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Abstract. This paper studies the exponential stabilization problem for
discrete-time switched linear systems based on a control-Lyapunov func-
tion approach. A number of versions of converse control-Lyapunov func-
tion theorems are proved and their connections to the switched LQR
problem are derived. It is shown that the system is exponentially stabiliz-
able if and only if there exists a finite integer N such that the N -horizon
value function of the switched LQR problem is a control-Lyapunov func-
tion. An efficient algorithm is also proposed which is guaranteed to yield
a control-Lyapunov function and a stabilizing strategy whenever the sys-
tem is exponentially stabilizable.

1 Introduction

One of the basic problems for switched systems is to design a switched-control
feedback strategy that ensures the stability of the closed-loop system [1]. The sta-
bilization problem for switched systems, especially autonomous switched linear
systems, has been extensively studied in recent years [2]. Most of the previous
results are based on the existence of a switching strategy and a Lyapunov or
Lyapunov-like function with decreasing values along the closed-loop system tra-
jectory [3, 4]. These existence results have also led to some constructive ways to
find the stabilizing switching strategy [5, 6]. The main idea is to parameterize
the switching strategy and the Lyapunov function in terms of some matrices and
then translate the Lyapunov theorem to some matrix inequalities. The solution
of these matrix inequalities, when existing, will define a stabilizing switching
strategy. However, these matrix inequalities are usually NP-hard to solve and
relaxations and heuristic methods are often required. A similar idea is used to
study the stabilization problem of nonautonomous switched linear systems [7,
8]. By assuming a linear state-feedback form for the continuous control of each
mode, the problem is also formulated as a matrix inequality problem, where the
feedback-gain matrices are part of the design variables. Although some sufficient
and necessary conditions are derived for quadratic stabilizability [4, 9, 10], most
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of the previous stabilization results are far from necessary in the sense that the
system may be asymptotically or exponentially stabilizable without satisfying
the proposed conditions or the derived matrix inequalities.

In this paper, we study the exponential stabilization problem for discrete-time
switched linear systems. Our goal is to develop a computationally appealing way
to construct both a switching strategy and a continuous control strategy to expo-
nentially stabilize the system when none of the subsystems is stabilizable but the
switched system is exponentially stabilizable. Unlike most previous methods, we
propose a controller synthesis framework based on the control-Lyapunov function
approach which embeds the controller design in the design of the Lyapunov func-
tion. The control-Lyapunov function approach has been widely used for studying
the stabilization problem of general nonlinear systems [11, 12]. However, its appli-
cation in switched linear systems has not been adequately investigated. Another
novelty of this paper is the derivation of some nice connections between the sta-
bilization problem and the switched LQR problem. In particular, we show that
the switched linear system is exponentially stabilizable if and only if there exists
a finite integer N such that the N -horizon value function of the switched LQR
problem is a control-Lyapunov function. This result not only serves as a converse
control-Lyapunov function theorem, but also transforms the stabilization prob-
lem into the switched LQR problem. Motivated by the results of the switched
LQR problem recently developed in [13–15], an efficient algorithm is proposed
which is guaranteed to yield a control-Lyapunov function and a stabilizing strat-
egy whenever the system is exponentially stabilizable. A numerical example is
also carried out to demonstrate the effectiveness of the proposed algorithm.

2 Problem Formulation

We consider the discrete-time switched linear systems described by:

x(t + 1) = Av(t)x(t) + Bv(t)u(t), t ∈ Z
+, (1)

where Z
+ denotes the set of nonnegative integers, x(t) ∈ R

n is the continu-
ous state, v(t) ∈ M , {1, . . . ,M} is the discrete mode, and u(t) ∈ R

p is the
continuous control. The integers n, M and p are all finite and the control u is
unconstrained. The sequence of pairs {(u(t), v(t))}∞t=0 is called the hybrid control
sequence. For each i ∈ M, Ai and Bi are constant matrices of appropriate dimen-
sions and the pair (Ai, Bi) is called a subsystem. This switched linear system
is time invariant in the sense that the set of available subsystems {(Ai, Bi)}

M
i=1

is independent of time t. We assume that there is no internal forced switchings,
i.e., the system can stay at or switch to any mode at any time instant. At each
time t ∈ Z

+, denote by ξt , (µt, νt) : R
n → R

p × M the hybrid control law
of system (1), where µt : R

n → R
p is called the continuous control law and

νt : R
n → M is called the switching control law. A sequence of hybrid con-

trol laws constitutes an infinite-horizon feedback policy: π , {ξ0, ξ1, . . . , . . .}. If
system (1) is driven by a feedback policy π, then the closed-loop dynamics is



governed by

x(t + 1) = Aνt(x(t))x(t) + Bνt(x(t))µt(x(t)), t ∈ Z
+. (2)

In this paper, the policy π is allowed to be time-varying and the feedback law
ξt = (µt, νt) at each time step can be an arbitrary function of the state. The
special policy π = {ξ, ξ, . . .} with the same feedback law ξt = ξ at each time t is
called a stationary policy.

Definition 1. The origin of system (2) is exponentially stable if there exist
constants a > 0 and 0 < c < 1 such that the system trajectory starting from any
initial state x0 satisfies:

‖x(t)‖ ≤ act‖x0‖.

Definition 2. The system (1) is called exponentially stabilizable if there exists
a feedback policy π = {(µt, νt)}t≥0 under which the closed-loop system (2) is
exponentially stable.

Clearly, system (1) is exponentially stabilizable if one of the subsystems is
stabilizable. A nontrivial problem is to stabilize the system when none of the
subsystems are stabilizable. The main purpose of this paper is to develop an
efficient and constructive way to solve the following stabilization problem.

Problem 1 (Stabilization Problem). Suppose that (Ai, Bi) is not stabilizable for
any i ∈ M. Find, if possible, a feedback policy π under which the closed-loop
system (2) is exponentially stable.

3 A Control-Lyapunov Function Framework

We first recall a version of the Lyapunov theorem for exponential stability.

Theorem 1 (Lyapunov Theorem [16]). Suppose that there exist a policy π
and a nonnegative function V : R

n → R
+ satisfying:

1. κ1‖z‖
2 ≤ V (z) ≤ κ2‖z‖

2 for some finite positive constants κ1 and κ2;
2. V (x(t)) − V (x(t + 1)) ≥ κ3‖x(t)‖2 for some constant κ3 > 0, where x(t) is

the closed-loop trajectory of system (2) under policy π.

Then system (2) is exponentially stable under π.

To solve the stabilization problem, one usually needs to first propose a valid
policy and then construct a Lyapunov function that satisfies the conditions in the
above theorem. A more convenient way is to combine these two steps together,
resulting in the control-Lyapunov function approach.

Definition 3 (ECLF). The nonnegative function V : R
n → R

+ is called an
exponentially stabilizing control Lyapunov function (ECLF) of system (1) if

1. κ1‖z‖
2 ≤ V (z) ≤ κ2‖z‖

2 for some finite positive constants κ1 and κ2;



2. V (z) − inf{v∈M,u∈Rp} V (Avz + Bvu) ≥ κ3‖z‖
2 for some constant κ3 > 0.

The ECLF, if exists, represents certain abstract energy of the system. The second
condition of Definition 3 guarantees that by choosing proper hybrid controls, the
abstract energy decreases by a constant factor at each step. This together with
the first condition implies the exponential stabilizability of system (1).

Theorem 2. If system (1) has an ECLF, then it is exponentially stabilizable.

Proof. Follows directly from Theorem 1 and Definition 3. ⊓⊔

If V (z) is an ECLF, then one can always find a feedback law ξ that satisfies
the conditions of Theorem 1. Such a feedback law is exponentially stabilizing, but
may result in a large control action. A systematic way to stabilize the system with
a reasonable control effort is to choose the hybrid control (u, v) that minimizes
the abstract energy at the next step V (Avz + Bvu) plus certain kind of control
energy expense. Toward this purpose, we introduce the following feedback law:

ξV (z) = (µV (z), νV (z)) = arg inf
u∈Rp,v∈M

[

V (Avz + Bvu) + uT Rvu
]

, (3)

where for each v ∈ M, Rv = RT
v ≻ 0 characterizes the penalizing metric for

the continuous control u. Since the quantity inside the bracket is bounded from
below and grows to infinity as ‖u‖ → ∞, the minimizer of (3) always exists in
R

p × M. Furthermore, if we have

V (z) − V (AνV (z)z + BνV (z)µV (z)) ≥ κ3‖z‖
2, (4)

for some constant κ3 > 0, we know that system (1) is exponentially stabilizable
by the stationary policy {ξV , ξV , . . .}. The challenge is how to find an ECLF
that satisfies (4).

In the rest of this paper, we will focus on a particular class of piecewise
quadratic functions as candidates for the ECLFs of system (1). Each of these
functions can be written as a pointwise minimum of a finite number of quadratic
functions as follows:

VH(z) = min
P∈H

zT Pz, (5)

where H is a finite set of positive definite matrices, hereby referred to as the
FPD set. The main reason that we focus on functions of the form (5) is that this
form is sufficiently rich in terms of characterizing the ECLFs of system (1). It
will be shown in Section 5 that the system is exponentially stabilizable if and
only if there exists an ECLF of the form (5).

With the particular structure of the candidate ECLFs (5), the feedback law
defined in (3) can be derived in closed form. Its expression is closely related to
the Riccati equation and the Kalman gain of the classical LQR problem. To
derive this expression, we first define a few notations. Let A be the positive



semidefinite cone, namely, the set of all symmetric positive semidefinite (p.s.d.)
matrices. For each subsystem i ∈ M, define a mapping ρ0

i : A → A as:

ρ0
i (P ) = AT

i PAi − AT
i PBi(Ri + BT

i PBi)
−1BT

i PAi. (6)

It will become clear in Section 4 that the mapping ρ0
i is the difference Riccati

equation of subsystem i with a zero state-weighting matrix. For each subsystem
i ∈ M and each p.s.d. matrix P , the Kalman gain is defined as

Ki(P ) , (Ri + BT
i PBi)

−1BT
i PAi. (7)

Lemma 1. Let H be an arbitrary FPD set. Let VH : R
n → R

+ be defined by H
through (5). Then the feedback law defined in (3) is given by

ξVH
(z) =

(

−KiH(z) (PH(z)) z, iH(z)
)

, (8)

where Ki(·) is the Kalman gain defined in (7) and

(PH(z), iH(z)) = arg min
P∈H,i∈M

zT ρ0
i (P )z. (9)

Proof. By (3), to find ξV , we need to solve the following optimization problem:

f(z) , inf
u∈Rp,i∈M

[

min
P∈H

(Aiz + Biu)T P (Aiz + Biu) + uT Riu

]

= min
i∈M,P∈H

{

inf
u∈Rp

[

(Aiz + Biu)T P (Aiz + Biu) + uT Riu
]

}

. (10)

For each i ∈ M and P ∈ H, the quantity inside the square bracket is quadratic
in u. Thus, the optimal value of u can be easily computed as u∗ = −Ki(P )z,
where Ki(P ) is the Kalman gain defined in (7). Substituting u∗ into (10) and
simplifying the resulting expression yield f(z) = zT ρ0

iH(z)(PH(z))z, where PH(z)

and iH(z) are defined in (9). ⊓⊔

To check whether a function VH defined by a FPD set H is an ECLF, it is
convenient to introduce another FPD set FH defined as:

FH = {ρ0
i (P ) : i ∈ M and P ∈ H}. (11)

In other words, FH contains all the possible images of the mapping ρ0
i (P ) as i

ranges over M and P ranges over H.

Theorem 3. Let H be an arbitrary FPD set. Let VH : R
n → R

+ and VFH
:

R
n → R

+ be defined by H and FH, respectively, by (5). Then the stationary
policy πVH

= {ξVH
, ξVH

, . . .} is exponentially stabilizing if

VH(z) − VFH
(z) ≥ κ3‖z‖

2, (12)

for all z ∈ R
n and some constant κ3 > 0.



Proof. Obviously, VH satisfies the first condition of Definition 3. By (8), it can
be easily verified that (12) implies (4). Thus, VH is an ECLF satisfying (4) and
the desired result follows. ⊓⊔

For a given function VH of the form (5), to see whether it is an ECLF, we
should check condition (12). Since both VH and VFH

are homogeneous, we only
need to consider the points on the unit sphere in R

n to verify (12). In R
2, a practi-

cal way of checking (12) is to plot the functions VH(z) and VFH
(z) along the unit

circle to see whether VH(z) is uniformly above VFH
(z). In higher dimensional

state spaces, there is no general way to efficiently verify this condition. Never-
theless, a sufficient convex condition can be obtained using the S-procedure.

Theorem 4 (Convex Test). With the same notations as in Theorem 3, the
stationary policy πVH

= {ξVH
, ξVH

, . . .} is exponentially stabilizing if for each
PH ∈ H, there exists nonnegative constants αj, j = 1, . . . , k, such that

∑k

j=1
αj = 1, and PH ≻

∑k

j=1
αjP

(j)
FH

, (13)

where k = |FH| and {P
(j)
FH

}k
j=1 is an enumeration of FH.

Proof. See [17]. ⊓⊔

4 A Converse ECLF Theorem Using Dynamic

Programming

By focusing on the ECLFs of the form (5) and the feedback laws of the form (3),
the stabilization problem becomes a quadratic optimal control problem. The
main purpose of this section is to prove that system (1) is exponentially stabiliz-
able if and only if there exists an ECLF that satisfies (4). Our approach is based
on the theory of the switched LQR problem recently developed in [13, 15].

4.1 The Switched LQR Problem

Let Qi = QT
i ≻ 0 and Ri = RT

i ≻ 0 be the weighting matrices for the state and
the control, respectively, for subsystem i ∈ M. Define the running cost as

L(x, u, v) = xT Qvx + uT Rvu, for x ∈ R
n, u ∈ R

p, v ∈ M. (14)

Denote by Jπ(z) the total cost, possibly infinite, starting from x(0) = z under
policy π, i.e.,

Jπ(z) =
∑∞

t=0
L(x(t), µt(x(t)), νt(x(t))). (15)

Denote by Π the set of all admissible policies, i.e., the set of all sequences of
functions π = {ξ0, ξ1, . . .} with ξt : R

n → R
p × M for t ∈ Z

+. Define V ∗(z) =
infπ∈Π Jπ(z). Since the running cost is always nonnegative, the infimum always



exists. The function V ∗(z) is usually called the infinite-horizon value function.
It will be infinite if Jπ(z) is infinite for all the policies π ∈ Π. As a natural
extension of the classical LQR problem, the Discrete-time Switched LQR problem
(DSLQR) is defined as follows.

Problem 2 (DSLQR problem). For a given initial state z ∈ R
n, find the infinite-

horizon policy π ∈ Π that minimizes Jπ(z) subject to equation (2).

4.2 The Value Functions of the DSLQR Problem

Dynamic programming solves the DSLQR problem by introducing a sequence of
value functions. Define the N -horizon value function VN : R

n → R as:

VN (z)= inf
u(t)∈Rp,v(t)∈M

0≤t≤N−1

{

N−1
∑

t=0

L(x(t), u(t), v(t))
∣

∣

∣
x(0)=z

}

. (16)

For any function V : R
n → R

+ and any feedback law ξ = (µ, ν) : R
n → R

p ×M,
denote by Tξ the operator that maps V to another function Tξ[V ] defined as:

Tξ[V ](z) = L(z, µ(z), ν(z)) + V (Aν(z)z + Bν(z)µ(z)), ∀z ∈ R
n. (17)

Similarly, for any function V : R
n → R

+, define the operator T by

T [V ](z) = inf
u∈Rp,v∈M

{L(z, u, v) + V (Avz + Bvu)} , ∀z ∈ R
n. (18)

The equation defined above is called the one-stage value iteration of the DSLQR
problem. We denote by T k the composition of the mapping T with itself k times,
i.e., T k[V ](z) = T

[

T k−1[V ]
]

(z) for all k ∈ Z
+ and z ∈ R

n. Some standard results
of Dynamic Programming are summarized in the following lemma.

Lemma 2 ([18]). Let V0(z) = 0 for all z ∈ R
n. Then (i) VN (z) = T N [V0](z)

for all N ∈ Z
+ and z ∈ R

n; (ii) VN (z) → V ∗(z) pointwise in R
n as N →

∞. (iii) The infinite-horizon value function satisfies the Bellman equation, i.e.,
T [V ∗](z) = V ∗(z) for all z ∈ R

n.

To derive the value function of the DSLQR problem, we introduce a few
definitions. Denote by ρi : A → A the Riccati Mapping of subsystem i ∈ M, i.e.,

ρi(P ) =Qi + AT
i PAi − AT

i PBi(Ri + BT
i PBi)

−1BT
i PAi. (19)

Definition 4. Let 2A be the power set of A. The mapping ρM : 2A → 2A defined
by: ρM(H) = {ρi(P ) : i ∈ M and P ∈ H} is called the Switched Riccati Mapping
associated with Problem 2.

Definition 5. The sequence of sets {Hk}
N
k=0 generated iteratively by Hk+1 =

ρM(Hk) with initial condition H0 = {0} is called the Switched Riccati Sets of
Problem 2.



The switched Riccati sets always start from a singleton set {0} and evolve
according to the switched Riccati mapping. For any finite N , the set HN consists
of up to MN p.s.d. matrices. An important fact about the DSLQR problem is
that its value functions are completely characterized by the switched Riccati
sets.

Theorem 5 ([13]). The N -horizon value function for the DSLQR problem is
given by

VN (z) = minP∈HN
zT Pz. (20)

4.3 A Converse ECLF Theorem

The main purpose of this subsection is to show that if system (1) is exponentially
stabilizable, then an ECLF must exist and can be chosen to be the infinite-
horizon value function V ∗ of the DSLQR problem. Denote by λmin(·) and λmax(·)
the smallest and the largest eigenvalue of a p.s.d. matrix, respectively. Let

σ+
A = max

i∈M

{

√

λmax(AT
i Ai)

}

, λ−
Q = min

i∈M

{λmin(Qi)},

λ+
Q = max

i∈M

{λmax(Qi)}, λ
−
R = min

i∈M

{λmin(Ri)} and λ+
R = max

i∈M

{λmax(Ri)}.

We first prove some important properties of V ∗.

Lemma 3. If system (1) is exponentially stabilizable, then (i) there exists a
constant β < ∞ such that λ−

Q‖z‖
2 ≤ V ∗(z) ≤ β‖z‖2; (ii) there exists a stationary

optimal policy.

Proof. (i) The proof of the first part is rather technical and is thus omitted here.
Interested readers may refer to [17] for the detailed proof. (ii) By Lemma 2,
V ∗(z) satisfies the Bellman equation, i.e.,

V ∗(z) = inf
u∈Rp,v∈M

{L(z, u, v) + V ∗(Avz + Bvu)} , ∀z ∈ R
n. (21)

Let z be arbitrary and fixed. If V ∗(z) is infinite, then an arbitrary ξ∗(z) ∈ R
p×M

achieves the infimum of (21) which is infinite. Now suppose V ∗(z) is finite. Then
there exists a hybrid control (u, v) under which the quantity inside the bracket
of (21) is finite. Denote by V̂ this finite number. Since Rv ≻ 0 for all v ∈ M,
there must exists a compact set U such that L(z, u, v) ≥ V̂ as long as u /∈ U .
This implies that

V ∗(z) = inf
u∈U,v∈M

{L(z, u, v)+V ∗(Avz + Bvu)} .

Since U is compact, there always exists a hybrid control that achieves the infi-
mum of (21). Therefore, in any case, there must exist a feedback law ξ∗(z) =
(µ∗(z), ν∗(z)) such that Tξ∗ [V ∗](z) = V ∗(z) for each z ∈ R

n. ⊓⊔



The following theorem relates the exponential stabilizability with the infinite-
horizon value function V ∗.

Theorem 6 (Converse ECLF Theorem I). System (1) is exponentially sta-
bilizable if and only if V ∗(z) is an ECLF of system (1) that satisfies condition (4).

Proof. The “only if” part follows directly from Theorem 2. Now suppose that
system (1) is exponentially stabilizable. By part (i) of Lemma 3, V ∗(z) satisfies
the first condition of Definition 3. Furthermore, by part (ii) of Lemma 3, there
exists a feedback law ξ∗ = (µ∗, ν∗) such that V ∗(z) = Tξ∗ [V ∗](z). This implies
that

V ∗(z) − V ∗(Aν∗(z)z + Bν∗(z)µ
∗(z)) − [µ∗(z)]T Rν∗(z)[µ

∗(z)] ≥ λ−
Q‖z‖

2.

Let ξV ∗ = (µ̂, ν̂) be defined as in (3) with V replaced by V ∗. Then we have

V ∗(z) − V ∗
(

Aν̂(z)z + Bν̂(z)µ̂(z)
)

≥V ∗(z) − V ∗
(

Aν̂(z)z + Bν̂(z)µ̂(z)
)

− [µ̂(z)]T Rν̂(z)[µ̂(z)]

≥V ∗(z) − V ∗
(

Aν∗(z)z + Bν∗(z)µ
∗(z)

)

− [µ∗(z)]T Rν∗(z)[µ
∗(z)] ≥ λ−

Q‖z‖
2,

where the last step follows from the definition of ξV ∗ in (3). Thus, V ∗ also
satisfies condition (4). Hence, V ∗ is an ECLF satisfying (4). ⊓⊔

By this theorem, whenever system (1) is exponentially stabilizable, V ∗(z) can
be used as an ECLF to construct an exponentially stabilizing feedback law ξV ∗ .
However, from a design view point, such an existence result is not very useful
as V ∗ can seldom be obtained exactly. In the next section, we will develop an
efficient algorithm to compute an approximation of V ∗ which is also guaranteed
to be an ECLF of system (1).

5 Efficient Computation of ECLFs

In this section, we will find an approximation of V ∗ which can be efficiently
computed yet close enough to V ∗ so that it remains a valid ECLF of system (1).
To find such an approximation, we need the following convergence result.

Theorem 7 ([14]). If V ∗(z) ≤ β‖z‖2 for some β < ∞, then

|VN1
(z) − VN (z)| ≤ αγN‖z‖2, (22)

for any N1 ≥ N ≥ 1, where γ = 1
1+λ−

Q
/β

< 1 and α = max{1,
σ+

A

γ }.

By this theorem, the N -horizon value function VN approaches V ∗ exponen-
tially fast as N → ∞. Therefore, as we increase N , VN will quickly become an
ECLF of system (1).

Theorem 8 (Converse ECLF Theorem II). If system (1) is exponentially
stabilizable, then there exists an integer N0 < ∞ such that VN (z) is an ECLF
satisfying condition (4) for all N ≥ N0.



Proof. Define

ξ∗N (z) = (µ∗
N , ν∗

N ) , arg inf
u∈Rp,v∈M

{L(z, u, v) + VN (Avz + Bvu)}. (23)

By Lemma 2 and equation (23), we know that

VN+1(z) = T [VN ](z) = Tξ∗
N

(z)[VN ](z),∀z ∈ R
n.

We now fix an arbitrary z ∈ R
n and let u∗ = µ∗

N (z), v∗ = ν∗
N (z) and x∗(1) =

Av∗z + Bv∗u∗. Therefore, VN+1(z) − VN (x∗(1)) − (u∗)T Rv∗(u∗) ≥ λ−
Q‖z‖

2. By

Theorem 7, VN+1(z) ≤ VN (z) + αγN‖z‖2. Hence,

VN (z) − VN (x∗(1)) − (u∗)T Rv∗(u∗) ≥ (λ−
Q − αγN )‖z‖2.

Thus, there must exist an N0 ≤ ∞ such that (λ−
Q − αγN ) > λ−

Q/2 for all
N ≥ N0. Then, by a similar argument as in the proof of Theorem 6, we can
conclude that VN is an ECLF satisfying (4) for all N ≥ N0. ⊓⊔

Theorem 8 implies that when the system is exponentially stabilizable, the
ECLF not only exists but also can be chosen to be a piecewise quadratic function
of the form (5). Furthermore, as N increases, the N -horizon value function VN

will eventually become an ECLF. Therefore, to solve the stabilization problem,
we only need to compute the switched Riccati set HN . However, this method may
not be computationally feasible as the size of HN grows exponentially fast as N
increases. Fortunately, if we allow a small numerical relaxation, an approximation
of VN can be efficiently computed [15].

Definition 6 (Numerical Redundancy). A matrix P̂ ∈ HN is called (nu-
merically) ǫ-redundant with respect to HN if

min
P∈HN\P̂

zT Pz ≤ min
P∈HN

zT (P + ǫIn)z, for any z ∈ R
n.

Definition 7 (ǫ-ES). The set Hǫ
N is called an ǫ-Equivalent-Subset (ǫ-ES) of

HN if Hǫ
N ⊂ HN and for all z ∈ R

n,

min
P∈HN

zT Pz ≤ min
P∈Hǫ

N

zT Pz ≤ min
P∈HN

zT (P + ǫIn)z.

Removing the ǫ-redundant matrices may introduce some error for the value func-
tion; but the error is no larger than ǫ for ‖z‖ ≤ 1. To simplify the computation,
for a given tolerance ǫ, we want to prune out as many ǫ-redundant matrices
as possible. The following lemma provides a sufficient condition for testing the
ǫ-redundancy for a given matrix.

Lemma 4 (Redundancy Test). P̂ is ǫ-redundant in HN if there exist non-

negative constants {α1}
k−1
i=1 such that

∑k
i=1 αi = 1 and P̂ + ǫIn �

∑k
i=1 αiP

(i),

where k = |HN | and {P (i)}k−1
i=1 is an enumeration of HN \ {P̂}.



Algorithm 1

1. Denote by P (i) the ith matrix in HN . Specify a tolerance ǫ and set H
(1)
N

= {P (1)}.
2. For each i = 2, . . . , |HN |, if P (i) satisfies the condition in Lemma 4 with respect

to HN , then H
(i)
N

= H
(i−1)
N

; otherwise H
(i)
N

= H
(i−1)
N

∪ {P (i)}.

3. Return H
(|HN |)
N

.

The condition in Lemma 4 can be easily verified using various existing con-
vex optimization algorithms [19]. To compute an ǫ-ES of HN , we only need to
remove the matrices in HN that satisfy the condition in Lemma 4. The detailed
procedure is summarized in Algorithm 1. Denote by Algoǫ(HN ) the ǫ-ES of HN

returned by the algorithm. To further reduce the complexity, we can remove
the ǫ-redundant matrices after every switched Riccati mapping. To this end, we
define the relaxed switched Riccati sets {Hǫ

k}
N
k=0 iteratively as:

Hǫ
0 = H0 and Hǫ

k+1=Algoǫ(ρM(Hǫ
k)), for k ≤ N − 1. (24)

The function defined based on Hǫ
N is very close to VN but much easier to compute

as Hǫ
N usually contains much fewer matrices than HN . We now use the following

example to demonstrate the simplicity of computing the set Hǫ
N .

A1 =

[

2 0
0 2

]

, A2 =

[

1.5 1
0 1.5

]

, B1 =

[

1
2

]

, B2 =

[

1
0

]

, Qi =I2, Ri =1, i=1, 2. (25)

Clearly, neither subsystem is stabilizable. As shown in Fig. 1, a direct com-
putation of {Hk}

N
k=0 results in a combinatorial complexity of the order 109 for
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Fig. 1. Evolution of |Hǫ

N | with ǫ = 10−3.



Algorithm 2 (Computation of ECLF)

Specify proper values for ǫ, ǫmin and Nmax.
while ǫ > ǫmin do

for N = 0 to Nmax do

HN+1 = Algoǫ(ρM(HN ))
if Hǫ

N+1 satisfies the condition of Theorem 4 then

stop and return V ǫ

N as an ECLF
end if

end for

ǫ = ǫ/2
end while

N = 30. However, if we use the relaxed iteration (24) with ǫ = 10−3, even-
tually Hǫ

N contains only 16 matrices. This example shows that the numerical
relaxation can dramatically simplify the computation of HN . Our next task is to
show that this relaxation does not change the value function too much. Define
V ǫ

N (z) = minP∈Hǫ
N

zT Pz. It is proved in [15] that the total error between V ǫ
N (z)

and VN (z) can be bounded uniformly with respect to N .

Lemma 5 ([15]). If V ∗(z) ≤ β‖z‖2 for some β < ∞, then

VN (z) ≤ V ǫ
N (z) ≤ VN (z) + ǫη‖z‖2, (26)

where η =
1+(β/λ−

Q
−1)γ

1−γ .

The above lemma indicates that by choosing ǫ small enough, V ǫ
N can approx-

imate VN with arbitrary accuracy. This warrants V ǫ
N as an ECLF for large N

and small ǫ.

Theorem 9 (Converse ECLF Theorem III). If system (1) is exponentially
stabilizable, then there exists an integer N0 < ∞ and a real number ǫ0 > 0 such
that V ǫ

N (z) is an ECLF of system (2) satisfying condition (4) for all N ≥ N0

and all ǫ < ǫ0.

Proof. Similar to the proof of Theorem 8.

In summary, if the system is exponentially stabilizable, we can always find
an ECLF of the form (5) defined by Hǫ

N . To compute such an ECLF, we can
start from a reasonable guess of ǫ and perform the relaxed switched Riccati
mapping (24). After each iteration, we need to check whether the condition of
Theorem 4 are met. If so, an ECLF is found; otherwise we should continue
iteration (24). If the maximum iteration number Nmax is reached, we should
reduce ǫ and restart iteration (24). Since V ǫ

N converges exponentially fast, Nmax

can usually be chosen rather small. The above procedure of constructing an
ECLF is summarized in Algorithm 2. This algorithm is computationally efficient
and guarantees to yield an ECLF provided that ǫmin is sufficiently small and
Nmax is sufficiently large.
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Fig. 2. Simulation Results. Left figure: phase-plane trajectories generated by the
ECLFs V 1

6 and V 0.1
5 starting from the same initial condition x0 = [0, 1]T . Right figure:

the corresponding continuous controls
.

6 Numerical Examples

Consider the same two-mode switched system as defined in (25). Neither of the
subsystems is stabilizable by itself. However, this switched system is stabilizable
through a proper hybrid control. The stabilization problem can be easily solved
using Algorithm 2. If we start from ǫ = 1, then the algorithm terminates after 5
steps which results in an ECLF V 1

6 defined by the relaxed switched Riccati set
H1

6. We have also tried a smaller relaxation ǫ = 0.1. In this case, the algorithm
stops after 4 steps resulting in an ECLF V 0.1

5 defined by the relaxed switched
Riccati set H0.1

5 . It is worth mentioning that H1
6 contains only two matrices and

H0.1
5 contains 3 matrices. With these matrices, starting from any initial position

x0, the feedback laws corresponding to H1
6 and H0.1

5 can be easily computed
using equation (3). The closed-loop trajectories generated by these two feedback
laws starting from the same initial position x0 = [0, 1]T are plotted on the left of
Fig. 2. On the right of the same figure, the continuous control signals associated
with the two trajectories are plotted. In both cases, the switching signals jump to
the other mode at every time step and are not shown in the figure. It can also be
seen that the ECLF V 0.1

5 stabilizes the system with a faster convergence speed
and a smaller control energy than V 1

6 . This is because it has a smaller relaxation
ǫ which makes the resulting trajectory closer to the optimal trajectory of the
DSLQR problem.

7 Conclusion

This paper studies the exponential stabilization problem for the discrete-time
switched linear system. It has been proved that if the system is exponentially
stabilizable, then there must exist a piecewise quadratic ECLF. More impor-
tantly, this ECLF can be chosen to be a finite-horizon value function of the
switched LQR problem. An efficient algorithm has been developed to compute



such an ECLF and the corresponding stabilizing policy whenever the system is
exponentially stabilizable. Indicated by a numerical example, the ECLF and the
stabilizing policy can usually be characterized by only a few p.s.d. matrices which
can be easily computed using the relaxed switched Riccati mapping. Future re-
search will focus on extending the algorithm to solve the robust stabilization
problem for uncertain switched linear systems.
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