DDPG
is rp if the agent visits all the checkpoints in proper order, and rn if the agent
enters regions with unsafe labels. However, the performance of stand-alone
DDPG has been quite poor, due to inefficient navigation. In relatively simple
tasks, e.g. the Melas Chasma experiment, stand-alone DDPG has achieved a
positive success rate, however at the cost of very high sample complexity in
comparison to Modular DDPG. Specifically, due to its modular structure, the
proposed architecture requires fewer samples to achieve the same success rate.
Each module encompasses a pair of local actor-critic networks, which are trained
towards their own objective and, as discussed before, only samples relevant to
the sub-task are fed to the networks. On the other hand, in standard DDPG
the whole sample set is fed into a large-scale pair of actor-critic networks, which
reduces sample efficiency.

5 Conclusions

We have discussed a deep RL scheme for continuous-state/action decision mak-
ing problems under LTL specifications. The synchronisation of the automaton
expressing the LTL formula with deep RL automatically modularises a global
complex task into easier sub-tasks. This setup assists the agent to find an op-
timal policy with a one-shot learning scheme. The high-level relations between
sub-tasks become crucial when dealing with sparse reward problems, as the
agent exploration is efficiently guided by the task modules, saving the agent
from exhaustively exploring the whole state space, and thus improving sample
efficiency.
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limit-deterministic Büchi automata. In: ATVA. pp. 130–137 (2016)

47. Silver, D., Lever, G., Heess, N., Thomas Degris, D.W., Riedmiller, M.: Deterministic
policy gradient algorithms. ICML (2014)

48. Squyres, S.W., Knoll, A.H., Arvidson, R.E., Ashley, J.W., Bell, J., Calvin, W.M.,
Christensen, P.R., Clark, B.C., Cohen, B.A., De Souza, P., et al.: Exploration
of Victoria crater by the Mars rover Opportunity. Science 324(5930), 1058–1061
(2009)

49. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction, vol. 1. MIT
press Cambridge (1998)

50. Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, D.d.L., Budden, D.,
Abdolmaleki, A., Merel, J., Lefrancq, A., et al.: Deepmind control suite. arXiv
preprint arXiv:1801.00690 (2018)

51. Toro Icarte, R., Klassen, T.Q., Valenzano, R., McIlraith, S.A.: Teaching multiple
tasks to an RL agent using LTL. In: AAMAS. pp. 452–461 (2018)

52. Vezhnevets, A., Mnih, V., Osindero, S., Graves, A., Vinyals, O., Agapiou, J., et al.:
Strategic attentive writer for learning macro-actions. In: NIPS. pp. 3486–3494
(2016)

53. Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3-4), 279–292 (1992)
54. Wei, Q., Guo, X.: Markov decision processes with state-dependent discount factors

and unbounded rewards/costs. Operations Research Letters 39(5), 369–374 (2011)
55. Yan, R., Cheng, C.H., Chai, Y.: Formal consistency checking over specifications in

natural languages. In: DATE. pp. 1677–1682 (2015)
56. Yoshida, N., Uchibe, E., Doya, K.: Reinforcement learning with state-dependent

discount factor. In: 2013 IEEE third joint international conference on development
and learning and epigenetic robotics (ICDL). pp. 1–6. IEEE (2013)

57. Yuan, L.Z., Hasanbeig, M., Abate, A., Kroening, D.: Modular Deep Reinforcement
Learning with Temporal Logic Specifications. arXiv preprint arXiv:1909.11591
(2019)



22 M. Hasanbeig, D. Kroening, and A. Abate

Appendix: Proof of Theorem 1

Theorem 1. Let ϕ be a given LTL formula and MA be the product MDP

constructed by synchronising the MDP M with the LDBA A associ-

ated with ϕ. Then the optimal stationary Markov policy on MA that

maximises the expected return, maximises the probability of satisfying

ϕ and induces a finite-memory policy on the MDP M.

Proof. Assume that the optimal Markov policy on MA is π⊗
∗
, namely at each

state s⊗ in MA we have

π⊗
∗
(s⊗) = argsup

π⊗∈D⊗
Uπ
⊗

(s⊗) = argsup
π⊗∈D⊗

Eπ
⊗

[

∞∑
n=0

γn R(s⊗n , an)|s⊗0 = s⊗], (15)

where D⊗ is the set of stationary deterministic policies over the state space

S⊗, Eπ
⊗

[·] denotes the expectation given that the agent follows policy π⊗, and

s⊗0 , a0, s
⊗
1 , a1, . . . is a generic path generated by the product MDP under policy

π⊗.

Recall that an infinite word w ∈ Σω, Σ = 2AP is accepted by the LDBA

A = (Q, q0, Σ,F, ∆) if there exists an infinite run θ ∈ Qω starting from q0 where

θ[i + 1] ∈ ∆(θ[i], ω[i]), i ≥ 0 and, for each Fj ∈ F, inf (θ) ∩ Fj 6= ∅, where

inf (θ) is the set of states that are visited infinitely often in the sequence θ.

From Definition 8, the associated run θ of an infinite path in the product MDP

ρ = s⊗0
a0−→ s⊗1

a1−→ ... is θ = L⊗(s⊗0 )L⊗(s⊗1 )... . From Definition 9 and (10), and

since for an accepting run inf (θ) ∩ Fj 6= ∅, ∀Fj ∈ F, all accepting paths starting

from s⊗0 , accumulate infinite number of positive rewards rp (see Remark 2).

In the following, by contradiction, we show that any optimal policy π⊗
∗

satisfies the property with maximum possible probability. Let us assume that

there exists a stationary deterministic Markov policy π⊗
+ 6= π⊗

∗
over the state

space S⊗ such that probability of satisfying ϕ under π⊗
+

is maximum.

This essentially means in the product MDP MA by following π⊗
+

the ex-

pectation of reaching the point where inf (θ) ∩ Fj 6= ∅, ∀Fj ∈ F and positive

reward is received ever after is higher than any other policy, including π⊗
∗
. With

a tuned discount factor γ, e.g. (1),

Eπ
⊗+

[

∞∑
n=0

γn R(s⊗n , an)|s⊗0 = s⊗] > Eπ
⊗∗

[

∞∑
n=0

γn R(s⊗n , an)|s⊗0 = s⊗] (16)

This is in contrast with optimality of π⊗
∗

(15) and concludes π⊗
∗

= π⊗
+

.
Namely, an optimal policy that maximises the expected return also maximises
the probability of satisfying LTL property ϕ. It is easy to see that the projection
of policy π⊗

∗
on MDP M is a finite-memory policy π∗. �
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