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Abstract— We study the formation of short-term interest
rates in the interbank lending market where banks are modeled
as agents with bounded rationality. We propose a novel model
which is based on bilateral contracts between risk-neutral
profit-maximizing agents. To render the model tractable for
large financial networks, we assume that banks’ beliefs about
the borrowing alternatives in the market are governed by a
common reference interest rate, which is a function of the rates
offered in the bilateral contracts. We show how this reference
rate can be determined endogenously from a suitable mean field
equilibrium and provide sufficient conditions for the existence
of such an equilibrium together with an algorithm to compute
it. Using simulation, we study the dependence of the equilibrium
on the model parameters.

I. INTRODUCTION

Models of financial networks are receiving significant
attention from the research community [12]. The need for
a better understanding of such networks and their potential
vulnerabilities has been illustrated in the Financial Crisis of
2007-08 [6] and in the ongoing Eurozone Crisis [10].

Financial institutions can be seen as nodes in a network,
connected with each other via mutual financial obligations,
e.g. interbank loans. While such connectivity can help in
distributing risks over the network to better absorb small ex-
ternal shocks, it may also have a contagious effect, spreading
large shocks caused by a default or bankruptcy of a node
through the network and causing defaults of other nodes.

For financial regulators it is thus essential to study finan-
cial stability of the system by identifying which network
structures are more successful in absorbing risks than others.
From a policy perspective, it is also important to under-
stand how monetary policies (reserve requirements, capital
requirements, etc.) affect the properties of such networks.
Furthermore, for financial institutions themselves it is crucial
to make prudent decisions when facing counterparty risk.
For instance, in order to determine the conditions of loans
they offer, banks need to be able to accurately assess the
credit risk of their potential borrower, which depends on the
topology and parameters of the network.
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Among the aforementioned issues, the question of re-
silience of financial network structures has received the most
attention the literature, with a focus on interbank lending
markets, see e.g. [12] and references therein. Typically,
work on this topic assumes a given network structure, and
connectivity parameters that are relevant for stability are
identified by applying exogenous shocks to the nodes of
interest and studying the resulting propagation of defaults
through the network. Much less work has been devoted to
the problem of the network formation [5], i.e. studying how
the characteristics of a network develop without assuming
a particular network structure a priori. A model commonly
adopted for either of the above problems is to assume that
agents (i.e. banks) act according to some (not necessarily ra-
tional) pre-specified behavior ([1] being a notable exception).
Furthermore, most existing models take important variables
as exogenous. As a result, while they provide valuable
insights into the role of financial networks, these models lack
predictive power about how structures emerge as the result
of the interaction of individual rational agents.

In this paper we propose a novel model for interbank
lending, which is based on bilateral contracts and considers
banks as agents with a particular kind of bounded rationality
as defined below. While this framework admits a wide range
of applications, here we use it to study the endogenous
formation of short-term interbank interest rates. This serves
as a first step towards a more elaborate analysis of financial
network formation in the future. In contrast to much of the
previous work, our approach allows explaining how impor-
tant model characteristics, such as the banks’ investment
and lending decisions, emerge endogenously as a result of
competitive behavior of individual banks.

We assume that each lending bank makes an offer based
on its beliefs regarding the borrowing alternatives of a
representative bank in the market. These beliefs depend on
the reference rate rref obtained as an aggregate of bilateral
rates offered by individual lending banks: an example for
rref is the London Interbank Offered Rate (LIBOR) [2].
In our model, the equilibrium value of rref is determined
endogenously via the concept of mean field equilibrium [9],
[7], [15]. That is, the conditions offered in the individual
contracts are optimal with respect to rref , and, in turn, rref is
consistent with the individually offered rates. We establish
sufficient conditions for the existence of an equilibrium,
provide a numerical procedure to compute it and investigate
the dependence of the equilibrium rate on parameters of the
model in a numerical case study.

Outline: Section II discusses the contract design problem
between two banks, which is extended to the case with



borrowing alternatives in Section III-A. Section III-B gives
the definition of and main results on the proposed equilibrium
interest rate, which is illustrated by a numerical example
in Section IV. Section V concludes the paper. Proofs are
omitted for brevity.

II. OPTIMAL LOANS IN A TWO-BANK MODEL

The primary reason for the existence of the interbank
lending market is the liquidity imbalance of banks. Consider
bank 1 that currently has a surplus of liquid assets (e.g. cash),
but does not have access to promising investment oppor-
tunities. In contrast, bank 2 has just invested a significant
share of its cash assets in a venture which will only start
paying back after a year. To ensure its liquidity, i.e. to be
able to pay back maturing liabilities (such as deposits that
are withdrawn), bank 2 may be willing to borrow cash from
bank 1, which in turn is willing to lend as it has liquidity
surplus with no ventures to invest in. In this section we focus
on the contract design problem bank 1 faces when lending
money to bank 2. For simplicity, we consider a single one-
stage decision making problem in which the banks have no
existing obligations w.r.t. to each other.

A. Investment Opportunities

The state of each bank is given by its balance sheet
consisting of the assets and liabilities, c.f. Figure 1. The asset
side of bank i consists of cash Ci ≥ 0, risk-free assets (e.g.
government bonds) Bi ≥ 0 and risky assets (e.g. stocks or
loans). Both banks can invest in risk-free bonds with rate
of return rb > 0, so that the return of bank i on bonds
is deterministic and given by Bi · rb. We suppose that only
bank 2 has access to risky investments, whose random rate of
return we denote by ξ. By limited liability, the bank cannot
lose more than what it invested, so ξ ≥ −1. With S2 the
invested amount, the return on the risky investment is given
by S2 · ξ. We denote the distribution of ξ by µξ and its CDF
by Fξ. For bank 2 to have an incentive to make non-trivial
risky investments we assume that E[ξ] > rb.

Initially, bank i holds only cash in the amount of Qi > 0,
and the only initial liabilities of bank i are deposits Di ≥ 0.
Thus the initial equity of bank i (the difference between
assets and liabilities) is given by E0

i = Qi −Di, which we
assume to be positive for both banks.

Fig. 1. Balance sheets of the two banks

B. Loans, Default and Clearing Mechanism

Since bank 1 cannot invest in stocks, it has an incentive to
lend some cash L ≥ 0 to bank 2 at an interest rate r > rb. In
doing so, it must take the credit risk into account, since there
is a possibility bank 2 may default on such loan. Figure 1
shows the resulting balance sheets of the two banks.

In our model bank i defaults when its terminal equity Ei
after realization of the uncertain return ξ is negative, i.e.
when its liabilities are larger than its assets1. In case of
a default of a borrowing bank, it is often possible for the
lending bank to recover at least part of a loan. However, this
may take a considerably long time [4], so for the purpose
of this paper we assume that if the borrowing bank defaults,
the lending bank loses the loan to the full amount L.

We regard a loan as a contract between a lending and a
borrowing bank, which is fully specified by the amount L to
be lent and the associated interest rate r. We assume that both
banks are risk-neutral rational agents that maximize expected
terminal equity, and that the lending bank has complete
bargaining power. That is, bank 1 specifies the contract (L, r)
and bank 2 can only accept it as it is or reject it; in the latter
case bank 2 is said to exercise its outside option. We make
the standard assumption that contracts are enforceable, i.e.
bank 2 always pays L(1+r) to bank 1 unless bank 2 defaults
after realization of the uncertain return ξ.

The set of decision variables for bank 1 is {C1, B1, L, r}.
Given that it accepts the offered loan, the set of decision
variables for bank 2 is {S2, B2, C2}. In this initial work
we consider the full information case. In particular, the
distribution µξ of the asset return is common knowledge.
In the absence of moral hazard and adverse selection (in this
initial model the bank 2’s action is perfectly observable, and
there is no information asymmetry), we are interested in the
first-best solution to the contract design problem of bank 1.

C. Regulatory Requirements

Banks are subject to a Reserve Requirement (RR), imposed
by the regulator, which forces them to keep at least a fraction
η ∈ (0, 1) of their deposits in cash, so that bank i has to
satisfy Ci ≥ ηDi. In addition, banks must fulfill a Capital
Requirement (CR), which puts a lower bound ζ ∈ (0, 1)
on the ratio of equity, Ei, to risky assets2. In our case, the
only risky assets are the loan L (for bank 1) and stocks S2

(for bank 2), hence the CRs read as L ≤ (Q1 −D1)/ζ and
S2 ≤ (Q2 −D2)/ζ. The balance equations

C1 +B1 + L = Q1 (1a)
C2 +B2 + S2 = Q2 + L (1b)

require equality of assets and liabilities. Since in our model
cash and risk-free asset do not differ in terms of liquidity, it
is clear that the RR constraint is binding, i.e., Ci = ηDi.

D. Individual Rationality Constraints

Recall that (Q2 − D2)/ζ is the maximal investment in
stocks allowed by CR, and that Q2 − ηD2 are the available
initial funds of bank 2. The liquidity demand of bank 2 is

α2 := (Q2 −D2)/ζ − (Q2 − ηD2)

If α2 < 0, the amount of cash available to bank 2 is more
than the amount it can invest in stock. In this case both banks

1Since our model does not encompass different maturities, we do not
have to distinguish between insolvency and illiquidity.

2In practice different assets are weighted according to their risk level [3].



have excess liquidity and no loan will be made. Thus from
now on we assume that α2 > 0. In case of positive liquidity
demand bank 2 has an incentive to pay interest r ∈ [rb,E[ξ]]
on the loan if the resulting expected increase in terminal
equity exceeds that of its outside option. Since E[ξ] > rb

and bank 2 is risk-neutral, its optimal decision is to invest
in stocks as much as allowed by CR, and use the rest to buy
risk-free bonds B2. By (1b), the optimal risky investment is

S2 = min(Q2 − ηD2 + L, (Q2 −D2)/ζ)

If no loan is made, i.e. L = 0, the expected increments of
equity for banks 1 and 2 are ∆E1 = (Q1 − ηD1)rb and
∆E2 = (Q2 − ηD2)E[ξ], respectively. Hence, for a contract
(L, r) to be accepted by bank 2 it must satisfy the following
Individual Rationality (IR) constraint:

r ≤
{

E[ξ] if L ≤ α2

rb + α2

L (E[ξ]− rb) if L > α2
(2)

Here the condition for L > α2 ensures that the loss bank 2
incurs by investing money borrowed at rate r into bonds
returning rb < r is less than what it expects to earn from
investing α2 into stocks with expected return E[ξ] > r.

E. The Optimal Contract Design Problem

For bank 1 to determine the optimal contract, it must
understand the underlying credit risk. Bank 2 will not default
if its investment decisions result in non-negative terminal
equity E2 = Q2−D2 +B2r

b +S2ξ. If bank 2 accepts a loan
(L, r), its survival probability under its optimal investment
is Ps(L, r) = P

(
ξ ≥ ϑ(L, r)) = 1− Fξ(ϑ(L, r)), where

ϑ(L, r) =

−
Q2−D2−rL
Q2−ηD2+L

if L ≤ α2

−Q2−D2−rL+(L−α2)rb

Q2−ηD2+α2
if L > α2

(3)

The expected increase in bank 1’s equity is

∆E1(L, r) := E[E1−E0
i ] = B1r

b+ L reff(L, r) (4)

where the effective lending rate reff given by

reff(L, r) := (1 + r)Ps(L, r)− 1 (5)

describes the expected interest that bank 1 receives on the
loan L when taking into account the default probability of
bank 2. Note that reff = r if Ps = 1 and reff = −1 if Ps = 0.
Intuitively, the lending bank has to trade off a potentially high
return (large L and rb) with an increase in the probability
that the borrowing bank defaults.

Using (1a) we can eliminate B1 from (4) and obtain the
following optimal contract design problem for bank 1:

max
L,r

(Q1 − ηD1)rb + L(reff(L, r)− rb) (6a)

s.t. 0 ≤ L ≤ min{(Q1 −D1)/ζ,Q1 − ηD1} (6b)

r ≤
{

E[ξ] if L ≤ α2

rb + α2

L (E[ξ]− rb) if L > α2
(6c)

Remark 1: Observe that both L and r affect Ps in a
complex way via the distribution of the asset return ξ. In
particular, the utility function of bank 1 does not satisfy

common assumptions of the Principal-Agent literature [8]
such as quasi-linearity.

We make the following standard assumption:
Assumption 1 (Existence of density): The distribution µξ

of the asset ξ is absolutely continuous w.r.t the Lebesgue
measure and has density fξ : R→ R+.

Let u : R2 → R denote the objective function in (6a) and
consider the hazard ratio hξ :=

fξ
1−Fξ of ξ. Further, define

θ(r) := ζ (r α2

Q2−D2
− 1), r := − Q2−D2

Q2−ηD2

Proposition 1: Suppose that for some L ∈ [0,M ]

hξ(x) ≤

{
(x+ κ(L))−1 ∀x ∈ [θ(r), θ(E[ξ])] if L ≤ α
(x+ κ̃(L))−1 ∀x > θ(E[ξ]) if L > α2

(7)where

κ(L) =
Q2 −D2 + L

Q2 − ηD2 + L

κ̃(L) =
Q2 −D2 + (L− α2)r

b

Q2 − ηD2 + α2
+

L

Q2 − ηD2 + L

Then u is non-decreasing in r for the given L. In particular,
if (7) holds ∀L ∈ [0,M ], then the IR constraint (6c) is tight.

The condition of Proposition 1 is satisfied by most distri-
butions Fξ of interest to our model. Intuitively speaking, in
this case the effect of the size L of the loan on the default
probability of the borrowing bank is stronger than that of the
rate r. Hence, a lending bank that had to choose between a
large loan L under a small rate r and a small loan L̂ under
a large rate r̂, with Lr = L̂r̂, would prefer the latter.

Remark 2: It should not be surprising that the IR con-
straints are tight for a large class of distributions of ξ. In-
deed, in standard principal-agent problems with quasi-linear
utilities this is true in general under full information [8].

Proposition 2: Suppose that fξ ∈ C1[−1,∞) and that

d

dx
log fξ(x) <

1

2

( Q2 −D2

Q2 − ηD2
+ x
)
∀x ∈ [θ(r), θ(E[ξ])]

(8)

Then u is strictly concave in L for L ≤ α2. Similarly, if

d

dx
log fξ(x) > − 2

x+ θ(r)
∀x > θ(E[ξ]) (9)

then u is strictly concave in L for α2 ≤ L ≤M .
Since u need not be differentiable at L = α2, (8) and (9)

together do not imply that u is concave in L on [0,M ].
However, if (8) and (9) hold, then finding the maximizer
reduces to comparing the maximizers of u restricted to
0 ≤ L ≤ α2 and α2 ≤ L ≤ M . We have found that for
reasonable parameter choices (e.g. normally distributed ξ)
conditions (7) and (8) were both satisfied with maximizer
L∗ ≤ α2. The following Proposition provides a sufficient
condition for the maximizer of problem (6) to be unique:

Proposition 3: Suppose that (7) holds for all L ∈ [0,M ],
and that fξ ∈ C1([−1,∞)) satisfies (8). Suppose further that

Fξ(θ(E[ξ])) ≤ 1 + rb

1 + E[ξ]
(10)

Then (6) has a unique maximizer for which r = E[ξ].



If the assumptions of Proposition 3 hold true, one could
in principle find the maximizer using calculus. However,
in all but the simplest cases this problem will not admit
an analytical solution. Instead, we use a gradient-based
optimization algorithm, for which convergence to the global
optimum is guaranteed by strict convexity of the problem.

III. A MEAN-FIELD EQUILIBRIUM MODEL FOR
INTERBANK LENDING

In the previous section we have introduced a contract-
based interbank lending model with one borrowing and one
lending banks. Such model could be used as a building block
for a larger network of bilateral interbank trading, leading to
the game between multiple banks, so that we could define
a Nash equilibrium w.r.t. the contract offerings. However,
the full information case suffers from a number of issues,
including the non-existence of non-trivial equilibria3. More
importantly, it is questionable how realistic the full informa-
tion assumption is: in reality a lending bank faces uncertainty
regarding the borrowing alternatives of its potential borrower.
For these reasons, in this section we relax the full information
assumption and introduce an equilibrium model for interbank
lending based on the concept of a mean field equilibrium.

Since information about bilateral interbank loans is rarely
publicly available, reference rates such as the LIBOR [2] play
an important role in financial markets. Such reference rates
are often computed as a weighted average of either offered
rates (e.g. LIBOR, EURIBOR) or actual rates in transfers
made overnight (EONIA). In practice, after assessing the
creditworthiness of a potential borrower, a lending bank
will make an offer based on its beliefs regarding the rates
the borrower could obtain from other banks. In non-crisis
scenarios this rate is usually close to the reference rate,
and hence the latter provides a reasonable estimate of the
borrowing alternatives.

In the following we assume that lending banks only have
beliefs regarding borrowing alternatives of their potential
borrowers. These beliefs are modeled by a conditional prob-
ability distribution, parameterized by the global reference
rate rref and such observable characteristics of borrowers as
creditworthiness. In turn, rref is defined as a function of the
individual bilateral contracts. We are interested in situations
in which the offered contracts, chosen optimally with respect
to the banks’ respective beliefs, and the aggregate reference
rate rref are consistent. This consistency condition leads us
to the definition of an equilibrium rref , which is determined
endogenously through the parameters of the model.

A. Two-Bank Model with Borrowing Alternatives

We first consider as a building block an extension of the
two-bank model from Section II. Suppose that in addition to
bank 1, bank 2 also has the alternative to borrow from other
sources, which at this point we do not model explicitly. Let ρ
denote the borrowing rate that bank 2 can achieve on the

3Since in our basic model they cannot share profits, lending banks always
have an incentive to underbid each others offerings, so in equilibrium each
bank i would offer a rate ri such that reff

i = E[ξi].

lending market, so that bank 2 will only accept a contract
from bank 1 if the specified rate r is at most ρ. We make
the following simplifying assumption:

Assumption 2: The achievable borrowing rate ρ is inde-
pendent of the size of the loan.

Assumption 2 is quite restrictive: in practice the interest on
a loan may well depend on the size of the loan. If a functional
parametrization for this relation were common knowledge,
one could relax Assumption 2 and incorporate this into the
formulation. However, while interesting, this extension goes
beyond the scope of the current work.

Given the reference rate rref , the belief of bank 1 about the
borrowing alternatives of bank 2 is given by a distribution
µρ(· |rref) whose CDF we denote by Fρ(r|rref). In particular,
1−Fρ(r|rref) is the belief of bank 1 that bank 2 will accept a
loan (satisfying IR) offered at rate r given reference rate rref.

We need two additional assumptions: the first one is a tech-
nical one that concerns the continuity of µρ, while the second
one asserts that the belief about the other bank’s achievable
rate “increases” with the reference rate: we formalize this
using the notion of first order stochastic dominance (FOSD).

Assumption 3 (Continuous density): For each rref the dis-
tribution µρ(· |rref) is absolutely continuous w.r.t. the
Lebesgue measure; the density function fρ is such that
fρ(r|·) ∈ C([rb,E[ξ]]) for all r ∈ [rb,E[ξ]].

Assumption 4 (FOSD): For each r̂ref ≥ rref , µρ(· |̂rref)
first order stochastically dominates µρ(· |rref), i.e.

1− Fρ(r|̂rref) ≥ 1− Fρ(r|rref), ∀ r ∈ R. (11)

We retain the assumption that the lending bank has
complete bargaining power, and that it may only offer a
single contract (L, r). Intuitively, bank 1 faces a tradeoff
between receiving a high premium when r is high, and a
higher probability of bank 2 accepting the contract when r
is low (that is, the additional borrowing alternatives increase
competition). In particular, contrary to the basic problem
discussed in Section II, borrowing banks will generally
receive a profit that is strictly higher than their outside option.

We suppose that the lending market is liquid, which is
usually the case in non-crisis scenarios, and assume that
the borrowing bank can fulfill its liquidity demand, i.e.,
take on a total of α2 in loans, at a rate ρ representing its
borrowing alternatives. As a result, the lending bank expects
the borrowing bank to survive with probability

P̂s(r
ref) =

∫
Ps(α2, r)µρ(dr|rref). (12)

In contrast to the case without borrowing alternatives, the
lending bank assumes that bank 2 will always fulfill its liq-
uidity demand. As a result, the survival probability P̂s(rref)
is independent of the size L of the loan given by bank 1. If
there is only a single borrowing bank (bank 2), bank 1 will
therefore offer all its available liquidity to bank 2, provided
that the effective rate (1 + r)P̂s(r

ref)− 1 exceeds rb.4

4If we suppose that banks must honor (if accepted) any loan offers made,
then in case of multiple borrowing banks, banks with excess liquidity would
need to decide how to optimally distribute their loans across borrowers.



The optimization problem of the lending bank is now in
the variable r, with objective function u given by:

u(r|rref) = (1−Fρ(r|rref))
(
(1+r)P̂s(r

ref)− (1 + rb)
)

(13)

Proposition 4: Under Assumption 3, u ∈ C([rb,E[ξ]]2).
Furthermore, under Assumption 4, P̂s is non-increasing.

Since u(· |rref) is continuous on a compact interval, the
set of its maximizers is compact and non-empty. Denote by
ϕ(rref) := max(arg maxr u(r|rref)) its largest element. Intu-
itively, one expects the optimal rate ϕ to grow with rref , as in
this case the banks will have worse borrowing alternatives.
The following lemma gives sufficient conditions for such
monotonicity. Let hρ(· , rref) := fρ(· |rref)/(1− Fρ(· |rref))
denote the hazard ratio of µρ(· |rref).

Lemma 1 (Sufficient Condition for Monotonicity):
Suppose fρ(r|·) ∈ C1([rb,E[ξ]]) for all r ∈ [rb,E[ξ]] and

∂rrefhρ(r, r
ref) ≤ 0 (14)

for all r, rref ∈ [rb,E[ξ]]. Then ϕ(rref) is non-decreasing.
The next result provides sufficient conditions for the

continuity of the map ϕ.
Lemma 2 (Sufficient Condition for Continuity): Suppose

that fρ(· |rref) ∈ C2([rb,E[ξ]]) for all rref ∈ [rb,E[ξ]], and

∂r(log fρ(r|rref)) > − 2P̂s(r
ref)

(1 + r)P̂s(rref)− (1 + rb)
(15)

for all r, rref ∈ [rb,E[ξ]] whenever fρ(r|rref) > 0. Then
u(· |rref) has a unique maximizer ϕ(rref), which is a con-
tinuous function of rref .

B. Mean-Field Equilibrium for Multiple Lending Banks

In this section we define and analyze a mean-field equi-
librium for the interbank lending problem involving multiple
lending banks i ∈ {1, . . . , N} and a single representative
borrowing bank, as illustrated in Figure 2. While so far
the belief of a bank about borrowing alternatives had been
specified for some exogenously given reference rate rref , we
are now interested in the problem in which beliefs depend
on the actual rates ri offered by other banks.

For any fixed reference rate rref , each bank i with a
liquidity surplus solves the optimal contract design problem
as per Section III-A under its respective beliefs µiρ(· |rref)
about the borrowing alternatives. In an equilibrium, the
reference rate will itself be determined from the individual
banks’ decisions. We assume that rref is computed as a
weighted average of the individual bilateral rates5 ri:

Assumption 5: There exist weights λ1, . . . , λN ≥ 0 with∑
i λi = 1 such that rref =

∑
i λir

l
i

The weights λi in Assumption 5 correspond to the “im-
portance” of a bank in the financial system, as represented
for example by its market share.

As has become evident from the LIBOR scandal [11],
certain large banks in the past had indeed been aware of

5In particular, we assume that the reference rate is determined only from
binding offers. That is, banks cannot report unverified rates and volumes, a
possibility that contributed to the LIBOR scandal [11].

how their individual actions affected the reference rate. In
particular, collusion between banks has been suspected to
have played an important role in fixing the LIBOR rate.
However, under new, stricter regulations put in place [16]
that preclude the report of unverified rates it is reasonable
to assume that individual banks cannot significantly affect
rref without reducing their profits. We therefore make the
following simplifying assumption6:

Assumption 6 (Bounded Rationality): Banks do not take
the effect of their contract offerings on the reference rate rref

into account. That is, from the point of view of a single
bank i the reference rate rref is independent of ri.

The equilibrium concept we will define in the following
can be seen as a Mean-Field Equilibrium (MFE) [9], [7]
under the assumption that banks are bounded in their ratio-
nality. In the literature, the term “oblivious equilibrium” [15]
has been used for similar models.

Definition 1 (Mean Field Equilibrium): Let ϕi(r
ref) de-

note the maximizer of the optimization problem for bank i in
the presence of borrowing alternatives for a given reference
rate rref . Further, consider the aggregation function

ψ(rref) =
∑
i λiϕi(r

ref) (16)

Then rref is a mean field equilibrium of the interbank lending
problem (MFE rref ) if rref = ψ(rref).

The following theorem provides sufficient conditions for
the existence of the MFE rref .

Theorem 1: If ∂rrefhρi(r|rref) ≤ 0 for all r, rref ∈ [rb,E[ξ]]
and i ∈ {1, . . . , N}, then there exists a MFE rref .

Theorem 1 establishes existence of the MFE using set-
theoretic lattice arguments. While it is not possible to guar-
antee uniqueness under the assumptions in place, it does
follows from the Tarski fixed point theorem [13] that there
exists a least and a largest MFE.

Rather than via monotonicity, existence of a MFE can also
be obtained based on the continuity of the map ψ:

Theorem 2: If for all r, rref ∈ [rb,E[ξ]] and i ∈ {1, . . . ,
N}, (15) holds with fρ = f iρ, then there exists a MFE rref.

Since ψ is continuous, the set of its fixed points is com-
pact, and hence admits for the least and the largest elements
similarly to the case when ψ is monotonic. Importantly, the
continuity of ψ also allows using a variety of root-finding
methods from the literature, as finding a fixed point of ψ is
equivalent to solving ψ(rref)− rref = 0.

IV. NUMERICAL EXAMPLE

In this section we provide a numerical example that
illustrates the properties of the MFE for interbank lending.
All computations have been performed using a fixed point
iteration on the aggregation function ψ, using IPOPT [14].

Parameters of our example are η = 0.15, ζ = 0.25 and
rb = 0.02. We consider N = 10 lending banks with initial
conditions Qi and Di generated uniformly at random on
[15, 100] and [0, Qi], respectively. We assume that the asset

6Assumption 6 is easier to justify in competitive lending markets with a
large number of lending banks. In small markets with only few large banks
the situation may be different.



Fig. 2. Setting with Multiple Lending Banks

return ξ is distributed according to a truncated Gaussian
on [−1,∞) with mean E[ξ] and standard deviation σξ.
Similarly, the beliefs µiρ(· |rref) are truncated Gaussians on
[rb,E[ξ]] with mean rref and standard deviation σi.

Intuitively, one would expect the distribution of the asset
return ξ to have a strong influence on the MFE rref . In
particular, because of the increased credit risk, a “good” asset
with high mean E[ξ] and low variance σ2

ξ should result in
lower equilibrium rates rref than a “bad asset” with low mean
and high variance. The results of our simulations shown in
Figure 3 corroborate this intuition7.
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Fig. 3. Equilibrium reference rate rref as a function of the asset return
standard deviation σξ for different means E[ξ]

V. CONCLUSION AND FUTURE WORK

We studied the formation of short-term interest rates in
a simple model of interbank lending which is driven by
heterogeneous liquidity requirements. Based on the analysis
of an optimal contract design problem for bilateral loans
we defined a Mean Field Equilibrium, in which banks with
limited information act optimally with respect to their beliefs
derived from a publicly available common reference rate. Our
methodology allows to analyze how interbank lending rates
form endogenously, and how they depend on various model
parameters.

7Figure 3 shows the equilibrium rates rref only until they reach the
respective mean E[ξ] of the asset return. In our model there is only a single
asset with a return distribution µξ that is common knowledge. Hence if this
asset is “sufficiently bad” then under any non-degenerate belief distribution
that is consistent with the available information, all banks choose to offer
ri = E[ξ], which yields as payoff their outside option (as they expect it
their offer to be rejected by the borrowing bank).

Several generalizations of this initial model are of in-
terest. Among those is an extension to financial networks
in which interactions are influenced by the underlying net-
work structure, e.g., by trust established through long-term
relationships between banks. Another interesting direction
is to incorporate dynamics in a multi-period model, and
investigate the role that assets and liabilities with different
maturities play. However, the resulting dynamic problem
becomes significantly more difficult.

We expect that the resulting models can provide valuable
insights into how systemic risk in financial networks arises
based on microscopic interactions of banks that are modeled
as profit-maximizing agents with bounded rationality.
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