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ABSTRACT
This work studies Bellman integral equations arising in infinite-
horizon probabilistic verification problems for discrete time ho-
mogeneous Markov processes over general state spaces. The
problems of interest are expressed via specifications such as prob-
abilistic reachability, invariance, reach-avoid and mean exit time.
The contribution shows that the uniqueness of the solutions of
the corresponding Bellman equations depends on the presence
of absorbing sets within the state space. Furthermore, the work
puts forward methods to modify the integral equations to obtain
unique solutions for them, techniques to compute such solutions
with explicit bounds on the approximation error, and conditions
to characterize the possible presence of absorbing sets over the
state space.

Keywords
Markov processes, probabilistic properties, Bellman equations,
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1. INTRODUCTION
Bellman recursions and related Bellman fixpoint equations

play a prominent role in various problems in optimal control,
verification, operations research and economics.

In the context of probabilistic verification, Bellman recursions
are used to express properties formulated in PCTL, a modal logic
that accommodates for probabilistic requirements [3] that can
be efficiently computed via model checkers [7, 9]. Verification
of PCTL specifications has been widely studied over stochastic
processes with countable spaces, but only in part addressed for
processes on continuous (uncountable) spaces [1]. In the latter
case, and with regards to finite time horizon specifications, [1]
has provided explicit bounds on the error of computation via
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Bellman recursions using a state space discretization approach.
On the other hand, such results are missing for the important
instance of infinite time horizon properties. In this challenging
case, specifications are shown to be characterized in two possi-
ble ways: either as limits of Bellman recursions, or as solution of
Bellman integral equations. From the second perspective, [11]
has provided necessary conditions for Bellman equation to have
a unique solution. However, due to the conservatism of these
conditions, a large class of processes is left uncovered.

The focus of this paper is on understanding when the solution
of a given Bellman equation is unique, and on how to compute
it with explicit convergence rates or with explicit bounds on the
approximation error. The contribution shows that the unique-
ness of the solution of the considered class of integral equations
depends on the presence of absorbing sets within the state space.
In particular, the absence of absorbing sets allows us not only
to establish uniqueness, but also to put forward techniques to
compute these solutions. On the other hand, in the presence
of absorbing sets this work proposes explicit modifications of
the Bellman equations, which allow for unique solutions and for
approximations methods with explicit error bounds and conver-
gence rates. To the best of authors’ knowledge, there exist no
general methods to compute infinite time horizon probabilistic
properties with explicit bounds on the error. Hence, the goal of
the paper is to develop such methods, while leaving computa-
tional improvements and scalability issues to later work.

Given the central role played by absorbing sets for this class of
problems, this paper also investigates in what instances or under
what conditions it is possible to ensure the absence of such sets,
or conversely to either characterize them or to approximately
compute them.

The contribution is structured as follows. Section 2 intro-
duces the notations and explains the problem under investiga-
tion. As reference properties, the contribution looks at proba-
bilistic reachability, invariance, reach-avoid and mean exit time
(see Section 2.3). Section 2.2 introduces a case study, employed
to clarify and give examples for the discussed notions and pre-
sented results. Section 3 deals with uniqueness issues, regular-
izations, and computations of a number of different properties.
Furthermore, Section 4 studies the characterization of absorbing
sets.

2. PRELIMINARIES

2.1 Notations and basic concepts
We consider a homogeneous Markov process X in discrete

time. The state space X is a Borel space and its Borel σ-algebra



is denoted as B(X )[6]. The process X is characterized by its
transition kernel T (A|x), which is such that x 7→ T (A|x) is a
measurable function for any A ∈ B(X ), and such that T (·|x) is
a probability measure on (X ,B(X )), for all x ∈ X .

The sample space is a space of trajectories Ω =X N0 endowed
with a product σ-algebra F , where N0 = N ∪ {0}. Xk is the
value of X at the time k. With Px we denote the probability
measure induced by T , such that Px{X0 = x} = 1, and with Ex
the corresponding expectation.

We say that a random variable τ is a stopping time if for all
n≥ 0 it holds that {τ≤ n} ∈ Fn. For a set B ∈B(X ) we define
the first hitting time τB = inf{n ≥ 0 : Xn ∈ B} and the first exit
time ςB = τBc , both of which are clearly stopping times.

The space B(X ) of all measurable functions f : X → R
that are bounded on X is a Banach space with a norm ‖ f ‖ =
sup
x∈X
| f (x)| [5]. For any B ∈ B(X ) its indicator function 1B(x)

is in B(X ) with ‖1B‖= 1.
If J is an operator acting on B(X ), then we define the norm

of J as follows:

‖J ‖= sup
f ∈B(X )

‖J f ‖
‖ f ‖ .

If for an operator J it holds that ‖J f1 − J f2‖ ≤ α‖ f1 − f2‖
for all f1, f2 ∈ B(X ) and some α < 1, then we say that J is
a contraction (with rate α). In addition, with C (B) we denote
the class of real-valued functions defined on B(X ) that are con-
tinuous on B ∈ B(X ) and we put L(X ) to be the space of all
measurable functions f :X → (−∞,∞].

Since X is a subset of a Polish space, it is metrizable. We
select a generic metric and denote it by ρ. Finally, for any subset
A ⊆ X we define by A the closure of A, by A◦ the interior of A,
and by ∂ A the boundary of A. For any a, b ∈ R we put a ∧ b =
min{a, b}.

In this work we are focused on transition kernels T that admit
a Lipschitz continuous density.

ASSUMPTION 1. Assume that there exists a σ-finite Borel mea-
sure µ on (X ,B(X )) such that µ(B) < ∞ for any compact set
B. In addition, let there exist a Lipschitz continuous function
ξ :X ×X → R≥0 for any A∈B(X ), satisfying

T (A|x) =
∫

A

ξ(x , y)µ(d y). (2.1)

Function ξ is the density of the transition kernel T with respect
to the measure µ. By β ∈ (0,∞) we denote the Lipschitz con-
stant of ξ. Note that a large class of processes admits Assump-
tion 1, for instance Markov Chains [10] and dtSHS [1].

REMARK 1 (ON ASSUMPTION 1). By [6, Example C.6, p. 176]
Assumption 1 is sufficient for X to admit the strong Feller property
[6, Appendix C, p. 174] hence the results of [14] are applicable.

2.2 Case study
In order to illustrate the results of this work, we use a Markov

process X as a benchmark to do verification of its infinite-horizon
properties. The state space of X is hybrid, namely given by

X =
4
⋃

i=1
{li} × [0, 1], see Figure 1. L = {li}4i=1 is a set of discrete

locations, each of which is associated to the continuous interval
[0, 1]. For any x ∈ X we write x = (lx , cx), where lx ∈ L and

cx ∈ [0,1]. The metric on X is given as

ρ(lx , cx , l y , cy) =

¨

1, if lx 6= l y ;
|cx − cy |, if lx = l y .

Such a metric endowsX with the Borelσ-algebraB(X ). Clearly,

any A ∈ B(X ) admits a unique representation A =
4
⋃

i=1
{li} ×

Ai where Ai ∈ B([0,1]) for 1 ≤ i ≤ 4. The measure µ on

(X ,B(X )) is such that µ(A) =
4
∑

i=1
λ(Ai), where λ is the Lebesgue

measure over [0,1].
In the following, the probability density function of the nor-

mal distribution is denoted by

fN (x , y,σ) =
1p

2πσ
e−

(y−x)2

2σ2 ,

and we also define Φ(x , y,σ) =
y
∫

0

fN (x , s,σ) ds.

At each time step the process X moves according to the fol-
lowing rule: first, it selects a discrete location according to a
discrete distribution that depends on the current state; then, it
resets over the continuous domain [0,1] according to a contin-
uous probabilistic law that depends also on the new location.
These semantics can be precisely characterized by the transition
kernel T as:

ξ(lx , cx , l y , cy) =
4
∑

i, j=1

δi j(lx , l y)pi j(cx)ξi j(cx , cy).

Here δi j(lx , l y) = 1 only if lx = i, l y = j, and zero otherwise.
The functions pi j and ξi j are location-dependent and different
from zero only if (see Figure 1)

(i, j) ∈ {(1, 1), (2,3), (2,4), (3,3), (3,4), (4,2), (4,4)}.
The quantity p11 ≡ 1, since from location l1 jumps to other loca-
tions are not allowed. The corresponding continuous density is

a truncated normal with ξ11(cx , cy) =
fN (cx ,cy ,0.3)

Φ(cx ,1,0.3)
.

From location l2 discrete jumps are allowed to any other, ex-
cept l3. The discrete jump distribution is given by functions

p21(cx) =
c2
x
2

, p24(cx) =
cx
2

and p22(cx) = 1 − 1
2
(cx + c2

x). The
continuous reset distribution over the new locations is simply
uniform: ξ21 = ξ24 ≡ 1, and is truncated normal if the location

does not change: ξ22(cx , cy) =
fN (cx ,cy ,0.4)

Φ(cx ,1,0.4)
.

For the last two locations we have p33(cx) = c2
x , p44(cx) = cx

and p34(cx) = 1− c2
x , p42(cx) = 1− cx . Finally,

ξ33(cx , cy) = ξ44(cx , cy) =
fN (cx , cy , 0.5)

Φ(cx , 1, 0.5)

and

ξ34(cx , cy) = ξ42(cx , cy)≡ 1.

2.3 Specifications and related operators
This work is focused on operators and corresponding fixpoint

equations arising in the theory of discrete-time Markov processes.
As in [4] we are especially interested in the study of properties
related to the first exit time from some set A ∈ B(X ). Most of
them can be expressed through the distribution of ςA.

Denote pn(x; A) = Px{ςA = n} and p(x; A) = Px{ςA = ∞}.
The reachability value function is the cumulative distribution
function for ςA and is given by vn(x; Ac) = Px{ςA ≤ n}.
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Figure 1: Case study: gray nodes determine the safe set.Figure 1: Case study: gray nodes denote the safe set.

The invariance value function is the tail probability for ςA, i.e.
un(x; A) = Px{ςA > n} = 1− vn(x; Ac). It is worth mentioning
that for the infinite-horizon invariance u(x; A) := lim

n→∞un(x; A) =

p(x; A) and clearly, u(x; A) = 1− v(x; Ac).
Besides the distribution of ςA, one important characteristic is

its mean t(x; A) = Ex[ςA]: we will show how the properties of
this function depend on the invariance value function u(x; A).

Finally, we consider the reach-avoid value function denoted
as wn(x; A, B) = Px{τB < ςA ∧ n} for any A, B ∈ B(X ), n ≥ 0,
and the infinite-horizon version w(x; A, B) = Px{τB < ςA∧∞}=
lim
n→∞wn(x; A, B)[13].

To compute the value of these functions an operator approach
is used. Two basic operators, namely the linear transitionP and
the invariance IA, are defined as follows:

P f (x) = Ex[ f (X1)] =

∫

X

f (y)T (d y|x).

IA f (x) = 1A(x)P f (x).

Clearly, it holds that ‖P ‖ = 1 and that in general ‖IA‖ ≤ 1. By
Bellman equation we refer to an equation of the form

f (x) = g(x) +IA f (x), (2.2)

with A ∈ B(X ) and g ∈ B(X ). The choice of g determines the
related problem of probabilistic verification, namely

f (x) = IA f (x) (2.3)

for the invariance problem and

f (x) = 1B(x) +IA\B f (x) (2.4)

for the reach-avoid one. Let us introduce the shorthand

RA,B f (x) := 1B(x) +IA\B f (x).

A solution for equations (2.3) or (2.4) always exists in B(X )
and is given by the value functions u(x; A) and w(x; A, B) re-
spectively, which are constructed as follows:

¨

un+1(x; A) = IAun(x; A)
u0(x; A) = 1A(x);

and
¨

wn+1(x; A, B) =RA,Bwn(x; A, B)
w0(x; A, B) = 1B(x),

with u(x; A) = lim
n→∞un(x; A) and w(x; A, B) = lim

n→∞wn(x; A, B)

pointwise and monotonically [11, 14].
For the mean exit time we have g(x) = 1A(x), thus the Bell-

man equation is given by

f (x) = 1A(x) +IA f (x) (2.5)

as in [10], and the solution exists in L(X ) but may not exist in
B(X ). Such a solution is given by the value function

t(x; A) =
∞
∑

n=1

npn(x; A) + p(x; A) ·∞ (2.6)

where p(x; A)·∞=∞ if p(x; A)> 0, and is equal to 0 otherwise.
Finally, we introduce the operatorHA defined for any function

f ∈ B(X ) and set A∈B(X ) by

HA f (x) =P 1A(x) f (x),

which is to be used throughout the work.

3. UNIQUE SOLUTIONS OF
BELLMAN EQUATIONS

3.1 Simple and absorbing sets
The Bellman equation in (2.2) is a linear equation, so when-

ever it is solved on B(X ) the uniqueness of its solution holds
if and only if the solution is unique for its homogeneous ver-
sion (2.3), which happens to be the equation for the invariance
value function. Due to this reason we first study the properties
of equation (2.3).

PROPOSITION 1. For any n≥ 0 it holds that un(x; A) ∈ C (A).
PROOF. The proof immediately follows from Remark 1.

LEMMA 1. Equation (2.3) has a unique solution if and only if
u(x; A) = 0 for all x ∈ X .

PROOF. Equation (2.3) is linear and homogeneous, so if it has
a unique solution then it is the zero solution. The other direction
was proved in [11, Proposition 9].

Based on the results above, we have to verify the triviality of
the invariance problem: namely, if its value function is equal
to zero everywhere which is clearly equivalent to being equal
to zero just on A. This instance can be characterized by the
presence of absorbing sets, which are defined in the following.

DEFINITION 1 (ABSORBING AND SIMPLE SETS). A non-empty set
A′ ∈B(X ) is called absorbing if for all x ∈ A′ it holds that

T (A′|x) = 1.

Given a set A ∈ B(X ), the set A′ is the largest absorbing subset
of A if for any absorbing set A′′ ⊆ A it holds that A′′ ⊆ A′. A set
A∈B(X ) is called simple if it does not contain any absorbing set.

3.2 Simplicity and uniqueness of solution of
Bellman equations

LEMMA 2. [14, Theorem 3] Let A be a compact set, then it is
simple if and only if u(x; A) = 0 for all x ∈ X .

If A is compact, then it is simple if and only if equation (2.3)
has a unique (zero) solution. This fact leads to the following
questions:



1. how to verify if a given compact set A is simple?

2. how to solve equation (2.3) if the compact set A is not
simple?

The rest of this Section provides an answer to these questions.
Given a set A∈B(X ) define for any n≥ 0

An = {x ∈ A : un(x; A) = 1}, A0 = A.

LEMMA 3. [14, Lemma 1] For all n≥ 0 it holds that An+1 ⊆ An
and

An+1 = {x : T (An|x) = 1}. (3.1)

Since An+1 ⊆ An is a non-increasing sequence of sets, the limit

A∞ :=
∞
⋂

n=0
An always exists, though it may be empty. Moreover,

by [14, Theorem 3] if A is not simple, then A∞ is its largest
absorbing subset.

REMARK 2. The sequence An can be effectively used to verify
the simplicity of a set A as well as to overapproximate its largest
absorbing subset.

Let us introduce the quantity

m(A) = inf{m≥ 0 : sup
x∈X

um(x , A)< 1}

and α(A) = sup
x∈X

um(A)(x , A).

LEMMA 4. A compact set A is simple if and only if m(A)<∞.

PROOF. If m(A)<∞, then by [14, Theorem 2] the solution of
the invariance problem is trivial: u(x; A) = 0 for all x ∈ X . Thus
A is simple. Let us suppose now that A is simple but m(A) =∞.
Consider a function un(x; A), n ≥ 0. Since by Proposition 1 it is
a continuous function on a compact set A with sup

x∈X
un(x , A) = 1,

it holds that An is a non-empty compact set. Thus, A∞ is also
non-empty, which contradicts the simplicity of A.

THEOREM 1. A compact set A is simple if and only if I m
A is a

contraction for some m > 0. In this case for any g ∈ B(X )
Equation (2.2) admits a solution f (x) ∈ B(X ), which is unique
in B(X ) and given by f (x) = lim

n→∞ fn(x) with any f0 ∈ B(X ) and

such that

fn+1(x) = J m(A)+1 fn(x).

Here J is given as J h(x) = g(x) + IAh(x) for any h ∈ B(X ).
Moreover, the following bound holds for all n≥ 0

‖ f − fn‖ ≤
αn(A)

1−α(A)‖J
m(A)+1 f0 − f0‖.

PROOF. If I m
A is a contraction, then the solution of (2.3) is

unique, hence A is simple. On the other hand, if A is simple then
m(A)<∞ and

I m(A)+1
A f (x)≤ I m(A)

A ‖ f ‖1A(x)≤ α(A)‖ f ‖,
which proves that I m(A)+1

A is contractive with rate α(A). This fact
implies that for any g ∈B(X ) the operatorJ m(A)+1 is a contrac-
tion on B(X ) with rate α(A), and the rest of the proof immedi-
ately follows from the Contraction Mapping Theorem [8].

REMARK 3. The finite horizon value function fn can be com-
puted with explicit bounds on the error, for example with the space
discretization algorithm in [1].
The paper [11] showed a special instance of this theorem, namely
that m(A) = 1 implies contractivity and uniqueness.

Below we also need the following corollary.

COROLLARY 1. If A is compact and simple then H m(A)+1
A is a

contraction on B(X ).
PROOF. For all x ∈ A it holds that (H n

A 1)(x) = un(x; A) so
sup
x∈A
(H m(A)

A 1)(x) = α(A)< 1. Now, for an arbitrary f ∈ B(X ):







H m(A)+1
A f








≤
∫

A








H m(A)
A f (x)








ξ(x , y)µ(d y)

≤
∫

A

α(A)‖ f ‖ξ(x , y)µ(d y)≤ α(A)‖ f ‖.

3.3 Modified Bellman equations over sets that
are not simple

We employ Theorem 1 to provide an answer to the second
question above: how to solve (2.3) if the compact set A is not
simple. We put forward a modification of the original Bell-
man equation that has a unique solution given by the function
u(x; A) = Px{ςA =∞}.

We start by discussing some additional facts about simplicity
and absorbance.

LEMMA 5. Let A and A′ be respectively simple and absorbing
sets, then for any C ∈ B(X ) such that µ(C) = 0 it holds that
A∪ C is simple and A′ \ C is absorbing. In particular, µ(A′)> 0.

PROOF. Consider an arbitrary set C ∈B(X ) of zero measure.
If A′ is absorbing then for any x ∈ A′ \ C it holds that

T (A′\C |x) =
∫

A′\C

ξ(x , y)µ(d y) =

∫

A′

ξ(x , y)µ(d y) = T (A′|x) = 1,

so the absorbance of A′\C is proved. Now let the set A be simple.
Suppose that A∪ C is not simple, so there is an absorbing set
A′ ⊆ A∪C . This means that A′ \C ⊆ A is an absorbing set, which
contradicts the simplicity of A.

LEMMA 6. If µ(A)<∞ then u(x; A) is Lipschitz on A.

PROOF. Recall that u(x; A) is a solution of (2.3). Now, for any
x ′, x ′′ ∈ A we have

|u(x ′; A)− u(x ′′; A)| ≤
∫

A

|ξ(x ′, y)− ξ(x ′′, y)|µ(d y)

≤ βµ(A)ρ(x ′, x ′′).

Note that if A is compact and hence of finite measure, the
sequence of continuous functions un(x; A) converges pointwise
and monotonically to a continuous function u(x; A), thus by
Dini’s theorem [12] the convergence is uniform on A.

THEOREM 2 (MODIFIED BELLMAN EQUATION). Let A ∈ B(X )
be compact, A′ ⊂ A be the largest absorbing subset of A, and
µ(∂ A′) = 0. Then u(x; A) is the unique solution of the equation

u(x; A) = 1A(x) +IA\A′u(x; A). (3.2)



PROOF. Let us start from the original Bellman equation (2.3)
and raise trivial restrictions on its solution:

u(x; A) =

¨

1, if x ∈ A′,

0, if x ∈ Ac .

Using this information, we obtain from (2.3):

u(x; A) = 1A(x)T (A
′|x) + 1A(x)

∫

A\A′

u(y; A)ξ(x , y)µ(d y).

If x ∈ A′, then
∫

A\A′
u(y; A)ξ(x , y)µ(d y) = 0, hence

u(x; A) = 1A(x)T (A
′|x) + 1A\A′(x)

∫

A\A′

u(y; A)ξ(x , y)µ(d y),

or equivalently u(x; A) = 1A′(x) + IA\A′u(x; A). We are left to
show that (3.2) has a unique solution. First, A \ A′ is simple
and since µ(∂ A′) = 0 the set A∗ = A\ A′ is simple by Lemma
5. Moreover, it is a closed subset of a compact set A, so A∗ is
compact. By Theorem 1 there exists a finite m < ∞ such that
I m

A∗ is a contraction, so the same holds for I m
A\A′ . This implies

that (3.2) has a unique solution in B(X ).

REMARK 4. The condition µ(∂ A′) = 0 is used to avoid some de-
generate cases – for instance, when A′ is a Smith-Volterra-Cantor
set in R, which has a boundary of finite Lebesgue measure.
A computational note: since IA\A′ in (3.2) is a contraction on
B(X ), the invariance value function can be found by the iterative
procedure – with associated bounds – given in Theorem 1.

For the reach-avoid problem a similar result easily follows.

COROLLARY 2. Let A, B ∈ B(X ) be such that µ(A \ B) < ∞,
then w(x; A, B) ∈ Lip(A\B). If in addition A\B is compact and A′

is the largest absorbing subset of A\B and is such that µ(∂ A′) = 0,
then

w(x; A, B) = w(x; A∗, B) (3.3)

where A∗ = A\ (A′)◦.
3.4 Approximate solution of modified Bellman

equations
To derive the modified Bellman equations we have explicitly

assumed to have knowledge of the largest absorbing subset A′ of
a set A. Here we relax this assumption and employ only an over-
and under-approximation of the set A′: let us consider sets C , D,
such that C ⊆ A′ ⊆ D and so that D is open. Based on the proof
of Theorem 2 it is clear that for any set A it holds that

u(x; A) = 1A(x)T (A
′|x) + 1A(x)

∫

A\A′

u(y; A)ξ(x , y)µ(d y). (3.4)

Let us introduce an approximation ũ of u, as the solution of the
following integral equation:

ũ(x) = 1A(x)T (D|x) + 1A(x)

∫

A\D

ũ(y)ξ(x , y)µ(d y). (3.5)

Next we show that ‖ũ− u‖ ≤ Mµ(D \ C), for a finite constant
M , and then provide a method to calculate ũ with any desired
accuracy.

THEOREM 3. Let A be a compact set. The following bound holds:

‖ũ− u‖ ≤ ξ2(ξm+1
1 − 1)

(ξ1 − 1)(1−α)µ(D \ C), (3.6)

where m = m(A \ D),α = α(A \ D). Here ξ1,ξ2 are given by
ξ1 = sup{ξ(x , y)|x ∈ A \ C , y ∈ A \ D}, ξ2 = sup{ξ(x , y)|x ∈
A\ C , y ∈ D \ C}.

PROOF. Let us define a function h(x) = ũ(x)− u(x; A). Since
h(x) = 0,∀x ∈ Ac , let us focus on the case x ∈ A. From (3.4)
and (3.5) it follows that

h(x) = g(x) +HA\Dh(x), (3.7)

where g(x) =
∫

D\A′
(1− u(y; A))ξ(x , y)µ(d y).

From Corollary 1 we have that ‖H m+1
A\D f ‖ ≤ α‖ f ‖ for any

f ∈ B(X ). Now, (3.7) is equivalent to

h(x) =
m
∑

k=0

H k
A\D g(x) +H m+1

A\D h(x),

hence (1 − α)‖h(x)‖ ≤
m
∑

k=0
‖H k

A\D g(x)‖. Since ‖H k
A\D g(x)‖ ≤

ξk
1ξ2µ(D \ C), we obtain (3.6).

Having derived bounds on ‖ũ− u‖, we need a procedure to
calculate ũ(x) for all x ∈ A. To do this we define the following
sequence: ũ0(x) = 1A(x)T (D|x) and

ũn+1(x) = 1A(x)T (D|x) + 1A(x)HA\Dũn(x).

PROPOSITION 2. Given m= m(A\ D) and α= α(A\ D), for all
n> 0 the following bound holds:

‖ũ− ũn‖ ≤
m+ 2

1−α α
j

n
m+2

k

.

PROOF. Define a function ∆n(x) = ũn+1(x)− ũn(x), then

∆n(x) = 1A(x)HA\D∆n−1(x)

and∆0(x) = 1A(x)HA\D T (D|x). SinceH m+1
A\D is a contraction on

B(X ) we have that

‖∆k(m+2)(x)‖ ≤ αk

for all k ≥ 0. The desired inequality follows from

‖ũ(x)− ũn(x)‖ ≤
∞
∑

k=n

‖∆k(x)‖.

3.5 Probabilistic invariance: an example
Let us refer to the case study of Section 2.2 to elucidate the

application of the methods we have developed for the study of
the infinite-horizon probabilistic invariance. Let the invariant

set A =
3
⋃

i=1
{li} × [0, 1] – in Figure 1, this is labeled with gray

nodes. Let us start by finding the largest absorbing subset A′ of
A. To do it we calculate the sets An as suggested in Lemma 3:

A0 = A

A1 =
�{l1} × [0, 1]

�∪ �{l2} × {0}
�

A2 = A3 = {l1} × [0, 1],

which leads to conclude that A′ = A∞ = {l1} × [0, 1]. Let us
denote ui(cx) = u(li , cx ; A). It is clear that u4(cx) = 0 and



u1(cx) = 1, for any cx ∈ [0,1]. Let us now consider the other two
locations. If lx = l3 then T (A′|x) = 0 and T ({l2} × [0, 1]|x) = 0
so the modified Bellman equation (3.2) reduces to

u3(cx) =

1
∫

0

u3(cy)p33(cx)ξ33(cx , cy)λ(dcy)

=

1
∫

0

u3(cy)c
2
x

fN (cx , cy , 0.5)

Φ(cx , 1, 0.5)
λ(dcy),

which has a unique zero solution. Let us now focus on lx = l2,
where T (A′|x) = cx

2
, so we obtain

u2(cx) =
cx

2
+

1
∫

0

u2(cy)
�

1− 1

2
(cx + c2

x)
� fN (cx , cy , 0.4)

Φ(cx , 1, 0.4)
λ(dcy),

which is a Fredholm equation of the second kind, and has a
unique solution that can be computed by applying well-developed
numerical methods [2]. The overall results are summarized
in Figure 3.5, which displays the value functions ui(cx), cx ∈
[0, 1], i ∈ L.

3.6 Distribution and mean of first exit time
In the current section we focus on the mean value of the first

exit time ςA, for a compact set A. Recall that pn(x; A) = Px{ςA =
n} and p(x; A) = Px{ςA = ∞}. From this definition it is clear
that







p0(x; A) = 1Ac (x)
pn(x; A) = un−1(x; A)− un(x; A), n ∈ N
p(x; A) = u(x; A),

(3.8)

thus pn+1(x; A) = IApn(x; A), for all n ≥ 0. Since A is compact
and ξ ∈ Lip(X ), one can apply a space discretization procedure
[1] to compute an approximate value of pn, with an arbitrarily
small bound on the error.

The problem of the mean value for the exit time t(x; A) =
Ex
�

ςA
�

is slightly different from what we considered above,
since in general t ∈ L(X ) (rather than in B(X )). Recall that
from (2.6) and from the equality p(x; A) = u(x; A) we know
that t(x; A) =∞ if x ∈ A+, where

A+ := {x ∈ A : u(x; A)> 0}. (3.9)

We now show that if A is compact, then this set contains the only
points where t(x; A) takes an infinite value.

THEOREM 4. Let A be compact and A+ is defined by (3.9). Then

t(x; A) =







∞, for x ∈ A+

h(x), for x ∈ A\ A+

0, for x ∈ Ac ,
(3.10)

where h(x) is the unique solution of the following equation:

h(x) = 1A\A+(x) +IA\A+h(x). (3.11)

In particular, if A is simple then t(x; A) is bounded and the unique
solution of (2.5).

PROOF. We have already proved that t(x; A) =∞ for x ∈ A+

and t(x; A) = 0 for x ∈ Ac . We use this information to rewrite

(2.5) as:

t(x; A) = 1A(x)+1A(x)

 

∫

A\A+
t(y; A)ξ(x , y)µ(d y) + T (A+|x) ·∞

!

.

Note now that if x ∈ A\ A+, then T (A+|x) = 0. Indeed,

0= u(x; A) =

∫

A

u(y; A)ξ(x , y)µ(d y),

and since the integrand is non-negative, it is equal to 0 µ-a.e.
From this it follows that

t(x; A) = 1+

∫

A\A+

t(y; A)ξ(x , y)µ(d y),

for all x ∈ A\ A+. So

t(x; A) = 1A+(x) ·∞+ 1A\A+(x)h(x),

where h(x) = 1+HA\A+h(x) for all x ∈ A\ A+.
Let us prove now that A\A+ is compact and simple. First of all,

since A is compact, u(x; A) ∈ C (A) from Lemma 6. This means
that A+ is open in A and hence A \ A+ is compact. Next, for the
largest absorbing subset A′ ⊆ A it clearly holds that A′ ⊆ A+.

From Corollary 1 we conclude that H m is a contraction on
B(X ) with rate α = α(A \ A+), where m = m(A \ A+) + 1. This
leads to the uniqueness of h, which now can be found with any
bound on the error as in Theorem 1, so (3.10) is proved.

Finally, if the set A is simple, A+ = ;, so the last assertion of
the theorem immediately follows from (3.10).

3.7 Mean of first exit time: an example
We illustrate obtained results by providing an example, where

we characterize the value function t(x; A) for the Markov pro-

cess of the case study in Section 2.2 and the set A =
3
⋃

i=1
{li} ×

[0,1] as in Section 3.5.
From the solution of the infinite-horizon probabilistic invari-

ance problem, we can determine the set A+ =
⋃

i=1,2
{li} × [0, 1].

Thus A\ A+ = {l3} × [0,1]. From Theorem 4 we conclude that

t(x; A) =







∞, for lx ∈ {l1, l2}
h(x), for lx = l3
0, for lx = l4,

where h(x) is a unique solution of (3.11). Since we are only
interested in its values for lx = l3 we denote (similar as before)
t3(cx) := t(l3, cx) then t3(cx) is the unique solution of the fol-
lowing Fredholm equation of the second kind:

t3(cx) = 1+

1
∫

0

t3(cy)p33(cx)ξ33(cx , cy)λ(dcy)

=

1
∫

0

t3(cy)c
2
x

fN (cx , cy , 0.5)

Φ(cx , 1, 0.5)
λ(dcy).

The solution is computed according to [2], and represented in
Figure 3.7. Note that for the point x = (l3, 0) the value function
t(x; A) = 1. Indeed, for this point it holds that T (Ac |x) = 1,
hence starting from this point the process will leave the set A
almost surely in one step.
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Figure 2: Solution of the infinite-horizon probabilistic invariance problem discussed in Section 3.5.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

cx

u
1

(a) Location l1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

cx

u
2

(b) Location l2

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

cx

u
3

(c) Location l3

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

cx

u
4

(d) Location l4

Figure 1: Solution for the invariance problem.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

cx

∞

t1

(a) Location l1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

cx

∞

t2

(b) Location l2

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

3

cx

t3

(c) Location l3

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

3

cx

t4

(d) Location l4

Figure 2: Solution for the mean exit time problem.
Figure 3: Solution of the mean of first exit time problem discussed in Section 3.7.

4. COMPUTATION OF ABSORBING SETS

4.1 Characterization of absorbing sets
In the previous chapters we have emphasized the role that

absorbing sets play in the computation of the value function of
infinite-horizon specifications of Markov processes. This leads to
the need to characterize the largest absorbing set A′ of a given
compact set A, or alternatively to establish the simplicity of A.
These are in general difficult goals: this section focuses on ap-
proximation techniques to tackle this class of problems, and fo-
cuses on models that allow the verification of simplicity of A or
to find its largest absorbing subset A′.

A general procedure to characterize the largest absorbing set
is suggested in Lemma 3: it computes the sequence (An)n≥0.
This sequence is such that if Am = Am+1 for some m ≥ 0, then
A∞ = Am. Note that in this case either A∞ is empty – hence
A is simple – or non-empty, which leads to A′ = A∞. We have
explicitly applied this procedure in the example of Section 3.5,
which has resulted in an analytical characterization of the sets
An.

This general approach presents two issues. The first arises
when the sets An can be only over-approximated numerically –
also, due to over-approximation errors, it may be hard to check
the set equality Am = Am+1 for some m. Secondly, even if sets
An can be computed analytically, it may be hard to characterize
the limit A∞ = lim

n→∞An. To mitigate these limitations, we have

proposed to use an open neighborhood (over-approximation) of
An as a candidate for the set D in Theorem 3.

Absorbing sets can be found analytically when a Markov pro-
cess X is expressed by a recursive formula, such as

Xn+1 = F(Xn,ηn),

where ηn are iid random variables. This happens for instance in
the case of stochastic difference equations with linear drift and

diffusion terms, which admit the origin as a absorbing point.
However, experience has shown that for many such models ad-
mitting analytical characterization of an absorbing set, finding
a measure µ, such that T is absolutely continuous with respect
to µ and its density is Lipshitz continuous, is often problematic.
We do not further pursue this characterization in the present
contribution.

Finally, there are instances when both the verification of sim-
plicity of A and the computation of A′ up to admissible precision
are decidable procedures. The simplest one is represented by
Markov Chains but this case can be generalized to a larger class
of Markov processes. We focus on such processes in Section 4.2
– before, we give a characterization of absorbing sets that we
later use to find such procedures.

Let s(x) = {y ∈ X : ξ(x , y) > 0}, so clearly s(x) ∈ B(X ).
The following proposition gives a characterization of an absorb-
ing set in terms of sets s(x).

PROPOSITION 3. Let A′ ∈ B(X ), then A′ is absorbing if and
only if µ(s(x) \ A′) = 0 for all x ∈ A′.

PROOF. Notice that A′ is absorbing if and only if
∫

A′
ξ(x , y)µ(d y) =

1 for any x ∈ A′, and further that
∫

A∩sc (x)

ξ(x , y)µ(d y) = 0 for

any A ∈ B(X ). Thus
∫

A

ξ(x , y)µ(d y) =
∫

A∩s(x)

ξ(x , y)µ(d y) and

hence
∫

s(x)

ξ(x , y)µ(d y) = 1



for all x ∈ X . If x ∈ A′ then

0=

∫

s(x)

ξ(x , y)µ(d y)−
∫

A′

ξ(x , y)µ(d y)

=

∫

s(x)

ξ(x , y)µ(d y)−
∫

A′∩s(x)

ξ(x , y)µ(d y),

so
∫

s(x)\A′
ξ(x , y)µ(d y) = 0 and hence µ(s(x)\A′) = 0 since ξ≥ 0.

For the opposite direction, assuming that µ(s(x) \ A′) = 0 for
all x ∈ A′, we have:

∫

A′

ξ(x , y)µ(d y) =

∫

s(x)∩A′

ξ(x , y)µ(d y)

= 1−
∫

s(x)\A′

ξ(x , y)µ(d y) = 1,

then A′ is absorbing.

4.2 Densities with a hybrid structure
We describe a class of processes for which the characterization

of absorbing subsets is a solvable problem. We show how to
find the largest absorbing subset A′ of a given set A up to a set
of a measure zero, which is sufficient for the modified Bellman
equations introduced in Section 3 and thus allow applying the
developed theory to solve infinite-horizon problems.

Consider densities with a hybrid structure, namely made up
of a discrete part – similar to Markov Chains – and a continu-
ous part. More precisely, we suppose that there exists a disjoint
collection of sets (cells) Q= (qi)Ni=1 such that

1. qi is open, µ(qi)> 0 and µ(∂ qi) = 0 for all 1≤ i ≤ N ,

2. Q =X where Q =
N
⋃

i=1
qi ,

3. for any 1≤ i, j ≤ N

• either ξ(x , y)> 0 for all x ∈ qi and y ∈ q j (we write
then i→ j),

• or ξ(x , y) = 0 for all x ∈ qi and y ∈ q j .

Some comments on these assumptions are in order:

• the described structure is a generalization of a finite-state
Markov Chain, since for the finite state space X one can
select qi = x i and all assumptions are satisfied;

• another instance of this model is given by discrete-time
Stochastic Hybrid Systems [1], where Q can be derived
from the set of locations (modes) and each set qi cor-
responds to the associated continuous domain. The as-
sumptions above indicate that whenever there is a posi-
tive transition probability between locations l → l ′, then
the corresponding stochastic kernel has a full support. For
instance, for the process described in Section 2.2, we can
select qi = li × (0,1), for all 1≤ i ≤ 4;

• furthermore, these assumptions are satisfied for the case
when X = Rn and the support of ξ is made up of a finite
union of hypercubes in Rn × Rn aligned with the coordi-
nate axes.

Let us introduce an adjacency matrix Q of dimension N × N ,
with the entry on the i-th row and j-th column equal to 1 if
i → j and equal to 0 otherwise. Q plays a role in solving the
problem of verification of simplicity, as well as in finding the
largest absorbing subset of a given set. To formally describe both
procedures we first introduce the following concepts, denoting

• for x ∈ Q a discrete closure as dxe = { j : x ∈ q j} and for
A⊆X

dAe=
⋃

x∈A∩Q

dxe ;

• for x ∈Qc a discrete neighborhood as n(x) = { j : x ∈ q j};

• for A⊂X a discrete interior as

bAc= { j : µ(q j \ A) = 0}
and put

QA =
⋃

i∈bAc
qi; (4.1)

• for x ∈Q a discrete support as s(x) = { j : dxe → j} and for
A⊆X

s(A) =
⋃

x∈A∩Q

s(x);

• if B ⊆ X admits representation B =
⋃

i∈dBe
qi then we call it

a multicell.

For all x ∈ Q, the unique cell that point x belongs to is given
by qdxe, so dAe is the set of indexes of the cells that set A over-
laps with. n(x) denotes the set of indexes of the cells that the
boundary x ∈ Qc belongs to. A cell qi is a subset of A – with
the possible exception of a set of measure zero – if and only if
i ∈ bAc. Finally, given a point x ∈ Q, T (qi |x) > 0 if and only if
i ∈ s(x). Clearly, s(x) is not empty for any x ∈Q and n(x) is not
empty for any x ∈Qc . Also, s(x) depends only on dxe for x ∈Q.

EXAMPLE 1. Let us consider the process described in Section 2.2,
define qi = {li} × (0, 1), 1 ≤ i ≤ 4, and select point x = (l2, 1

2
).

For this point, dxe= {2} since x ∈ l2, and s(x) = {1, 2,4} since x
admits a non-zero probability to transition to locations l1, l2, and
l4. A second point y = (l1, 1) is such that y /∈Q and n(y) = q1.

Additionally, the set B =
3
⋃

i=1
qi =

3
⋃

i=1
{l1} × (0, 1) is a multicell.

Note that the invariant set A =
3
⋃

i=1
{l1} × [0, 1] = B, which is the

closure of the multicell B and which is not a multicell. For set
A it can be seen that dAe = {1, 2,3}, that bAc = {1, 2,3}, and
that the discrete interior will not change if we eliminate any single
point from A, e.g.

�

A\ {(l1, 1
2
)}
�

= {1,2, 3}. Finally, given two
sets A and q2, their discrete support are s(A) = {1,2, 3,4} and
s(q2) = {1,2, 4} respectively.

The plan is to tackle the verification of simplicity first for mul-
ticells, then to extend the procedure to arbitrary sets. In order to
employ the absorbance characterization provided in Proposition
3, it is important to establish a connection between sets s(x) and
s(x). (We indeed show in the following that for an absorbing set
its discrete support is a subset of the discrete interior.)



LEMMA 7. For any x ∈Q, qi ⊂ s(x) if i ∈ s(x), and
⋃

i∈s(x)
qi = s(x).

If x ∈Qc then s(x)⊆ s(x ′) for any x ′ ∈ qi and i ∈ n(x).

PROOF. For x ∈ Q if i ∈ s(x) and y ∈ qi then ξ(x , y) > 0.
Hence, qi ∈ s(x) for i ∈ s(x). Suppose now that y ∈ s(x).
Then in each neighborhood of y there exists y ′ ∈ Q such that
ξ(x , y ′) > 0, so there exists i ∈ s(x) such that y ∈ qi . Note that
s(x) for x ∈Q depends now only on dxe.

Suppose now that x ∈ Qc and for some y ∈ X we have
ξ(x , y) > 0. Due to continuity of ξ, for any i ∈ n(x) there
exists x ′ ∈ qi such that ξ(x ′, y) > 0, so s(x) ⊆ s(x ′). Since s(x ′)
depends only on dx ′e = i, we have proven the last statement of
the proposition.

LEMMA 8. If A′ is an absorbing set then s(A′)⊆ bA′c. In partic-
ular, bA′c 6= ;. Any set A such that bAc= ; is simple.

PROOF. Note that A′ ∩Q is non-empty since µ(A′) > 0. Take
x ∈ A′ ∩Q then

0= µ(s(x) \ A′) = µ







⋃

i∈s(x)
qi \ A′






≥ max

i∈s(x)
µ(qi \ A′),

so s(x) ∈ bA′c for all x ∈ A′ ∩ Q and s(A′) ⊆ bA′c. Since for
all x ∈ Q it holds that s(x) 6= ; then bA′c contains at least one
element. Finally, if bAc = ; then any subset of A has an empty
discrete interior, so A is simple.

EXAMPLE 2. For the process in Section 2.2 consider the set A′ =
{l1} × [0,1]. It holds that s(A′) = {1} = bA′c. The preceding
lemma confirms that it is absorbing, as we already showed in Sec-
tion 3.5.

The next proposition provides the solution to the problem of
verification of simplicity for a multicell B, and is based on oper-
ations over the adjacency matrix Q.

PROPOSITION 4. Let C ⊂ dBe be the largest index set such that
if i ∈ C and i→ j, then j ∈ C. If C is empty then B is simple. If C
is not empty then the multicell

C ′ :=
⋃

i∈C

qi

is an absorbing subset of B and µ (B′ \ C ′) = 0, where B′ is the
largest absorbing subset of B.

PROOF. First, since B is a multicell, C ′ ⊆ B. Next, if x ∈ C ′

then x ∈ Q and dxe ∈ C . By construction of C it follows that
s(x) ⊂ C for all x ∈ C ′, so µ(s(x) \ C ′) = 0 for all x ∈ C ′ and
this set is absorbing.

Consider now x ∈ B′. Clearly, qdxe ⊆ B′ since s(x) = s(x ′) for
all x ′ ∈ qdxe, thus µ(s(x) \ B′) = 0 implies µ(s(x ′) \ B′) = 0. As a
consequence, dB′e= bB′c.

If for some i ∈ dB′e exists j such that i → j but j /∈ dB′e then
for x ∈ qi ⊆ B′ we have µ(s(x) \ B′) ≥ µ(q j) > 0, so for all
i ∈ dB′e and j such that i → j it holds that j ∈ dB′e. Hence,
dB′e ⊆ C which means that µ(C ′ \ B′) = 0.

Set C ′ can be computed with a standard procedure over Q
in O (N 2) [3]. We have shown how to verify the simplicity of a
multicell, now we extend the result to an arbitrary set.

PROPOSITION 5. Let A ∈ B(X ), then A is not simple if and
only if there exists a multicell B such that A∩ B is absorbing and
dBe ⊆ bAc. Moreover, s(A′)⊆ bAc.

PROOF. Obviously, if there exists such a set B then A has an
absorbing subset A∩ B and hence it is not simple. Suppose now
that A is not simple and A′ is the largest absorbing subset of A.
Consider a multicell

B =
⋃

i∈s(A′)
qi .

Since A′ is absorbing, for all x ∈ A′ it holds that µ(s(x) \ A′) = 0
hence for any i ∈ s(A′) we obtain that µ(qi \A′) = 0 and A′∩qi 6=
;, which leads to s(qi)⊆ s(A′) and s(B)⊆ s(A′).

On the other hand, if x ∈ B then

s(x)⊆
⋃

i∈s(x)
qi ⊆

⋃

i∈s(B)
qi

and that

µ(s(x) \ B)≤ µ






⋃

i∈s(B)
qi \

⋃

i∈s(A′)
qi






≤ µ







⋃

i∈s(B)
∂ qi






= 0,

which proves that B is absorbing.
Note that dBe = s(A′) from the construction of B. We showed

that µ(qi \ A′) = 0 for any i ∈ s(A′), so dBe ⊆ bAc.
Note that we have reduced the simplicity verification problem

to that for multicells, which we know how to solve. The final
step is to find the relation between the largest absorbing sets of
A and QA. This leads us to an algorithm for finding such a set for
an arbitrary A.

PROPOSITION 6. If A′ is the largest absorbing subset of A then
Q′ = A′ ∩QA is the largest absorbing subset of QA. Moreover, for
x ∈ A∩Q condition s(x)⊆ dQ′e is satisfied if and only if x ∈ A′.

PROOF. For x ∈Q′ ∩Q then x ∈ A′ ∩Q and hence

µ(s(x) \Q′) = µ
�

s(x) \ (A′ ∩QA)
�

≤ µ(s(x) \ A′) +µ
�

s(x) \QA
�

= 0.

For x ∈ Q′ \Q by Lemma 7 there exists x ′ ∈ Q′ ∩Q such that
s(x) ⊆ s(x ′) and hence µ(s(x) \Q′) = 0 for all x ∈ Q′, so Q is
absorbing.

If Q′′ ⊆ QA is absorbing then Q′′ ∪ A′ is absorbing and hence
Q′′ ⊆ A′, so Q′′ ⊆Q′, which proves the statement of the proposi-
tion.

Note that we proved that for any x ∈ A′ ∩ Q it holds that
µ(s(x) \Q′) = 0. Suppose that there exists x ∈ A′ ∩Q and i ∈
s(x) \ dQ′e, then

µ(s(x) \Q′)≥ µ






⋃

j∈s(x)
qi \

⋃

j∈dQ′e
qi






≥ µ(qi)> 0,

hence for all x ∈ A′ ∩Q it holds that s(x) ⊆ dQ′e. On the other
hand, if for x ∈ A∩Q it holds that s(x) ⊆ dQ′e, then by Lemma
7 µ(s(x) \Q′) = 0 and x ∈Q′ ⊆ A′.

The construction of the largest absorbing subset of A, up to a
set of measure zero, develops along the following two steps:

1. given a set A, find the largest absorbing subset Q′ of QA,
up to a set of measure zero, by applying Proposition 4. To
find Q′ one should find the largest absorbing set of Q◦A with



the method given in Proposition 4. This set differs from Q′

only up to set of measure zero. If QA is simple, then A is
simple by Proposition 5;

2. consider x ∈ A∩Q. By Proposition 6 one can have x ∈ A′ if
and only if s(x) ⊆ dQ′e. On the other hand, if x ∈ A′ then
x ′ ∈ A′ for all x ′ ∈ qdxe ∩ A since s(x) = s(x ′). This means
that it is sufficient to consider just one representative point
x i from each set qi ∩A where i ∈ dAe and qi ∩A⊆ A′ if and
only if s(x i) ⊆ dQ′e. Now the only points which may still
be left out are in Qc , however µ(Qc) = 0.

EXAMPLE 3. Consider the Markov process given in Section 2.2
and let us apply the developed algorithm. Recall that we set qi =
{li} × (0, 1), so the adjacency matrix has the form

Q=











1 0 0 0
1 1 0 1
0 0 1 1
0 1 0 1











.

For the safe set A we know that QA =
3
⋃

i=1
qi , so according to the

algorithm we first look for the largest absorbing subset Q′ of QA.
This is done according to Proposition 4, which finds the largest
index set C ⊆ dQAe such that i ∈ C and i→ j implies j ∈ C.

Recall that dQAe = {1,2, 3}. Let us find C: if 2 ∈ C or 3 ∈ C
then it is necessary that 4 ∈ C because 2→ 4 and 3→ 4. Due to
this fact it is only possible to have 1 ∈ C. Since 1 → 1 only, we
conclude that C = {1} and C ′ = q1.

To build A′ we start off with C ′. We consider i ∈ dAe = {1,2, 3}
and add qi ∩ A to A′ if for all x i ∈ qi it holds that s(x i) ⊆ dQ′e.
Clearly this holds only for i = 1, hence q1 ⊆ A′, µ(A′ \ q1) = 0.
Note that this outcome corresponds with the A′ = {l1}×[0, 1] that
was found in Section 3.5.

5. CONCLUSIONS AND FUTURE WORK
This work has discussed issues related to the solution of inte-

gral Bellman equations and has showed that absorbing sets play
a prominent role both in the analysis of such problems and in
the computation of a solution with explicit bounds on the error.
The contribution has shown that, in the case of compact simple
sets, the solution is unique and can be found in a finite number
of steps with any precision. On the other hand, in the presence
of a set that is not simple, the knowledge of its largest absorbing
set is again crucial for finding the solution of Bellman equation.
The work has also highlighted the differences in the solution of
invariance, reach-avoid, and mean exit time problems.

Both the verification of simplicity and the characterization of
the largest absorbing subset of a given set are difficult prob-
lems in general, though in some cases they admit solvable pro-
cedures, as it was shown in Section 4. The authors are inter-
ested in generalizing these solvable procedures. Furthermore,
the authors are also interested in extensions to other infinite
time horizon properties, as well as to the continuous time case.
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