
A Resolution-Based Decision Procedure for

SHOIQ

Yevgeny Kazakov and Boris Motik

University of Manchester, UK

Abstract. We present a resolution-based decision procedure for the de-
scription logic SHOIQ—the logic underlying the Semantic Web ontol-
ogy language OWL-DL. Our procedure is goal-oriented, and it naturally
extends a similar procedure for SHIQ, which has proven itself in prac-
tice. Applying existing techniques for deriving saturation-based decision
procedures to SHOIQ is not straightforward due to nominals, number
restrictions, and inverse roles—a combination known to cause termina-
tion problems. We overcome this difficulty by using the basic superposi-
tion calculus, extended with custom simplification rules.

1 Introduction

Description logics (DLs) are a family of knowledge representation formalisms
[2] that have been applied in numerous areas of computer science, such as in-
formation integration and ontology modeling. In particular, the DL SHOIQ
provides a logical foundation for the Web Ontology Language (OWL)—the lan-
guage standardized by the W3C for building ontologies in the Semantic Web.
Thus, to implement advanced Semantic Web applications based on OWL-DL,
practical reasoning procedures for SHOIQ are required.

It is known that SHOIQ can be embedded into C2 [21]—the two-variable
fragment of first-order logic with counting quantifiers. Furthermore, C2 is decid-
able in NExpTime [18] (this result was recently sharpened to allow for binary
coding of numbers [19]). However, all known decision procedures for C2 use a
rather blind “guess-and-check” approach, which is unlikely to be suitable for
practical purposes. Rather, a practical algorithm should be goal-oriented, using
the input problem to guide the search.

Designing such a procedure for SHOIQ has proved to be a nontrivial task.
Namely, this logic provides for inverse roles, number restrictions, and nominals—
concepts with a bounded number of elements. The intricate interaction between
these constructs makes extending existing (tableau-based) procedures difficult.
Only recently, a goal-directed tableau-based procedure was presented in [10]; it
uses a nondeterministic guess on the size of nominals to ensure termination.

In this paper, we present an alternative reasoning procedure based on reso-
lution. SHOIQ is a hard logic, so it is not obvious which reasoning method is
most suitable for practice. Rather, comparing different methods and identifying
which ones are suitable for which types of problems can give crucial insights

into building practical reasoning systems. Furthermore, this procedure is based
on the same principles as the procedure for a weaker logic SHIQ [11], which
was implemented in a new reasoning system KAON2,1 and has shown promising
results for answering queries over large data sets.

To obtain an algorithm for SHOIQ, we face problems analogous to those
encountered in constructing the tableau algorithm from [10]. Namely, the com-
bination of nominals, inverse roles, and number restrictions can cause resolution
to derive clauses of unbounded size, thus preventing termination. We solve these
problems using novel simplification rules, which rename complex terms with
simpler ones based on their semantic meaning.

2 Preliminaries

Description Logic SHOIQ. Given a set of role names NR, a role is either some
R ∈ NR or an inverse role R− for R ∈ NR. An RBox KBR is a finite set of role
inclusion axioms R ⊑ S and transitivity axioms Trans(R), for R and S roles. For
R ∈ NR, we set Inv(R) = R− and Inv(R−) = R, and assume that R ⊑ S ∈ KBR

(Trans(R) ∈ KBR) implies Inv(R) ⊑ Inv(S) ∈ KBR (Trans(Inv(R)) ∈ KBR). A
role R is said to be simple if Trans(S) /∈ KBR for each S ⊑∗ R, where ⊑∗ is the
reflexive-transitive closure of ⊑.

For NC a set of concept names and NI a set of individuals, the set of concepts
is the smallest set containing ⊤, ⊥, A, ¬C, C ⊓ D, C ⊔ D, {a}, ∃R.C, ∀R.C,
>n S.C, and 6 n S.C, where A ∈ NC , C and D are concepts, R is a role, S is a
simple role, a is an individual, and n is a nonnegative integer.

A TBox KBT is a finite set of concept inclusion axioms C ⊑ D. An ABox
KBA is a finite set of axioms C(a), R(a, b), and (in)equalities a ≈ b and a 6≈ b,
for a, b ∈ NI . A SHOIQ knowledge base KB is a triple (KBR,KBT ,KBA).
With |KB | we denote the number of symbols needed to encode KB using unary
coding of numbers. KB is given semantics by translating it into first-order logic
using the operator π defined in Table 1. The main inference problem in SHOIQ
is checking satisfiability of KB , or, equivalently, of π(KB).

Basic Superposition Calculus. We assume familiarity with standard notions of
resolution theorem proving [4] and term rewriting [3]. For a term t, t|p denotes
the subterm of t at the position p, and t[s]p denotes the replacement of t|p in t
with a term s. We encode literals (¬)A as (¬)A ≈ tt in a multi-sorted setting, so
≈ is the only predicate symbol. We do not distinguish (¬)s ≈ t from (¬)t ≈ s.
For a literal L, with L we denote a literal obtained from L by flipping its sign.

Basic superposition (BS) [5, 15] is a calculus for equational theorem proving.
Its inference rules work with closures, which consist of (i) a skeleton clause C
and (ii) a substitution σ. A closure is written as C · σ and it is semantically
interpreted as the clause Cσ; it is ground if Cσ is ground. The empty closure
is denoted by �. A closure can be conveniently represented by marking with

1 http://kaon2.semanticweb.org/

Table 1. Semantics of SHOIQ by Mapping to FOL

Translating Concepts to FOL
πy(⊤, X) = ⊤
πy(⊥, X) = ⊥
πy(A, X) = A(X)

πy({a}, X) = X ≈ a
πy(¬C, X) = ¬πy(C, X)

πy(C ⊓ D, X) = πy(C, X) ∧ πy(D, X)
πy(C ⊔ D, X) = πy(C, X) ∨ πy(D, X)
πy(∃R.C, X) = ∃y : R(X, y) ∧ πx(C, y)
πy(∀R.C, X) = ∀y : R(X, y) → πx(C, y)

πy(>n S.C, X) = ∃y1, . . . , yn :
Vn

i=1 [S(X, yi) ∧ πx(C, yi)] ∧
V

1≤i<j≤n yi 6≈ yj

πy(6n S.C, X) = ∀y∃y1, . . . , yn : [S(X, y) ∧ πx(C, y)] →
Wn

i=1 y ≈ yi

Translating Axioms to FOL
π(C ⊑ D) = ∀x : πy(C, x) → πy(D, x)
π(R ⊑ S) = ∀x, y : R(x, y) → S(x, y)

π(Trans(R)) = ∀x, y, z : R(x, y) ∧ R(y, z) → R(x, z)
π(C(a)) = πy(C, a)

π(R(a, b)) = R(a, b)
π(a ◦ b) = a ◦ b for ◦ ∈ {≈, 6≈}
π(KB) =

V
R∈NR

∀x, y : [R(x, y) ↔ R−(y, x)] ∧
V

α∈KBT ∪KBR∪KBA
π(α)

πx is obtained by simultaneously substituting in the definition of
πy all x(i) for all y(i), respectively, and πy for πx.
X is a meta-variable and is substituted by the actual variable.

[] the terms from Cσ occurring at variable positions of C. Any position at
or beneath a marked position is called a substitution position. For example,
(P (x) ∨ z ≈ b) · {x 7→ f(y), z 7→ g(b)} can be written as P ([f(y)]) ∨ [g(b)] ≈ b.

The BS calculus is parameterized with an admissible ordering on terms and
a selection function. An admissible ordering on terms ≻ is a reduction ordering
total on ground terms. The term ordering is extended to literals by identifying
a literal s ≈ t with a multiset {{s}, {t}} and a literal s 6≈ t with a multiset
{{s, t}}, and by comparing these multisets by a two-fold multiset extension of
the term ordering ≻; we denote the literal ordering also with ≻. A selection
function selects an arbitrary set of negative literals in each clause.

A literal L·σ is (strictly) maximal w.r.t. a closure C·σ if L′σ ≻ Lσ (L′σ � Lσ)
for no L′ ∈ C. A literal L · σ is (strictly) eligible in (C ∨ L) · σ if either (i) no
literal is selected in (C ∨ L) · σ and L · σ is (strictly) maximal w.r.t. C · σ, or
(ii) L · σ is selected in (C ∨ L) · σ. The inference rules of BS are presented in
Table 2. Note that the standard resolution and factoring inference rules can be
viewed as “macros,” combining negative superposition and equality factoring,
respectively, with reflexivity resolution.

We next present the redundancy criteria for closures. Let R be a ground
and convergent rewrite system, and C · σ a ground closure. A variable x in the
skeleton C of C ·σ is variable irreducible w.r.t. R if (i) xσ is irreducible by R, or
(ii) x occurs in C only in literals of the form x ≈ s such that xσ ≻ sσ, and xσ
is irreducible by those rules l ⇒ r ∈ R for which xσ ≈ sσ ≻ l ≈ r. Furthermore,
C ·σ is variable irreducible w.r.t. R if all variables from C are variable irreducible

Table 2. Inference Rules of the BS Calculus

Positive superposition:

(C ∨ s ≈ t) · ρ (D ∨ w ≈ v) · ρ

(C ∨ D ∨ w[t]p ≈ v) · θ

(i) σ = MGU(sρ, wρ|p) and θ = ρσ;
(ii) tθ � sθ and vθ � wθ;
(iii) (s ≈ t) · θ is strictly eligible;
(iv) (w ≈ v) · θ is strictly eligible;
(v) sθ ≈ tθ � wθ ≈ vθ;
(vi) w|p is not a variable.

Negative superposition:

(C ∨ s ≈ t) · ρ (D ∨ w 6≈ v) · ρ

(C ∨ D ∨ w[t]p 6≈ v) · θ

(i) σ = MGU(sρ, wρ|p) and θ = ρσ;
(ii) tθ � sθ and vθ � wθ;
(iii) (s ≈ t) · θ is strictly eligible;
(iv) (w 6≈ v) · θ is eligible;
(v) w|p is not a variable.

Reflexivity resolution:

(C ∨ s 6≈ t) · ρ

C · θ

(i) σ = MGU(sρ, tρ) and θ = ρσ;
(ii) (s 6≈ t) · θ is eligible.

Equality factoring:

(C ∨ s ≈ t ∨ s′ ≈ t′) · ρ

(C ∨ t 6≈ t′ ∨ s′ ≈ t′) · θ

(i) σ = MGU(sρ, s′ρ) and θ = ρσ;
(ii) tθ � sθ and t′θ � s′θ;
(iii) (s ≈ t) · θ is eligible.

w.r.t. R. For C · σ a possibly nonground closure, irredR(C · σ) is the set of all
ground closures C · στ that are variable irreducible w.r.t. a rewrite system R.

A closure C ·σ is redundant w.r.t. a set of closures N if, for all rewrite systems
R and all ground substitutions τ , if C ·στ ∈ irredR(C ·σ), then irredR(N) contains
closures C1, . . . , Cn, such that {C1, . . . , Cn} |= Cστ and Cστ ≻ Ci, where ≻ is
the multiset extension of the literal ordering to closures.

We extend basic superposition with several simplification rules, which can
simplify a closure set N ∪{C ·ρ} to N ∪{C1 ·ρ, . . . , Cn ·ρ}. Such application of a
simplification rule is sound if it preserves satisfiability; it is correct if the closure
C ·ρ is redundant w.r.t. N ∪{C1 ·ρ, . . . , Cn ·ρ}. In [5] the authors present several
sound and correct simplification rules, such as elimination of duplicate literals,
tautology deletion, closure subsumption, and elimination of marked positions—
that is, replacing C · σ with Cρ · θ such that σ = ρθ.

The following two simplification rules can be used to split off ground literals
in closures: cut nondeterministically derives L · {} or L · {} for a ground literal
L, and ground unit resolution simplifies a closure C · ρ ∨ L · ρ into C · ρ if the
closure set contains a ground closure L′ · θ such that Lρ = L′θ.

Let N0 be a set of closures of the form C · {}, and let N∞ be obtained by a
fair saturation of N0 by BS up to redundancy. Then, N0 is unsatisfiable if and
only if N∞ contains the empty closure.

3 Preprocessing

We split our decision procedure into a preprocessing phase, which converts a
SHOIQ knowledge base KB into a set of closures of a certain type, and a
saturation phase, which checks satisfiability of the closure set using BS. In the
rest of this section, we present the preprocessing phase in detail.

Table 3. Closure Types after Preprocessing

Axiom Closure

R = Inv(S) 1. ¬R(x, y) ∨ S(y, x) and ¬S(x, y) ∨ R(y, x)

R ⊑ S 2. ¬R(x, y) ∨ S(x, y)

L1 ⊑ > n R.L2 3. L1(x) ∨ R(x, fi(x))

4. L1(x) ∨ L2(fi(x))

5. L1(x) ∨ fi(x) 6≈ fj(x) 1 ≤ i < j ≤ n

⊤ ⊑
F

Li 6.
W

Li(x)

L ⊑ {c} 7. L(x) ∨ x ≈ c

L1 ⊑ 6 n R.L2 8. L1(x) ∨ ¬R(x, y) ∨ L2(y) ∨
Wn

i=1 fi(x) ≈ y

L(c) 9. L(c)

R(c, d) 10. R(c, d)

c ≈ d 11. c ≈ d

c 6≈ d 12. c 6≈ d

Note: L(i) are of the form A or ¬A for A an atomic concept. L1 ⊑ ∃R.L2 and

L1 ⊑ ∀R.L2 are translated as L1 ⊑ > 1R.L2 and L1 ⊑ 6 0R.L2, respectively.

Eliminating Transitivity Axioms. It is well-known that deciding a logic with
transitivity axioms by means of saturation calculi is difficult, and that it re-
quires advanced techniques [13]. Therefore, we eliminate transitivity axioms by
polynomially encoding KB into an equisatisfiable knowledge base Ω(KB) with-
out such axioms. Roughly speaking, a transitivity axiom Trans(S) is replaced
with axioms ∀R.C ⊑ ∀S.(∀S.C), for each R with S ⊑∗ R and C is a “relevant”
concept from KB . For more details, please see [14, Section 5.2]. (The latter result
considers only SHIQ; for SHOIQ, the encoding is the same, and extending the
correctness proof is trivial.) Similar encodings were presented in [21, 20].

Translation into Closures. Next, we simplify the TBox axioms of Ω(KB) by in-
troducing new concept names for nonatomic subconcepts. For example, we sim-
plify the axiom C ⊑ ∃R.∃S.A by introducing a new concept Q and by replacing
this axiom with C ⊑ ∃R.Q and Q ⊑ ∃S.A. This transformation is analogous to
the structural transformation [17]; for details, please see [14, Section 5.3.1].

For unary coding of numbers in number restrictions, this transformation is
polynomial, and it preserves satisfiability. Furthermore, it produces axioms con-
taining at most one nonatomic concept. Such axioms are converted into closures
by translating them into first-order logic using the operator π from Table 1,
skolemizing the existential quantifiers, and translating the result into conjunc-
tive normal form. We denote the resulting set of closures with Ξ(KB). Table 3
shows the closures that are produced by different types of axioms.

Introduction of Guards. Using nominals, one can restrict the cardinality of the
interpretation domain, which makes it possible to derive a closure of the form
x ≈ a1 ∨ · · · ∨ x ≈ an. Such closures can cause problems, since the variable x is
unshielded (that is, x does not occur in the closure as a proper subterm). This
allows for superposition inferences from x, which are prolific since x unifies with
any term. We avoid this problem using the following transformation.

Definition 1. For a closure C ·ρ, a variable x of Cρ is guarded if it occurs in Cρ
in a negative nonequational literal, called a guard for x. Let KB be a SHOIQ
knowledge base and T a predicate not occurring in Ξ(KB). Then, Γ (KB) is the
smallest set such that (i) for each closure C · ρ ∈ Ξ(KB), Γ (KB) contains the
closure ¬T (x1)∨· · ·∨¬T (xn)∨C ·ρ, where x1, . . . , xn are all nonguarded variables
of Cρ; (ii) for each constant c occurring in Ξ(KB), Γ (KB) contains the closure
T (c) (if there are no constants, we add one); and (iii) for each function symbol
f occurring in Ξ(KB), Γ (KB) contains the closure ¬T (x) ∨ T (f(x)).

Lemma 1. Ξ(KB) is satisfiable if and only if Γ (KB) is satisfiable.

Proof. (⇒) Let I be a model of Ξ(KB), and I ′ an interpretation obtained by
making T (x) to be true for all x. Clearly, I ′ is a model of Γ (KB). (⇐) In each
Herbrand model I of Γ (KB), ¬T (x)∨ T (f(x)) and T (c) ensure that T holds on
all elements of I. Hence, each ¬T (xi) in a closure from Γ (KB) is false in I, so I
is a model of Ξ(KB). ⊓⊔

4 Saturating Closures by Basic Superposition

After preprocessing, our algorithm continues by saturating the set of closures
Γ (KB) by basic superposition. To prove that the saturation terminates, we apply
the approach used in most existing resolution-based procedures [12, 6, 7, 16, 1].
We define a class of closures NDL and demonstrate the following properties:
(i) NDL contains the closures obtained by translating a SHOIQ knowledge
base KB , (ii) applying an inference rule of BS to closures from NDL produces
a closure in NDL, and (iii) NDL contains finitely many closures for a finite
signature. For a fixed signature, Conditions (i)–(iii) ensure that BS produces
only finitely many closures from NDL in a saturation. However, as we discuss
in the following subsection, to coerce BS into producing closures of a restricted
syntactic structure, we introduce several novel simplification rules. These rules
can extend the signature, so, to ensure termination, we additionally show that
(iv) the signature is extended only a finite number of times in a saturation.

4.1 The Problems in Ensuring Termination for SHOIQ

It is well-known that reasoning in SHOIQ is difficult due to a subtle interac-
tion involving nominals, number restrictions, and inverse roles. This interaction
makes it difficult to ensure termination of BS on Ξ(KB). We demonstrate these
problems next on an example and sketch our solution.

Let KB be a SHOIQ knowledge base containing axioms T1–T4 from Ta-
ble 4. The preprocessing step, when applied to these axioms, produces the clo-
sures (1)–(9) shown on the far right; furthermore, saturation of (1)–(9) by basic
superposition produces closures (10)–(18). Note that (18) is similar in structure
to (11): (18) just contains two literals fi(x) ≈ g1(c) and fi(x) ≈ g2(c) instead of
just one literal fi(x) ≈ c; additionally, (18) contains ¬T (x). It is easy to see that
all inferences with (11) can be repeated for (18), and that this would produce

Table 4. Example of Termination Problems

Knowledge base KB and the closures obtained after preprocessing:

T1. O ⊑ {c} ⇒ ⇒ (1) ¬O(x) ∨ x ≈ c

T2. ⊤ ⊑ ∃R1.⊤ ⊔ ∃R2.⊤ ⇒ ⊤ ⊑ U1 ⊔ U2 ⇒ (2) ¬T (x) ∨ U1(x) ∨ U2(x)

⇒ Ui ⊑ ∃Ri.⊤, i = 1, 2 ⇒ (3) ¬Ui(x) ∨ Ri(x, fi(x))

T3. ⊤ ⊑ 61 R−
i .⊤, i = 1, 2 ⇒ ⇒ (4) ¬R−

i (x, y) ∨ gi(x) ≈ y

⇒ inverses of Ri, i = 1, 2 ⇒ (5) ¬Ri(x, y) ∨ R−
i (y, x)

T4. O ⊑ ∀Ri.O, i = 1, 2 ⇒ ⇒ (6) ¬O(x) ∨ ¬Ri(x, y) ∨ O(y)

introduction of guards ⇒ (7) T (c)

⇒ (8) ¬T (x) ∨ T (fi(x))

⇒ (9) ¬T (x) ∨ T (gi(x))

Saturation of (1)–(9):

[Resolving 3 with 6]: (10) ¬Ui(x) ∨ ¬O(x) ∨ O([fi(x)])
[Resolving 10 with 1]: (11)¬Ui(x) ∨ ¬O(x) ∨ [fi(x)] ≈ c

[Superposing 11 into 3]: (12) ¬Ui(x) ∨ ¬O(x) ∨ Ri(x, c)

[Resolving 12 with 5]: (13) ¬Ui(x) ∨ ¬O(x) ∨ R−
i

(c, x)

[Resolving 13 with 4]: (14) ¬Ui(x) ∨ ¬O(x) ∨ x ≈ gi(c)

[Resolving 2 with 8]: (15) ¬T (x) ∨ U1([fi(x)]) ∨ U2([fi(x)])

[Resolving 15 with 14]: (16) ¬T (x) ∨ U2([fi(x)]) ∨ ¬O([fi(x)]) ∨ [fi(x)] ≈ g1(c)
[Resolving 16 with 14]: (17) ¬T (x) ∨ ¬O([fi(x)]) ∨ [fi(x)] ≈ g1(c) ∨ [fi(x)] ≈ g2(c)

[Resolving 10 with 17]: (18)¬T (x) ∨ ¬Ui(x) ∨ ¬O(x) ∨ [fi(x)] ≈ g1(c) ∨ [fi(x)] ≈ g2(c)

The result after simplifying (18) with (11):

(19) ¬T (x) ∨ ¬Ui(x) ∨ ¬O(x) ∨ g1(c) ≈ c ∨ g2(c) ≈ c

even longer closures with even deeper literals fi(x) ≈ g1(g1(c)), fi(x) ≈ g2(g1(c))
and so on. This clearly prevents the saturation from terminating.

To deal with this problem, we express (18) equivalently using an additional
closure (19). It is easy to see that (19) is a logical consequence of (11) and (18).
Furthermore, (19) makes (18) redundant, since (18) follows from smaller closures
(11) and (19). Thus, (18) can be deleted from the closure set, which eventually
ensures termination of the saturation.

4.2 The Saturation Strategy for Deciding Satisfiability of Γ (KB)

We say that N is a set of DL-closures if every closure in N is of some form from
Table 5. Unary predicate symbols in N are organized into two sets A and B.

Lemma 2. For KB a SHOIQ knowledge base, Γ (KB) is a set of DL-closures.

Proof. The set Ξ(KB) contains only closures from Table 3, and, due to Defini-
tion 1, each closure in Γ (KB) contains a guard literal for each variable. ⊓⊔

To obtain a procedure for checking satisfiability of Γ (KB), we next choose
the appropriate parameters for BS, and extend it with certain simplification
rules. These rules can extend the signature with new predicate symbols and
constants. To ensure that only finitely many new symbols are introduced into
the signature, our rules reuse previously introduced symbols whenever possible.
Thus, an application of a simplification rule depends not only on the current
closure set, but also on the inferences applied previously.

Table 5. Types of DL-Closures

1 α(x) ∨ (¬)f(x) ≈ g(x)
2 α(x) ∨ (¬)f([g(x)]) ≈ x

3 α(x) ∨ (¬)A(f(x))
4 β(x) ∨ (¬)f(x) ≈ c

5 β(x) ∨
W

(¬)x ≈ ti

6 α(x) ∨ β([f(x)]) ∨
W

[f(x)] ≈ ti ∨
W

(¬)x ≈ ci

Condition (∗): if the closure contains a literal x ≈ ci, then the closure set
contains α′(x) ∨ g(f(x)) ≈ x such that α(x) = α′(x) ∨ α′′(x).

7 α1(x) ∨ ¬R(x, y) ∨ α2(y) ∨
Wn

i=1 fi(x) ≈ y

8 ¬R(x, y) ∨ S(x, y) or ¬R(x, y) ∨ S(y, x)
9 α(x) ∨ R(x, f(x)) or α(x) ∨ R(f(x), x)

10 β(x) ∨ R(x, c) or β(x) ∨ R(c, x)
11 unit closures and (¬)B(t) (¬)t1 ≈ t2 (¬)f(g(c)) ≈ d

the empty closure: (¬)R(c, d) (¬)R(c, f(d)) (¬)R(f(c), d) �

A ⊆ B are sets of predicate symbols; A contains all predicate symbols of Γ (KB).
Each variable in each closure is guarded (see Definition 1).
α(x) is a disjunction (¬)A1(x) ∨ · · · ∨ (¬)An(x) with Ai ∈ A.
β(x) is a disjunction (¬)B1(x) ∨ · · · ∨ (¬)Bn(x) with Bi ∈ B.
Disjunctions α(x), β(x), β([f(x)]),

W
(¬)x ≈ ti, and

W
[f(x)] ≈ ti may be empty.

c and d are constants, and t(i) are ground terms of the form c or f(c).

Definition 2. With BSDL we denote the BS calculus parametrised by any ad-
missible term ordering ≻ such that f(x) ≻ A(x) ≻ B(x) ≻ c, R(x, c) ≻ A(x),
R(c, x) ≻ A(x), and B(f(x)) ≻ g(c), for a binary predicate R ∈ A, and unary
predicates A ∈ A and B ∈ B\A. The selection function of BSDL selects in C ·σ
a literal of the form ¬R(x, y), x 6≈ c, or x 6≈ f(c); if there are no such literals
and Cσ does not contain a term f(x), an atom R(x, c), or an atom R(c, x), it
selects a literal ¬B(x) if there is one.

Apart from the standard BS inferences, BSDL eagerly applies the simplifi-
cation rules from Table 6, elimination of duplicate literals, tautology deletion,
closure subsumption, and ground unit resolution. Immediately after deriving a
closure C ·ρ∨L ·ρ where Lρ is ground, BSDL applies the cut rule for Lρ. Marked
positions are removed eagerly if this enables applying a simplification rule.

An example of an ordering suitable for BSDL is a Knuth-Bendix ordering
(KBO) [3] with weight(f) > weight(R) > weight(A) > weight(B) > weight(c) >
weight(tt), for each function symbol f , binary predicate symbol R, unary predi-
cate symbols A ∈ A and B ∈ B \ A, and a constant symbol c.

Next, we demonstrate that the simplification rules of BSDL are sound and
correct, so that they do not affect soundness or completeness of BS.

Lemma 3 (Soundness). In every BSDL saturation, each application of a sim-
plification rule is sound.

Proof. Let N0, N1, . . . , Nn be a BSDL saturation and I0 a model of N0. We prove
the lemma by constructing a model Is for each Ns with 1 ≤ s ≤ n inductively.
Consider all possible cases for the inference producing Ns from Ns−1:

Table 6. Simplification Rules of BSDL

Decomposition 1:

D · ρ ∨ L · ρ

D · ρ ∨ A(x),

¬A(x) ∨ L · ρ

(i) L · ρ is (¬)f(x) ≈ g(x), (¬)f([g(x)]) ≈ x,
R(x, f(x)), or R(f(x), x);

(ii) Dρ contains a term h(x);
(iii) If Decomposition 1 has already been applied

to a premise with the same L · ρ, then A
is the same as in the previous application;
otherwise, A ∈ A is fresh.

Decomposition 2:

D · ρ ∨ f(x) ≈ c

D · ρ ∨ B(x),

¬B(x) ∨ f(x) ≈ c

(i) Dρ contains either a term h(x), or a literal
(¬)A(x) with A ∈ A;

(ii) If Decomposition 2 has already been applied
to a premise with the same f(x) ≈ c, then
B is the same as in the previous application;
otherwise, B ∈ B \ A is fresh.

Nominal Generation 1:

α(x) ∨
Wn

i=1 [f(x)] ≈ ti

α(x) ∨
Wk

i=1 f(x) ≈ ci,

α(x) ∨
Wn

j=1 ci ≈ tj

(1 ≤ i ≤ k)

(i) Some ti is of the form h(c);
(ii) If Nominal Generation 1 has already been

applied to some α(x) ∨
Wn1

i=1 [f(x)] ≈ t′i
(with the same α(x) and f), then k and ci

are the same as in this previous application;
otherwise, k = n and ci are fresh.

Nominal Generation 2:

α(x) ∨
Wn

i=1 [f(x)] ≈ ti ∨
Wm

i=1 x ≈ ci

α(x) ∨
Wk

i=1 Bi(x),

¬Bi(x) ∨ f(x) ≈ ei,

¬Bi(x) ∨ x ≈ di,

α(x) ∨
Wn

j=1 ei ≈ tj ∨
Wm

j=1 di ≈ cj

(1 ≤ i ≤ k)

(i) Some ti is of the form h(c);
(ii) A closure α′(x) ∨ g(f(x)) ≈ x, such that

α(x) = α′(x)∨ α′′(x), has been derived be-
fore;

(iii) If Nominal Generation 2 has been applied to
some α(x) ∨

Wn1

i=1 [f(x)] ≈ t′i ∨
Wm1

i=1 x ≈ c′i
(with the same α(x) and f), then k, di, ei,
and Bi are the same as in this previous ap-
plication; otherwise, k = n + m and di, ei,
and Bi ∈ B \ A are fresh.

(Standard BS inferences) Is := Is−1 is clearly a model of Ns.
(Decomposition 1) If the predicate symbol A is reused in the inference, we

set Is := Is−1; otherwise, we extend Is−1 to Is by interpreting A(x) exactly as
Lρ. Obviously, Is is a model of Ns.

(Decomposition 2) Analogous to Decomposition 1.
(Nominal Generation 1) If ci are reused in the inference, we set Is := Is−1.

If ci are new and α(x) is true for all x, we extend Is−1 to Is by interpreting new
symbols arbitrarily. Otherwise, α(x) ∨

∨n

i=1
[f(x)] ≈ ti ensures that, for those

x for which α(x) is false in Is−1, f(x) has ℓ distinct values o1, . . . , oℓ in Is−1,
1 ≤ ℓ ≤ n, so we extend Is−1 to Is by interpreting ci as oi for i ≤ ℓ and as o1

for i > ℓ.
Hence, if α(x) is true for all x, all conclusions are obviously true in Is. Oth-

erwise, ci represent exactly those values f(x) for which α(x) is false, so each ci

is interpreted as some tj ; therefore, all conclusions are true in Is.
(Nominal Generation 2) If di, ei, and Bi are reused in the inference, we set

Is := Is−1. If di, ei, and Bi are new and α(x) is true for all x, we extend Is−1 to Is

by interpreting di and ei arbitrarily, and making Bi false everywhere. Otherwise,
let x be such that α(x) is false in Is−1. By Condition (ii), α′(x) is also false, so
x ≈ g(f(x)). Moreover, α(x)∨

∨n

i=1
[f(x)] ≈ ti ∨

∨m

i=1
x ≈ ci ensures that either

f(x) is equal to one of t1, . . . , tn, or x is equal to one of c1, . . . , cm. These two
conditions imply that x can only be equal to one of g(t1), . . . , g(tn), c1, . . . , cm,
so α(x) is false for exactly ℓ distinct domain elements o1, . . . , oℓ, 1 ≤ ℓ ≤ n + m.
We extend Is−1 to Is as follows: for i ≤ ℓ, we interpret di as oi, ei as f(oi), and
make Bi true only for oi; for i > ℓ, we interpret di as o1, ei as f(o1), and make
Bi true only for o1.

Hence, if α(x) is true for all x, all conclusions are obviously true in Is. Oth-
erwise, for every x such that α(x) is false, i exists such that di is equal to x, Bi

holds only on x, and ei is equal to f(x). This makes the first three conclusions
true in Is; the fourth conclusion is true in Is because of the premise. ⊓⊔

Lemma 4 (Correctness). All BSDL simplification rules are correct.

Proof. For each simplification rule with the premise C · ρ and conclusions Ci · ρ,
1 ≤ i ≤ n, ground substitution τ , and rewrite system R, we need to show that,
if C · ρτ is variable irreducible w.r.t. R, then (i) Ci · ρτ are variable irreducible
w.r.t. R, (ii) C1ρτ, . . . , Cnρτ |= Cρτ , and (iii) Cρτ ≻ Ciρτ . Property (i) is
trivially satisfied for all simplification rules from Table 6, since each substitution
position in Ci · ρ corresponds to a substitution position in C · ρ. Next, we prove
properties (ii) and (iii) for each rule. Let u = xτ .

(Decomposition 1) The instance C = Dρτ ∨ Lρτ of the premise can be ob-
tained by resolving the instances E1 = ¬A(u)∨Lρτ and E2 = Dρτ ∨A(u) of the
conclusions on A(u). Furthermore, Dρτ contains a term h(u) by Condition (ii),
and h(u) ≻ A(u) by Definition 2, so Dρτ ≻ A(u). Similarly, Lρτ contains a term
f(u) by Condition (i), so Lρτ ≻ ¬A(u). Thus, C ≻ E1 and C ≻ E2.

(Decomposition 2) By Condition (i), Dρ contains either h(x), but then
h(u) ≻ B(u), or Dρ contains (¬)A(x), but then (¬)A(u) ≻ B(u) by Defini-
tion 2. Hence, Dρτ ≻ B(u), so the rest is analogous to Decomposition 1.

(Nominal Generation 1) The instance C = α(u) ∨
∨n

i=1
f(u) ≈ ti of the

premise can be obtained by simultaneously paramodulating on each ci from
D = α(u) ∨

∨k

i=1
f(u) ≈ ci into Ei = α(u) ∨

∨n

j=1
ci ≈ tj . Furthermore, by

Condition (i) of Nominal Generation 1, some t = ti is of the form h(c), and,
because h(c) ≻ ci, we have f(u) ≈ t ≻ f(u) ≈ ci, which implies C ≻ D.
Similarly, f(u) ≈ tj ≻ ci ≈ tj , so C ≻ Ei.

(Nominal Generation 2) The instance C = α(u)∨
∨n

i=1
f(u) ≈ ti∨

∨m

i=1
u ≈ ci

of the premise can be obtained from the conclusions as follows: first, paramod-
ulate from Ci = ¬Bi(u) ∨ f(u) ≈ ei and from Di = ¬Bi(u) ∨ u ≈ di on ei and
di, respectively, into Ei = α(u) ∨

∨n

j=1
ei ≈ tj ∨

∨m

j=1
di ≈ cj ; this produces

E′
i = α(u) ∨ ¬Bi(u) ∨

∨n

j=1
f(u) ≈ tj ∨

∨m

j=1
u ≈ cj ; then, resolve all E′

i with

F = α(u)∨
∨k

i=1
Bi(u) on Bi(u) to obtain C. Furthermore, some t = ti is of the

form h(c) by Condition (i), so h(c) ≻ ei implies f(u) ≈ t ≻ f(u) ≈ ei. Since
f(u) ≻ ¬Bi(u), so C ≻ Ci. Similarly, f(u) ≈ t ≻ u ≈ di, so C ≻ Di. Finally,
f(u) ≻ ei and f(u) ≻ di imply C ≻ Ei, and f(u) ≻ Bi(u) implies C ≻ F . ⊓⊔

4.3 Saturation of DL-Closures by BSDL

We now show that BSDL inferences on DL-closures always produce a DL-closure.

Table 7. Eligible Literals in DL-Closures

1 α(x) ∨ (¬)f(x) ≈ g(x) 2 α(x) ∨ (¬)f([g(x)]) ≈ x

3 α(x) ∨ (¬)A(f(x)) 4 β(x) ∨ (¬)f(x) ≈ c

5.1 β(x) ∨
W

(¬)x ≈ ti ∨ x 6≈ t 5.2 β(x) ∨ ¬B(x) ∨
W

x ≈ ti

6.1 α(x) ∨
W

[f(x)] ≈ ti ∨
W

(¬)x ≈ ci ∨ x 6≈ c

6.2 α(x) ∨ β([f(x)]) ∨ (¬)B([f(x)]) ∨
W

[f(x)] ≈ ti ∨
W

x ≈ ci

7 α1(x) ∨ ¬R(x, y) ∨ α2(y) ∨
Wn

i=1 fi(x) ≈ y

8.1 ¬R(x, y) ∨ S(x, y) 8.2 ¬R(x, y) ∨ S(y, x)

9.1 α(x) ∨ R(x, f(x)) 9.2 α(x) ∨ R(f(x), x)

10.1 β(x) ∨ R(x, c) 10.2 β(x) ∨ R(c, x)

11.1 (¬)B(t) 11.2 (¬)t1 ≈ t2 11.3 (¬)f(g(c)) ≈ d

11.4 (¬)R(c, d) 11.5 (¬)R(c, f(d)) 11.6 (¬)R(f(c), d)

Lemma 5 (Preservation of DL-Closures). Let N be a set of DL-closures to
which no BSDL simplification is applicable. Then, an application of a BSDL in-
ference to N followed by exhaustive simplification produces a set of DL-closures.

Proof. Before considering all possible inferences with closures from N , we con-
sider the types of literals that can be eligible in each closure from N . Each closure
of type 1–4 contains exactly one literal containing a function symbol; this literal
is then eligible since it is maximal and no literal is selected. A closure of type
5 either contains a literal x 6≈ t which is selected, or it contains a guard for x
which is selected. A closure of type 6 (that is not also of type 5) can contain
a literal x 6≈ c, which is then selected. Otherwise, the closure must contain a
literal (¬)B([f(x)]): if this were not the case, the closure would have the form
α(x)∨

∨
[f(x)] ≈ ti∨

∨
x ≈ ci; if some ti is of the form h(c), the closure would be

simplified by Nominal Generation 1 or 2 (Condition (ii) of Nominal Generation
2 is satisfied because Condition (∗) holds for the premise); if all ti are constants,
the closure would be simplified by Decomposition 2 (Condition (i) is satisfied
by a guard for x occurring in α(x)). Since B(f(x)) ≻ f(x) and B(f(x)) ≻ g(c)
by Definition 2, a literal of this form is eligible for inferences. The cases for the
remaining closures are straightforward and are summarized in Table 7.

Next, we enumerate all BSDL-inferences between DL-closures and show that
they result in DL-closures. With [c1, c2] = [s] = [r1, r2, . . .] we denote an in-
ference between closures c1 and c2 resulting in closures r1, r2, . . ., possibly by
applying simplification s exhaustively. Cut, ground unit resolution, and closure
subsumption ensure that ground literals occur only in unit closures; we call a
combination these inferences splitting.

Resolution inferences are possible only between closures of types 3, 5.2, 6.2,
and 11.1 on unary literals; 9, 10, 11.4, 11.5, and 11.6 on positive binary literals;
and 7, 8, 11.4, 11.5, and 11.6 on negative binary literals. Resolution with a

premise of type 11 results in a ground closure, which is split into closures of
type 11. The remaining resolution inferences are as follows: [3,3] = [5], [3,5.2]
= [6], [3,6.2] = [6], [5.2,6.2] = [6], [6.2,6.2] = [6], [9.1,7] = [Decomposition 1] =
[1,6], [9.2,7] = [Decomposition 1] = [2,6], [9,8] = [9], [10.1,7] = [Decomposition 2,
Splitting] = [4,5,11], [10.2,7] = [Splitting] = [5,11], [10,8] = [10].

Superposition inferences are possible from a nonground closure of type 1, 2,
or 4, or from a ground closure of type 11.2 or 11.3, either into a term f(x) of 1,
3, 4, or 9, a term f([g(x)]) of 2, or a ground (sub)term of 5.1, 6.1, 10, or 11. Note
that superposition into or from a ground term does not increase the term depth,
so the other premise remains of the same type or becomes ground. Therefore,
we do not consider types 5.1, 6.1, 10, and 11 in the following case analysis.

Superposition from 1 into 1, 3, 4, or 9 produces the closure of the latter type,
since a function symbol f is just replaced by g: [1,1] = [1], [1,3] = [3], [1,4] = [4],
[1,9]= [9]. Superposition from 1 into 2 produces α([g′(x)])∨α′(x)∨g([g′(x)]) ≈ x
which is simplified into types 2 and 6 using Decomposition 1.

Superposition from 2 into 1, 3, 4, or 9 instantiates the variable of the second
premise to [g(x)]: [2,1] = [Decomposition 1] = [2,6], [2,3] = [6], [2,4] = [6],
[2,9] = [Decomposition 1] = [9,6]. Superposition from 2 into 2 produces either a
tautology, which is deleted, or a closure with a literal x 6≈ x, which is removed
by reflexivity resolution and subsumption deletion.

Superposition from 4 into 1, 2, 3, 4, or 9 results in these inferences: [4,1] =
[4], [4,2] = [6], [4,3] = [Splitting] =[5,11], [4,4] = [Splitting] = [5,11], [4,9] = [10].

Reflexivity resolution inferences can be applied only to a closure of type 1,
5.1, 6.1, or 11.2. For 1 we obtain 5; in the remaining cases, the result is ground
and it is split into closures of type 11.

Factoring inferences are not applicable, because duplicate literals are eagerly
eliminated and closures with multiple equality literals are eagerly decomposed.

Condition (∗). Consider an inference producing a closure of type 6 with a
literal x ≈ ci. Such an inference is either a superposition between 2 and 4, so the
premise of type 2 validates Condition (∗) of the conclusion, or it has a premise
of type 6, so x ≈ ci in the conclusion stems from this premise. Hence, (∗) is
satisfied for all conclusions of type 6.

Guards are preserved by all inferences because each premise contains a guard,
and no inference involves a negative nonequational literal from all premises.

Simplification inferences always produce DL-closures: for our custom rules,
this follows from Table 6, and for the remaining standard ones this is trivial. ⊓⊔

4.4 Termination and Complexity Analysis

We now show that each saturation of Γ (KB) by BSDL terminates. Assuming
unary coding of numbers in number restrictions, the number of function symbols
in Γ (KB) is linear in |KB |. To the best of our knowledge, this assumption is
used in all practical DL reasoning algorithms.

Lemma 6. Let Γ (KB) = N0, N1, . . . , Nn be a BSDL saturation. Then, the num-
ber of constants in each Ni is at most doubly exponential, and the number of clo-
sures in Ni is at most triply exponential in |KB |, for unary coding of numbers.

Proof. Nominal Generation 1 and 2 introduce new constants at most once for
a combination of α(x) and f . Other than the predicates from Γ (KB), α(x)
can contain the predicates A introduced by Decomposition 1, of which at most
four are introduced for a pair of function symbols f and g. Hence, the number
of disjunctions α(x) is at most exponential in |KB |, and so is the number of
Nominal Generation inferences that introduce new constants. Furthermore, the
premise of such an inference can involve all terms of the form c or f(c) derived
thus far, so the total number of constants can increase only by a linear factor.
Thus, the number of constants in Ni can be at most doubly exponential in |KB |.

Decomposition 2 introduces at most one predicate B for a combination of f
and c, and Nominal Generation 2 introduces at most one predicate Bi for each
ei or di. Hence, the number of predicates in Ni is at most doubly exponential
in |KB |. Since each DL-closure contains at most one variable, the number of
different literals is at most doubly exponential, so the number of DL-closures
without repeated literals is at most triply exponential in |KB |. ⊓⊔

Theorem 1. BSDL decides satisfiability of a SHOIQ knowledge base KB in
triply exponential time, for unary coding of numbers.

Proof. Without loss of generality we can assume that an inference between two
closures is performed at most once in a saturation. By Lemmas 2 and 5, each
set of closures in a BSDL saturation contains only DL-closures, and is at most
triply exponential in size by Lemma 6. Hence, all DL-closures are derived after
at most triply exponential number of steps. Because simplification rules of BSDL

are sound and correct by Lemmas 3 and 4, the set of closures upon termination
is saturated up to redundancy. Hence, Γ (KB), and by Lemma 1 KB as well, is
satisfiable if and only if the saturated set does not contain the empty closure.

Since BSDL uses the cut rule, it is nondeterministic, so a straightforward
complexity estimation gives us only a nondeterministic triply exponential upper
bound. This can be improved to a deterministic triply exponential bound as
follows. The number of unit ground closures is at most doubly exponential, so the
number of cut inferences performed on each branch of the saturation is at most
doubly exponential. Hence, if we implement our procedure using backtracking,
the number of all inferences is triply exponential. ⊓⊔

5 Discussion and Conclusion

In this paper, we presented a resolution-based procedure for deciding satisfiabil-
ity of a SHOIQ knowledge base KB running in triply exponential time. The
high complexity of our procedure is due to a possibly doubly exponential num-
ber of constants introduced by Nominal Generation 1 and 2. To understand the
situations in which this can happen, consider the following example.

Let KB be a knowledge base from Table 8, which uses the well-known encod-
ing of binary numbers by DL concepts. A concept Bi represents the i-th bit of a
number. Thus, a number bp bp−1 . . . b0 with bi ∈ {0, 1} is represented by a con-
cept µp(bp)⊓· · ·⊓µ0(b0), where µi(0) = ¬Bi and µi(1) = Bi. Axioms T1 and T2

Table 8. Expressing Big Cardinality Restrictions in SHOIQ

T1. ⊤ ⊑ 62 R.⊤ T2. ⊤ ⊑ >1 R−.⊤
T3. B0 ⊑ ∀R.¬B0 T4. Bi+1 ⊓ Bi ⊑ ∀R.((Bi+1 ⊓ Bi) ⊔ (¬Bi+1 ⊓ ¬Bi))
T5. ¬B0 ⊑ ∀R.B0 T6. ¬Bi+1 ⊓ Bi ⊑ ∀R.((¬Bi+1 ⊓ Bi) ⊔ (Bi+1 ⊓ ¬Bi))
T7. ¬Bp ⊓ · · · ⊓ ¬B0 ⊑ {c} i = 1 . . . p

T8. ⊤ ⊑ >2 S.⊤ T9. ⊤ ⊑ 61 S−.⊤
T10. A0 ⊑ ∀S.¬A0 T11. Ai+1 ⊓ Ai ⊑ ∀S.((Ai+1 ⊓ Ai) ⊔ (¬Ai+1 ⊓ ¬Ai))
T12. ¬A0 ⊑ ∀S.A0 T13. ¬Ai+1 ⊓ Ai ⊑ ∀S.((¬Ai+1 ⊓ Ai) ⊔ (Ai+1 ⊓ ¬Ai))
A1. ¬Aq ⊓ · · · ⊓ ¬A0(c) i = 1 . . . q

T1—T7 express |Bp ⊓ · · · ⊓ B0| ≤ 22p
; T8—T12, A1 express |Aq ⊓ · · · ⊓ A0| ≥ 22q

ensure that a model of KB can be embedded into a binary R-tree: every element
has at most two R-successors and at least one R-predecessor. Axioms T3–T6
ensure that the numbers bp bp−1 . . . b0 corresponding to elements connected by
R-links are incremented by one. Together with axiom T7, this ensures that the
number of elements in the concept at the k-th level of this tree is at most 2k. In
particular, the last level, corresponding to the concept Bp⊓· · ·⊓B0, can contain
at most 22

p

elements. Using a dual set of axioms T8–T13 and A1, we express in
a similar way that the concept Aq ⊓ · · · ⊓ A0 contains at least 22

q

objects.
Now checking subsumption between Aq ⊓ · · · ⊓ A0 and Bp ⊓ · · · ⊓ B0 w.r.t.

KB amounts to testing whether a set with 22
q

elements can be embedded
into another set with 22

p

elements. Such combinatorial problems, commonly
called the pigeon hole principle, are known to be very hard for resolution [9].
On KB , our algorithm applies the Nominal Generation rules for all possible
α(x) = (¬)Bp(x) ∨ · · · ∨ (¬)B0(x) and introduces a doubly exponential number
of constants, because the constraint |Bp ⊓ · · · ⊓ B0| ≤ 22

p

is represented using a
fresh constant for each element of the set. Although this observation does not
prove that an optimal resolution-based procedure for SHOIQ cannot exist, it
suggests that resolution alone may not suffice. In our future work, we shall inves-
tigate if it is possible to integrate algebraic reasoning directly into resolution—for
example, as this was done for tableau calculi in [8].

However, worst-case complexity does not say anything about the typical case.
Namely, the previous example causes problems because it succinctly encodes bi-
nary numbers. However, many applications do not require much combinatorial
reasoning, so, on them, our algorithm does not introduce too many new con-
stants. In fact, the Nominal Generation rules are triggered by terms g(c), which
can only result from interaction between inverse roles, number restrictions, and
nominals. If these constructs are not used simultaneously, our algorithm becomes
similar to the algorithm for the DL SHIQ presented in [11], and it runs in expo-
nential time. Thus, our algorithm exhibits “pay-as-you-go” behavior. We shall
implement our new algorithm in KAON2 to see how it behaves in practice.

References

1. A. Armando, S. Ranise, and M. Rusinowitch. Uniform Derivation of Decision
Procedures by Superposition. In Proc. CSL’ 01, volume 2142 of LNCS, pages
549–563, Paris, France, September 10–13 2001. Springer.

2. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, ed-
itors. The Description Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press, January 2003.

3. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

4. L. Bachmair and H. Ganzinger. Resolution Theorem Proving. In A. Robinson
and A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chapter 2,
pages 19–99. Elsevier Science, 2001.

5. L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic Paramodulation.
Information and Computation, 121(2):172–192, 1995.

6. C. Fermüller, T. Tammet, N. Zamov, and A. Leitsch. Resolution Methods for the

Decision Problem, volume 679 of LNAI. Springer, 1993.
7. H. Ganzinger and H. de Nivelle. A Superposition Decision Procedure for the

Guarded Fragment with Equality. In Proc. LICS ’99, pages 295–305, Trento,
Italy, July 2–5 1999. IEEE Computer Society.

8. V. Haarslev, M. Timmann, and R. Möller. Combining Tableaux and Algebraic
Methods for Reasoning with Qualified Number Restrictions. In Proc. DL 2001,
volume 49 of CEUR Workshop Proceedings, Stanford, CA, USA, August 1–3 2001.

9. A. Haken. The Intractability of Resolution. Theorerical Computer Science, 39:297–
308, 1985.

10. I. Horrocks and U. Sattler. A Tableaux Decision Procedure for SHOIQ. In
Proc. IJCAI 2005, pages 448–453, Edinburgh, UK, July 30–August 5 2005. Morgan
Kaufmann Publishers.

11. U. Hustadt, B. Motik, and U. Sattler. Reducing SHIQ− Description Logic to Dis-
junctive Datalog Programs. In Proc. KR 2004, pages 152–162, Whistler, Canada,
June 2–5 2004. AAAI Press.

12. W. H. Joyner Jr. Resolution Strategies as Decision Procedures. Journal of the

ACM, 23(3):398–417, 1976.
13. Y. Kazakov and H. de Nivelle. A Resolution Decision Procedure for the Guarded

Fragment with Transitive Guards. In Proc. IJCAR 2004, volume 3097 of LNAI,
pages 122–136, Cork, Ireland, July 4–8 2004. Springer.

14. B. Motik. Reasoning in Description Logics using Resolution and Deductive

Databases. PhD thesis, Univesität Karlsruhe, Germany, 2006.
15. R. Nieuwenhuis and A. Rubio. Theorem Proving with Ordering and Equality

Constrained Clauses. Journal of Symbolic Computation, 19(4):312–351, 1995.
16. H. De Nivelle, R. A. Schmidt, and U. Hustadt. Resolution-Based Methods for

Modal Logics. Logic Journal of the IGPL, 8(3):265–292, 2000.
17. A. Nonnengart and C. Weidenbach. Computing Small Clause Normal Forms. In

A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, vol-
ume I, chapter 6, pages 335–367. Elsevier Science, 2001.

18. L. Pacholski, W. Szwast, and L. Tendera. Complexity Results for First-Order
Two-Variable Logic with Counting. SIAM Journal on Computing, 29(4):1083–
1117, 2000.

19. I. Pratt-Hartmann. Complexity of the Two-Variable Fragment with Counting
Quantifiers. Journal of Logic, Language and Information, 14(3):369–395, 2005.

20. R. A. Schmidt and U. Hustadt. A Principle for Incorporating Axioms into the
First-Order Translation of Modal Formulae. In Proc. CADE-19, volume 2741 of
LNAI, pages 412–426, Miami Beach, FL, USA, July 28–August 2 2003. Springer.

21. S. Tobies. Complexity Results and Practical Algorithms for Logics in Knowledge

Representation. PhD thesis, RWTH Aachen, Germany, 2001.

