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Abstract— Markov-jump linear systems (MJLSs) allow rep-
resenting linear systems subject to abrupt parameter changes
modeled as a Markov chain, and are useful in many application
domains. In most real cases the transition probabilities between
operational modes of the system cannot be computed exactly
and are time-varying. We take into account this aspect by
considering MJLSs where the underlying Markov chain is
polytopic and time-inhomogeneous, i.e. its transition probability
matrix is varying over time with variations that are arbitrary
within a polytopic set of stochastic matrices. We address and
solve for this class of systems the finite horizon optimal control
and filtering problems. In particular, we show that the optimal
controller having only partial information on the continuous
state can be obtained from two types of coupled Riccati
difference equations (CRDEs), one associated to the control
problem, and the other one associated to the filtering problem.

I. INTRODUCTION

Linear systems subject to abrupt parameter changes due,
for instance, to environmental disturbances, component fail-
ures or repairs, changes in subsystems interconnections,
changes in the operation point for a non-linear plant, etc.,
can be modeled by a set of discrete-time linear systems
with modal transition given by a discrete-time finite-state
Markov chain. This family of systems is known as discrete-
time Markov(ian) jump linear systems (from now on MJLSs,
see [1] and references therein for a detailed overview).

MJLS models are useful in many applications, especially
for wireless networked control systems (see e.g. [2], [3],
[4], [5], [6], [7], [8] and references therein for a general
overview), which have a wide spectrum of applications. The
wireless communication channels used to convey informa-
tion between sensors, actuators, and computational units are
frequently subject to time-varying fading and interference,
which may lead to packet losses. In the wireless networked
control system literature the packet dropouts have been
modeled either as stochastic or deterministic phenomena [4].
The proposed deterministic models specify packet losses in
terms of time averages or in terms of worst case bounds
on the number of consecutive dropouts (see e.g. [6]). For
what concerns stochastic models, a vast amount of research
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assumes memoryless packet drops, so that dropouts are
realizations of a Bernoulli process ([2], [5], [7]). Other
works consider more general correlated (bursty) packet losses
and use a transition probability matrix (TPM) of a finite-
state (time-homogeneous) Markov chain (see e.g. the finite-
state Markov modeling of Rayleigh, Rician and Nakagami
fading channels in [9] and references therein) to describe
the stochastic process that rules packet dropouts (see [2],
[10]). In these works networked control systems with missing
packets are modeled as time-homogeneous MJLSs.

However, in most real cases the TPM cannot be computed
exactly and is time-varying. The Markov chain models of
slow fading channels [9] are derived via measurements on
real channels or via numerical reasoning, which always
introduces errors. Indeed, a fundamental issue in the de-
sign of finite-state Markov channel models is how accurate
and reliable the resulting system performance measures are
[9]. Moreover, all these models are based on the unrealis-
tic fundamental assumption that underlying parameters are
known and static. The study of robustness to such variations
becomes naturally important not only in the context of
networked control systems, but in any application where
the MJLS model is affected by abrupt and unpredictable
perturbations on the underlying Markov chain: in [11] it
is pointed out that in the vertical take-off landing (VTOL)
helicopter system the airspeed variations are ideally modeled
as homogeneous Markov process, but because of the external
environment (like the wind) the transition probabilities of
the jumps are time-varying; in [12] the example of failures
and repairs of subsystems is considered, where the transition
probabilities deeply depend on system age and working time.

We take into account these aspects by considering MJLSs
where the underlying Markov chain is time-inhomogeneous,
i.e. the Markov chain has its TPM varying over time
with variations that are arbitrary within a polytopic set of
stochastic matrices. We denote such model as discrete-time
polytopic time-inhomogeneous (from here on, PTI) MJLS.

Given such mathematical model, there are several recent
works on (robust) H∞ control, filtering and fault detection
[11], [12], [13], [14], [15]. These works generally provide
sufficient conditions based on linear matrix inequalities
(LMIs) and Lyapunov functional approaches for the exis-
tence of H∞ controllers [13], [14], H∞ filters [12], [15] and
H∞/H− fault detectors [11]. Recently, in [16], we presented
the necessary and sufficient conditions for mean square
stability of PTI MJLSs, which require to decide whether the
joint spectral radius (see [17] and references therein for an
overview) of a finite family of matrices is smaller than 1.



In [18] we provided necessary and sufficient conditions for
mean square stability robust to energy-bounded disturbances.
In [19] we considered the more general model of PTI
switched MJLSs, where discrete inputs are present and the
Markov-chain turns into a (time-inhomogeneous) Markov-
decision process, and derived the optimal solution of the
finite-horizon linear-quadratic regulator (LQR) problem.

Following the same research line, as main contribution of
this paper we address and solve the finite horizon optimal
control and filtering problems for PTI MJLSs. In particular
we show that, as for linear-quadratic-Gaussian (LQG) control
in the case with no jumps, for the finite horizon case consid-
ered in this paper, the optimal controller can be obtained from
two types of coupled Riccati difference equations (CRDEs),
one associated to the control problem, and the other one
associated to the filtering problem. When the transition
probabilities between operation modes are known at each
time step, our results coincide with those presented in [1],
and when there is only one mode of operation, they coincide
with the traditional separation principle for the LQG control
of discrete-time linear systems. All the omitted proofs are
available in the doctoral dissertation of the first author [20].

The notation used throughout is standard. The sets of
all positive and nonnegative integers are represented by N
and N0, respectively. The n-dimensional complex Euclidean
space is indicated by Cn, while a set of linear maps between
two complex Euclidean spaces Cm and Cn is denoted by
Cm×n and is encoded through a set of m×n complex matri-
ces. The conjugate of a complex matrix M is denoted by M̄ ,
while the superscript * indicates the conjugate transpose of a
matrix, and T indicates the transpose. Clearly for a set of real
matrices, denoted by Rm×n, * and T have the same meaning.
We indicate with Cn×n∗ the set of Hermitian matrices, and
with Cn×n+ the set of positive semi-definite matrices. The
n×n identity matrix is denoted by In, while the null matrix
of appropriate size is indicated by 0. Unless otherwise stated,
‖ · ‖ will indicate any norm in Cn, and, for M ∈ Cm×n,
‖M‖ will denote the induced uniform norm in Cm×n. The
linear space made up of all N -dimensional vectors M of
complex matrices Mi∈Cm×n, i∈N , s.t. M=[M1, ...,MN ]
is indicated by Hn,m, where N , {1, . . . , N} ⊂ N is a
finite set of integers. Similarly, V , {1, . . . , V } ⊂ N and
T , {1, . . . , T} ⊂ N indicate other finite sets of integers.
For simplicity, we set Hn,Hn,n. For M ∈Hn,m we write
M∗ = [M∗1 , . . . ,M

∗
N ] ∈ Hm,n, and say that M ∈ Hn is

Hermitian if M=M∗. Then,
Hn∗ , {M=[M1, . . . ,MN ]∈Hn;Mi=M∗i , i∈N},
Hn+ , {M=[M1, . . . ,MN ] ∈ Hn∗;Mi�0, i∈N},

where Mi � 0 (respectively Mi � 0) indicates that Mi is
positive semi-definite (respectively positive definite). Finally,
E[·] stands for the mathematical expectation of the underly-
ing scalar valued random variables.

II. PROBLEM STATEMENT
Let us consider a probability space (Ω,F ,Pr), where Ω is

the sample space, F is the σ-algebra of (Borel) measurable
events and Pr is the probability measure. Let θ :N0×Ω→N

be a Markov chain defined on the probability space, which
takes values in a finite set N ,{1, . . . , N}. For every k∈N0

let us define the transition probability as

pij(k)=Pr{θ(k+1)=j | θ(k)= i} ≥ 0,

N∑
j=1

pij(k)=1.

The associated TPM P (k) is a stochastic N ×N matrix
with entries pij(k). In this work we assume that P (k) is
unknown and time-varying within a bounded set.

Assumption 1: TPM P (k) is polytopic, i.e. ∀k ∈ N0

P (k) =

V∑
l=1

λl(k)Pl, λl(k) ≥ 0,

V∑
l=1

λl(k) = 1, (1)

where {Pl}l∈V , PV is a given finite set of TPMs, which are
the vertices of a convex polytope; λl(k) are unmeasurable.

Remark 1: This assumption is not restrictive, since the
polytopic uncertainty model is widely used for robust control
of time-homogeneous MJLS (see e.g. [21]) and is considered
to be more general than the partly known element model of
TPM uncertainties; furthermore, also the interval TPM can
be represented as a convex polytope [22].

We denote by pi•(k) the i-th row of the TPM P (k)
and by p•j(k) the j-th column of the TPM P (k). It is
clear from (1) that pi•(k) and p•j(k) are polytopic sets
of stochastic vectors. We slightly abuse our notation by
indicating transition probability sequences of length T ∈ N
as pθ•, [pθ(0)•(0), . . . ,pθ(T−1)•(T−1)],

p•θ, [p•θ(1)(0), . . . ,p•θ(T )(T−1)].

For a set S∈F , let us define the indicator function 1S in
the usual way [1, p. 31], that is, ∀ω ∈ Ω,

1S(ω) =

{
1 if ω ∈ S,
0 otherwise.

(2a)

Notice that, ∀i ∈ N ,
1{θ(k)=i}(ω) = 1 if θ(k)(ω) = i, and 0 otherwise; (2b)

E[1{θ(k)=i}(ω)] = Pr{θ(k)= i} , πi(k). (2c)

The distribution π(k), [π1(k), . . . πN (k)] of the random
jump variable θ(k) evolves according to the transition prob-
abilities, i.e.

πj(k+1)=

N∑
i=1

πi(k)pij(k). (3)

The related discrete-time polytopic time-inhomogeneous
(PTI) Markov jump linear system (MJLS Σ) is described by
the following stochastic equations:

x(k+1) = Aθ(k)x(k)+Bθ(k)u(k)+Hθ(k)w(k),

y(k) = Fθ(k)x(k)+Gθ(k)w(k),

z(k) = Cθ(k)x(k)+Dθ(k)u(k),

x(0) = x0, θ(0) = θ0, π(0) = π0,

(4)

where ∀k∈N0, x(k)∈Cn is the vector of continuous state
variables, u(k) ∈ Cm is the control vector, which gathers
the control actions applied to the process, y(k)∈Cp is the
vector of measured continuous states, that are available for
feedback, while z(k)∈Cs is the output of the system. The
exogenous input w(k) ∈ Cr is a wide sense white noise,
which represents discrepancies between the model and the



real process, due for instance to unmodeled dynamics or
disturbances. Specifically, we have that ∀k, l∈N0, k 6= l

E[w(k)]=0, E[w(k)w∗(k)]=Ir, E[w(k)w∗(l)]=0. (5)
Remark 2: When studying MJLS, it is a standard practice

to work with complex fields [1], but one can also work with
real-valued ones, by considering complex matrices acting on
Cn×n as real operators acting on R2n×2n [17].
The system matrices Aθ(k), Bθ(k), Cθ(k), Dθ(k), Fθ(k), Gθ(k)

and Hθ(k) are constant matrices of appropriate sizes, each of
which associated with the operational mode θ(k)∈N , while
x0, θ0 and π0 are initial conditions.

The set N comprises the operational modes of the system
Σ, and for each time k∈N0 and each possible value of the
jump variable θ(k) = i∈N , we denote a system matrix M
associated with the i-th mode by Mi=M{θ(k)=i}. Thus, we
deal with following vectors of matrices: A∈Hn, B∈Hm,n,
C∈Hn,s, D∈Hm,s, F∈Hn,p, G∈Hr,p, and H∈Hr,n.

We assume without loss of generality [1, pp.103-104,
Remark 5.1 and p.74, Remark 4.1] that for all i ∈ N

C∗iDi = 0, D∗iDi � 0, HiG
∗
i = 0, GiG

∗
i � 0. (6)

In this work we deal with the mode-dependent quadratic
optimal control problem with partial information on the state
variable x(k) for the class of dynamical systems described
by (4), where the TPM is unknown and time-varying within a
convex set, as stated in Assumption 1. Thus, we generalize
the results provided in [1]. When there is only one TPM,
which is known at each time step, our results coincide with
the traditional case presented by Costa et al. [1]. For the ease
of notation, we consider the system matrices to be constant.
However, when those matrices are time-varying, but known
at each time step, the results of our work still hold.

We design a dynamic Markov jump controller K de-
scribed by the following stochastic equations:{

x̂(k+1) = Âθ(k)(k)x̂(k)+B̂θ(k)(k)y(k),

u(k) = Ĉθ(k)(k)x̂(k), x̂(0) = x̂0,
(7)

with x̂0 deterministic, in a way to minimize quadratic func-
tional cost J (θ0, x0, u) associated to the closed loop system
over a finite time horizon, for a worst possible sequence of
transition probabilities between the operational modes.

Specifically, for u, [u(0), . . . , u(T−1)], T ∈N, we define

J(θ0, x0),min
u

max
pθ•

T−1∑
k=0

E[‖z(k)‖2]+E[x∗(T )Xθ(T )x(T )],

(8)
with X , [X1, . . .XN ]∈Hn+ being a vector of the terminal
cost weighting matrices.

So, we cast a finite-horizon robust optimization problem as
a min-max problem of optimizing robust performance, i.e.
finding the minimum over the control input and filtering error
of the maximum over the transition probability disturbance.

This problem can be presented also from the game-
theoretic point of view, where at each time step k the
perturbation-player (environment and/or malicious adver-
sary) tries to maximize the cost while the control tries to
minimize the cost. Such formulation requires to make explicit
the following assumption on the information structure for the
controller and the adversary.

Assumption 2: The perturbation-player has no informa-
tion on the choice of the controller and vice versa.

Remark 3: The state of the controller K depends only on
θ(k) rather than on the entire past history of the operational
modes θ(0), . . . , θ(k), so that the closed loop system is again
a Markov jump system. See [1, p.104, Remark 5.2] for
comparison with a solution based on a Kalman filter.

As in [1], we have the following information pattern.
Assumption 3: At every time step k ∈ N0, the vector of

the measured continuous states y(k) and the jump parameters
θ(k) are available to the controller.

The random variables {y(t), θ(t); t = 0, . . . , k} generate
the σ-algebra denoted by Gk. Clearly, for every k∈N0

Gk ⊂ Gk+1 ⊂ F .
As in [1, p.133], we assume independence of the noise

sequence from the Markov chain and the initial conditions.
Assumption 4: The noise sequence {w(k); k∈T } and the

Markov chain {θ(k); k∈T } are independent sequences, and
the initial conditions (x(0), θ(0)) are independent random
variables, with E[x(0)]=µ0, E[x(0)x∗(0)]=Q0. (9)

So, in summary, the finite-horizon robust optimization
problem we study is formally defined as follows.

Problem 1: Given a PTI MJLS Σ described by (4) and
satisfying Assumptions 1 – 4, find Â(k)∈Hn, B̂(k)∈Hp,n
and Ĉ(k) ∈ Hn,m with elements from (7), such that the
control law u=[u(0), . . . , u(T − 1)], T ∈N, with u(k) from
(7), achieves the optimal cost J(θ0, x0) defined by (8).

In the next three sections we show that, as for linear-
quadratic-Gaussian (LQG) control in the case with no jumps,
for the finite horizon case considered in this paper, the
optimal controller can be obtained from two types of coupled
Riccati difference equations (CRDEs), one associated to the
control problem, and the other one associated to the filtering
problem. When the transition probabilities between operation
modes are known at each time step, our results coincide with
those presented in [1], and when there is only one mode
of operation, they coincide with the traditional separation
principle for the LQG control of discrete-time linear systems.

III. OPTIMAL ROBUST FILTERING

In this section we examine the problem of designing the
optimal robust mode-dependent dynamic Markov jump filter,
described by the system of stochastic equations (7), for a
PTI MJLS Σ from (4), satisfying Assumptions 1– 4, s.t. a
quadratic cost associated to the filtering error is minimized.

We define the error introduced by any Markov jump filter
described by (7) as ê(k) = x(k)− x̂(k), (10)
and denote the sequence of filtering errors over a finite time
horizon T as ê, [ê(1), . . . , ê(T )].

The cost of robust filtering is described by

Ĵ (ê) , max
p•θ
Ĵ (ê,p•θ) = max

p•θ

T∑
k=1

E[‖ê(k)‖2].

We observe that

‖ê(k)‖2 = ê∗(k)ê(k)=tr[ê∗(k)ê(k)]=tr[ê(k)ê∗(k)], (11)
where tr[·] denotes a trace operator.



Let us consider a full-order Markov jump filter having a
structure similar to the structure of Luenberger observer, i.e.{
x̃(k+1)=Aθ(k)x̃(k)+Bθ(k)u(k)−Lθ(k)(k)(y(k)−ỹ(k))

ỹ(k)=Fθ(k)x̃(k), x̃(0),E[x(0)] = µ0,
(12)

with L(k) , [L1(k), . . . , LN (k)] ∈ Hp,n being a vector of
filter gain matrices, each of which related to an operational
mode. The associated filtering error for this particular struc-
ture of Markov jump filter is denoted by

ẽ(k) = x(k)− x̃(k). (13)
In the remaining of this section we show that the consid-

ered filter is indeed optimal, i.e. a filter achieving the cost

Ĵ , min
ê

max
p•θ

T∑
k=1

E[‖ê(k)‖2], ∀ê. (14)

From (13), (4) and (12), it follows that
ẽ(k+1) = (Aθ(k)+Lθ(k)(k)Fθ(k))ẽ(k)+ (15)

(Hθ(k)+Lθ(k)(k)Gθ(k))w(k),

ẽ(0) = x0 − µ0, E[ẽ(0)] = 0. (16)

Lemma 1: The following statements hold ∀k∈T ,∀i∈N :
E[w(k)x∗(k)1{θ(k)=i}] = 0, (17)

E[w(k)x̃∗(k)1{θ(k)=i}] = 0, (18)

E[w(k)ẽ∗(k)1{θ(k)=i}] = 0. (19)
We define the vector of the second moment errors associ-

ated to each operational mode as Y(k)=[Y1(k), . . . , YN (k)],
where k∈T , Y(k)∈Hn+, and

Yi(k) , E[ẽ(k)ẽ∗(k)1{θ(k)=i}]. (20)

Clearly, Ĵ (ẽ,p•θ)=

T∑
k=1

N∑
i=1

tr[Yi(k)].

After defining Ĵ (ẽ(k),p•i(k−1)),tr[Yi(k)], (21)

we have that
Ĵ (ẽ,p•θ)=

T∑
k=1

N∑
i=1

Ĵ (ẽ(k),p•i(k−1)). (22)

From (20), (16), Assumption 4, (2c) and (4), it follows that

Yi(0) = πi(0)(Q0 − µ0µ
∗
0), (23)

which is deterministic.
From (20), (15), Assumption 4, (2c), and (19), we have that

Yj(k+1)=

N∑
i=1

pij(k)[(Ai+Li(k)Fi)Yi(k)(A∗i +F ∗i L
∗
i (k))+

πi(k)(HiH
∗
i +Li(k)GiG

∗
iL
∗
i (k))] (24)

Lemma 2: At any time step k∈N and for any operational
mode j∈N , the maximum in transition probabilities of the
filtering cost function Ĵ (ẽ(k),p•j(k−1)) is attained on a
vertex of the convex polytope of the column-vectors that
define the j-th column of the polytopic TPM, i.e.

Ĵj(ẽ(k))= max
p•j(k−1)

Ĵ (ẽ(k),p•j(k−1))=max
p l•j

Ĵ (ẽ(k),p l•j).

(25)
Let us denote by pυ(k−1)

•j ,arg max
p•j(k−1)

Ĵj(ẽ(k)) (26)

the vertex of the convex polytope of the column-vectors
(which define the j-th columns of the polytopic TPM) that
achieves the maximal filtering cost at time step k for the j-th

operational mode. The vector pυ(k−1)
•j is obtained during the

computation of the robust filtering cost function Ĵj(ẽ(k)). It
defines the value of πj(k) via (3) and the value of Yj(k) via
(24), allowing the recursion.

The question of choosing L(k), in a way to minimize
the filtering error, remains open, and it is tackled in the
remaining of this section.

Let us compute the value of E[ẽ(k)x̃∗(k)1{θ(k)=i}].
For k=0, from (13), (16), (9), and the linearity of the ex-

pected value, we have that ∀i∈N E[ẽ(0)x̃∗(0)1{θ(0)=i}]=0.
Following the mathematical induction technique, we as-

sume that for any k ∈ T , the structure of L(k−1) is such
that ∀i∈N , E[ẽ(k)x̃∗(k)1{θ(k)=i}]=0, and proceed to find
L(k) such that E[ẽ(k+1)x̃∗(k+1)1{θ(k+1)=j}]=0, ∀j∈N .

From (15), (12), (4), (13), linearity of the expected value,
the fact that, ∀i ∈ N , the matrices Ai, Bi, Fi, Gi, Hi

are constant, Li(k) is determined by our choice, u(k) is
deterministic, independence between w(k), θ(k), and x(0),
given by Assumption 4, (5), (19), induction hypothesis, (20),
and (6), we have that

E
[
ẽ(k+1)x̃∗(k+1)1{θ(k+1)=j}

]
=

−
N∑
i=1

pij(k)[(Ai+Li(k)Fi)Yi(k) (A∗i +F ∗i L
∗
i (k)) +

πi(k)Li(k)GiG
∗
iL
∗
i (k)],

which is equal to zero if (and only if, for every pij(k) 6= 0)

Li(k)=

{
0, if πi(k)=0; otherwise

−AiYi(k)F ∗i (FiYi(k)F ∗i +πi(k)GiG
∗
i )
−1
,

(27)

which is obtained by observing that πi(k) = 0 implies that
Yi(k)=0 (see (2c) and (20)), and thus also Li(k)=0.

For the notational convenience, we define

P(k) , {i∈N ;πi(k) 6=0}. (28)

From (27), (28), and (26), we have that for
Yj(k+1)=

∑
i∈P

p
υ(k)
ij [AiYi(k)A∗i + πi(k)HiH

∗
i +

Li(k)FiYi(k)A∗i ], (29)

where p υ(k)
ij are the elements of pυ(k)

•j .
The following lemma is useful within a proof that the

observer (12), having a filtering gain (27) computed interac-
tively from (23), (29), and (26).

Lemma 3: The following statements hold ∀k∈T ,∀i∈N :
E[ẽ(k)x̂∗(k)1{θ(k)=i}]=0. (30)

Lemma 4: Let ê(k) be the error introduced by any Markov
jump filter, as described by (10), and Y(k) be the solution of
the system of coupled Riccati difference equations associated
to robust filtering problem at time step k, obtained from (29),
(27), and (26). Then, ∀k∈N0, E

[
‖ê(k)‖2

]
≥
∑N
i=1 tr [Yi(k)].

The main result of this section is straightforward from
Lemma 4, (7) and (12).

Theorem 1: An optimal solution for the robust filtering
problem posed above is:
Âi(k)=Ai+Li(k)Fi +BiĈi(k), B̂i(k)=−Li(k), (31)

with Li(k) as in (27), obtained from (29) and (26), Ĉi(k)
arbitrary, and the optimal robust cost defined in (14) being

Ĵ =

T∑
k=1

N∑
i=1

tr [Yi(k)] . (32)



IV. OPTIMAL ROBUST CONTROL

We consider in this section the finite horizon quadratic
optimal robust control problem for MJLSs when the state
variable x(k) and jump variable θ(k) are available to the
controller. The random variables {x(t), θ(t); t = 0, . . . , k}
generate the σ-algebra denoted by G′k. For every k∈N0

G′k ⊂ G′k+1 ⊂ F
In order to be able to apply a separation principle (de-

scribed in the next section), we consider slightly different
PTI MJLS, described by the following stochastic equations:

x(k+1) = Aθ(k)x(k)+Bθ(k)u(k)+Rθ(k)v(k),

z(k) = Cθ(k)x(k)+Dθ(k)u(k),

x(0) = x0, θ(0) = θ0, π(0) = π0,

(33)

with v={v(k); k∈{0, . . . , T−1}} being a noise sequence,
and R=[R1, . . . , RN ]∈Hr,n.

Assumption 5: The noise sequence v satisfies ∀i∈N
E[v(k)v∗(k)1{θ(k)=i}]=Ξ(k), E[v(0)x∗(0)1{θ(k)=i}]=0.

(34)
As in [1, p.73], we assume that for any measurable

functions f and g
E[f(v(k))g(θ(k+1))|G′k]=E[f(v(k))|G′k]

N∑
j=1

pθ(k)j(k)g(j)

(35)
In the next section we will show that this assumption is

verified for the controlled system with partial information on
continuous state.

The set of admissible controllers, denoted by UT , is given
by the sequence of control laws u such that for each k, u(k)
is G′k-measurable, E[v(k)x∗(k)1{θ(k)=i}]=0, (36)

E[v(k)u∗(k)1{θ(k)=i}]=0. (37)
The problem we examine in this section is to find u∈UT

which achieves (8). We proceed by using a dynamic pro-
gramming approach in Bellman’s optimization formulation
[23]. For lack of space, some of the formal passages are
omitted. However, those details can be found in [19], where
we present a solution to a similar problem.

The terminal cost is given by
J(θ(T ), x(T )) =x∗(T )E[Xθ(T )|G′T ]x(T )=

x∗(T )Xθ(T )x(T ), (38)
where Xθ(T ) ,Xθ(T ) is a solution to CRDE for the robust
control at the terminal time step. We are interested in the
explicit form of X(k)=[X1(k), . . . , XN (k)]∈Hn+.

A generic cost at time step k is
J (θ(k), x(k), u(k),pθ(k)•(k))=

E
[
‖z(k)‖2 + J(θ(k+1), x(k+1))|G′k

]
. (39)

The cost-to-go function is, for θ(k)= i, i∈N ,
J (i, x(k))=min

u(k)
max
pi•(k)

J (i, x(k), u(k),pi•(k)). (40)

Observing that from the definitions of the trace operator
and of the matrix product, for any matrix M, and column
vectors a, b of appropriate size, we have the following
expression: a∗Mb=tr[a∗Mb]=tr[Mba∗]. (41)

The explicit expression of E[Xθ(T )|G′T−1] is given by

E[Xθ(T )|G′T−1] =

N∑
j=1

pij(T−1)Xj(T ). (42)

The explicit form of CRDE for robust control is obtained
recursively from generic cost at time step k= T−1. Since
x(T −1), θ(T −1), and any admissible control input u(k)
are G′T−1-measurable, Ai, Bi, Ci, Di and Ri are constant
matrices for all i ∈ N , X(T ) ∈ Hn+, by linearity of the
expected value, from (33), (34), (35), (36), (37), (41), and
(42), we have for θ(T−1)= i that

J (i, x(T−1), u(T−1),pi•(T−1))= (43)

x∗(T−1)

C∗i Ci+A∗i N∑
j=1

pij(T−1)Xj(T )Ai

x(T−1)+

2x∗(T−1)A∗i

N∑
j=1

pij(T−1)Xj(T )Biu(T−1)+

u∗(T−1)

D∗iDi+B
∗
i

N∑
j=1

pij(T−1)Xj(T )Bi

u(T−1)+

N∑
i=1

tr

RiΞi(T−1)R∗i

N∑
j=1

pij(T−1)Xj(T )

 .
Let us consider J (i, x(T−1), u(T−1),pi•(T−1)) in (43)

as a function of only pi•(T−1), which from Assumption 1
is polytopic. It is straightforward verifying that Jensen’s
inequality [24, p. 25, Theorem 4.3] holds. Hence, this
generic quadratic cost is a convex function in a variable, that
belongs to a polytopic set. From [24, p. 343, Theorem 32.2]
this means that the maximum in transition probabilities of
the quadratic cost function is attained on a vertex of the
convex polytope of transition probabilities. So, to find this
maximum, we need to evaluate J (i, x(T−1), u(T−1),p li•)
in each (known) vertex of the corresponding row of the
polytopic TPM.

Since u(T − 1) is unconstrained, we can compute the
minimum of (43) in u(T−1) by equaling to 0 its derivative
with respect to u(T−1), obtaining that

u(T−1) = Kl
i(T−1)x(T−1), (44)

where the optimal gain at time k=T−1 for i-th operational
mode and transition probability vector p li• is given by
Kl
i(T−1) = (45)

− [D∗iDi+B
∗
i

N∑
j=1

p lijXj(T )Bi]
−1B∗i

N∑
j=1

p lijXj(T )Ai.

We observe that among V vertices of convex polytope of
transition probability vectors p li•, there is one, indicated by
p ῡi•, for which J (i, x(T−1)) of (40) is attained. We denote
by K ῡ

i (T −1) the corresponding optimal gain. When the
optimal gain is applied, we have that

p ῡi•,arg max
p li•

J (i, x(T−1)). (46)
Thus, ∀l∈V

J (i, x(T−1),K ῡ
i (T−1)x(T−1),p ῡi•) ≥ (47)

J (i, x(T−1),K ῡ
i (T−1)x(T−1),p li•).

This leads us to the following expression of the cost-to-go:
J (i, x(T−1))=x∗(T−1)X ῡ

i (T−1)x(T−1) + (48)
N∑
i=1

tr

RiΞi(T−1)R∗i

N∑
j=1

p ῡijXj(T )

,



where
X ῡ
i (T−1) , C∗i Ci +A∗i

N∑
j=1

p ῡijXj(T )Ai + (49)

A∗i

N∑
j=1

p ῡijXj(T )BiK
ῡ
i (T−1).

We underline that the cost-to-go J (i, x(T−1)) depends on
both i and x(T−1), so ῡ can be different for distinct values
of i and x(T−1). For any given state x(T−1), ῡ is a compact
notation for ῡ(i, k). Without knowing a priori in which state
system will be at time step T − 1, we need to consider all
the vertices as possible candidates. The cost-to-go becomes
J (i, x(T−1)) = max

p li•

x∗(T−1)X l
i(T−1)x(T−1)+

N∑
i=1

tr

RiΞi(T−1)R∗i

N∑
j=1

p lijXj(T )

. (50)

The optimal state-feedback gain for a given operational
mode is not unique over the entire state space, but is state
dependent; we can have up to L optimal gains at time step
k = T−1. Given the optimal solution at one time step, we
can repeat the described procedure, as presented in [19].

By interacting the procedure, we obtain that the optimal
gain has the form as in (45). However, we need to consider
all the solutions of CRDEs that can achieve maximum in
transition probabilities. See [19] for the hint of the way
allowing us to reduce the number of equations to deal with.
We observe that when the MJLS is stabilizable, after a
transitory period, the finite-horizon optimal state feedback
robust solution becomes unique. The length of transitory
period depend on how much the joint spectral radius (JSR)
associated to the second moment of the state vector through
vertices of polytopic TPM is smaller than 1, since from [16]
we know that E[‖x(k)‖2]≤nNβζk‖x0‖22, ζ∈ (JSR, 1) and
β≥1. In this way, the state space reachable from the initial
state becomes smaller and smaller, with fewer number of
possible CDREs. When the MJLS is non-stabilizable, the
behavior is opposite.

V. SEPARATION PRINCIPLE

With the solutions of optimal robust filtering and control
problems presented in the previous two sections, the sepa-
ration principle can be easily derived following the line of
reasoning presented in [1, pp.132–136]. The optimal solution
is given by: Âi(k)=Ai+Li(k)Fi +BiK

l(k)
i (k),

B̂i(k)=−Li(k), Ĉi(k) = K
l(k)
i (k).

VI. CONCLUSIONS

This paper is part of a research line with the final aim of
deriving novel fundamental results for the class of MJLSs,
where the transition probability matrix of the underlying
Markov chain is varying over time with variations that are
arbitrary within a polytopic set of stochastic matrices. In
particular, in this paper we address and solve the finite
horizon optimal control and filtering problems. The next step
is to extend our results to the infinite time horizon case, and
to tackle problems of fault detection and isolation in the
general framework of security of cyber-physical systems.
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