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Abstract

This work develops a measurement-driven and model-based formal verification approach, applicable to systems with partly
unknown dynamics. We provide a principled method, grounded on reachability analysis and on Bayesian inference, to compute
the confidence that a physical system driven by external inputs and accessed under noisy measurements, verifies a temporal
logic property. A case study is discussed, where we investigate the bounded- and unbounded-time safety of a partly unknown

linear time invariant system.
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1 Introduction

The design of complex, high-tech, safety-critical sys-
tems such as autonomous vehicles, intelligent robots,
and cyber-physical infrastructures, demands guarantees
on their correct and reliable behaviour. Correct func-
tioning and reliability over models of systems can be at-
tained by the use of formal methods. Within the com-
puter sciences, the formal verification of software and
hardware has successfully led to industrially relevant and
impactful applications [13]. Carrying the promise of a
decrease in design faults and implementation errors and
of correct-by-design synthesis, the use of formal meth-
ods, such as model checking [13], has become a standard
in the avionics, automotive, and railway industries [34].
Life sciences [6,14] and general engineering applications
[5,11] have also recently pursued the extension of these
successful techniques from the computer science: this has
required a shift from finite-state to physical and cyber-
physical models that are of practical use in nowadays
science and technology [23,32].

The strength of formal techniques, such as model check-
ing, is bound to the fundamental requirement of having
access to a given model, obtained from the knowledge
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of the behaviour of the underlying system of interest. In
practice, for most physical systems the dynamical be-
haviour is known only in part: this holds in particular
with biological systems [1] or with classes of engineered
systems where, as a consequence, the use of uncertain
control models built from data is a common practice [22].

Only limited work within the formal methods commu-
nity deals with the verification of models with partly
unknown dynamics. Classical results [4,19] consider the
verification problem for non-stochastic models described
by differential equations and with bounded parametric
uncertainty. Similarly, but for continuous time proba-
bilistic models, [9,10] explore the parameter space with
the objective of model verification (respectively statisti-
cal or probabilistic). Whenever full state measurements
of the system are available, Statistical Model Check-
ing (SMC) [31,24] replaces model(-based) checking pro-
cedures with empirical testing of formalised properties.
SMC is limited to fully observable stochastic systems
with little or no non-determinism, and may require the
gathering a large set of measurements. Extensions to-
wards the inclusion of non-determinism have been stud-
ied in [18,25], with preliminary steps towards Markov de-
cision processes. Related to SMC techniques, but bound
to finite state models, [12,27,30] assume that the system
is encompassed by a finite-state Markov chain and effi-
ciently use data to learn the corresponding model and to
verify it. Similarly, [3,8] employ machine learning tech-
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niques to infer finite-state Markov models from data over
specific logical formulae.

An alternative approach, allowing both partly unknown
dynamics over uncountable (continuous) variables and
noisy output measurements, is the usage of a Bayesian
framework relating the confidence in a formal property
to the uncertainty of a model built from data. When
applied on nonlinearly parameterised linear time invari-
ant (LTI) models this approach introduces huge compu-
tational problems, which as proposed in [16], can only
be mitigated by statistical methods. Instead, to obtain
reliable and numerical solutions, we propose the use of
linearly parameterised model sets defined through or-
thonormal basis functions to represent these partially
unknown systems. This is a broadly used framework in
system identification [21,22]: it allows for the incorpo-
ration of prior knowledge, while maintaining the bene-
fits (computational aspects) of linear parameterisations.
Practically, it has been widely used for the modelling of
physical systems, such as the thermal dynamics of build-
ings [35]. In contrast, in this paper we pursue a promis-
ing new numerical approach: instead of employing di-
rectly a nonlinearly parameterised model, we embed it
in a linearly parameterised one via a series expansion of
orthonormal basis functions.

In this contribution we further analyse and extend the
related results in [17], obtained for a time-bounded sub-
set of temporal logic properties, to unbounded-time tem-
poral logic properties, and analyse their robustness.

2 General Framework and Problem Statement

In this section, we provide a novel methodology to verify
whether a system S satisfies a specification v, formulated
in a suitable temporal logic, by integrating the partial
knowledge of the system dynamics with data obtained
from a measurement set-up around the system.

Let us further clarify this framework. Let us denote with
S a physical system, or equivalently the associated dy-
namical behaviour. A signal input u(t) € U,t € N, cap-
tures how the environment acts on the system. Similarly,
an output signal yo(¢) € Y indicates how the system in-
teracts with the environment, or alternatively how the
system can be measured. Note that the input and output
signals are assumed to take values over continuous do-
mains. The system dynamics can be described via math-
ematical models, which express the behavioural relation
between its inputs and outputs. The knowledge of the
behaviour of the system is often limited or uncertain,
making it impossible to analyse its behaviour via that
of a “true” model. In this case, a-priori available knowl-
edge allows to construct a model set G with elements
M e G: this model class supports the structured uncer-
tainty as a distribution over a parameterisation 6 € ©,
G = {M(0)|0 € ©}. The unknown “true” model M(6°)

representing S, is assumed to be an element of G, namely
6% € ©: as an example, model sets G obtained through
first principles adhere to this classical assumption.

Samples can be drawn from the underlying physical sys-
tem via a measurement set-up, as depicted in Figure 1.
An experiment consists of a finite number (Ny) of input-
output samples drawn from the system, and is denoted
by ZNe = {u(t)ew, §(t)ex }22), where u(t)e, € U is the
input for the experiment and §(t)e,. is a (possibly noisy)
measurement of yo(t)es. In general, the measurement
noise can enter non-additively and be a realisation of a
stationary stochastic process|:]| We assume that at the
beginning of the measurement procedure (say at ¢ = 0),
the initial condition of the system, encompassed by the
initial state x(0), of models in M, is either known, or,
when not known, has a structured uncertainty distri-
bution based on the knowledge of past inputs and/or
outputs. As reasonable, we implicitly consider only well-
defined problems, such that for any model representing
the system, given a signal input u(t)., and an (uncer-
tainty distribution for) x(0)e,, the probability density
distribution of the measured signal can be fully charac-
terised.

Fig. 1. System and measurement setup. In the measurement
setup (grey box) the measured output §(t)er includes the
system output yo(¢)es and the measurement noise e(t). Data
collected from experiments comprises the input u(t)e, and
the measured output §(t)e. signals.

The end objective is to analyse the behaviour of system
S. We consider properties encoded as specifications
and expressed in a temporal logic of choice (to be de-
tailed shortly). Let us remark that the behaviour of S to
be analysed is bound to a set of operating conditions that
are pertinent to the verification problem and that will
be indexed with ver: this comprises the set of possible
input signals u(t)yer (e.g., a white or coloured noise sig-
nal, or a non-deterministic signal u(t)yer € Uyer C U),
and of the set of initial states x(0)yer € Xyer for the
mathematical models M reflecting past inputs and/or
outputs of the system. The system satisfies a property
if the “true” model representing it satisfies it, namely
S E ® if and only if M(6°) E .

! Both the operating conditions of the experiment, that
is the input signal u(t)er and the initial state x(0)er, and
the measurements have been indexed with ex to distinguish
them from the operating conditions of interest for verifica-
tion, to be discussed shortly.



In this work we consider the satisfaction of a property
M(0) E ¢ as a binary-valued mapping from the param-
eter space ©. More generally, when in addition to the
measurements of the system also its transitions are dis-
turbed by stochastic noise, then property satisfaction is
a mapping from the parameter space © to the interval
[0, 1], and quantifies the probability that the model M (9)
satisfies the property. This mapping generalises the def-
inition of the satisfaction function introduced in [9], and
is now stated as follows.

Definition 1 (Satisfaction Function) Let G be a set
of models M that is indezed by a parameter § € O,
and let ¢ be a formula in a suitable temporal logic. The
satisfaction function fy : © — [0,1] associated with ¥

fu(0) = P (M(0) F ). (1)

Let us assume that the satisfaction function fy is mea-
surable and entails a decidable verification problem (e.g.,
a model checking procedure) for all § € O.

Problem 1 For a partly unknown physical system S,
under prior knowledge on the system given as a pa-
rameterised model class G supporting an uncertainty
distribution over the parameterisation, gather possi-
bly noisy data drawn from the measurement setup and
verify properties on S expressed in a temporal logic of
choice, with a formal quantification of the confidence of
the assertion.

2.1 A Bayesian Framework for Data-driven Modelling
and Verification

Consider Problem 1. Denote loosely with P (-) and p ()
respectively a probability measure and a probability
density function, both defined over a continuous do-
main. We employ Bayesian probability calculus [26] to
express the confidence in a property as a measure of the
uncertainty distribution defined the set G. By adopting
the Bayesian framework, uncertainty distributions are
handled as probability distributions of random vari-
ables. Therefore the confidence in a property is com-
puted as a probability measure P (-) via the densities
p (+) over the uncertain variables.

Proposition 1 (Bayesian Confidence) Given a
specification v and a data set ZN¢, the confidence that
S E ¢ can be quantified via inference as

P(SEy | ZN) = [ fe(0)p (0127)do . (2)

where fy is the satisfaction function given in (1). The
a-posteriori uncertainty distribution p(9|ZNS), given
the data set ZNs, is based on parametric inference over
0 as

ZD(ZNS‘G)ZD((’) (3)

Ns\ —
p(0127) = T p@10)p(6)d0

which presumes an uncertainty distribution p () over
the parameter set ©, representing the prior knowledge.

The statement can be formally derived based on stan-
dard Bayesian calculus, as in [26]. We have chosen to
employ a Bayesian framework, as per (3), since it allows
to reason explicitly over the uncertain knowledge on the
system and to work with the data acquired from the mea-
surement setup. This leads to the efficient incorporation
of the available knowledge and to its combination with
the data acquisition procedure, in order to compute the
confidence on the validity of a given specification over
the underlying system. As a special instance, this result
can be employed for Bayesian hypothesis testing [36].
As long as the mapping fy is measurable, the models
in the model set (and hence the system represented by
it) can be characterised by either probabilistic or non-
probabilistic dynamics.

Remark 2 In statistical model checking [24,31], the
objective is to replace the computationally tolling ver-
ification of a system over bounded-time properties by
the empirical (statistical) testing of the relevant speci-
fications over finite executions drawn from the system.
In contrast, our problem statement tackles the problem
of efficiently incorporating data with prior knowledge,
for the formal (deductive) verification of the behaviour
of a system with partly unknown dynamics — as such
our overall verification approach is, as claimed, both
data-driven and model-based. Moreover, by separating
the operational conditions in an experiment from those
of importance for the verification procedure, the system
can be verified over non-deterministic inputs, encom-
passing as such both controller and disturbance inputs,
or modelling errors.

2.2 Computational Approaches

The Bayesian approach is widely applicable to different
types of properties and models, however its computa-
tional complexity might in practice limit its implemen-
tation. In the literature the satisfaction function is re-
lated to the exploration of a parameter set over the valid-
ity of a formal property fy(6), and has been studied for
autonomous models in continuous time in [4,15,19]. An-
alytical solutions to the parametric inference equation
(3) can be found if the prior is a conjugate distribution.
For linear dynamical systems, closed-form solutions are
given inter alia in [28]. In general (2)-(3) in Proposition 1
lack analytical solutions, and the assessment of the sat-
isfaction function (1) may be computationally intensive.
Statistical methods such as the one proposed in [16] on
a similar Bayesian approach lead to involved computa-
tions and introduce additional uncertainty from Monte
Carlo techniques.

On the contrary, in the next section, we propose a novel
computational approach over discrete-time linear time-



invariant systems. By exploiting linear parameterisa-
tions analytical solutions of both the parametric infer-
ence and the satisfaction function are characterised for
properties expressed within a fragment of a temporal
logic.

3 LTL Verification of LTI systems

Consider a system S that can be represented by a class
of finite-dimensional dynamical models that evolve in
discrete-time, and are linear, time-invariant (LTT), and
not, probabilistic. These models depend on input and
output signals ranging over R™ and RP, respectively,
and on variables xg(t) taking values in an Euclidean
space, xg(t) € X C R™, where n, the state dimension,
is the model order. The behaviour of such a system is
encompassed by state-space models (A4g, Bs, Cs, Dg) as

s;{““+”:““@+&“m

4

yo(t) = CgXg (t) + Dsu(t), ( )
where matrices Ag, Bs,Cs, Ds are of appropriate di-
mensions. Let us remark that LTT systems represent
the most common modelling framework in control the-
ory, a key framework leading towards generalisations
to more complicated (e.g., nonlinear) dynamical mod-
els. The experimental measurement setup, as depicted
in Figure 1, consists of the signals u(t)e, and §(t)e, =
Yo(t)es + €(t), representing the inputs and the measured
outputs, respectively, and where e(t) is an additive zero-
mean, white, Gaussian-distributed measurement noise
with covariance ¥, that is uncorrelated from the in-
puts. N, samples are collected within a data set ZVs =

{u(t)ewa g(t)em}zzﬁisl'

System properties are expressed, over a finite set of
atomic propositions p; € AP,i=1,...,|AP|, in Linear-
time Temporal Logic [2]. LTL formulae are built recur-
sively via the syntax ¢ ::=true | p | "¢ | Y AY | YV |
O¢ | ¥ U Let 7 = 7(0), (1), 7(2),... € IV be a
string composed of letters from the alphabet ¥ = 247
and let my = 7(t), m(t+ 1), 7(t+2),... be a subsequence
of 7, then the satisfaction relation between 7 and 1 is
denoted as 7 E 1 (or equivalently mo E v). The seman-
tics for the satisfaction are defined recursively over
and the LTL syntax as

) & true
) e pen(t)
) e E e m iy
(conjunction) 7Ty ': P1 APy & m E Py and mp F g
)
)
)

(true) 7 F true
mEp

(atomic prop.

(negation

(disjunction) ¢ E 91 Vb <& m F by or mp F b
(next) ¢ E Qv & M FY
(until) 1 F o1 Uhe & Fi € Ny E g,
andVj € N:
0<j<i,myj Fn

Denote the k-bounded and unbounded invariance oper-
ator as OFqy = /\f:0 O and Oy = —(true U 1)), re-
spectively.

Of interest are formal properties encoded on the input-
output behaviour of the system, and over a time horizon
t > 0. The output yo(t)yer € Y is labeled by a map
L :Y — %, which assigns letters « in the alphabet X via
half spaces on the output, as

L(yO( )ver) =ac) & /\p e pzyO(t>ver S bpiv (5)

for given A,, € RP, b, € R that is, sets of atomic
propositions are associated to polyhedra over Y C RP.
Let us underline that properties are defined over the be-
haviour yo(t)yer of the system, and not over the noisy
measurements §(t), of the system in the measurement
setup. Additionally, for the verification problem the in-
put signal is modelled as a bounded signal u(t) € Uyer,
and represents possible external non-determinism of the
environment acting on the system.

3.1 Model Set Selection

As a first step we need to embed the a-priori available
knowledge on the underlying system within a parame-
terised model set, under a prior distribution. The use
of linearly parameterised model sets defined through
orthonormal basis functions to represent partially un-
known systems is a broadly used framework in system
identification: it allows for the incorporation of prior
knowledge, while maintaining the benefits (computa-
tional aspects) of linear parameterisations. Practically,
it has been widely used for the modelling of physical sys-
tems, such as the thermal dynamics of buildings [35,29].
Note that although the goal of parameter exploration in
formal verification has recently attracted quite some at-
tention [4,15,19], there are as of yet no general scalable
results for the computation of the satisfaction func-
tion for nonlinearly-parameterised discrete-time LTI
models. Whilst in general linear time-invariant models
with uncertain parameters do not map onto a linearly-
parameterised model set, we argue that a linearly-
parameterised model set can encompass a relevant class
of models. For instance, any asymptotically stable LTI
model can be represented uniquely by its (infinite)
impulse response [20], and the coefficients of the im-
pulse response define a linear parameterisation for this
model. Further, the coefficients of the impulse response
converge to zero, so that a truncated set of impulse coef-
ficients can provide a good approximate model set with
a finite-dimensional, linear parameterisation. This is
only one possible instance of modelling by a finite set of
orthonormal basis functions [21, Chapters 4 and 7],[33],
which can be selected to optimally incorporate prior
knowledge: we conclude that, as an alternative to the use
of a nonlinearly parameterised set of models, structural
information (even when inexact) can be used to select a



set of orthonormal basis functions, whose finite trunca-
tion defines a finite-dimensional linearly-parameterised
model set indexed over the coefficients of the basis
functions. Thus, in the following we consider a linearly
parameterised model set G that encapsulates system S,
and specifically G = {(4, B, C(6),D(0)),0 € ©}.

A system, or equivalently the mathematical model that
represents it, satisfies a property if all the words gener-
ated by the model satisfy that property. Since properties
are encoded over the external (input-output) behaviour
of the system S, which is the behaviour of M[(6°), 0° € ©,
we can equivalently assert that any property ¥ is ver-
ified by the system, S E 1, if and only if it is verified
by the unknown model representing the system, namely
M(6°) E . Introduce Oy to be the feasible set of pa-
rameters, such that for every parameter in that set the
property 9 holds, i.e., V0 € O, : M(0) E 1. As such O,
is characterised as the level set of the satisfaction func-
tion fw, @w = {6‘ €0: fw(@) = 1}

3.2 Safety Verification of Bounded-time Properties

Models M in the class G have the following representa-
tion (A, B, C(0),0):

M) {x(t+ 1) = Ax(t) + Bul(t), )

§(t,0) = CO)x(t),

and are parameterised by § € © C RP" :6 = vec(C) with
a prior probability distribution p (#). In addition to this
strictly proper model class we will also allow for proper
model (4, B,C(0), D()) where both the C' and the D-
matrices are parameterised and the parameterisation is
6 = vec([C D))). For a given initial condition x(0) and
input sequence, the output of the “true” model §(t,6°)
is equal to the system output yo(t).

Given a measurement set-up as in Figure 1 with un-
known parameter 6°. Then u(t)e, and §(t)e, repre-
sent the input and the measured output, respectively,
and e(t) is an additive zero-mean, white, Gaussian-
distributed measurement noise with covariance >, that
is uncorrelated from the input. Furthermore w(t) is
assumed to be uncorrelated with the noise e(¢). From
this set-up N, samples are collected in a data set

ZNe = {u(t)ew, §(t)ex )12,

Therefore given the operating conditions of the experi-
ment set-up the measured signal §(t)., can be fully char-
acterised: its probability density, conditional on the pa-
rameters 6, is

N

9) = Hp (g(t>ez |9)

t=1

p(ZN:

=52 (0(t.0) = G()ex) T E(G(E,0) — G(t)ea)

and can be directly used in Proposition 1. This con-
ditional density p (ZNS 9) depends implicitly on the
given initial state x(0)e, and, for the case of a given
uncertainty distribution for x(0)ee, p (Z7V:]6) should be
marginalised as a latent variable [28]. The a-posteriori
uncertainty distribution is obtained as the analytical
solution of the parametric inference in (3) [28].

Recall now that for a given specification ¢, we seek to
determine a feasible set of parameters ©, such that
the corresponding models admit property ), namely
M(0) E ¢, V0 € ©,. Since models M () have a linearly-
parameterised state space realisation as per (6), it fol-
lows that when the set of initial states and inputs Xy,
and Uy, are bounded polyhedra, the verification of a
class of safety properties expressed by formulae with la-
bels asin (5) leads to a set of feasible parameters O, that
is a polyhedron, which can be easily computed. More
precisely, the following theorem can be derived.

Theorem 3 ([17]) Given a bounded polyhedral set (or
equivalently a polytope) of initial states x(0) € Xyer
and of inputs u(t) € Uyer for t > 0, and consider-
ing a labelling map as in (5), then the feasible set ©
of the parameterised model set (6) results in a polyhe-
dron for properties v composed of the LTL fragment

P = a|Ov|r A e, with o € X.

Proof[of Theorem 3] Let ® denote the Kronecker prod-
uct. Consider the input set Uy, to be the convex hull
of U, i.e. conv(U) = Uye,. Similarly let the set of initial
states be conv(Xyer) = Xyer. Let the model set be given
as M(0) = (A, B,C(0), D). We will temporarily assume
that D is set equal to zero. Afterwards we will show how
to work with a parameterised D. Note that the syntax
fragment ¢ = o|Qv|Y1 A P with a € X = 24P is
equivalent to ¥ ::= p|OQu|¢1 A1y with p € AP.

1. We claim that for every specification ¥ composed
from the syntax fragment ¢ ::= p|OQu |11 A2 and 6 € O,
the words generated by a model M(0) = (A, B, C(6),0)
with state x(t) satisfy the specification v, denoted <
M(6),x(t) >F 1, if and only if

((Inw ® x(t)) Ny + Kw) 0 < By. (7)

The matrices Ny, € R*™*"? K, € R™*"? B, € R™
in the above satisfaction relation have dimensions that
are functions of the parametrisation and of the property
dependent “dimension” n,;, and are obtained inductively



over the syntax of the specification.

For any atomic propositions the model starting from
state x(t) satisfies a property p;, i.e., < M(0),x(t) >F
pi & Ap,y < by, with A,, € R and b,, € R we con-
struct the matrices N, K, and B, as follows. Con-
sider y(¢) for a given x(t) then

Apy(t) = A, C(O)x(t) = x(1)" (I ® Ay, )0.

This yields Np, = (I, ® Ap,) € R"*"P K, = O1xnp €
R*"P - and B, = b,, € R

The next operation (O with matrices (Ny, ,Ky,,
Dy, by, ) yields matrices

Now: = 1y @ (In,, ® AT) Ny,

T
Ko¢1 =U (Inwl ®B) qu + 1|U\ ®K¢,1,
Boy, = 1jy| ® By,

where the i-th set of ny, rows of U € RIVIMv1xm jg de-
fined as

(Inwl ® ulT) with u; € U
and where noy, = |U|ny,. This can be derived as

< M(0),x(t) >F Ov < Vu(t) € Uyer :
((Iny, @ x(t +1))" Ny, + Ko, ) 6 < By,

< Vu(t) € Uyer :

((Inwl ® Ax(t))" Ny,

+ (Inw1 ® Bu(t))T Ny, + K¢1) 0 < By, .

Since the above is an affine function in w(¢), the image
of every u(t) € conv(U) = Uyer can be expressed as a
convex combination of the values at the vertices u; € U,
c.f. [6]. Then an equivalent expression is

® Ax(t))" Ny,

Vi €U ((Iny,
T T
+ (I"wl ® u;) (Inwl ® B)" Ny, + le)e < By,
which can be rewritten as
T T
= (1\U| ® (In,, ® Ax(t))" Ny, +U (In,, ® B)" Ny,
+ 1 @ Ky, )0 < Ly @ By,

Having obtained Ky, Doy, and boy, now rewrite the
first term to obtain Ny :

L) @ (Ing, ©x" (1)) (In,, © AT) Ny,
= (Ip L) ® (Iny, @ x"(t)) (In,, ® AT) Ny,
= (Itiug, @ X7 (1)) (U © (L, © A7) Nys)

The and operation ¢ A g for (Ny,, Ky, ,Dy, by, ) and
(Nww Kﬂlz’Ddlz’bﬂ&) with TNapy Apy = (”wl + n¢2) gives

Ny Ky
Ny npy, = [N 1‘|7K1111/\1Z12 = |}f 1‘|7 By nypy =
P2 P2

This can be derived from

By,

2

< M(0),x(t) >F 1 Ao

= /\ ((Inwz ®X(t))TNwi+Kwi>9§Bwi

i€{1,2}
sz

N,
@<(1%N2 ox(t)"| "

Nwz

By,
By,

T
+

2. The matrix-valued function
((I 2x(0)" Ny + K )9
Ty P P

is affine in x7'(0) (for a fixed @), therefore its value at the
initial condition x(0) € X, is a convex combination of
the function values at the vertices X e, of X,e,-. Thus the
satisfaction relation < M(6),x(0) >F 1 represented by
the multi-affine inequality holds uniformly over x(0) €
Xyer if and only if it holds for the vertices of X, e;-.

This gives a set of affine inequalities in @, thus the feasible
set ©y is a polyhedron and is given as

{9 co: N ((Inw ®xi)TNw+Kw)6 < Bw}.
xi €EXver

The set ©y is a polyhedron, since it is formed by a finite
set of half spaces.

3. To prove Theorem 3 we need to extend the results to
models with parameterised D. The dynamics of model
(A, B, C, D) with both C and D fully parameterised can
be reformulated as

AB
00

y(t) = [c D] x(1).

x(t)
u(t)

+

Using the new matrices (4, B, C(6),0) the obtained re-
sults still hold. For part 2. set of vertices X, needs to
be extended with the vertices of U as X x U. O

In the computation of the feasible set, the faces of the
polyhedron ©, are shown to be a function of the ver-



ticed?] of the bounded set of initial states Xy and of
the set of inputs Uye,, and are also expected to grow in
number as a function of the time horizon of the property.
The result in Theorem 3 is valid for any finite composi-
tion of the LTL fragment 9 ::= «|Qu|1 A 12, as such
it only holds for finite horizon properties. Properties de-
fined over the infinite horizon will be the objective of
Section 3.4.

3.8 Case Study: Bounded-Time Safety Verification

Consider a system S and verify whether the output
Yo(t)ver remains within the interval Z = [—0.57 0.5},

labeled as ¢, for the next 5 time steps, under u(t)ye, €
Uper = [-0.2, 0.2] and x(0)yer € {02} = Xyper. In-
troduce accordingly the alphabet ¥ = {¢,7} and the
labelling map L : L(y) =,Yy € Z, L(y) = 7,Vy € Y\Z.
Now check whether the following LTL property holds:
SE /\le(O)lL We assume that system S can be rep-
resented as an element of a model set G with transfer
functions characterised by second-order Laguerre-basis
ones [20] (a special case of orthonormal basis func-
tions), which translates to the following parameterised
state-space representation:

a 0 V1 —a?
x(t+ 1) x(t) + u(t),
1-a’®a (—a)V1—a? (8)
g(t,0) =60Tx(t) .
The parameter set is chosen as § € © = [-10,10]?,

whereas the coefficient a is chosen to be equal to 0.4.
We select, as prior available knowledge on the system, a
uniform distribution p (6) on the model class, and pick a
known variance o2 = 0.5 for the white additive noise on
the measurement. The set of feasible parameters ©, C ©
is represented in Figure 2 and is computed according to
Theorem 3. Based on the prior available knowledge, the
confidence associated to 6y € ©, amounts to 0.01657].
In comparison to this value, after doing an experiment
on the system with “true parameter” 6y = [1 0] (Fig-
ure 2) and with input signal u(t)e,, a realisation of a
white noise with a uniform distribution over [—0.2,0.2],
and measuring §(t)e, for 200 consecutive time instances
the uncertainty distribution is refined as p (9|Z N ) The
resulting confidence (2) in the property is increased to
0.779.

Along this line of experiments, we have repeated the test
100 times, for several instances of the parameter 6° char-
acterising the underlying system S. In all instances, after
obtaining 200 measurements the a-posteriori confidence

2 A polytope can be written as the convex hull of a finite
set of wvertices.

3 This is obtained by numerical computation of (2) with
probability distribution p (0). ntegrals are solved via the nu-
merical integration tool in Matlab.

Table 1
Mean (1) and variance (o) of the confidence obtained from
100 experiments with 200 measurements each.

6° I o2 6° I o?

[-1 -1]T 0348 0.073 [1-1]T 0.491  0.085

T T
[-1 0] 0.705  0.060 [1 0] 0.730  0.056

T T
[-1 1} 0492  0.086 [1 1] 0339  0.065

represents the confidence in the safety of the system, as
displayed in Table 1 via mean and variance terms.

Fig. 2: Feasible set
of parameters in O,

-1 and contour lines
‘ ‘ ‘ of the quantity
—2 0 2 P (9|ZNS), obtained

61 for 0 = [1 0]7.

3.4 Verifying Unbounded-Time Properties Using In-
variant Sets

In this section we extend the approach unfolded in Sec-
tion 3.2, to hold on the LTL fragment ¢ ::= «|OQu|1 A
1o with additionally the unbounded invariance (safety)
operator. Recall the form of the k-bounded and of the un-
bounded invariance operators, namely 0% = /\f:0 O
and O¢Y = —(true U =) respectively. The extension
from a k-bounded operator, covered by the result in The-
orem 3, to the unbounded invariance one, is based on
the concept of robust positive invariance [7, Def. 4.3],
recalled next.

Definition 2 For the system x(t+1) = Ax(t) + Bu(t),
the set S C X is said to be robustly positively invariant
if, for allx(0) € S and u(t) € U, the condition x(t) € S
holds for all t > 0.

Recall that the feasible set O, is defined as the set of pa-
rameters for which property ¢ holds, namely V8 € © :
M(6) E 1. The satisfaction relation M(6) F ¢ depends
implicitly on the set of initial states x(0) € X, and
on the set of inputs U,.,. Let us extend the definition
of the feasible set to explicitly account for its depen-
dence on the set of initial conditions: given a bounded
and convex set S C X, let ©,(S) be defined as the set
of parameters in © for which the parameterised models
M(0) initialised with x(0) € S satisfy ¢ over input sig-
nals u(t) € Uyer ¢ > 0. Hence the feasible set ©, can
be written as a function of the set of initial states X,
that is Oy (Xyer). Thus the extended map Oy (-) takes



subsets of the state space into subsets of the parameter
space. Note that if S is a robustly positively invariant
set that includes the set of initial states X,e C S, then
for all € ©,(S) the models M(0) satisfy ¢ over all
infinite-time model traces x(¢): this allows to state that
M(6) E Ot. We can show that the following holds.

Lemma 4 The function ©y(+) : 25 — 29, for specifi-
cations obtained as ¥ = « | O | Y1 A e, is mono-
tonically decreasing: that is if S1 C Sa, then ©4(S2) C
Oy (S1).

Proof We leverage the notation used in the proof of
Theorem 1. Provided that the parameterised model is
given as (A, B, C(0),0), we show that any 6 € 0,(S2) is
also an element of 6§ € ©,(S1). Suppose Sy has a finite
number of vertices x; € V (Sz), then for any § € 0,(S2):

Nxieviss) ((In, ®x:))" Ny + Ky) 0 < By
and for every x € Sy
((In, ®%)"Ny + Ky) 0 < By.

Since the vertices x; € V(S7) are also elements of Ss,
then

/\xjev(sl) ((Inw ® Xj)TNdJ + Ki/’) 0 < By

and 6 € ©,(S1). This reasoning can be trivially ex-
tended to include parameterised D matrices. Increasing
the number of vertices of §; and &3, does not change
the result, hence the same holds if S; and S, are convex
sets. O

Based on the result in Lemma 4, we conclude that the
maximal feasible set ©gy, is obtained as a mapping from
the minimal robustly positively invariant set S that in-
cludes Xyer: Ogy = O4(S). This leads next to consider
under which conditions such minimal robustly positively
invariant set S can be exactly computed or approxi-
mated.

Feasible set for invariance properties with Xyer = {0p}

For Xyer = {0, }, assuming a bounded interval Uy, with
the origin in its interior, and under some basic assump-
tions on the dynamics (to be shortly discussed), the min-
imal robustly positively invariant set can be shown to be
a bounded and convex set that includes the origin [7].
Maintaining the condition of U,e, being bounded and
having the origin in its interior, we first consider the case
that Xyer = {0, } and characterise S via tools available
from set theory in systems and control; thereafter we
look at extensions to more general sets of initial states
Xver-

Assume that Uy, includes the origin, and denote the
forward reachability mappings initialised with R() :=
{0,} C X as

R .= Post(RU™Y), (9)

with set operation Post(X) := {x’ = Ax 4+ Bu,x €
X,u € U}. Denote the limit reachable set as R™ =
lim;_, o0 R(9. From literature we recall that properties of
these i-step reachable sets, as given in [7] include the fol-
lowing: for a reachable pair (A, B) and an asymptotically
stable matrix A, the oo-reachable set R is bounded
and convex [7, Proposition 6.9]. The k-step reachable
set converges to the co-reachable set via (9), since it is
monotonically increasing R(#) C R(+1), Moreover, R>
is the minimal robustly positively invariant set for the
system, so that any positively invariant set includes R
[7, Proposition 6.13]. Thus, starting from x(0) = 0,,, all
x(t) € R, and furthermore of interest to this work we
conclude that ©qi = Oy (R(k)) and Ogy = Oy, (Roo)

Feasible set for invariance properties under polytopic
sets of initial states

More generally, if X, € R and ceteris paribus, then
R° is the minimal robustly positively invariant set that
includes Xyer, and O4(R*°) = Ogy. For finite itera-
tions the reachable sets R(?) are polytopes, and if R(*) =
ROHAD  then R = R>. Though the iterations can stop
in finite time, in general the number of iterations to ob-
tain R*° can be infinite. Whilst the minimal robustly
positively invariant set is not necessarily closed or a poly-
tope, there exist methods to approximate R*° as detailed
in [7]. For instance, for stable systems, R(*) is shown to
converge to R>°, in the sense that for all € > 0 there ex-
ists k such that for k > k, R(F)C R>C (1+ e)R(’“) [7,
Proposition 6.9].

Recall that the maximal feasible set ©n, is obtained
as a mapping from the minimal robustly positively in-
variant set S including X,e,, that is Ony = Oy(S).
Let us extend the study to the case where the condi-
tions Xyer = {0,} or its extension X, € R do not
apply, while the condition on the bounded set U, is
maintained, that is 0 € U,,,. Consider the more gen-
eral case where the set of initial states is a polytope
but not necessarily a subset of R*. Denote the union
of the forward reachability mappings initialised with

RY) = Xuer C X as

RY =RE D UPost(RE V). (10)
This set is also known in the literature as the reach tube.
The corresponding set for infinite time is denoted as
Ry = limi0o Ry, . Notice that if Xye, € R, then
R =Rg . The iteration is monotonically increasing
RY cRrYTY

T

, and whenever Rggzm = R;g:;i) it stops



after a finite number of iterations with Rg® = R(l) .
Of course, also in this more general case, the number ‘of
iterations can be unbounded, however the convergence
properties of R() extend seamlessly to the case of sets

R( ) Since R( " is a union of polytopes, it is not guar-
anteed to be a convex set. Still, it can be shown via the
proof of Theorem 3 that the computation of the feasible
set ©(S) boils down to that of Oy (conv(S)).

Remark 5 Let us illustrate the convergence property
for sets Rggzw as follows. For every vertez x*(0) € Xyer,
select a decomposition x'. + x% with x. € R, which
minimises || x| for a chosen vector morm || - ||. Since
every element x(0) € Xyer is a convex combination of
the vertices x(0), it follows that for all x(0) € Xyer:

= S axi(0) = Z a;xi(0) + Z a:%,(0)

€ conv(x'(0)) + conv( 1(0)) C R°° + Xoers

with ), a; =1 for a; > 0 and where Xyer = conv(x(0)).

We obtain that Xyer C R® + Xyer, and that the min-
imal positively invariant set R~ can be bounded by

R>® + limg_s o0 Uf:o AiX ... Under condition of asymp-
totic stability on A, necessary for R> to be a bounded
and convex polytope, A'Xyer will converge to {0,}.
Thus, the iteration Rg?”
and bounded, hence it converges. If Xper includes the
origin in its interior then there exists a finite iteration
such that U g Al Xper = UkJrl AiX,er. Moreover, for
any reachable pair (A, B) and asymptotically stable A,
the closure of the minimal robustly positively invariant
set Ry includes the origin.

is monotonically increasing

Robust approzimations of the feasible set via Oy (-)

In order to exploit convergence in the computation of the
feasible set for invariance properties, we need to bound
the error incurred with the use of approximations of the
sets Ry or R*. Let B denote a unit ball centred at
the origin and let the Hausdorff distance between sets
R1 and Rs be defined as

0r(R1,R2)

We can show that the following holds.

Lemma 6 Consider a polytope R, and a property
comprised of ¥ = o| QY| A, with a € X, for which
©4(R) is a non-empty polytope with vertices v; and the
origin in its interior. Let A be bounded as ||A]2 < 1.
Then for any e, > 0,

Oy(R+€e:8) COR(R) COy(R +e:8) +eoBB (11)

= inf{e > 0|R1 CRo+eB, Ry C Ry + 63}

ex€p max; (||vi)>

|42
if €9 > or €, := Iax .
feo 2 1+ ezep max;(||vg]])’ for € T peap [bp]

Proof 1. ©4(R + €,8) C O4(R)

Based on the definition of this set (c.f. the proof of The-
orem 3), the set operation ©,(-) is monotonically de-
creasing. Therefore ©,(R + €, 8) C ©4(R) holds.

2. 04(R) COy(R+ €,B8) + eB
Consider the case where the model is (A4, B, C(#),0). To
prove (11), we first find a €y as a function of €, such that

@¢(R> - @w(R + EzB) + egB. (12)

Let v; be the vertices of the polytope v; € V (04(R)),
then (12) holds if and only if v; € Oy (R + €,8) + 5.
Equivalently, this means that there exists a rg € €8
such that v; —rg € Oy (R + ezB) This is equivalent to
demanding that for every x7 € V(R), v; € V (04(R))
and r, € €,.B, there exists a Vector re € €glB:

((In, ® (x] +72))Ny + Ky) (v; —16) < By,
& ((Inw X; )Nw + Kw) (vi — Tg)
+ ((In, @73 )Ny) (vi = 9) < By.

Take (v; —19) = (1 — ay)v; with o € [0, 1), then

((Inw & X?)Nw + Kl/l) (1 — Oéi)’Ui
+ ((Inw (9 T‘f)]\ﬂ/,) (1 - ai)vi < Bw
& (1—ai)Iy, ®rL)Nyvi < a;By.  (13)
Separate the matrix Ny and By into its block matrices

NJ, = [NyJ{14G-1ynmgy« {1:my and B = [B]]; such that
inequality (13) is equivalent to the set of 1nequalities

(1—a)r TNJ’U/ <!, forj=1,...,ny (14)

N S (15)

T g o
& N <
R )

Given that 0 € ©4(R), it follows that b; > 0 for j =
1, sy Ty

Q;

TNj / bj —1 )
Hljé_lJX (TLIJ wvz) ( ) — (1 . ai)

The term on the left can be upper bounded based on the
Cauchy-Schwarz inequality

max (77 NG ) ()1 < max [|(NG) 7 o (6) !
J J
< max [ (V) ol l2(6) ™ and [irlz < e

< exepllvilla-



The last inequality follows from the introduction of the
precision of the labelling, denoted as €, and defined as

A
) — WAl

. 16
pEAP |bp| ( )

Remember that ||L ® K |2 = || L||2|| K ||2- Then based on
Theorem 3 and on the condition ||A||z < 1, it can be
shown that

[[A4p]l2
by

monotonically increases with «; for

ax ||[(N))T |5 67] 7 < ma
max | (V)7 o671 < mae

Note that ﬁ
a; € [0,1). Therefore a bound on «; can be found as

a; = (ex€pllvill)/ (L + exepllvil]) for j =1, ,ny. (17)
It follows that (12) holds if
€x€p max(||v;
eo = max(||vj]|2) —=L oillz) (18)

1+ ezep max(||vi]|2)

For the case that the model is parameterised in both
S and D, i.e., (4, B,C(6),D(0)) the derivation is a bit
more cumbersome but can be repeated with no change
to the end result. O

Let us briefly discuss the conditions under which Lemma
6 is applicable. The condition that ©,(R) is not empty
is raised to avoid the trivial case where ©(R) = 0 (11)
holds for all y. The condition that ©,(R) is a polytope
and hence bounded is necessary to obtain a bounded
Hausdorff distance. This distance quantifies the differ-
ence between two sets, and is a necessary step to bound
the approximation error. The requirement that ©,(R)
includes the origin is a sufficient condition and relates
to well-posedness for bounded input sets including the
origin. When considering invariance properties defined
for 0 € Uy, and for any polytope Xy, the requirement
that 0, € ©4(+) is necessary for ©g, to be non-empty:
this can be intuitively illustrated by noting that under
an assumption of asymptotic stability for A, for any 6
and for u(-) = 0 the output §(¢,6) of the model in (6)
converges to 0. Hence for a property to be satisfied un-
der these conditions it should at least hold for the zero
output, which is equivalent to demanding that it holds
for & = 0,. For any atomic proposition p; € AP (see
Equation (5)) it can be shown that there is an invert-
ible mapping between the row vectors, proportional to
the normals of the faces of the polyhedral set ©,, (x(0)),
and the initial state x(0). Therefore, if R*) has the ori-
gin in its interior, then ©,,(R™*)) has to be bounded,
and as a consequence so has any feasible set comprising
this atomic proposition. This holds for k > n if (A4, B) is

a reachable pair and if U, has 0 in its interior. Under

the same conditions there exists a k such that Rgi)m has
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0,, in its interior. The generalisation to the case dealing
with an Hausdorff distance of the feasible set for invari-
ance properties with a set of inputs 0 & U,,, is outside
of the scope of this work.

Convergence properties

We can employ Lemma 6 to bound the Hausdorff dis-
tance between O, (Rg?”) and Ogy. If Xy = {0,} and
the spectral radius of A is strictly less than 1 (that is

p(A) < 1), then the Hausdorff distance can be bounded
as

5 (RM R®) < e(k) = || A¥|, max (|ul)er,  (19)
ue

with ¢; a bound on Y ;2 [|A’B||, which is the peak-
to-peak performance of the dynamical system formed
by (A, B). In case that X, € R then the forward
reachable iteration can be rewritten as

k
R (| A%e) + R
1=0

The Hausdorff norm can be bounded as

S (RY) R ) < e(k) + A6 (Koers {0})-

Note that for p(A) < 1 the norm || A¥||3 — 0 for k — oo.
In case the conditions of Lemma 6 on Rg?er C X and

0, (RY) ) hold, the Hausdorff distance 0 (Ocry,, Oay)
can be bounded by

1A% 12 max([[v: )2 ep (masx (Jul)er + [| Al 5 (Xver, {0n}))-
(20)

Use in the verification of unbounded-time properties

Based on the convergence properties of the feasible set,
the asymptotic behaviour of the confidence computed in
Proposition 1 can be stated.

Corollary 7 (Convergence) Under the conditions
of Lemma 6, for a Gaussian distribution p(0) ~
N (119, Rp) with a covariance Ry = 0, P (6‘ € 95"%) —
P (0 € ©gy) for k — .

Prooffof Corollary 7] For a strictly positive Ry, the
Gaussian density distribution takes finite values over
the parameter space, therefore the convergence of a
monotonically-decreasing polytope over the parameter
space induces the convergence of the associated proba-
bility measure. O

Theorem 3 can now be generalised to include unbounded-
time invariance properties as follows.



Theorem 8 Consider a polytopic set of initial states
2(0) € Xyer, inputs u(t) € Uyer for t > 0, and a
labelling map as in (5). Let 7@%‘1“ be a polytopic su-
perset of the minimal robustly positively invariant set
that includes Xyer, denoted as R%Ov L then the feasi-
ble set admits a polyhedral subset @w C Oy for ev-
ery specification ¥ expressed within the LTL fragment
¥ = a|OYldr A vo|0¢, and if R, = R then

Oy = O,

Proof Every property ¢ ::= p|Qu|1 A 2|0y with
p € AP can be rewritten as Oy A 1o where 11 and 9

have syntax ¢ := p|Qv |1 A 2.

For the set of initial states Xy, a property v is invariant
(M(0),x(0)) E O, ¥x(0) € Xyer

if and only if Vo € R : (M(6),z) F 1. Let R be
a polytopic superset of RG>~ with a finite set of vertices
vR € VR, then the subset approximation of the feasible

set ©gy follows as Ogy 2 Ony =

{96@:

where égdj C Oony. Note that if 7A€§°§€T = Rgﬁiw then
éw, = Ouny. The feasible set of Ty A 1) is equal to
Ouyi Ay = Ooy; NOy,. And Oy, Ay, can be upper and

lower bounded as ©ny, MOy, € Ooy, Ay, € Ogry, MOy,
with & € N. This proves Theorem 8 for the case where
the model is (A, B,C(0),0). The additional parameter-
isation of D does not change the reasoning. O

A (U,

vREVR

®vR)Ny + Ky) 0 < bw}

The extension beyond the LTL fragment discussed above
may lead to feasible sets that are in general not convex
and are therefore beyond the scope of this work.

3.5 Case Study (cont.): Unbounded-Time Safety Ver-
ification

We study convergence properties for the safety speci-
fication ¢ considered in the case study in Section 3.3
maintaining the same operating conditions as before for
the safety verification and the experiment. In Figure 3a
the forward reachability sets R with k = 1,...,20
are obtained for the model dynamics in (8). Figure 4
(upper plot) displays bounds €(k) on the Hausdorff dis-
tances 87 (R™*), R>®) computed with (19): starting from
a slanted line segment for R(Y) as in Figure 3a, it can be
observed that the forward reachable sets R*) converge
rapidly, as confirmed with the error bound displayed in
Figure 4 (upper plot).
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Based on R(¥) | the feasible set for the k-bounded invari-
ance 0% can be computed as O, = O, (R*)). The fea-
sible sets ©gr, with £k = 1,...,20 are plotted in Figure
3b. Observe that the feasible set ©g1, is not bounded,
but for k£ > 2 the feasible sets are bounded and, as ex-
pected, decrease in size with time. In Figure 4 (middle
plot) bounds on the Hausdorff distances 05 (©g,, Ogr,)
are given for k = 2,...,20 (no finite bound is computed
for the index k£ = 1, since for that instance the feasi-
ble set is not bounded). Let us conclude this case study
looking at confidence quantification, as a function of the
time horizon. Figure 4 (lower plot) represents the confi-
dence over the property P (9 € Ogs, | ZNS), for indices
k =1,...,20. Unlike the case discussed in Section 3.3,
which focused on looking at statistics of the confidence
via mean and variance drawn over multiple experiments,
we zoom in on asymptotic properties by considering a
data set ZVs comprising a single trace made up of 200
measurements, simulated under the same conditions as
in Section 3.3, and with 6y = [1 0]7. From the result-
ing probability density distribution p (6 | ZV+), it may
be observed that the confidence converges rapidly to a
nonzero value.

3.6 Discussion on the Generalisation of the Results

The discussed approach based on polytopes allows for
analytical expressions of the feasible set, however the
implementation may not scale to models with very large
dimension: in particular, the number of half-planes char-
acterising the feasible set may increase with the time
bound of the LTL formula « (that is, with the repeated
application of the () operator), and with the cardinal-
ity of the atomic propositions in the alphabet . Still,
note that these computations are essentially quite sim-
ilar to known reachability computations, therefore the
method is extendable well beyond the 2-dimensional case
study, especially when applying sophisticated reachabil-

05
5
§ 0 <0
_ —5 ‘
05 e g
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(a) The first 20 iterations
of the forward reachable set
R® k= 1,...,20 for the
case study. The reachable sets
grow in size from dark grey
(k =1) to light grey (k = 20),
so that R* =1 - R,

(b) The feasible sets for
the k-bounded invariance
property OF:, with k =
1,...,20, obtained for the
case study.

Fig. 3. Reachable and feasible sets for unbounded-time ver-
ification problem.
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Fig. 4. (Upper plot) Error bound on the approximation
level of the k-th forward reachable sets, which is such
that R C R™ + ¢(k) for k = 1,...,20. (Middle plot)
The Hausdorff distance ¢ (k) between ©gr,, and Ogy with
k=2,...,20, obtained for the case study.(Lower plot) Con-
fidence that S E OF, for k = 1,...,20 for the case in Sec-
tion 3.3, with a new experiment consisting of 200 samples
collected as ZNs.

ity analysis tools in the literature. Therefore the dis-
cussed limitations related to the current implementation
of the approach, ought to be dealt with in the future
by the use of tailored and less naive computational ap-
proaches.

In the discussion of model selection, we hinted at possi-
ble generalisation beyond linearly-parameterised model
sets. Future extension will deal with hybrid models, since
when systems are not linear, their (local) behaviour is
often well approximated with piecewise-linear dynami-
cal models.

This paper has discussed the formal verification of physi-
cal systems with partly unknown dynamics, by introduc-
ing a Bayesian framework allowing for the efficient in-
corporation of measurement data and prior information
within a verification procedure based on safety analysis.
This formal approach has allowed for the computation
of the confidence level over the validity of a property of
interest on the unknown system. The method has been
applied to the verification of LTT models of systems over
bounded and unbounded safety properties, and its com-
putational overhead has been discussed at length.

Looking forward, current work targets the extension of
the applicability of tractable solutions to model-based
and data-driven verification over complex physical sys-
tems. We are presently working to extensions of the
considered set of logic formulae of interest, and plan to
employ experiment design to optimise the input-output
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signal interaction for efficient data usage over general
classes of models, as initially attempted in [17]. Addi-
tionally, the design of control policies that optimise prop-
erties of interest over partly unknown systems is topic
of current work.
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Derivation of the Bounds in Section 3.4

1. Hausdorff distance of forward reachable map-
pings. We only sketch the method to bound the Haus-
dorff distance, whereas a more formal derivation can be
found in the literature on robustly positively invariant
sets [7].

The k-step forward reachable set equals

k i
RK) .= U ZAjleu(i —7), for u(j) € Uyer
i=1 | j=1
For 0 € U, the minimal invariant set R°° can be
written as

i—1 0
R(®) = ZAjBu(j) + A’ ZAkBu(k:), for u(-) € Uyer
j=0 k=0
(1)

If the spectral radius of a A is strictly smaller than 1,
p(A) < 1, then

R € RW 4 ¢(k)B, (.2)

with

AEN " A'Bu(k) C €(k)B, for u(-) € Uyer.
=0

Note that €(k) is bounded for p(A) < 1. For a matrix
A without defective eigenvalues, i.e. where the eigenvec-
tors form a complete basis, this L; norm can be easily
bounded using the spectral radius of A, by selecting

[p(A)[* S

W= T

=0

In case that the matrix A is defective, we opt to bound
the Li-norm by exploiting absolute sum of the Lj in-
duced norm for A* i — oo: Y .0 ||AY||2. Note that || A*[|2
converges to 0 for ¢ — oo since p(A) < 1, therefore there
exists a finite [ such that ||A!||2 < 1 and we can upper
bound the absolute sum as

9] ) -1 . o0 )

DollAYe < 1A 2 ) { D 14"z

i=0 0

1= 12=0

I1Bll2 max (ul) > [[A%[[2 D | A" Bllau(k)].



-1
- 1
- Al | ———
(} N |2> rur

11=0

Thus in general, the Hausdorff distance can be bounded
as

0 (R, ROY) < e(k) = [|A¥|2 max (jul)er,
ue

ver

S AT,
(Ziimatare)

1-[J A2 ||B]l2 for I such that HAZHQ <

1. Note that ¢; can be replaced by any bound on the L1
norm of the dynamical system formed by (A, B).

with ¢; =

In case that X,e. € R then the forward reachable
iteration can be rewritten as

k
Rggk;)eT = (U AiX’UG’I‘) + R(k)u

i=0
for which we know that
RED CRE. +elh) + A6 (Kuer, {0}).

Thus the Hausdorff norm is upper bounded as
k 0o
o1 (RAERE ) < k) + 1| A5 631 (Xoer, {0)):

2. Hausdorff distance on feasible sets. Suppose

that the conditions in Lemma 6 hold for Rg?”, then
we can compute a value for eg such that O, (Rg?”) C

Oy (Régkv)w +e.B)+e9B, where €, is a bound on the Haus-
dorff distance oy (Rg?” , Rgﬁi)r ).

The set operation ©(-) is monotonically decreasing,
therefore Gw(Rg?w +¢(k)B) C Ony = 04 (R ) C

0, (Rgg?w) = Opiy, and Opy, € O4(RE) 4 e(k)B)+
B C @Dw + €93, and

9‘31!1 - @Dkw - 9‘31!1 + e B.

[Ap, |

T, T e obtain
P

Based on Lemma 6, with €, = max,,

€x€p max; (||vi )

= < a )2
CTIF ex€p max;(|lvi]]) — Catp I x(fesll)

Note that since |A¥||z converges to 0 for k — oo for
p(A) < 1, and since max;(||v;]|)? is not increasing, the
error €y also converges to 0.
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