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Correct-by-design output feedback of LTI systems

S. Haesaert, A. Abate and P.M.J. Van den Hof

Abstract— Current state-of-the-art correct-by-design con-
trollers are designed for full-state measurable systems. This
work extends the applicability of correct-by-design controllers
to partially observable linear, time-invariant (LTI) models.
Towards the certification of the synthesised controllers, approx-
imate simulation relations are leveraged to attain a quantifi-
cation for the accuracy of introduced approximations. Addi-
tionally, the robustness of the approach allows the extension
to models with the presence of probabilistic disturbances on
state transitions and on output measurements. In a case study
from smart buildings we evaluate the new output-based correct-
by-design controller on a physical system with limited sensor
information.

Index Terms— partially observable LTI systems, stochastic sys-
tems, correct-by-design control, approximate simulations

I. INTRODUCTION

Reliable and autonomous operation of many complex
engineering systems demands guaranteed behaviour over
the full spectrum of their operating conditions. This is the
case for applications in avionics, automotive, transportation
systems, dependable electronics, semiconductors [1], and
in general for systems where safety is critical and where
mistakes lead to impactful economical losses.

Within the computer sciences, verification and synthesis
of critical hardware and software has been translated to
industrial practice by tools and techniques from the domain
of formal methods [2]. Employing well-structured specifica-
tions, such as properties expressed over linear-time temporal
logics (LTL), automated and computer-aided tools have been
developed for the verification and synthesis of models of
the industrial systems of interest. To meet new demands
from domains dealing with complex new applications, these
methods require to be extended to hold over models of
physical systems. Recent research [3], [4], [5] pursues the
verification of models of physical systems with continuous
state spaces: of special interest is the safe-by-construction
automatic synthesis of controllers. These correct-by-design
controllers are however incompatible with systems for which
models with exact knowledge of the dynamics and full-state
measurements are not available.

Contributions: This work newly extends correct-by-design
controllers for linear time invariant (LTI) models [3] to
controllers that employ sensor outputs or partial state mea-
surements. Towards the certification of the synthesised con-
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trollers, as in [3] our new control architectures come with
quantitative certificates on approximations accuracy. Further,
since the dynamics of physical systems are often disturbed
(in a probabilistic sense) and the associated sensors are noisy,
we require the new output-based controllers to show quan-
tifiable robustness with respect to stochastic disturbances on
state evolutions and output measurements.

Related work: Design methods for classical optimal con-
trol problems [6] of models with (noisy) output measure-
ments can be distinguished in direct designs based on the
input-output behaviour of the system, and in methods ex-
ploiting the separation of estimation and control. The former
class includes frequency-domain and robust control methods.
Alternatively, whenever applicable (as in the optimal linear
quadratic Gaussian problem) the separation theorem [7]
allows for the distinct design of an observer, estimating the
state, and of a state feedback controller, finally yielding a
combined output-feedback controller.

Within the formal methods literature, limited efforts have
targeted the synthesis of controllers over models without full-
state observations. Existing results exclusively target finite-
state models. [8] studies the synthesis for partially observable
models by searching the space of output-feedback con-
trollers via counterexample-guided refinements. A heuristic
algorithm in [9] finds controllers satisfying almost surely
LTL properties over partially-observable Markov decision
processes. The work of [10] extends PCTL* model checking
to hidden Markov models.

For fully observable Markov processes with general state
spaces, verification and controller synthesis problems are re-
viewed in [11], and are generally investigated over simplified
(abstract) models that can be formally related to the given
ones. Specifically, an abstract model is shown to be in an
(approximate) relation with the original one, and the ap-
proximation is quantified either via metrics defined over the
conditional kernels [12], or via metrics bounding the distance
between the output trajectories [13]. In contrast, this work
will use the definition of approximate bisimulation relations,
similar to those in [14], to quantify the expected deviation
of noisy trajectories affected by stochastic disturbances.

Structure of the article: After a review of state-based,
correct-by-design controller architectures in Section II, in
Section III we design a certified, output-based controller,
introducing a state observer and the notion of output-based
interface. Section IV discusses robustness to stochastic dis-
turbances, both on state transitions and on sensor measure-
ments. Section V evaluates the design methodology on a
case study in the area of Smart Buildings. The proofs of the
statements can be found in [15].
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II. PRELIMINARIES AND PROBLEM STATEMENT

We intend to synthesise a certifiable output-based con-
troller for a physical system represented by the LTI model

x(t+1) =Ax(t)+ Bu(t)
M: ¢ () =Cx(1) (D
z(1) = Hx(1),

where x(1) € R" is the state, initialised by x(0) € Xy C R”,
the control input is u(t) € R™, and y(¢) € R” is the mea-
sured output available for control. A,B,C are real matrices
of appropriate dimensions. The signals z(¢) € RY, mapped
from the state space via the linear map Hx, are used to
define performance and properties. This in unlike [10], which
defines specifications over the signals y(¢). In contrast to the
measured output y(z), the structure of which is physically
specified by the sensors attached to the system, the choice
of H can be adapted to the design requirements, and include
H = C and H =1 as special cases.

A. Transition systems and simulation relations

Definition 1 (Transition system [4]): A transition system
is a tuple X = (%", 20, o, —, %, ), where

o 2 is a (possibly infinite) set of states;

o 2y is a (possibly infinite) set of initial states;

e &/ is a (possibly infinite) set of actions;

o -C X x4 x X is a transition relation;

o Z is a (possible infinite) set of observations;

o . X — Z is a map assigning to each x € 2 an
observation 7 (x) € Z.
A metric transition system is a transition system endowed
with a metric over the observation space % O
This work considers non-blocking transition systems, where
every state x € 2 is associated to a non empty transition
relation. The behaviour generated by X is denoted as Z(X)
and consists of all infinite sequences zg,z1,22,... for which
there exists an initialised path (xo,uq), (x1,u1), (X2,42),- ..,
with xog € Zo, (xj,u;i,Xi+1) €—, and z; = S€(x;) for all i € N.
The LTI model M can be reinterpreted as a transition
system characterised by a tuple (R", Xy, R™,— RY, H), with
a state space x € R", a set of initial states x(0) € X,
and transitions —:= {x,u,x'|x' = Ax+ Bu}. Additionally, H
assigns observation z € R? to x € R": z = Hx. Note that
this transition system has uniquely defined transitions, since
for every state-action pair there is a unique state transition.
If, in addition, the initial state is defined deterministically
2o = {xo} then the transition system is called deterministic.
The verification of LTI models can be attained by ab-
stracting them as finite-state ones and leveraging symbolic
approaches [4]. Pairs of models can be related as follows.
Definition 2 (Simulation relation [4]):
Let Za:(%a%&%a‘}aa%v%) and Y, =
(Zp, Zvo, Ay, —b, 2%, ) be transition systems with the
same output sets 2, = 2%. A binary relation Z C 2, X Zp
is said to be a simulation relation from X, to X, if the
following three conditions are satisfied: 1) for every
Xa0 € Zy, there exists xpq € 2} with (x49,X50) € %; 2) for

every (xq,xp) € Z we have J,(x,) = G (xp); 3) for every
(Xa,Xp) € Z we have that x,—%,x,/ in X, implies the
existence of x,—2,x;,’ in ¥, satisfying (x4, xp') € Z. We say
that X, is simulated by X;, denoted as ¥, <o X, if there
exists a simulation relation from X, to ¥;. The models ¥,
and X, are bisimilar, i.e., X, ~g X, if there exists relation
Z that is a simulation relation from X, to X, and for which
" is also a simulation relation from X to X,. O

Note that this similarity relation over the set of transition
system implies a relation over the behaviour of the transition
systems [4], more precisely if X, <o ¥, then B(X,) C
PB(Zp), and if £, ~5 X, then B(X,) = B(Zp).

B. Formal specifications and control design

Let us consider a specification of interest y for which the
desired behaviour is represented by a transition system Xy
[4]. Then a control synthesis problem for ¥ can be formulated
as the search of a controller C such that the controlled transi-
tion system, i.e., C x X satisfies the specification, namely (a.)
if CxX =g Xy or(b)if CxX~gZXy. The notation Cx X
refers to the composition of the controller C with model X:
the actions of the obtained transition system are defined by
the controller C, whereas the internal state of C is updated
based on information available from X.

If ¥, and X, are deterministic transition systems and
Y, X Lp, then for every sequence of actions for X,
there exists a corresponding sequence for X, such that the
observed behaviour is the same [16]. Definition 2 suggests
the refinement of a controller for ¥, to X, via condition 3):
for ever choice of u,, picked by the controller for X, there
exists a suitable input u;. In practice this allows synthesis
problems to be first solved on a simplified, and possibly
finite, abstraction (X,), before refinement over a concrete,
complex model (X).

Towards robust notions of satisfaction, approximate ver-
sions of simulation relations [4] can be considered over
metric transition systems. Consider two given metric tran-
sition systems with a shared output space 2 and a metric d.
The relation Z C 2, x %}, is said to be an g-approximate
simulation relation from 2, to 2}, iff conditions 1) and 3)
of Definition 2 hold, and additionally if for every (x,,xp) €
Z we have d(H,(x,) — 75 (xp)) < €. We say that X, is
approximately simulated by ¥;, denoted by X,=%, X, if
there exists an &€-approximate simulation relation from X,
to X,. The models X, and ¥, are approximately bisimilar,
ie., X4 ~% Xy, iff there exists a relation % that is an &-
approximate simulation relation from X, to X; and for which
=" is an g-approximate simulation relation from X, to X,.

C. State-of-the-art correct-by-design controller synthesis

Suppose that an LTI model x(¢ + 1) = Ax(¢) + Bu(t) is
given, and that it has a finite-valued observation map that
induces a partition over the observation space R?. Under
assumptions on the controllability of the model, on the linear
independence of the columns of its input matrix B, and
on the observation map [3], [4], the LTI model can be
bisimulated by a finite transition system. Alternatively, under
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less stringent conditions it is possible to synthesise a finite
approximate bisimulation of the given model [4], [5]: further,
for every controller synthesised on the finite-state abstraction
there exists a refined controller for the original model, with
the same closed-loop behaviour.

In the remainder of this work we assume that given a
model M and a model Xy, for the specification, both with
the same output space, we have obtained a controlled model
Mc, which is such that M¢ ~4 Xy [4]. Mc:=CxM
denotes the composition of model M with the correct-by-
design controller C, where C takes as input the state of M
and returns an action to M. This controlled model has hybrid
states (¥,q) with x € R" and ¢ € Q, where Q is a finite set.
Its dynamics are defined as

o | xe+1) =Ax(r)+ Bigy(x(1))
MC'{q<r+1> — 5(x(1),q(1), @)

and initialised by (¥(0),¢(0)) € Uyyeq, ({90} % Xo(g)). Let
us remark that the discrete states of this model follow

from the states of a finite transition system, approximately
bisimilar to the continuous-state model M, and from the
discrete states of the specification model X,. Hence the
discrete state ¢ is initialised based on the specification model
Ly and the initial state X(0). Note that 7, (%(¢)) is a function
that maps the current state to an action.

D. Problem statement

Suppose that there exists a state-based, correct-by-design
controller for a fully-observed LTI model, with closed-loop
dynamics denoted by Mc as in (2). The objective of this
work is to design an output-based controller, a controller that
only requires the measured signal y(¢) and that can therefore
be deployed on the model in (1). Additionally, it is required
that the new controller guarantees an upper-bound on the
deviation from the state-based control in (2).

In the following we use the notion of interface function.
Interface functions originate from the work in [16] on hi-
erarchical control design based on (approximate) simulation
relations: the construction of a controller over a simplified
model is refined to a concrete model while maintaining the
same guarantees over the controlled behaviour.

Definition 3 (Interface function): Let Y =
(Za, Zaos Day—as Za, 76;) and Xy =
(Zp, Zvo, Ay, —b, 2%, 7)) be deterministic  transition
systems with the same output sets 2, = 2. A relation
X C Zyx Zp is an g-approximate simulation relation from
Xy to Zp, and F . Ay X Xy X X — ), is its related
interface, if the following three conditions are satisfied: 1) for
every xX,0 € Za0, there exists x,0 € Zpo With (x40,Xp0) € %
2) for every (xg,xp) € Z, A(Hu(xy)—(xp)) < €
3) for every (x4,xp) € #Z we have that X2 x, in X,
implies xp—2y %, in X, with w, = F (tg,Xa,xp), satisfying
(x,,x,) € Z. The feedback composition of X, and X, is
denoted as X, X z Xp. O

Note that the existence of an (approximate) simulation re-
lation implies the existence of an interface, i.e., for all &-

u(t) M |y()

Fig. 1: Interconnection model/observer, M||O(M)

approximately simulated and deterministic transition systems
there exists at least one interface function.

In practice Definition 3 entails that the dynamics corre-
sponding to the feedback-composed models X, X # X} do not
differ more than €. Hence, a controller composed on X, can
be refined to X, via the interface .#, without affecting its
closed-loop accuracy more than €.

Let us define a specific class of interfaces denoted as
sensor-based interfaces, which are defined exclusively based
on sensor information from X,, namely %, : @, x Z, X
g(Zp) — o), where g is the sensor function. In the particular
instance of (1), the sensor function is g(x(7)) := Cx(z). These
structures are of interest to us, as they define the set of
interfaces that can be practically implemented for controller
refinement on partially observable systems.

ITI. OBSERVER-BASED CORRECT-BY-DESIGN
CONTROLLER SYNTHESIS

In this section we propose a new design methodology
for output-based controller refinement. We first design an
observer that extends the sensors output with state estimates,
see Fig. 1. Then as in Fig. 2 we define a linear, sensor-based
interface function between Mc (the state-based, correct-by-
design controlled model) and the model/observer intercon-
nection from Fig. 1.

A. Observer-based design

Consider a Luenberger observer denoted as O:
£(e+1) = A%(t) + Bu(t) + L(y(t) = 9(1)) 3)
I(t) = Cx(1),

with gain matrix L such that A — LC is stable if (A,C)
is detectable [6]. The observer is initialised as £(0), and
uses the outputs from M to estimate its internal state. The
composition of M with its observer O(M) is denoted as
M||O(M) and portrayed in Fig. 1.

Denote the sensor-based interface as

fg(ﬁﬁzvﬁ) :IZ+K()E_XA)3 “4)

where ii is the action selected by M (this role is played by
ity in (2)). For this linear interface we demand that matrix
A — BK is stable. Note that the interface is sensor-based (as
defined in Section II), since the state estimate £ of x can be
obtained from the sensor function of M||O(M), thus g(x,£) =
X.

The overall controlled model Mc x 7, (M||O(M)), de-
noted as Mg, is the result of interfacing the two structures
discussed above, as depicted in Fig. 2. This has dynamics
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evolving over the continuous state space R¥ as:

X(t+1) =Ax(r)+Biy(x(r))

Re+1) =(A—LC)i(r) + Bu(r) + LCx(r) 5
X(i+1) = Ax(t)+ Bu(t) ©)
u(t) = F g (x(1)), (1), £(2))

in combination with the discrete transitions g(t + 1) =
8(¥(1), (1)) from (2).

Remark 4: As depicted in Fig. 2, we have designed an
output-based controller by combining a given state-based
controller with an observer. However, unlike classical results
where a state-based controller is employed over estimated
states from an observer, in this work we have interfaced the
state-based controlled model M¢ with the model/observer
interconnection M||O(M), as in Fig. 1. This allows one to
reason explicitly about the accuracy of the overall output-
controlled system, based on the accuracy of the sensor-based
interface function. In special cases the proposed architecture

can reduce to the classical approach. O
ﬁq()f(l)) M Z(f) g;ait:-?;)sed controlled model Mc,

C

(¢
‘ T o0 %,
£(1)
u(t) M||o(M)

=1

—

=

)|

Sensor-based interface, as in (4) ‘

|

Model M of the system intercon-
nected with a Luenberger observer
O(M), as in (3)

Fig. 2: Observer-based correct-by-design controller synthe-
sis. The overall interconnection is denoted as Mc.

B. Quantification of the overall accuracy

The controlled model Mc, with traces %(¢) as in (2)-(5),
maps to the specification space as Z(r) = Hx(t). Let a metric
over this space R? be defined as | - ||2. Of interest is the
distance between the system output z(f) as in (1) and Z(¢),
when the system is controlled via the interconnection of
Fig. 2. From the definition of the sensor-based interface, the
following result holds.

Theorem 5: The function in (4) is a sensor-based interface
between M¢ and M||O(M) with precision &, where

€ :=/trace ([H H]Q[H H]T) (6)
. [£0)-%(0)] [£0)—x(0)17

with {x(omgo;} [x&)iﬂe«»} —0=0 )

(AP o[ R K] —o <. ®)

O

Thus the distance between Z(¢) and z(z) is bounded by € if
there exists a Q for which (7) and (8) are satisfied. A stability
assumption on matrices A —BK and A — LC guarantees this
[6]. Note that since both ¥(0) and £(0) are included in the
design space, it would not make much sense to select X(0) #
£(0) for the initialisation. Hence, the accuracy depends on the
initial states of the models only via x(0) —£(0). In case the
initial state x(0) is only known up to a set Xy, the guarantee
in Theorem 5 is required to hold over all x(0) € X,.

IV. STOCHASTIC DISTURBANCES: ROBUSTNESS

We extend the previous results supposing that the
physical system M is disturbed by stochastic noise. More
precisely, state transitions are affected by additive noise
wi(r) with realisations w;(r) ~ wi(¢) taking values in
R, whereas sensor measurements are disturbed by noise
sources W(t), with realisations wo(f) ~ wa(t) in R%.
(We denote random variables x as bold faced, in contrast
to their realisations x ~ x.) Each of the noise sources is
supposed to be independent and identically distributed over
time, with zero mean and unit variance. This assumption
holds for a typical Gaussian process noise with distribution
wi(t) ~ A(0,14, xa, ). The resulting stochastic model is

x(t+1) =Ax(t)+Bu(t)+Fw(t)
M: < y(1) =Cx(t) + Ewa(1) 9)
z(1) = Hx(1),

where the matrices F,E, are again real-valued matrices of
appropriate dimensions. The model is initialised as x(0) ~
N (x0,P)-

With reference to the previous section, the control design
strategy is as follows:

A. Let M be a noiseless version of M in (9), and Mc be the
composition of M with its correct-by-design controller;

B. Design a state observer O(M) for M;

C. Design a linear interface function .%, stabilising A — BK;

D. Implement the control structure in Fig. 2, and denote the
resulting controlled stochastic model as Mc := Mc¢ X 7,
(M[|O(M)).

The initial conditions for M¢, namely %(0),£(0), are selected

as part of the control design problem: as discussed earlier,

we pick ¥(0) = £(0). Further, let ¢(0) be any discrete state

such that (£(0),4(0)) € Uy, ({40} * Xo(q)).

In order to analyse the behaviour of the controlled stochas-
tic model M¢ with respect to a metric of interest, let us
embed Mc into the formalism of deterministic transition
systems (cf. Definition 1) as in [14]. The model can be
represented as a symbolic transition system X*(Mc), with
states encompassing random variables x¢(¢) representing the
distribution of xc(t) ~ xc(t), with xc(f) € R as in (5).
Consider the metric output space %, to which the states
are mapped as zc(t) = Hxc(t). Further consider the metric
d*(z; — zp) = E(||z1 — z2||2), with || - ||2 the Euclidean norm.
Denote the class of all transition systems with the metric
output space & as J*.

Both the specification model Xy, and the correct-by-design
controlled model M¢ can be trivially embedded in J7*
via singleton distributions: we denote the corresponding
symbolic transition systems as X, and X£* (Mc), respectively.
We obtain:

Theorem 6: Transition system Y*(Mc¢) is approximately
bisimulated by X*(Mc) with precision € obtained as

e:= \Jurace([n w)Q[n ") (10)
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. 0 0 00
with [o (Xo—f(o))(xo—f(o))T] +lon]-2=0 an
[A—BK LC ]Q[A—BK LC }TJF [ LEETLT  —LEETLT
0 A-LC 0 A-LC —LEETLT FFT+LEETLT
—0=0.0 (12)

As a consequence! of Theorem 6 it follows that if

¥(Mc) 2 Iy, then Z*(Mc) =%, I}, and if Z*(Mc) ~z
Ly, then X* (Mc¢) ~% X, Finally note that (12) is known to
admit positive matrices Q for which ¢ is finite if A— BK and
A — LC are both stable matrices [6].

A. Selection of the matrix gains L and K

Thus far we have assumed that L and K are chosen so
that they stabilise A —LC and A — BK. It is known that,
as long as the model is detectable and stabilisable, these
gains exist [6]. A constructive approach to obtain L,K in a
semi-optimal manner follows from Theorem 6. Omitting the
initialisation, the computation of the precision level defined
in (10) together with (12) for given L and K is equivalent

E||Az(t)|3 for
ax(e 1) = [ a2 ) [0] 0
Az(t) = Hx(t), 1

for given white noise sequences wj(¢),wz(¢). As such the
optimisation problem leading to L and K has been recast
in the familiar LQG stochastic control problem [7] for
which it is known that the optimal observer gain L and the
optimal state-feedback gain K can be computed separately.
The optimal observer gain with respect to the LQG problem
is the Kalman filter gain, L* = (APCT) (CPCT—i-EET)_1 s.t.
P = APAT — (APCT)(CPCT 4+ EET)"1(CPAT) + FFT. On the
other hand, the optimal state-feedback gain K solves a
quadratic control problem, that is K* = (BTSB)~'BTSA s.t.
S=ATSA—ATSB(BTSB)"'BTSA+HTH. In the next case study

to € =1lim;_

! Note that we have trivially assumed that this (bi-)simulation relation be-
tween the transition system Z(Mc) and Xy is maintained when embedding
them in .7* via Dirac distributions [14].

this will be computed via the generalised eigenproblem
algorithm [17] implemented in MATLAB. Note that since
there is no trade-off between the state error and the mag-
nitude of the control gain, the state feedback gain will
push the control to deadbeat control [6]: this behaviour
can be easily remedied by extending the observation space
H with Dy, such that the extended performance signal
becomes z,(t) = [27 () zZ(t)]T, with z,(t) = DyKx(t), or
equivalently with z,(¢) = Dy (u(r) —i(z)).

V. CASE STUDY IN SMART BUILDINGS

We are interested in the advanced energy management of
an office building. As a motivation for output-based con-
trollers, consider a building that is divided in two connected
zones, each with a radiator regulating the heat in each zone
via the controlled boiler water temperature [18]. Due to a
sensor fault in the second zone, only the temperature in
the first zone and the ambient (outside) temperatures are
measured. The temperature fluctuations in the two zones and
the ambient temperature are modelled via M as [18]

x(t+1) = Ex(t) +Tu(t) + Fwi (t)
(1) =[50 9]x(0) +Ewa(),  2(t)

with stable dynamics
= |:0.8725 0.0625 0.0375} ,

0.0625 0.8775 0.0250
0 0 0.9900

(15)
[590]x(), 6)

0.0650 0
I'= [ 0 0.0600},
0 0

where x;,(f) are the temperatures in zone 1 and 2, re-
spectively; x3(¢) is the deviation of the ambient temperature
from its mean; and u(t) € R? is the control input. Note that
since E is stable, it follows that (E,I') is stabilisable and
O [0 0 l]) is detectable. The state variables are initiated as
x(0) =[16 14 —5]T. The constants in matrix Z are selected
to represent the heat exchange rate between the individual
zones and the heat loss rate of each zone to the ambient;
those in I" represent the rate of heat supplied by the radiators
to the two zones, respectively. The disturbances are modelled
as independent and identically distributed standard normal

21— Mc .
MC e Aaamaass e
- 21.25 - N
20 Feedforward T X1
— 13 X2
ﬁ x N 21 > X3
E %) = -5t ! ! ! ! ! L )
a ‘g 2075 L 0 30 60 90 120 150 180 210
5 E Time
< b}
a € 205 1
—~ —1r
| | | J =
20.5 20.75 21 21.25 g =3
141é 7 18 19 20 a1 Temperature | Sk
0 30 60 90 120 150 180 21

Temperature 1

(a) Simulation outcomes for controlled models: M denotes state-based control of
the noiseless model realisation ([5]); Mc is the output-based control of the Gaussian
process model (15); Feedforward denotes feedforward design using Mc.

Time

(b) (Upper plot) Error in state estimation
for Mc; (Lower plot) Deviation from
mean ambient temperature.

Fig. 3: Case study in smart buildings
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TABLE I: Error bounds — Accuracy of the controlled systems
based on the interface. An initialisation is given by &, for
the perfect initialisation, or for t — o the system the accu-
racy is given as €. The estimates éxo,loo and €. are com-
puted as \/Epwlz)—20)F and \[E,p, 0 l0-20)3 respec-

tively, with the empirical mean computed as E;. szﬁz,{:,.x(k).

l [ & & | Egaoo & ]
Mc X7y M | 39618 0.4890 | 1.9961 0.4845
Mc 2.1194  0.1284 | 0.5184  0.1240
distributions wy »(t), rescaled by
05 —.02 0
F= [7.02 05 0} and E = [ O].
N o [0 05

The upper block in F represents random heat transfers,
caused for example by people moving within and between
zones, whereas the lower, right-diagonal element represents
the stochastic nature of the fluctuation in the outside temper-
ature. The values in E define the standard deviation of the
additive disturbance on the temperature sensors in the first
zone and in the ambient. y(¢) is the stochastic signal that can
be measured, whereas the specification is defined over z(7)
(zone temperatures).

The objective is to design an output-based, correct-by-
design controller, such that the temperature trajectories z(¢) =
(x1(f),x2(¢)) eventually both take values in the interval
[20.5, 21]%, and remain within this interval thereafter. For-
mally this LTL property is expressed as “eventually always”.
The controller is initialised with £(0) = [16 16 0]": this
deviation from x(0) is selected to model a realistic situation
occurring after a sensor failure in zone 2 is discovered.

The dynamics of the noiseless model M are solely gov-
erned over the first two states, where the correct-by-design
controller for the given specification is designed. We synthe-
sise Mc by PESSOA [5], where the discrete-time dynamics
are further discretised over state and action spaces: we have
selected a state quantisation of .05 over the range [15,25}2,
and an input quantisation of .05 over [10,30]>. Fig. 3a
displays (continuous blue line) the state trajectory of the
obtained correct-by-design system Mg: it can be observed
that the controller regulates the model to eventually remain
within the target region.

Next, we are interested in extending the designed con-
troller to the concrete (noisy) model of the system based
on noisy output measurements of the first zone and of the
ambient. As a first attempt we implement the controller
based on a feedforward architecture, where .% 7 :=ii(t). This
is what we would obtain applying the results in [14]. It
can be observed in Fig. 3a (circled red realisation) that a
trajectory (x;(¢),x2(¢)) in Mc x 7, M deviates substantially
from the desired temperature range. In Table I the accuracy
of this feedforward interface is given. As a second design,
we implement the structure in Fig. 2, where the gains K, L, as
detailed in Subsection IV-A, are selected as the optimal LQ
and Kalman gains, respectively. The resulting design values
are

0.5201 0.0333
L= [

5559 0_0262] and K — [13:4231 09615 057697
0005 08106 [Poi7 Va0 0aien]

A trajectory (crossed grey line in Fig. 3a) realised from
Mc = Mc¢ x 7, (M||O(M)) and based on the previous noise
realisation ends up close to the desired temperature range.
This substantial improvement with respect to the feedforward
interface is also quantified in Table I. Fig. 3b displays the
error of the state estimation x(¢) —£(¢) of Mc (upper plot):
it can be observed that the estimated state converges to the
exact state. The lower plot in Fig. 3b provides a simulation
of the deviation of the ambient temperature from its mean.

VI. CONCLUSIONS AND FUTURE WORK

In this work we have shown that correct-by-design con-
trollers can be extended to work on stochastic partially-
observable LTI systems, as long as the LTI system is de-
tectable and stabilisable. Future work will concern extensions
to non-linear dynamics and the development of tailored
notions of probabilistic approximations.
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