
Representing and Querying Validity Time in RDF and OWL:
A Logic-Based ApproachI

Boris Motika

aOxford University Computing Laboratory, Oxford, UK

Abstract

RDF(S) and OWL 2 can currently represent only static information. In practice, however, the truth of statements often
changes with time. Semantic Web applications often need to represent such changes and reason about them. In this
paper we present a logic-based approach for representing validity time in RDF(S) and OWL 2. Unlike the existing
proposals, our approach is applicable to nondeterministic entailment relations and/or entailment relations that involve
existential quantification, such as the OWL 2 Direct Entailment and the OWL 2 RDF-Based Entailment. We also present
an extension of SPARQL that can be used to query temporal RDF(S) and OWL 2. Moreover, we present a general query
evaluation algorithm that can be used with all entailment relations used in the Semantic Web. Finally, we present two
optimizations of the algorithm that are applicable to entailment relations characterized by a set of deterministic rules,
such RDF(S) and OWL 2 RL/RDF Entailment.

Keywords: RDF, OWL, SPARQL, validity time, temporal databases, query answering

1. Introduction

The Resource Description Framework (RDF) [1] is the
standard language for metadata management in the Se-
mantic Web. RDF provides a simple, but powerful data
model that encodes facts using triples; sets of triples are
called RDF graphs. RDF Schema (RDFS) extends RDF
with vocabulary for schema modeling. The Web Ontol-
ogy Language (OWL), particularly in its latest incarna-
tion called OWL 2 [2], extends RDFS to a very expressive
ontology language. The semantics of RDF graphs is deter-
mined by entailment relations, such as Simple Entailment
or OWL 2 RL/RDF Entailment.

RDF(S) and OWL 2 have been implemented in RDF
management systems such as Jena [3], Jena2 [4], Sesame
[5], Oracle [6], Kowari [7], 4store [8], YARS [9], Hexas-
tore [10], and Redland [11], as well as reasoners such as
FaCT++ [12], Pellet [13], and HermiT [14]. Such systems
were successfully applied in numerous applications in fields
as diverse as biology [15], medicine [16], geography [17],
astronomy [18], agriculture [19], and defense [20]. These
applications, however, often need to deal with information
that is not static, but that changes with time. To under-
stand this problem, we present an example derived from
the author’s collaboration with ExperienceOn1—a start-
up IT company from Barcelona, Spain.

ExperienceOn aims to improve search in the tourism
domain by providing an advanced system that can answer

IThis is an extended version of a paper with the same name pub-
lished at ISWC 2010, pp. 550–565.

1http://www.experienceon.com/

complex requests such as “trips to the second week of Ok-
toberfest.” Users will input their questions in natural lan-
guage, and NLP technology will translate such questions
into one or more queries over a knowledge base containing
information about flights, lodging, events, geography, and
so on. ExperienceOn’s system must be able to represent
statements that are not universally true, but are associ-
ated with validity times—specifications of time instants
at which the statements are true. For example, “Oktober-
fest is being held in Munich” is true only while the festival
is actually being held; similarly, statements describing air-
line flight schedules are valid only in certain time intervals.
Validity time must be tightly integrated with reasoning;
for example, from the knowledge about Oktoberfest and
German geography, ExperienceOn’s system should be able
to conclude that “Oktoberfest is being held in Bavaria” is
true for the duration of the festival. Validity time should
also be integrated with a query language, allowing one
to retrieve “flights from London to Munich during Okto-
berfest.” Validity time thus affects virtually all aspects of
knowledge representation and reasoning in many advanced
application scenarios. Some applications also need to rep-
resent transaction times, which specify the period during
which a fact is present in the system [21]. Transaction
times are important in the context of data management,
but they are not part of an application domain’s descrip-
tion. Since modeling the latter is the primary concern in
the Semantic Web, in this paper we focus on validity rather
than transaction time. Note, however, that the techniques
for the management of one can kind of time often be ap-
plied to the other kind of time as well.

Preprint submitted to Elsevier December 15, 2011

RDF(S) and OWL 2 can represent only static facts
whose truth does not change with time. This deficiency
has been recognized in the Semantic Web community, and
a number of approaches for the representation, reasoning,
and querying of validity time were developed [22, 23, 24,
25, 26, 27, 28, 29]; we discuss various aspects of these ap-
proaches in Section 7. These approaches, however, do not
provide a general framework for the management of va-
lidity time in the Semantic Web: all approaches known
to us are applicable only to entailment relations that can
be characterized by deterministic inference rules without
existential quantifiers, such as RDFS or OWL 2 RL.

In this paper we present a novel logic-based approach
for representing validity time that is applicable to all en-
tailment relations of the Semantic Web, including RDF(S),
OWL 2 Direct Semantics, and all profiles of OWL 2. To
this end, in Section 3 we introduce a notion of temporal
RDF graphs similar to the one used in [22]. Instead of de-
veloping a notion of temporal entailment “from scratch,”
we give semantics to temporal graphs by simply mapping
them into first-order theories.

In Section 4, we turn our attention to the problem of
querying temporal graphs. We argue that a näıve exten-
sion of SPARQL with temporal features is likely to be
problematic. For example, let G be the temporal graph
in which some triple A holds from a fixed time instant t1
onwards, and let Q1 be a query for “all time instants at
which A holds”; the answer to Q1 on G is infinite since the
time line is unbounded. Furthermore, even if we restrict
temporal triples to finite intervals, the answers to queries
such as Q1 can be much larger than the graphs to which
the queries are applied. An obvious way to overcome this
problem is to restrict answers to time instants explicitly
occurring in the temporal graph; in our example, the an-
swer to Q1 on G would then contain only t1. Under such a
definition, however, evaluating the same query over seman-
tically equivalent temporal graphs could produce different
answers. For example, consider a temporal graph G′ in
which triple A holds between time instants t1 and t2, and
from t3 onwards, where t1 < t3 < t2. The constraints on
t1, t2, and t3 ensure that G and G′ are semantically equiv-
alent; however, the answer to Q1 on G′ would contain t1,
t2, and t3, which is different from the answer to Q1 on G.
We address these problems in two steps:

• We extend the formalization of SPARQL by Pérez et
al. [30] with primitives that allow for querying tem-
poral graphs. For each query expressed in our lan-
guage, the answers on semantically equivalent tem-
poral graphs are guaranteed to coincide. Our query
language explicitly incorporates the notions of max-
imality/minimality by allowing for queries such as
Q2 = “the maximal interval in which A holds” and
Q3 = “the minimal time instant at which A holds.”

• We define a syntactic notion of safety that guaran-
tees finiteness of temporal query answers. Queries
such as Q2 and Q3 are safe, but queries such as Q1

are not; intuitively, only queries that ask for maxi-
mal intervals can bind variables in a query.

In Section 5 we then turn our attention to algorithms
for dealing with temporal graphs.

• In Section 5.1 we present an algorithm that can de-
cide certain basic types of temporal entailments. Our
algorithm reduces a temporal entailment problem
to linearly many nontemporal entailment problems.
Thus, the algorithm can be applied to an arbitrary
temporal entailment relation for which the nontem-
poral counterpart is available, including relations re-
quiring nondeterministic reasoning and/or reasoning
with existential quantifiers, such as OWL 2 Direct
Entailment or OWL 2 RDF-Based Entailment.

• In Section 5.2 we present an algorithm for comput-
ing answers to safe temporal queries. The query an-
swering algorithm uses the temporal entailment al-
gorithm as a black box and thus handles arbitrary
temporal entailment relations.

In Section 6 we consider several optimizations of the
general query answering algorithm.

• In Section 6.1 we present a query answering algo-
rithm that is applicable to Simple Entailment. The
algorithm consists of two parts: a temporal graph
is preprocessed into a particular normal form, after
which the evaluation of temporal queries is reduced
to simple evaluation of conjunctive queries over the
normalization. The evaluation of conjunctive queries
is implemented in virtually all RDF management
systems, so integrating our algorithm into these sys-
tems should be straightforward.

• In Section 6.2 we present an algorithm for reason-
ing with temporal graphs that is applicable to de-
terministic entailment relations such as RDF(S) and
OWL 2 RL/RDF. Practical RDF systems usually
reason with such entailment relations on nontem-
poral graphs by materializing all consequences of a
suitable datalog program. We show how to modify
an arbitrary such program into one that correctly
processes the required temporal information. Our
approach can thus easily be integrated into existing
materialization-based RDF management systems.

2. Preliminaries

In this section we recapitulate some basic definitions of
first-order logic, RDF, OWL, and SPARQL.

2.1. First-Order Logic and Sorts

We use the notions of constants, variables, function
symbols, terms, predicates, atoms, and formulae from first-
order logic [31]. For σ a (partial) mapping of variables to

2

terms and ψ a first-order formula, σ(ψ) is the result of re-
placing in ψ, for each variable x such that σ(x) is defined,
each free occurrence of x with σ(x). A first-order interpre-
tation I is a tuple I = (4I , ·I), where 4I is a nonempty
domain set of I, and ·I is a function that assigns an in-
terpretation XI to each predicate, function symbol, and
constant X. Let ϕ and χ be arbitrary first-order formulae
without free variables. We write I |= ϕ to denote that ϕ is
satisfied in a first-order interpretation I; then, I is a model
of ϕ. Furthermore, we write ϕ |= χ to denote that I |= χ
for each I such that I |= ϕ; then, ϕ entails χ.

The skolemization of a first-order formula ϕ is a for-
mula ψ obtained by replacing existentially quantified vari-
ables occurring in ϕ with function terms as described in
[31]. For example, the skolemization of formula ϕ shown
below is the formula ψ, where c is a fresh constant and f
is a fresh function symbol.

ϕ = [∃x : A(x)] ∧ [∀x : A(x)→ ∃y : [R(x, y) ∧A(y)]]
ψ = A(c) ∧ [∀x : A(x)→ [R(x, f(x)) ∧A(f(x))]]

For arbitrary first-order formulae ϕ and χ without free
variables, and for ψ the skolemization of ϕ, we have ψ |= ϕ
(but ϕ |= ψ does not hold in general), and ϕ |= χ if and
only if ψ |= χ [31].

For reasons that will become apparent in Section 3,
we assume in this paper that the equality predicate ≈ is
treated as an ordinary first-order predicate with an explicit
axiomatization. With Γ≈ we denote the axioms of equality
from [31] instantiated for all the symbols in the signature.
(Note that Γ≈ is infinite if the signature is infinite.)

For reasons that will also become apparent in Section 3,
in this paper we use the many-sorted variant of first-order
logic. Please refer to [32] for a formal definition of many-
sorted logic. Roughly speaking, variables in many-sorted
logic range over fixed subsets of the domain sets.

2.2. RDF and OWL

The syntax of RDF [1] is defined w.r.t. infinite sets
U , B, and L of URI references, blank nodes, and literals,
respectively. Let UBL = U ∪ B ∪ L. An RDF triple (usu-
ally abbreviated to just triple) is an assertion of the form
〈s, p, o〉 such that s, p, o ∈ UBL.2 An RDF graph (usually
abbreviated to just graph) G is a finite set of triples. With
ul(G) and b(G) we denote the subsets of the elements of
U ∪ L and B, respectively, that occur in G. Blank nodes
are usually written as :x. For σ a (partial) mapping of
the blank nodes in G into UBL, with σ(G) we denote the
temporal graph obtained form G by replacing with σ(:x)
each blank node :x for which σ(:x) is defined.

The semantics of RDF is defined by a model theory
[33] that maps a graph G to RDF interpretations. In this

2RDF actually requires s ∈ U ∪ B, p ∈ U , and o ∈ UBL; however,
this is not important in our framework so we assume s, p, o ∈ UBL
for the sake of simplicity.

paper, however, we use a different, but nevertheless equiv-
alent formulation: we map G to a first-order theory ν(G)
that captures the consequences of G. For convenience, we
assume that each t ∈ U ∪ L corresponds to a first-order
constant t, and that each blank node :x ∈ B corresponds
to a first-order variable :x. Our mapping encodes the
truth of triples using a ternary first-order predicate T—
that is, each triple A = 〈s, p, o〉 is mapped into a first-order
atom χ(A) = T (s, p, o); furthermore, a graph G is mapped
into a formula χ(G) = ∃b(G) :

∧
A∈G χ(A), where ∃b(G)

abbreviates ∃ :x1 . . . ∃ :xk for { :x1, . . . , :xk} = b(G).
Several entailment relations can be used with RDF:

Simple Entailment, RDF Entailment, RDFS Entailment,
and D-Entailment are defined in [33], OWL 2 RDF-Based
Entailment is defined in [34], and OWL 2 RL/RDF Entail-
ment is defined in [35]. An entailment relation X places
constraints on RDF interpretations; in our framework, we
can capture these constraints using a first-order theory ΓX
(i.e., a set of first-order formulae) in which T and ≈ are
the only predicates. For example, for Simple Entailment,
Γsimple = ∅; for RDF Entailment, ΓRDF contains the rules
in [33, Section 7]; and for OWL 2 RL/RDF Entailment,
ΓRL contains the rules in [35, Section 4.3]. We assume
that ΓX does not contain the elements of B, and that, if
the equality predicate ≈ is used in ΓX , then ΓX contains
the explicit axiomatization of equality Γ≈. Note that ΓX is
not required to be finite. The semantics of a graphG under
entailment relation X is then captured by the first-order
theory νX(G) = {χ(G)} ∪ ΓX . A graph G1 X-entails a
graph G2, written G1 |=X G2, if νX(G1) |= νX(G2); the
latter condition is clearly equivalent to νX(G1) |= χ(G2).
Finally, for convenience, we define the following notation:

ulX(G) = ul(G) bX(G) = b(G)

πX(G) =
∧
A∈G

χ(A)

As defined above, πX(G), bX(G), and ulX(G) do not de-
pend on X if X is an entailment relation mentioned at the
beginning of this paragraph. However, we next present
different definitions of πX(G), bX(G), and ulX(G) for the
case when X is OWL 2 Direct Entailment. In this way,
we obtain notation that allows us to uniformly refer to an
arbitrary entailment relation of RDF and OWL 2.

The OWL 2 Direct Entailment (written DL due to its
relationship with description logics [36]) employs a com-
pletely different approach to interpreting graphs. A graph
G is said to encode an OWL 2 DL ontology if G can be
transformed into an OWL 2 DL ontology O(G) as speci-
fied in [37]. This process is rather complex, and we cannot
discuss it in detail. Roughly speaking, various triple pat-
terns are applied to G in order to extract parts of O(G).
Axioms of O(G) are “recognized” by triple patterns listed
in [37, Tables 16 and 17]. Each of these triple patterns
contains either a single main triple or a single triple of
the form 〈 :x, rdf :type, y〉 where :x is a blank node and
y is an OWL 2 resource specifying the type of the axiom.

3

We call a triple of either of these two forms a lead triple;
intuitively, a lead triple is a triple that “represents” the
axiom in G. Different conditions are required to hold at
various stages during the transformation process. If at any
point in time a condition becomes invalidated, the trans-
formation fails and the input RDF graph cannot be used
with OWL 2 Direct Entailment. In contrast, if the trans-
formation of G into O(G) is successful, ontology O(G) is
interpreted as specified in [38]. To obtain a common se-
mantic framework, however, in this paper we equivalently
map O(G) into a first-order formula. More precisely, for
an OWL 2 DL axiom α, let θ(α) be the translation of α
into a first-order formula [36] in which blank nodes oc-
cur as free variables; note that this translation uses the
equality predicate ≈ to interpret features such as number
restrictions and nominals. Let ulDL(G) and bDL(G) be the
subsets of the elements of U ∪ L and B, respectively, that
occur in O(G). The semantics of a graph G under OWL 2
Direct Entailment is then captured by the first-order the-
ory νDL(G) defined as follows:

πDL(G) =
∧

α∈O(G)

θ(α)

νDL(G) = {∃bDL(G) : πDL(G)} ∪ Γ≈

To clarify, in the above definition we assume that Γ≈ ax-
iomatizes the equality predicate ≈ for all symbols in the
signature, not just for those occurring in O(G). For G1

and G2 graphs that encode OWL 2 DL ontologies, G1 DL-
entails G2, written G1 |=DL G2, if νDL(G1) |= νDL(G2).

A remark about notation is in order. Note that, for
an arbitrary entailment relation X and graphs G, G1, and
G2 that can be interpreted under X, πX(G) is a first-order
formula whose free variables (if any) are contained in B;
furthermore, νX(G) is a first-order theory that contains a
formula of the form ∃bDL(G) : πX(G) plus possibly other
formulae without blank nodes; finally, G1 |=X G2 if and
only if νX(G1) |= ∃bX(G2) : πX(G2).

The result of skolemizing the blank nodes in νX(G) is
the first-order theory ξX(G) obtained from νX(G) by re-
moving ∃bX(G) and replacing each blank node in πX(G)
with a fresh URI reference. We assume that each blank
node is uniquely associated with a fresh URI reference
used for skolemization; furthermore, we define uslX(G) as
ulX(G) extended with the URI references obtained by the
skolemization of νX(G). For arbitrary G1 and G2, by the
properties of skolemization we have G1 |=X G2 if and only
if ξX(G1) |= ∃bX(G2) : πX(G2).

The X-skolemization of a graph G is the graph G′ ob-
tained from G by replacing each blank node in bX(G) with
the corresponding URI reference from uslX(G). Note that,
for X other than DL, graph G′ does not contain blank
nodes; however, for X = DL, graph G′ can contain blank
nodes: bX(G) contains only the blank nodes that occur
in O(G), but not the ones that encode syntactic parts of
OWL 2 DL axioms (such as owl :SomeValuesFrom restric-
tions). In all cases, however, we have νX(G′) = ξX(G′);

furthermore, ξX(G) is always semantically equivalent with
νX(G′). Thus, it does not matter whether we transform G
into νX(G) and then skolemize the latter, or we skolemize
G and then transform the resulting graph G′ into νX(G′):
the resulting theories are semantically equivalent.

2.3. SPARQL

We next present an overview of SPARQL—the stan-
dard W3C language for querying RDF graphs. In this
paper we focus on group patterns—the core of SPARQL
that deals with pattern matching and is largely indepen-
dent from constructs such as aggregates and sorting. We
formalize group patterns along the lines of [30]. Let V be
an infinite set of variables disjoint with UBL. A mapping
is a partial function µ : V → UBL. The domain and the
range of µ are given by dom(µ) and rng(µ), respectively.
We define µ(t) = t for each t ∈ UBL ∪ V \ dom(µ). Map-
pings µ1 and µ2 are compatible if µ1(x) = µ2(x) for each
x ∈ dom(µ1) ∩ dom(µ2); in such a case, µ1 ∪ µ2 is also a
mapping. We use the following algebraic operations on
sets of mappings Ω1 and Ω2 to define the semantics of
group patterns.

Ω1 ./ Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2, and
µ1 and µ2 are compatible}

Ω1 \ Ω2 = {µ1 ∈ Ω1 | each µ2 ∈ Ω2 is not compatible
with µ1}

A built-in expression is constructed using the elements
of V ∪ U ∪ L as specified in [30]; furthermore, for each
built-in expression R and each mapping µ, we can deter-
mine whether R evaluates to true under µ, written µ |= R,
as specified in [30]. A basic graph pattern (BGP) is a
set of triples of the form 〈s, p, o〉 where s, p, o ∈ UBL ∪ V.
A group pattern (GP) is inductively defined as a basic
group pattern or an expression of the form P1 and P2,
P1 union P2, P1 opt P2, or P1 filter R, where P1 and P2 are
group patterns, and R is a built-in expression. Let A be
a built-in expression or a group pattern, and let µ a be a
mapping; then var(A) is the set of variables occurring in A,
and µ(A) is the result of replacing in A, for each variable
x where σ(x) is defined, each occurrence of x with σ(x).

We next define the notion of answers to group patterns
on an RDF graph. Please note that the 1.0 version of
SPARQL does not specify how to evaluate BGPs under
entailment relations other than Simple Entailment. The
1.1 version of SPARQL is expected to correct this, but the
details have not yet been finalized. In this paper, we adopt
definitions that, we believe, are likely candidates for the
formalization of SPARQL 1.1. Our definitions address the
following two technical problems.

First, we must ensure that answers are always finite.
Consider B = {〈x, rdf :type, rdf :Property〉}. Due to the ax-
iomatic triples of RDF Entailment [33], ∅ |=RDF µ(B) for
each µ such that µ(x) ∈ {rdf : 1 , rdf : 2 , . . .}. Thus, if the
answer to B on the empty RDF graph under RDF Entail-
ment is to be finite, it cannot contain such mappings. As

4

a remedy, we assume that, for each entailment relation X
and each graph G, one can determine the answer domain
adX(G) ⊆ UBL of G w.r.t. X. Then, for each group pat-
tern P and each mapping µ contained in the answer to P
on G w.r.t. X, we require rng(µ) ⊆ adX(G); thus, adX(G)
identifies the subset of UBL that is allowed to occur in an
answer to P in G w.r.t. X. If adX(G) is finite, then each
answer to P on G w.r.t X will be finite as well. In our ex-
ample, to ensure that answers to group patterns are finite
on finite graphs, we can define the answer domain for RDF
Entailment as adRDF (G) = ulRDF (G) ∪ bRDF (G), which
effectively restrict the answers to refer only to the elements
of UBL that occur in G.

Second, we must deal with the fact that blank nodes are
treated in SPARQL as objects with distinct identity. To
understand this, consider G, P , and µ defined as follows,
where :y is a blank node:

G = {〈a, b, c〉, 〈d, e, :y〉} (1)

P = {〈a, b, x〉} (2)

µ = {x 7→ :y} (3)

Even though G |=RDF µ(P), the answer to P on G under
RDF entailment should not contain µ. Roughly speak-
ing, :y is distinct from c even though :y is semantically
a “placeholder” for an arbitrary URI reference. We cap-
ture this idea using skolemization: we replace the blank
nodes in G with fresh URI references, thus giving each
blank node a unique identity. Our answers are isomorphic
to the answers of the current SPARQL 1.1. specification,
so skolemization allows us to simplify the technical presen-
tation without losing generality. We formalize this idea by
evaluating group patterns in ξX(G) instead of νX(G).

Table 1 defines the answer JP KXG to a group pattern P
in a graph G w.r.t. an entailment relation X.

Note that the official semantics of SPARQL treats an-
swers as mutisets, rather than sets of mappings. The mul-
tiset variant of SPARQL can be formalized as in Table 1,
but by using the multiset versions of ./ and the set oper-
ators in the definitions of JP1 and P2KXG , JP1 union P2KXG ,
JP1 opt P2KXG , and JP1 filter RKXG . As we show in the
following sections, our temporal extension of SPARQL es-
sentially changes just the definition of JBKXG . Thus, we can
obtain a temporal extension of SPARQL with multiset se-
mantics by using the multiset versions of group patterns
that are not basic. Analogously, by using the appropriate
version of the set operators, our algorithms for computing
answers to temporal queries can be modified to support
the multiset semantics. Therefore, in this paper we sim-
plify the presentation by treating answers to be sets, rather
than multisets; as in [30], we do not believe that this affects
the generality of our results in any significant way.

3. Representing Validity Time in RDF and OWL

Existing RDF and OWL ontologies often contain tem-
poral information. For example, the following (nontempo-

ral) RDF triple represents the fact that Oktoberfest 2011
starts at time instant 80 (we will discuss shortly our choice
of representing time instants as integers).

〈:Oktoberfest 2011 , :startsAt , 80〉 (4)

Despite the fact that it refers to time instants, triple (4)
can be considered as being universally true at all time
instants. To understand why this might be a practical
problem, assume that the Oktoberfest organizing commit-
tee meets at time instant 40 and decides that Oktoberfest
2011 should start at time instant 120; however, due to
popular demand, the organizing committee reconvenes at
time instant 60 and decides to start the event at time in-
stant 80. One can encode such information using an ad
hoc solution; for example, one could introduce a property
:previouslyStartsAt to record previously considered start
time instants. A more principled solution, however, would
be to explicitly represent the fact that triple

〈:Oktoberfest 2011 , :startsAt , 120〉 (5)

is true between time instants 40 and 60, but that triple (4)
is true from time instant 60 onwards. In other words, we
would like to annotate our triples with validity times to
specify the time instants at which the triples are true. In
the rest of this section, we present a framework that can
be used to achieve this goal. In particular, our framework
allows for temporal RDF triples such as (6) and (7), which
we interpret formally in first-order logic.

〈:Oktoberfest 2011 , :startsAt , 120〉[40, 59] (6)

〈:Oktoberfest 2011 , :startsAt , 80〉[60,+∞] (7)

Please note the distinction between two kinds of temporal
information in the above example. Time instants 120 and
80 do not specify the validity time of RDF triples; thus, we
can process such information using an adequate datatype
and a suitable set of built-in SPARQL expressions, the de-
sign of which is not the subject of this paper. In contrast,
our framework focusses on techniques for the management
of annotations such as [40, 59] and [60,+∞] that restrict
the validity of triples to specific time intervals.

A simple extension of RDF with validity time might
include annotating each triple with a time instant that
specifies when the triple is true. Triples, however, can be
true for long periods of time, which makes listing all time
instants explicitly impractical. Furthermore, triples that
hold from/to eternity would need to be associated with
infinitely many instants, which is practically infeasible.

We overcome these problems by applying the principles
from temporal databases. In particular, Chomicki [39] dis-
tinguishes an abstract from a concrete temporal database
[39]. An abstract temporal database can be understood
as a sequence of “static” databases, each of which con-
tains the facts that are true at one particular time instant.
Since the number of time instants is generally assumed to

5

Table 1: Semantics of Group Patterns

JBKXG = {µ | dom(µ) = var(B), rng(µ) ⊆ adX(G), and ξX(G) |= ∃bX(µ(B)) : πX(µ(B))}
JP1 and P2KXG = JP1KXG ./ JP2KXG

JP1 union P2KXG = JP1KXG ∪ JP2KXG
JP1 opt P2KXG = JP1KXG ./ JP2KXG ∪ JP1KXG \ JP2KXG
JP1 filter RKXG = {µ ∈ JP1KXG | µ |= R}

be unbounded, an abstract temporal database is infinite
and thus cannot be represented explicitly. In contrast, a
concrete temporal database is a finite specification of ab-
stract temporal databases. The correspondence between
concrete and abstract temporal databases is zero-to-many:
a concrete temporal database that contains a contradiction
corresponds to no abstract temporal databases; similarly, a
concrete temporal database may not fully specify the truth
of facts at all time instants, so it may correspond to several
abstract temporal databases. In the rest of this section we
apply this approach to RDF and OWL. In particular, we
devise a notion of temporal RDF and OWL graphs, which
correspond to concrete temporal databases in the frame-
work by Chomicki. Furthermore, we provide the semantics
to temporal graphs by mapping them into first-order the-
ories; the models of these theories correspond to abstract
temporal databases in the framework by Chomicki.

In Section 4 we will need the ability to refer to prede-
cessors and successors of time instants, so we use a discrete
model of time. Furthermore, in this paper we do not con-
sider implementation issues such as mapping time instants
to calendar points, or selecting the appropriate granularity
of the time line: any implementation of a time line that is
isomorphic with the set of integers can be used.

Thus, to simplify the definitions, we take the set of
all time instants T I to be the set of all integers, and we
assume T I to be disjoint with UBL. We use many-sorted
first-order logic with a temporal sort t interpreted over T I;
we sometimes write tt to stress that a term t is of sort t.
The following example demonstrates the benefits of using
many-sorted first-order logic.

Example 1. Let ψ = {∀x : x ≈ c} ∪ Γ≈ be the theory that
corresponds with the first-order encoding of the (nontem-
poral) OWL 2 DL ontology containing axiom > v {c}.
Theory ψ requires all objects in a domain set to be equal.
Thus, if we assume the interpretation domain set to con-
tain T I, then ψ becomes unsatisfiable, which is clearly un-
desirable. In contrast, ψ is satisfiable in our many-sorted
setting: since x is not of sort t, the universal quantifier in
formula ∀x : x ≈ c does not range over time instants. ♦

We integrate temporal instants into first-order logic as
follows.

• We allow each time instant t ∈ T I to be used in first-
order formulae as a constant of sort t; each such time
instant is interpreted in each interpretation as t.

• We introduce the binary predicate ≤ (with both ar-
guments of sort t), which is interpreted in each inter-
pretation as the standard ordering on integers. We
often abbreviate t1 ≤ t ∧ t ≤ t2 as t1 ≤ t ≤ t2.

• We introduce unary functions +1 and −1 (with the
argument and the function value of sort t); usually,
we write +1(t) and −1(t) as t+ 1 and t− 1, respec-
tively. These functions are interpreted in each inter-
pretation as the successor and predecessor functions
on integers.

We will often need to describe temporal intervals with
unbounded start- and/or end-points. To this end, we in-
troduce special constants −∞ and +∞ (not occurring in
UBL ∪ T I), which we allow to occur only in atoms of the
following forms, for tt a term of sort t:

−∞ ≤ tt −∞ ≤ +∞ tt ≤ +∞

All such atoms should be understood as syntactic abbre-
viations for true. Thus, −∞ and +∞ are not constants
in the sense of first-order logic: they are not mapped to
objects in an interpretation domain, but are used as syn-
tactic abbreviations. Constants −∞ and +∞ allow us to
simplify the notation for unbounded time intervals; for ex-
ample, to state that the interval described by the formula
t1 ≤ xt ≤ t2 has no lower bound, we can replace t1 with
−∞, which makes the formula equivalent to xt ≤ t2. In
addition to the set T I of all temporal instants, we use the
following sets in the rest of this paper:

T I± = T I ∪ {−∞,+∞}
T I− = T I ∪ {−∞}
T I+ = T I ∪ {+∞}

We use ≤ and < as the orderings on T I± defined in the
obvious way. Note that symbol ≤ thus ambiguously de-
notes both an ordering and a predicate; however, the ap-
propriate meaning of the symbol should be clear from the
context. We use analogous conventions for +1 and −1.

We next define the notion of temporal RDF graphs.

Definition 2. A temporal triple is an expression of the
form 〈s, p, o〉[t] or 〈s, p, o〉[t1, t2] such that s, p, o ∈ UBL,
t ∈ T I, t1 ∈ T I−, and t2 ∈ T I+. A temporal graph G is
a finite set of temporal triples.

6

In order to store temporal triples in Web documents, a
suitable encoding of temporal triples is needed. One pos-
sibility is to extend the RDF syntax and explicitly capture
temporal information. Another possibility is to develop an
encoding similar to the one used in [22] which encodes tem-
poral graphs into nontemporal graphs by reifying temporal
triples. In this paper, we do not discuss such implemen-
tation details, but instead focus on the conceptual aspects
of the syntax, semantics, and query answering.

We next define the semantics of temporal triples by
mapping them into formulae of many-sorted first-order
logic. Towards this goal, we associate facts with valid-
ity time instants via the temporal arguments approach
[40]. More concretely, for each n-ary predicate P , we intro-
duce an n+ 1-ary predicate P̂ in which the last argument
is of sort t; then, P̂ (u1, . . . , un, t

t) encodes the fact that
P (u1, . . . , un) is true at time instant tt. As explained in
Section 2, ≈ is an ordinary predicate with an explicit ax-
iomatization, so ≈̂ is a well-defined ternary predicate that
should be understood as time-varying equality; the ratio-
nale behind such a definition is discussed in more detail in
Example 12 at the end of this section.

For a (nontemporal) first-order formula ϕ and a term tt

of sort t, we define ϕ〈tt〉 as the formula obtained from ϕ by
replacing each atom P (u1, . . . , un) with P̂ (u1, . . . , un, t

t).
Intuitively, ϕ〈tt〉 states that the condition expressed by ϕ
holds at the time instant corresponding to tt.

Our definitions use a special unary predicate O. This
predicate should be understood as being “internal” to our
semantics—that is, it should not occur in any input. Fur-
thermore, we assume that the axiomatization of equality
Γ≈ does not contain the replacement rules for O. Intu-
itively, predicate O will be axiomatized so that it “con-
tains” all elements of ulX(G) ∪ bX(G) that occur in G. As
a consequence of such a definition, whenever a temporal
graph G1 X-entails a temporal graph G2, all blank nodes
in G2 are satisfied by objects occurring in uslX(G1). We
discuss the rationale behind this in Example 9.

We are now ready to define the mapping of temporal
graphs into many-sorted first-order logic.

Definition 3. Let X be an entailment relation from Sec-
tion 2 other than DL, and let ΓX be the first-order theory
that characterizes X. Then, for G a temporal graph,

• ulX(G), bX(G), and ti±X(G) are the subsets of U ∪ L,
B, and T I±, respectively, that occur in G;

• πX(G), ωX(G), and νX(G) are defined as shown in
Table 2;

• ξX(G) is obtained from νX(G) by skolemizing the ex-
istential quantifiers in ∃bX(G);

• uslX(G) is ulX(G) extended with the URI references
used for the skolemization of νX(G); and

• the X-skolemization of G is the result of replacing in
G each blank node from bX(G) with the correspond-
ing URI reference from uslX(G).

Graph G is X-satisfiable if νX(G) is satisfiable. A tem-
poral graph G1 X-entails a temporal graph G2, written
G1 |=X G2, if νX(G1) |= νX(G2).

Example 4. Let G1 be the temporal graph containing
temporal triples (8)–(11).

〈:LHR, :flightTo, :MUC 〉[50, 120] (8)

〈:LHR, :flightTo, :MUC 〉[100, 150] (9)

〈:Munich, :hosts, :Oktoberfest〉[80, 180] (10)

〈:hosts, rdfs:subPropertyOf , :hasEvent〉[130, 300] (11)

Triples in (8) and (9) state that there is a flight from LHR
to MUC; this information may have been gathered from
two distinct sources, so validity times of the two triples
overlap. Triple (10) states that Munich hosts Oktoberfest.
Finally, triple (11) states that, if x hosts y, then x has
y as an event; that this statement is not universally true
might be due to the fact that events are relevant only
during holiday seasons. Now let G2 be the temporal graph
containing temporal triple (12).

〈:Munich, :hasEvent , :Oktoberfest〉[130, 180] (12)

One can readily verify that, according to Definition 3, G1

RDFS -entails G2. ♦

OWL 2 Direct Entailment is not characterized by a
fixed set of first-order implications, so we next present sep-
arate definitions that are applicable to this entailment re-
lation. We start by defining the notion of temporal OWL
2 DL axioms. The following definition allows us to attach
validity time to arbitrary axioms and not just facts, which
provides us with a flexible language that can represent, for
example, class hierarchies that change over time.

Definition 5. A temporal OWL 2 DL axiom is an ex-
pression of the form α[t] or α[t1, t2], where α is an OWL
2 DL axiom, t ∈ T I, t1 ∈ T I−, and t2 ∈ T I+. A tempo-
ral OWL 2 DL ontology is a finite set of temporal OWL
2 DL axioms. Temporal axioms are mapped into many-
sorted first-order formulae as follows, where θ(α) is the
translation of an OWL 2 DL axiom α into first-order logic
as discussed in Section 2:

θ(α[t]) = θ(α)〈t〉
θ(α[t1, t2]) = ∀xt : (t1 ≤ xt ≤ t2)→ θ(α)〈xt〉

Our ultimate goal is to apply the OWL 2 Direct Entail-
ment to temporal graphs. As in the case of nontemporal
graphs, the first step is to translate a temporal graph into
temporal OWL 2 DL axioms, and the following definition
shows how to do this. Please refer to Section 2.2 for a brief
overview of the transformation for nontemporal RDF and
an explanation of the notion of lead triples.

Definition 6. A temporal graph G encodes a temporal
OWL 2 DL ontology O(G) if O(G) can be extracted from
G using the mapping from [37] modified as follows:

7

Table 2: Mapping Temporal Graphs Into Logic

χ(〈s, p, o〉[t]) = T̂ (s, p, o, t)

χ(〈s, p, o〉[t1, t2]) = ∀xt : (t1 ≤ xt ≤ t2)→ T̂ (s, p, o, xt)

πX(G) =
∧
T∈G

χ(T)

ωX(G) =
∧

:x∈bX(G)

O(:x)

νX(G) = {∃bX(G) : ωX(G) ∧ πX(G)} ∪ {O(u) | u ∈ ulX(G)} ∪ {∀xt : ϕ〈xt〉 | ϕ ∈ ΓX}

1. Each triple 〈s, p, o〉 in [37, Tables 3–8 and 10–15] is
replaced with 〈s, p, o〉[−∞,+∞].

2. Each triple pattern T in [37, Tables 16 and 17] with
a lead triple 〈sL, pL, oL〉 producing an axiom α is
replaced with the following triple patterns T1 and T2.

Triple pattern T1 is obtained from T as follows:

(a) each triple 〈s, p, o〉 other than 〈sL, pL, oL〉 is re-
placed with temporal triple 〈s, p, o〉[−∞,+∞];

(b) 〈sL, pL, oL〉 is replaced with 〈sL, pL, oL〉[t]; and
(c) T1 produces the temporal axiom α[t].

Triple pattern T2 is obtained from T as follows:

(d) each triple 〈s, p, o〉 other than 〈sL, pL, oL〉 is re-
placed with temporal triple 〈s, p, o〉[−∞,+∞];

(e) 〈sL, pL, oL〉 is replaced with 〈sL, pL, oL〉[t1, t2];
and

(f) T2 produces the temporal axiom α[t1, t2].

The following example discusses the intuition behind
Definition 6.

Example 7. As explained in Section 2.2, the RDF encod-
ing of each (nontemporal) OWL 2 DL axiom contains a sin-
gle lead triple, which “represents” the axiom in an RDF
graph. Thus, axiom A v ∃R.B is encoded using triples
(13)–(16), with (13) being the lead triple.

〈A, rdfs:subClassOf , :x〉 (13)

〈 :x, rdf :type, owl :Restriction〉 (14)

〈 :x, owl :onProperty , R〉 (15)

〈 :x, owl :someValuesFrom, B〉 (16)

By Definition 5, one can associate validity time with ax-
ioms, but not with parts of axioms (such as ∃R.B). There-
fore, Condition 1 of Definition 6 requires triples that en-
code parts of axioms, such as triples (14)–(16), to be an-
notated with [−∞,+∞]. Condition 2 of Definition 6 es-
sentially says that, to annotate an OWL 2 DL axiom with
validity time, one should attach the validity time to the
axiom’s lead triple and annotate all other triples with
[−∞,+∞]. Thus, each triple pattern from [37, Tables 15
and 17] that recognizes a nontemporal OWL 2 DL axiom
is transformed into two triple patterns: the one defined
in conditions 2(a)–2(c) recognizes temporal axioms that

hold at a single time instant t, and the one defined in
conditions 2(e)–2(f) recognizes temporal axioms that hold
between time instants t1 and t2. Consequently, temporal
axiom (A v ∃R.B)[5, 8] should be encoded using temporal
RDF triples as follows, which allows the triple patterns
from Definition 6 to reconstruct the original axiom.

〈A, rdfs:subClassOf , :x〉[5, 8] (17)

〈 :x, rdf :type, owl :Restriction〉[−∞,+∞] (18)

〈 :x, owl :onProperty , R〉[−∞,+∞] (19)

〈 :x, owl :someValuesFrom, B〉[−∞,+∞] (20)

Apart from the modifications outlined in Definition 6, the
process of extracting O(G) from G is the same as in [37].
If the transformation fails, G does not encode a tempo-
ral OWL 2 DL ontology, and so G cannot be used with
temporal OWL 2 Direct Entailment. ♦

We are finally ready to define the semantics of temporal
graphs under OWL 2 Direct Entailment. Remember that
Γ≈ is the axiomatization of the equality predicate ≈.

Definition 8. Let G be a graph that encodes a temporal
OWL 2 DL ontology O(G). Then,

• ulDL(G), bDL(G), and ti±DL(G) are the subsets of
U ∪ L, B, and T I±, respectively, that occur in O(G);

• πDL(G), ωDL(G), and νDL(G) are defined as follows:

πDL(G) =
∧

A∈O(G)

θ(A)

ωDL(G) =
∧

:x∈bDL(G)

O(:x)

νDL(G) = {∃bDL(G) : ωDL(G) ∧ πDL(G)} ∪
{O(u) | u ∈ ulDL(G)} ∪
{∀xt : ϕ〈xt〉 | ϕ ∈ Γ≈}

• ξDL(G) is obtained from νDL(G) by skolemizing the
existential quantifiers in ∃bDL(G);

• uslDL(G) is ulDL(G) extended with the URI refer-
ences used for the skolemization of νDL(G); and

8

• the DL-skolemization of G is the result of replacing
in G each blank node from bDL(G) with the corre-
sponding URI reference from uslDL(G).

Graph G is DL-satisfiable if νDL(G) is satisfiable. For
G1 and G2 temporal graphs that encode temporal OWL 2
DL ontologies, G1 DL-entails G2, written G1 |=DL G2, if
νDL(G1) |= νDL(G2).

The following example explains the rationale behind
the predicate O in Definitions 3 and 8.

Example 9. Let G1, G2, and G3 be temporal graphs
that encode the following temporal OWL 2 DL ontologies
O(G1), O(G2), and O(G3).

O(G1) = { ∃p.>(s)[−∞,+∞] } (21)

O(G2) = { p(s, :y)[−∞,+∞] } (22)

O(G3) = { p(s, :y)[1] } (23)

Let us for the moment assume that our definitions do
not include the atoms with the O predicate. Then, G1, G2,
and G3 would be translated into the following theories; to
simplify the presentation, we abbreviate with ∆ the set of
formulae obtained from Γ≈.

ν′DL(G1) = { [∀xt : ∃z : p̂(s, z, xt)] } ∪∆ (24)

ν′DL(G2) = { [∃ :y : ∀xt : p̂(s, :y, xt)] } ∪∆ (25)

ν′DL(G3) = { [∃ :y : p̂(s, :y, 1)] } ∪∆ (26)

Note that ∃z comes after ∀xt in (24), so z can refer to dif-
ferent objects at different time instants—that is, variable
z is not rigid. In contrast, ∃ :y comes before ∀xt in (25), so
the object that :y refers to does not depend on xt—that
is, blank node :y is rigid as it refers to the same object
at all time instants. Finally, the rigidity of :y in (26) is
irrelevant, since (26) does not quantify over time instants.
Based on these observations, we have ν′DL(G1) 6|= ν′DL(G2)
and ν′DL(G1) |= ν′DL(G3), which can be counterintuitive.
Note also that ν′DL(G2) |= ν′DL(G1), which is intuitive: :y
in (25) is rigid, so it can satisfy the nonrigid existential
quantifier ∃z in (24).

In our approach, O(G1), O(G2), and O(G3) are trans-
lated into the following first-order theories:

νDL(G1) = { [∀xt : ∃z : p̂(s, z, xt)], O(s) } ∪∆ (27)

νDL(G2) =
{ [∃ :y : O(:y) ∧ ∀xt : p̂(s, :y, xt)], O(s) } ∪∆

(28)

νDL(G3) =
{ [∃ :y : O(:y) ∧ p̂(s, :y, 1)], O(s) } ∪∆

(29)

As before, blank node :y is rigid in (28) and (29). Atoms
O(s) and O(:y) in (27)–(29) thus essentially “enumerate”
all rigid objects. Consider now checking whether G1 DL-
entails G2 or G3. Atoms O(:y) in (28) and (29) ensure
that ∃ :y can be satisfied only by rigid objects, and not
by nonrigid objects implied by ∃z in (27). Consequently,

we have νDL(G1) 6|= νDL(G2) and νDL(G1) 6|= νDL(G3), as
one might expect. Furthermore, note that the O predicate
does not preclude the conclusion νDL(G2) |= νDL(G1).

To summarize, blank nodes can be understood in our
framework as unnamed constants that denote the same
object at all time instants. This is in line with all propos-
als for validity time on the Semantic Web known to us,
including the one by Gutierrez et al. [22]. ♦

The rigidity of blank nodes allows us to eliminate them
from entailment problems as shown next.

Theorem 10. Let X be an entailment relation, let G be
a temporal graph, let :x be a blank node, and let ψ be a
formula with free variable :x. Then,

ξX(G) |= ∃ :x : O(:x) ∧ ψ

holds if and only if an element u ∈ uslX(G) exists such that
ξX(G) |= σ(ψ) for mapping σ = { :x 7→ u}.

Proof. (⇐) Assume that ξX(G) |= σ(ψ) holds for some
σ = { :x 7→ u}. Since u ∈ uslX(G), a formula of the form
O(u) ∧ ϕ (with ϕ possibly empty) is contained in ξX(G),
so ξX(G) |= ∃ :x : O(:x) ∧ ψ clearly holds.

(⇒) Assume that ξX(G) |= ∃ :x : O(:x) ∧ ψ holds. Let
I be an arbitrary first-order model of ξX(G), and let I ′ be
the interpretation defined as follows:

• 4I′ = 4I ;

• XI′ = XI for each symbol X different from the spe-
cial predicate O; and

• OI′ = {sI | s ∈ uslX(G)}.

The predicate O occurs in ξX(G) only in formulae of the
form O(u) ∧ ϕ (with ϕ possibly empty) for u ∈ uslX(G1).
Therefore, we have OI

′ ⊆ OI and I ′ |= ξX(G); but then,
ξX(G) |= ∃ :x : O(:x) ∧ ψ implies I ′ |= ∃ :x : O(:x) ∧ ψ.
Thus, an element u ∈ uslX(G) exists such that I ′ |= σ(ψ)
for σ = { :x 7→ u}; but then, OI

′ ⊆ OI implies I |= σ(ψ)
as well, which proves our claim. �

The following theorem provides us with basic building
blocks for checking temporal entailment; we use this result
in Section 5.1 to obtain a concrete algorithm.

Theorem 11. Let X be an entailment relation, and let
G1 and G2 be temporal graphs. Then, G1 |=X G2 if and
only if both of the following two conditions hold:

• a mapping σ : bX(G2)→ uslX(G1) exists such that
ξX(G1) |= πX(σ(G2)), and

• for each u ∈ ulX(G2), either u ∈ ulX(G1) or ulX(G2)
contains a literal semantically equivalent with u.

Proof. By Definitions 3 and 8, G1 |=X G2 if and only if
νX(G1) |= νX(G2). Since ξX(G1) is the skolemization of
νX(G1), by the properties of skolemization from Section
2.1, the latter condition is equivalent to ξX(G1) |= νX(G2).
By Definitions 3 and 8, each formula ψ in νX(G2) is of one
of the following three types:

9

• ∃bX(G2) : ωX(G2) ∧ πX(G2),

• O(u) with u ∈ ulX(G2), and

• a formula of the form ∀xt : ϕ〈xt〉 where ϕ is con-
tained in ΓX or Γ≈.

Since semantic entailment is distributive over conjunction,
ξX(G1) |= νX(G2) if and only if ξX(G1) |= ψ for each for-
mula ψ mentioned above. We have the following cases:

• Assume ψ = ∃bX(G2) : ωX(G2) ∧ πX(G2). By The-
orem 10, then ξX(G1) |= ψ if and only if a mapping
σ : bX(G2)→ uslX(G1) exists such that the entail-
ment ξX(G1) |= σ(πX(G2)) holds. By the definition
of πX , we have σ(πX(G2)) = πX(σ(G2)), so the last
condition is equivalent to ξX(G1) |= πX(σ(G2)).

• Assume ψ = O(u). If we have u ∈ ulX(G1), then
ψ ∈ ξX(G1), so ξX(G1) |= ψ clearly holds. In con-
trast, assume that u 6∈ ulX(G1); since O occurs in
ξX(G1) only in atoms of the form O(v) (note that
ξX(G1) does not even contain the replacement ax-
ioms for O), then ξX(G1) |= ψ if and only if ξX(G1)
contains an atom of the form O(v) where v is a literal
semantically equivalent with u.

• Assume ψ = ∀xt : ϕ〈xt〉. But then, ψ ∈ ξX(G1), so
ξX(G1) |= ψ always holds.

The claim of this theorem follows immediately from the
above arguments. �

We finish this section with a brief discussion of why
the equality predicate ≈ is treated in our framework as an
ordinary predicate with an explicit axiomatization.

Example 12. Let G be a temporal graph such that O(G)
contains the following temporal OWL 2 DL axioms.

(a ≈ b)[1] C(a)[1, 2] ¬C(b)[3] D(a)[3] (30)

Then πDL(G) is defined as follows.

πDL(G) = ≈̂(a, b, 1) ∧ ¬Ĉ(b, 3) ∧ D̂(a, 3) ∧
[∀xt : (1 ≤ xt ≤ 2)→ Ĉ(a, xt)]

(31)

Furthermore, νDL(G) contains πDL(G), O(a), O(b), and
the following formulae obtained from Γ≈.

∀xt, y : ≈̂(y, y, xt) (32)

∀xt, y1, y2 : ≈̂(y1, y2, x
t)→ ≈̂(y2, y1, x

t) (33)

∀xt, y1, y2, y3 :
≈̂(y1, y2, x

t) ∧ ≈̂(y2, y3, x
t)→ ≈̂(y1, y3, x

t)
(34)

∀xt, y1, y2 : Ĉ(y1, x
t) ∧ ≈̂(y1, y2, x

t)→ Ĉ(y2, x
t) (35)

∀xt, y1, y2 : D̂(y1, x
t) ∧ ≈̂(y1, y2, x

t)→ D̂(y2, x
t) (36)

First, note that, in each model I = (4I , ·I) of νDL(G), the
domain set 4I is rigid—that is, it is the same at all time
instants. Second, note that the interpretation of constants

in each such I is also rigid: aI and bI are fixed domain
elements that do not depend on the time instant. Third,
the interpretation of ≈ is not rigid: constants a and b are
equal in each model of νDL(G) at time instant 1, but a
model of νDL(G) exists in which a and b are not equal
at time instants other than 1. Thus, νDL(G) is satisfiable
even though O(G) contains axiom ¬C(b)[3]; furthermore,
one can see that

νDL(G) |= Ĉ(b, 1) (37)

νDL(G) |= ∃x : Ĉ(x, 1) ∧ D̂(x, 3) (38)

νDL(G) 6|= Ĉ(b, 2) (39)

all hold in νDL(G). ♦

4. Querying Temporal Graphs

To design a temporal query language, we must first
identify the types of questions that the language should
support. The language of first-order logic readily reveals
the following natural types of questions, where B is a BGP,
G is a temporal graph, and t, t1, and t2 are time instants:

Q1. Is B true in G at instant t?

Q2. Is B true in G at all instants between t1 and t2?

Q3. Is B true in G at some instant between t1 and t2?

By allowing t, t1, and/or t2 to be variables, we obtain non-
Boolean questions that not only check the truth of B in
G, but also retrieve values from G.

Such questions can be easily encoded using first-order
formulae. Furthermore, the answer to a query Q in a tem-
poral graph G w.r.t. an entailment relation X can be de-
fined to contain each mapping µ of the free variables of Q
to UBL ∪ T I± such that G |=X µ(Q). Such an approach,
however, exhibits several important drawbacks, as the fol-
lowing example demonstrates.

Example 13. Let G1 be the temporal graph shown in
(40) and let Q be the query shown in (41).

G1 = { 〈a, b, c〉[5, 12], 〈a, b, c〉[9,+∞] } (40)

Q(x1, x2) = ∀x : x1 ≤ x ≤ x2 → 〈a, b, c〉[x] (41)

Evaluating Q on G1 would not be a problem if x1 and
x2 were concrete time instants. Note, however, that Q
retrieves x1 and x2, and that it does not ask for maximal
x1 and x2. Thus, without any restrictions, the answer to
Q on G1 is infinite since it contains each mapping µ such
that 5 ≤ µ(x1) ≤ µ(x2) ≤ +∞.

To overcome this problem, one might restrict all map-
pings in an answer to Q to refer only to time instants
occurring in G. This, however, also has undesirable conse-
quences. First, such answers can contain redundant map-
pings. For example, mapping µ1 = {x1 7→ 5, x2 7→ +∞}
is the “most general mapping” in the answer to Q on

10

G1, but the answer also contains a “less general” map-
ping µ2 = {x1 7→ 9, x2 7→ 12}. Second, answers can differ
on syntactically different but semantically equivalent tem-
poral graphs. For example, let G2 be the temporal graph
shown in (42).

G2 = { 〈a, b, c〉[5, 10], 〈a, b, c〉[7,+∞] } (42)

Note that G2 is equivalent with G1 under Simple Entail-
ment; however, mapping µ2 is not contained in the answer
to Q on G2, and mapping µ3 = {x1 7→ 7, x2 7→ 10} is not
contained in the answer to Q on G1. Third, computing re-
dundant answers can be costly: an answer to Q in a graph
with n overlapping intervals consists of mappings that re-
fer to any two pairs of interval endpoints, so the number
of mappings in an answer can be exponential in n.

As a possible remedy, one might try to identify the
“most general” mappings. Note, however, that a mapping
refers to time instants rather than intervals; therefore, we
were unable to devise a generality criterion that would be
backed by a clear semantic justification. ♦

We deal with these problems in two stages. First, we
introduce primitives that support questions of types Q1–
Q3, and of types Q4–Q5 listed below. We thus introduce
the notion of maximality into our query language.

Q4. Is [t1, t2] the maximal interval such that B is true in
G for each time instant in the interval?

Q5. Is t the smallest/largest time instant at which B is
true in G?

We define our notion of answers w.r.t. T I±, which makes
the answers independent from the syntactic form of tempo-
ral graphs. Second, we define a syntactic notion of safety,
which guarantees that only questions of type Q4 and Q5
can bind variables in a temporal query, which then ensures
finiteness of query answers.

Practical applications will often need to express con-
straints on time points and intervals retrieved via Q1–Q5.
For example, to retrieve “hotels with vacancy during Ok-
toberfest,” we must require the duration of Oktoberfest to
be contained in the hotels’ vacancy period. Such condi-
tions can be expressed, for example, using Allen’s interval
algebra [41], and they can be integrated into our query lan-
guage via built-in expressions. For example, we can easily
devise a built-in expression that takes two pairs of interval
end-points and that evaluates to true if and only if the first
interval is contained in the second. Such extensions of our
query language are straightforward, so we do not discuss
them further in the rest of this paper.

Definition 14. A temporal group pattern (TGP) is an
expression defined inductively as shown in Table 3, where
B is a BGP, P1 and P2 are TGPs, R is a built-in ex-
pression, t1 ∈ T I− ∪ V, t2 ∈ T I+ ∪ V, and t3 ∈ T I ∪ V.
TGPs from the first two lines of the table are called basic.

Table 3: Definition of Temporal Group Patterns

B at t3 B during [t1, t2] B occurs [t1, t2]
B maxint [t1, t2] B mintime t3 B maxtime t3
P1 and P2 P1 union P2 P1 opt P2

P1 filter R

For B a variable-free BGP and X an entailment rela-
tion, ωX(B) is the formula defined as follows, where O is
the special predicate from Section 3:

ωX(B) =
∧

:x∈bX(B)

O(:x)

We redefine a mapping as a partial function from V
to UBL ∪ T I±—that is, µ : V → UBL ∪ T I±. Let X be
an entailment relation and G a temporal graph. We define
adX(G) = adX(G′), where G′ is the nontemporal graph ob-
tained by replacing each temporal triple in G of the form
〈s, p, o〉[u] or 〈s, p, o〉[u1, u2] with 〈s, p, o〉. The answer to
a basic temporal group pattern P in G w.r.t. X is the set
JP KXG that contains each mapping µ such that

• dom(µ) = var(P),

• rng(µ) ⊆ adX(G) ∪ T I±, and

• S = µ(P) is a well-formed variable-free TGP that
satisfies condition δX(S,G) in Table 4.

Answers to TGPs that are not basic are defined as shown
in Table 1.

Definition 14 should intuitively be understood as fol-
lows. Let P be a TGP, let G be a temporal graph, and
let X be an entailment relation. Then, the answer JP KXG
to P on G w.r.t. X contains each mapping µ that maps
all variables in P into an element of adX(G)∪ T I±; thus,
each µ(x) is either an element of the answer domain of
G w.r.t. X, a temporal instant, −∞, or +∞. Mapping
µ must be such that µ(P) is a well-formed variable-free
TGP. For example, for P = 〈a, b, c〉 at x, µ1 = {x 7→ d},
and µ2 = {x 7→ −∞}, we have µ1(P) = 〈a, b, c〉 at d and
µ2(P) = 〈a, b, c〉 at −∞, which are not well-formed TGPs,
so µ1 and µ2 cannot be contained in an answer to P . Fi-
nally, the variable-free TGP S = µ(P) must satisfy the
condition δX(S,G) from Table 4 that defines the seman-
tics of basic TGPs. This condition essentially make

• B at t3 of type Q1,

• B during [t1, t2] of type Q2,

• B occurs [t1, t2] of type Q3,

• B maxint [t1, t2] of type Q4, and

• B mintime t3 and B maxtime t3 of type Q5.

11

Table 4: Evaluating Basic Temporal Group Patterns

S δX(S,G)

B at t3 ξX(G) |= ∃bX(B) : ωX(B) ∧ πX(B)〈t3〉
B during [t1, t2] ξX(G) |= ∃bX(B) : ωX(B) ∧ ∀xt : [t1 ≤ xt ≤ t2]→ πX(B)〈xt〉
B occurs [t1, t2] ξX(G) |= ∃bX(B) : ωX(B) ∧ ∃xt : [t1 ≤ xt ≤ t2 ∧ πX(B)〈xt〉]
B maxint [t1, t2] a mapping σ : bX(B)→ uslX(G) exists such that

ξX(G) |= ∀xt : [t1 ≤ xt ≤ t2]→ πX(σ(B))〈xt〉, and
t1 = −∞ or ξX(G) 6|= πX(σ(B))〈t1 − 1〉, and
t2 = +∞ or ξX(G) 6|= πX(σ(B))〈t2 + 1〉

B mintime t3 a mapping σ : bX(B)→ uslX(G) exists such that
ξX(G) |= πX(σ(B))〈t3〉 and ξX(G) 6|= ∃xt : [xt ≤ t3 − 1 ∧ πX(σ(B))〈xt〉]

B maxtime t3 a mapping σ : bX(B)→ uslX(G) exists such that
ξX(G) |= πX(σ(B))〈t3〉 and ξX(G) 6|= ∃xt : [t3 + 1 ≤ xt ∧ πX(σ(B))〈xt〉]

Note that t3 cannot be −∞ or +∞: since these constants
do not represent concrete time instants, asking whether B
holds at −∞ or +∞ does not make sense. Similarly, t1
cannot be +∞ and t2 cannot be −∞ in order to ensure
that all temporal intervals in TGPs are well formed.

Conditions for S of types Q4 and Q5 involve several
positive and negative entailment checks, and the mapping
σ ensures that the blank nodes in S are interpreted in all
checks in the same way. This affects the notion of answers
as shown in the following example.

Example 15. Let G be a temporal graph and let P be a
TGP defined as follows:

G = {〈a, b, c〉[2, 5], 〈a, b, d〉[3, 8]} (43)

P = 〈a, b, :y〉 maxint [x1, x2] (44)

Blank node :y in P can be satisfied in G by either c or d,
so the answer to P on G w.r.t. Simple Entailment contains
µ1 = {x1 7→ 2, x2 7→ 5} and µ2 = {x1 7→ 3, x2 7→ 8}. This
is consistent with the rigid interpretation of blank nodes
introduced in in Section 3. ♦

One might argue that the conditions for S of type Q4
and Q5 are not elegant because the interpretation of the
blank nodes in S is not captured using a first-order for-
mula. As a possible remedy, one might try to rewrite the
condition for S = B maxint [t1, t2] as

• ξX(G) |= ∃bX(B) ∀xt : [t1 ≤ xt ≤ t2] → πX(B)〈xt〉,
and

• t1 = −∞ or ξX(G) 6|= ∃bX(B) πX(B)〈t1−1〉, and

• t2 = +∞ or ξX(G) 6|= ∃bX(B) πX(B)〈t2 + 1〉.

Such a definition, however, would have counterintuitive
consequences, as shown by the following example.

Example 16. Let G, P , µ1, and µ2 be defined as in
Example 15. With the alternative condition for P out-
lined above, the answer to P on G w.r.t. simple entail-
ment does not contain µ1, since it is not the case that
ξsimple(G) 6|= ∃ :y : O(:y) ∧ T̂ (a, b, :y, 6); one can analo-
gously see that the answer does not contain µ2 either. In-
tuitively, this is because the alternative condition for P
does not ensure that the blank nodes in P are interpreted
in the same way in all entailment checks. ♦

Conditions for S of types Q4 and Q5 can be formu-
lated in an autoepistemic extension of first-order logic with
a modal operator K, such as the one used in the defini-
tion of the EQL-Lite query language [42]. A detailed dis-
cussion of such an alternative formulation is out of scope
of this paper; we merely observe that the condition for
S = B maxint [t1, t2] (with t1 6= −∞ and t2 6= +∞) could
be expressed as

ξX(G) |= ∃bX(B) : ωX(B) ∧
K [∀xt : (t1 ≤ xt ≤ t2)→ πX(B)〈xt〉] ∧
¬KπX(B)〈t1 − 1〉 ∧
¬KπX(B)〈t2 + 1〉

and that conditions for S of type Q5 could be expressed
in an analogous way.

We next present several temporal graph patterns and
their answers.

Example 17. Let G be the temporal graph containing
triples (8)–(11) from Section 3. Table 5 shows several
TGPs that could be used in our running example.

TGP (45) returns all airports x and all maximal inter-
vals [y, z] during Oktoberfest in which there is a flight from
x to Munich airport. The answer to (45) on G contains
only the mapping {x 7→ :LHR, y 7→ 80, z 7→ 150}.

TGP (46) retrieves the duration [x, y] of Oktoberfest
and all events z in London that have at least one time
point in common with [x, y]. If occurs were changed to

12

during, the TGP would retrieve all events z in London
whose duration is contained in [x, y].

TGP (47) retrieves the first time instant at which Mu-
nich hosts Oktoberfest. The answer to (47) on G contains
only the mapping {x 7→ 80}.

TGP (48) returns all prices x for a particular room
during an event y in Munich within interval [50, 100]. ♦

According to Definition 14, adX(G) does not contain
ti±X(G), so the time instants used in temporal triples do
not affect the answer domain of a temporal graph. This
allows us to prove the following property.

Proposition 18. Let X be an entailment relation, let G1

and G2 be temporal graphs, and let G′1 and G′2 be the X-
skolemizations of G1 and G2, respectively. If G′1 |=X G′2,
G′2 |=X G′1, and adX(G1) = adX(G2), then for each tem-
poral group pattern P we have JP KXG1

= JP KXG2
.

Proof. Due to G′1 |=X G′2 and G′2 |=X G′1, we have that
formulae νX(G′1) and νX(G′2) are equivalent; but then, so
are ξX(G1) and νX(G2). Based on this observation, we
prove our claim by induction on the structure of P . The
inductive steps are straightforward, so we consider only
the base cases where P is a basic TGP.

Let P = B at t3; let µ be an arbitrary mapping such
that µ(t3) ∈ T I. Then,

ξX(G1) |= ∃bX(µ(B)) : ωX(µ(B)) ∧ πX(µ(B))〈µ(t3)〉

if and only if

ξX(G2) |= ∃bX(µ(B)) : ωX(µ(B)) ∧ πX(µ(B))〈µ(t3)〉.

Thus, adX(G1) = adX(G2) implies JP KXG1
= JP KXG2

. The
proof is analogous for all other types of basic TGPs. �

Example 19. Let G1 and G2 be as specified in Exam-
ple 13. Although G1 and G2 contain different time in-
stants, we have adX(G1) = adX(G2). Thus, since the X-
skolemizations of G1 and G2 X-entail each other, for each
TGP P we have JP KXG1

= JP KXG2
. ♦

Note that Proposition 18 requires theX-skolemizations
of G1 and G2 to X-entail each other, rather than G1 and
G2 themselves. This is not a side-effect of our temporal
framework: as the following example shows, this is already
the case in nontemporal SPARQL.

Example 20. Let G1 and G2 be the nontemporal graphs
defined in (49) and (50), respectively; furthermore, let P
be the BGP (51); finally, let X be Simple Entailment.

G1 = {〈a, b, :x〉, 〈c, d, :y〉} (49)

G2 = {〈a, b, :y〉, 〈c, d, :x〉} (50)

P = {〈a, b, z〉} (51)

The X-skolemizations of G1 and G2 are as follows, where
u1 and u2 are used to skolemize :x and :y, respectively.

G′1 = {〈a, b, u1〉, 〈c, d, u2〉} (52)

G′2 = {〈a, b, u2〉, 〈c, d, u1〉} (53)

Clearly, adX(G1) = adX(G2). Furthermore, we clearly
have G1 |=X G2 and G2 |=X G1; however, we also have
G′1 6|=X G′2 and G′2 6|=X G′1. In other words, G1 and G2 X-
entail each other, but their X-skolemizations do not. Since
P is evaluated in G1 and G2 w.r.t. their X-skolemizations,
the answers to P on G1 and G2 differ:

JP KXG1
= { {z 7→ u1} } (54)

JP KXG2
= { {z 7→ u2} } (55)

This example can be straightforwardly extended to tem-
poral graphs and queries, which requires us to restrict the
applicability of Proposition 18. Apart from these issues
inherited from nontemporal RDF and SPARQL, however,
Proposition 18 shows that the addition of validity time
does not introduce further problems. ♦

Since the answers are defined w.r.t. the entire set T I±,
basic TGPs can have infinite answers, as discussed at the
beginning of this section. We next define a notion of safe
TGPs. In Section 5.2 we then present an algorithm that
computes a finite answer for each safe TGP.

Definition 21. Let P be a temporal group pattern. Then,
tvar(P) and bind(P) are sets of variables, and safe(P) is a
Boolean value defined as shown in Table 6. Pattern P is
safe if and only if safe(P) = true.

Intuitively, x ∈ bind(P) ensures that µ(x) ∈ ti±X(G) for
each mapping µ ∈ JP KXG . Thus, B at t3, B during [t1, t2],
and B occurs [t1, t2] are safe if and only if t1, t2, and t3 are
not variables: B can be true at potentially infinitely many
time instants, which could give rise to infinite answers if
t1, t2, or t3 were a variable. In contrast, B maxint [t1, t2],
B mintime t3, and B maxtime t3 are always safe as there
are finitely many maximal intervals in which B is true. For
P = P1 union P2, a mapping in an answer to P is produced
either by P1 or P2, so both P1 and P2 must be safe for
P to be safe. For P = P1 opt P2, the definition of safety
assumes that P1 is evaluated “before” P2: to evaluate P ,
one first evaluates P1, and then for each mapping µ in the
answer, one evaluates µ(P2), so P is safe if and only if P1

and µ(P2) are safe. For P = P1 filter R, all time instants
in an answer to P are produced by P1, so P is safe if and
only if P1 is safe. Finally, for P = P1 and P2, each time
instant in an answer to P is produced by P1 and P2, so P
is safe if and only if the value of each variable in the answer
is produced by either P1 or P2. Note that this allows P to
be safe even if neither P1 nor P2 is safe.

5. Algorithms for Temporal Graphs

In this section we turn our attention to the computa-
tional problems involving temporal graphs. In particular,
in Section 5.1 we show how to solve certain basic types of
entailments involving temporal graphs; then, in Section 5.2
we use these results to obtain an algorithm for computing
answers to safe TGPs.

13

Table 5: Example Temporal Group Patterns

{〈x, :flightTo, :MUC 〉, 〈:Munich, :hosts, :Oktoberfest〉} maxint [y, z] (45)

{〈:Munich, :hosts, :Oktoberfest〉} maxint [x, y] and {〈:London, :hosts, z〉} occurs [x, y] (46)

{〈:Munich, :hosts, :Oktoberfest〉} mintime x (47)

{〈:Room123 , :hasPrice, x〉, 〈:Munich, :hosts, y〉} occurs [50, 100] (48)

Table 6: The Definition of Functions tvar, bind, and safe

P tvar(P) bind(P) safe(P)

B at t3 {t3} ∩ V ∅ tvar(P) = ∅
B during [t1, t2] {t1, t2} ∩ V ∅ tvar(P) = ∅
B occurs [t1, t2] {t1, t2} ∩ V ∅ tvar(P) = ∅
B maxint [t1, t2] {t1, t2} ∩ V tvar(P) true

B mintime t3 {t3} ∩ V tvar(P) true

B maxtime t3 {t3} ∩ V tvar(P) true

P1 and P2 tvar(P1) ∪ tvar(P2) bind(P1) ∪ bind(P2) tvar(P) = bind(P)

P1 union P2 tvar(P1) ∪ tvar(P2) bind(P1) ∩ bind(P2) safe(P1) ∧ safe(P2)

P1 opt P2 tvar(P1) ∪ tvar(P2) bind(P1) safe(P1) ∧ safe(µbind(P1)(P2))

P1 filter R tvar(P1) bind(P1) safe(P1) ∧ (var(R) ⊆ var(P1))

Note: mapping µbind(P1) is defined by setting µbind(P1)(x) = 0 for each x ∈ bind(P1).

5.1. Checking Temporal Entailments

In this section we show how to reduce several basic
types of temporal entailment to nontemporal entailment.
We first show how, given an entailment relation X and a
temporal graph G, one can extract a nontemporal graph
ΞX(G, t) that describes the consequences of G at a time
instant t ∈ T I. As in all definitions presented thus far,
we must treat the case of OWL 2 Direct Entailment sepa-
rately; hence, we proceed as follows.

• IfX 6= DL, then ΞX(G, t) contains each nontemporal
triple α for which G contains a temporal triple of the
form α[t] or α[t1, t2] with t1 ≤ t ≤ t2.

• For X = DL, let O(G, t) be the nontemporal OWL
2 DL ontology that contains each OWL 2 DL axiom
α for which O(G) contains a temporal axiom of the
form α[t] or α[t1, t2] with t1 ≤ t ≤ t2; then, ΞX(G, t)
is the nontemporal graph that encodes O(G, t).

Let N be an arbitrary subset of T I±. A pair (t1, t2)
with t1, t2 ∈ T I± is consecutive w.r.t. N if t1 ≤ t2 and
no t ∈ N exists with t1 < t < t2. The following property
follows straightforwardly from the definition of ΞX(G, t).

Proposition 22. Let X be an entailment relation, let G
be a temporal graph, and let t be an arbitrary time instant
such that t ∈ T I \ ti±X(G). For each time instant t′ ∈ T I
such that (t, t′) or (t′, t) is consecutive w.r.t. ti±X(G), we

have ΞX(G, t) ⊆ ΞX(G, t′); furthermore, if in addition we
have t′ 6∈ ti±X(G), then ΞX(G, t) = ΞX(G, t′) holds as well.

We next identify “interesting” time instants—that is,
time instants at which the consequences of G can change.
Let t1 ∈ T I− and t2 ∈ T I+; then, exX(G, t1, t2) is the
smallest set satisfying the following conditions:

• for each t ∈ ti±X(G) ∩ T I such that t1 ≤ t ≤ t2, we
have t ∈ exX(G, t1, t2);

• if t1 6= −∞, then t1 ∈ exX(G, t1, t2);

• if t2 6= +∞, then t2 ∈ exX(G, t1, t2); and

• if t1 = −∞ and t2 = +∞, then 0 ∈ exX(G, t1, t2).

Furthermore, allX(G, t1, t2) is the smallest set such that,
for each t ∈ exX(G, t1, t2), we have

• t ∈ allX(G, t1, t2),

• t1 < t implies t− 1 ∈ allX(G, t1, t2), and

• t < t2 implies t+ 1 ∈ allX(G, t1, t2).

With these definitions in place, we can obtain the de-
sired reductions as shown in Table 7. The following theo-
rem shows that the reductions are correct.

Theorem 23. All claims in Table 7 are true.

14

Table 7: Reducing Temporal to Nontemporal Entailment

1. G is X-satisfiable if and only if ΞX(G, t) is X-satisfiable for each t ∈ exX(G,−∞,+∞).

2. ξX(G) |= πX(B)〈t3〉 if and only if G is not X-satisfiable or ΞX(G, t3) |=X B.

3. ξX(G) |= ∀xt : [t1 ≤ xt ≤ t2]→ πX(B)〈xt〉 if and only if G is not X-satisfiable or
ΞX(G, t) |=X B for each t ∈ allX(G, t1, t2).

4. ξX(G) |= ∃xt : [t1 ≤ xt ≤ t2 ∧ πX(B)〈xt〉] if and only if G is not X-satisfiable or
ΞX(G, t) |=X B for some t ∈ exX(G, t1, t2).

Note: X is an arbitrary entailment relation; G is an arbitrary temporal graph;
B is an arbitrary BGP with var(B) = bX(B) = ∅; t1 ∈ T I−; t2 ∈ T I+; and t3 ∈ T I.

Proof. Note that, by Definitions 3 and 8, ξX(G) contains
precisely one formula of the form

∧
O(u) ∧

m∧
i=1

ψi〈ti〉 ∧
n∧
j=1

∀xt : (t1j ≤ xt ≤ t2j)→ κj〈xt〉,

zero of more formulae of the form O(u), and zero or more
formulae of the form ∀xt : ϕk〈xt〉. For an arbitrary time
instant t ∈ T I, let Υt be the set of formulae that contains

• ψi〈ti〉 for each 1 ≤ i ≤ m such that ti = t,

• κj〈t〉 for each 1 ≤ j ≤ n such that t1j ≤ t ≤ t2j , and

• ϕk〈t〉 for each k.

Furthermore, let Υ be the set of formulae that contains
each O(u) occurring in ξX(G) and Υt for each t ∈ T I.
Clearly, ξX(G) |= Υ and Υ |= ξX(G). Furthermore, let It
be a model of ξX(ΞX(G, t)); then, the interpretation I ′t,
defined below, is clearly a model of Υt:

4I′t = 4It
cI

′
t = cIt for each constant c

P̂ I
′
t = {〈ι1, . . . , ιn, t〉 | 〈ι1, . . . , ιn〉 ∈ P It}

for each n-ary predicate P

Finally, each model of Υt can be converted into a model
of ξX(ΞX(G, t)) by an analogous transformation.

(Claim 1) If Υ is satisfiable, then Υt is clearly sat-
isfiable for each t ∈ T I, so ΞX(G, t) is X-satisfiable for
each t ∈ exX(G,−∞,+∞) as well. Conversely, assume
that ΞX(G, t) is X-satisfied in a model It for each time
instant t ∈ exX(G,−∞,+∞), and consider an arbitrary
time instant t ∈ T I \ ti±X(G). Since exX(G,−∞,+∞) is
not empty, a time instant t1 ∈ exX(G,−∞,+∞) exists
such that (t, t1) or (t1, t) is consecutive w.r.t. ti±X(G); then
ΞX(G, t) ⊆ ΞX(G, t1) by Proposition 22, so by the mono-
tonicity of first-order logic ΞX(G, t) is X-satisfied in It1 .
Thus, ΞX(G, t) isX-satisfied in a model It for each t ∈ T I.
Without loss of generality, we can assume that all It have
the same domain and that they interpret all constants in

the same way; for example, we can take It to be Herbrand
models with parameters [31]. Let I ′t be the models of Υt

obtained from It using the transformation described above,
and let I be the interpretation defined as follows:

4I = 4I′0

cI = cI
′
0 for each constant c occurring in Υ

OI = {cI′0 | c is a constant occurring in Υ}
XI =

⋃
t∈T I

XI′t for each predicate X 6= O

Since each Υt refers only to the time instant t, it is clear
that I |= Υ, so I |= ξX(G) as well.

(Claim 2) If ξX(G) is unsatisfiable, then G is not X-
satisfiable, so the claim holds. Assume now that ξX(G) is
satisfiable. Formula πX(B)〈t3〉 contains only atoms of the
form P̂ (u1, . . . , un, t3); thus, Υ |= πX(B)〈t3〉 if and only
if Υt3 |= πX(B)〈t3〉. By the correspondences between the
models of Υt3 and ΞX(G, t3) outlined above, we have that
Υt3 |= πX(B)〈t3〉 if and only if ΞX(G, t3) |=X B, which
proves our claim.

(Claim 3) The claim is equivalent to the claim that
Υ |= πX(B)〈t〉 for each t with t1 ≤ t ≤ t2 if and only if Υ is
unsatisfiable or Υt |= πX(B)〈t〉 for each t ∈ allX(G, t1, t2).
This is obvious if Υ is unsatisfiable, so assume that Υ
is satisfiable. As in Claim 2, we can equivalently show
that ΞX(G, t) |=X B for each t with t1 ≤ t ≤ t2 if and
only if ΞX(G, t) |=X B for each t ∈ allX(G, t1, t2). The
(⇒) direction is obvious, so we focus on the (⇐) direc-
tion; consequently, assume that ΞX(G, t) |=X B for each
time instant t ∈ allX(G, t1, t2) and consider an arbitrary
time instant t′ ∈ T I \ allX(G, t1, t2) such that t1 ≤ t′ ≤ t2.
Now allX(G, t1, t2) is not empty, so a time instant t′′ with
t′′ ∈ allX(G, t1, t2) and t′′ 6∈ ti±X(G) exists such that (t′, t′′)
or (t′′, t′) is consecutive w.r.t. ti±X(G); but then, by Propo-
sition 22, ΞX(G, t′) = ΞX(G, t′′), so ΞX(G, t′′) |=X B im-
plies ΞX(G, t′) |=X B. This holds for an arbitrary t′ that
satisfies the mentioned conditions, so our claim holds.

(Claim 4) The claim is equivalent to the claim that
Υ |= πX(B)〈t〉 for some t with t1 ≤ t ≤ t2 if and only if Υ is

15

unsatisfiable or Υt |= πX(B)〈t〉 for some t ∈ exX(G, t1, t2).
This is obvious if Υ is unsatisfiable, so assume that Υ
is satisfiable. As in Claim 2, we equivalently show that
ΞX(G, t) |=X B for some t with t1 ≤ t ≤ t2 if and only if
ΞX(G, t) |=X B for some t ∈ exX(G, t1, t2). The (⇐) di-
rection is obvious, so we focus on the (⇒) direction; con-
sequently, assume that ΞX(G, t) |=X B for some t with
t1 ≤ t ≤ t2 and t 6∈ exX(G, t1, t2). Since exX(G, t1, t2) is
not empty, a time instant t′ ∈ exX(G, t1, t2) exists such
that (t, t′) or (t′, t) is consecutive w.r.t. ti±X(G); but then,
ΞX(G, t) ⊆ ΞX(G, t′) by Proposition 22; since first-order
logic is monotonic, we have that ΞX(G, t) |=X B implies
ΞX(G, t′) |=X B, which implies our claim. �

The following example illustrates Theorem 23.

Example 24. Let G and B be as shown in (56) and (57),
respectively, and let X be Simple Entailment. The set
ti±X(G) is then shown in (58).

G = {〈a, b, c〉[2, 4], 〈a, b, c〉[8]} (56)

B = 〈a, b, c〉 (57)

ti±X(G) = {2, 4, 8} (58)

To check entailment

ξX(G) |= ∀xt : [3 ≤ xt ≤ 8]→ πX(B)[xt] (59)

we proceed as follows. First, we determine exX(G, 3, 8) as
shown in (60) and allX(G, 3, 8) as shown in (61), and we
determine the relevant ΞX(G, t) as shown in (62)–(64).

exX(G, 3, 8) = {2, 3, 4, 8} (60)

allX(G, 3, 8) = {2, 3, 4, 5, 7, 8} (61)

ΞX(G, 5) = ΞX(G, 7) = ∅ (62)

ΞX(G, 2) = ΞX(G, 3) = {〈a, b, c〉} (63)

ΞX(G, 4) = ΞX(G, 8) = {〈a, b, c〉} (64)

Next, we check the satisfiability of G by checking whether
ΞX(G, t) is satisfiable for each t ∈ exX(G, 3, 8). This is the
case, so we finally check whether ΞX(G, t) |=X B for each
t ∈ allX(G, 3, 8). The latter does not hold for t = 5 and
t = 7, so (59) does not hold either. ♦

Note that Claims 1 and 4 in Table 7 involve only the
time instants in exX(G, t1, t2), whereas Claim 3 involves
the time instants in allX(G, t1, t2). This can intuitively
be explained by observing that, if ΞX(G, t) |=X B holds
for some time instant t with t1 ≤ t ≤ t2, then Proposi-
tion 22 and the monotonicity of first-order logic imply that
ΞX(G, t′) |=X B holds as well for t′ the “nearest” time in-
stant to t such that t′ ∈ exX(G, t1, t2); thus, we can focus
our attention only to time instants between t1 and t2 that
occur in G. In contrast, if we want ΞX(G, t) |=X B to hold
for each time instant t with t1 ≤ t ≤ t2, then we need to
ensure that ΞX(G, t′) |=X B holds not only for t′ explicitly
occurring in G, but also for t′ occurring “between” time
instants in G.

Example 25. Let G be as in Example 24. Note that
ΞX(G, t) |=X B for each t ∈ exX(G, 3, 8), but not for each
t ∈ allX(G, 3, 8). In other words, considering only the time
instants in exX(G, 3, 8) would lead us to incorrectly con-
clude that (59) holds. ♦

Based on these results, whether G1 |=X G2 holds can
be checked using the following nondeterministic algorithm.

1. Guess a mapping σ : bX(G2)→ uslX(G1).

2. Compute πX(σ(G2)); the result will be of the form

m∧
i=1

ψi〈ti〉 ∧
n∧
j=1

∀xt : (t1j ≤ xt ≤ t2j)→ κj〈xt〉.

3. Check ξX(G1) |= ψi〈ti〉 for each 1 ≤ i ≤ m.

4. Check ξX(G1) |= ∀xt : (t1j ≤ xt ≤ t2j)→ κj〈xt〉 for
each 1 ≤ j ≤ m.

5. For each u ∈ ulX(G2), check whether u ∈ ulX(G1)
or ulX(G1) contains a literal semantically equivalent
with u.

6. Return true if all checks in Step 4 and 5 succeed.

The correctness of this algorithm follows straightforwardly
from Theorem 11 and the fact that ϕ |= ψ1 ∧ . . . ∧ ψk if
and only if ϕ |= ψi for each 1 ≤ i ≤ k. Furthermore, all
temporal entailment checks in Steps 3 and 4 can be solved
using polynomially many nontemporal entailment checks
as shown in Table 7. Since none of these entailments in-
volve blank nodes, it is also straightforward to see that this
algorithm is worst-case optimal for all entailment relations
listed in Section 2.

5.2. Answering Temporal Queries

In Table 8 we define a recursive function that computes
the answer for a safe temporal group pattern P . Roughly
speaking, if P is a basic TGP, then evalX(P,G) can be
computed as follows. We enumerate all mappings poten-
tially relevant to P . For each candidate mapping µ, we
evaluate the condition from Table 4 by eliminating blank
nodes as shown in Theorem 10, and then checking the re-
maining condition using Theorem 23; if all of these checks
succeed, we include µ in the answer to P . Clearly, such
a straightforward approach is unlikely to be suitable for
practical use; however, it does show that the problem is
solvable in principle. Furthermore, this general approach
can be optimized; for example, in Section 6 we present op-
timizations that are applicable to deterministic entailment
relations and that make our algorithm practicable.

The following theorem shows that, if P is safe, then
evalX(P,G) indeed computes JP KXG , and the latter set is
finite whenever adX(G) is finite.

Theorem 26. Let G be a temporal graph, let X be an en-
tailment relation, and let P be a safe temporal group pat-
tern. Then evalX(P,G) = JP KXG ; furthermore, if adX(G)
is finite, then JP KXG is finite as well.

16

Table 8: Evaluation of Safe Temporal Group Patterns

evalX(P,G) is the set of mappings that is inductively defined as follows depending on the type of P :

P = B at t3 or
P = B during [t1, t2] or
P = B occurs [t1, t2] or
P = B maxint [t1, t2] or
P = B mintime t3 or
P = B mintime t3 :

{µ | dom(µ) = var(P), rng(µ) ⊆ adX(G) ∪ ti±X(G) ∪ {−∞,+∞}, and δX(µ(P), G) holds}

P = P1 and P2 :

{µ1 ∪ µ2 | µ1 ∈ evalX(P1, G), µ2 ∈ evalX(P2, G), and µ1 and µ2 are compatible}

P = P1 union P2 :

evalX(P1, G) ∪ evalX(P2, G)

P = P1 opt P2 :

{µ1 ∪ µ2 | µ1 ∈ evalX(P1, G), and µ2 = ∅ if evalX(µ(P2), G) = ∅ or µ2 ∈ evalX(µ1(P2), G)}

P = P1 filter R :

{µ ∈ evalX(P1, G) | µ |= R}

Proof. Let D = ti±X(G) ∪ {−∞,+∞}. To prove this the-
orem, we show the following properties, where P is an ar-
bitrary TGP in Points 1a and 1c, and P is a safe TGP in
Points 1b, 2, and 3:

1. For each µ ∈ JP KXG , the following holds:

(a) for each x ∈ bind(P), we have x ∈ dom(µ) and
µ(x) ∈ D (even if P is not safe);

(b) rng(µ) ⊆ adX(G) ∪D (if P is safe); and
(c) if rng(µ) ⊆ adX(G) ∪D, then µ ∈ evalX(P,G)

(even if P is not safe).

2. evalX(P,G) ⊆ JP KXG (if P is safe).

3. If adX(G) is finite, then JP KXG is finite as well (if P
is safe).

Note that, if P is safe, then from Points 1b and 1c we can
conclude JP KXG ⊆ evalX(P,G); combined with Point 2, we
can conclude JP KXG = evalX(P,G). Thus, the claim of this
theorem follows from Points 1–3.

For Point 3, note that the conditions in Table 8 ensure
that rng(µ) ⊆ adX(G) ∪D for each µ ∈ evalX(P,G). The
set ti±X(G) is always finite; thus, if adX(G) is finite, then
evalX(P,G) is finite as well; but then, JP KXG is finite by
Points 1b, 1c, and 2.

We prove Points 1 and 2 by induction on the struc-
ture of P . To simplify the presentation, we first consider
Point 2. Assume that P is a basic TGP. Note that the
ranges of the mappings in evalX(P,G) are restricted to
adX(G) ∪D (cf. Table 8), whereas in JP KXG they are re-
stricted to adX(G) ∪ T I± (cf. Table 4); apart from this
difference, all remaining conditions are the same. Since
D ⊆ T I±, Point 2 holds for P . Furthermore, assume

that P is of the form P1 and P2. By induction assump-
tion we have that evalX(Pi, G) ⊆ JPiKXG for i ∈ {1, 2}, so
then clearly evalX(P,G) ⊆ JP KXG as well. The cases when
P is of the form P1 union P2 or P1 filter R are analogous.
Finally, assume that P is of the form P1 opt P2. Note that
the following identities are true by the definition of ./ and
\ for arbitrary P1 and P2.

JP1KXG ./ JP2KXG =
{µ1 ∪ µ2 | µ1 ∈ JP1KXG and µ2 ∈ Jµ1(P2)KXG}

JP1KXG \ JP2KXG =
{µ1 | µ1 ∈ JP1KXG and Jµ1(P2)KXG = ∅}

The condition for P in Table 8 is thus equivalent to the
one in Table 1. Assume now that P1 and P2 satisfy Points
1 and 2 and that P is safe. By Definition 21, P1 is safe as
well, so by Points 1 and 2 we have evalX(P1, G) = JP1KXG .
Furthermore, also by Definition 21, µ1(P2) is safe for each
mapping µ1 ∈ JP1KXG , so by Points 1 and 2 we have that
evalX(µ1(P2), G) = Jµ1(P2)KXG . Thus, Point 2 holds for P
provided that P1 and P2 satisfy Point 1. We next show
that Points 1a–1c hold for all possible forms of P .

Assume that P = B at t3 or P = B during [t1, t2]
or P = B occurs [t1, t2] and consider an arbitrary map-
ping µ ∈ JP KXG . Since bind(P) = ∅, Point 1a holds vacu-
ously. Furthermore, if P is safe, then tvar(P) = ∅, so t1,
t2, and t3 are not variables; thus, dom(µ) = var(B) and
rng(µ) ⊆ adX(G), so Point 1b holds. Finally, if we have
rng(µ) ⊆ adX(G) ∪D, then the conditions in the defini-
tions of JP KXG and evalX(P,G) are equivalent for µ, so
Point 1c holds.

17

Assume that P = B maxint [t1, t2] and consider an
arbitrary mapping µ ∈ JP KXG . Let σ be a mapping for
which δX(µ(P), G) holds, and let B′ = σ(µ(B)). Assume
that t1 is a variable x1 such that µ(x1) 6∈ D; by condition
δX(µ(P), G) then we have ξX(G) |= πX(B′)〈µ(x1)〉 and
ξX(G) 6|= πX(B′)〈µ(x1)− 1〉. The latter condition implies
that ξX(G) is satisfiable, so by Claim 2 of Theorem 23 we
have ΞX(G,µ(x1)) |=X B′ and ΞX(G,µ(x1)− 1) 6|=X B′.
Furthermore, ΞX(G,µ(x1)) ⊆ ΞX(G,µ(x1)− 1) by Propo-
sition 22; moreover, first-order logic is monotonic, so we
have ΞX(G,µ(x1)− 1) |=X B′, which is a contradiction;
thus µ(x1) ∈ D. In a completely analogous way we can
show that, if t2 is a variable x2, then µ(x2) ∈ D. But
then, µ ∈ evalX(P,G) and Points 1a–1c clearly hold.

Assume that P = B mintime t3 and consider an arbi-
trary mapping µ ∈ JP KXG . Let σ be a mapping for which
δX(µ(P), G) holds, and let B′ = σ(µ(B)). Assume that t3
is a variable x3 with µ(x3) 6∈ D; by condition δX(µ(P), G)
then ξX(G) |= πX(B′)〈µ(x3)〉 and

ξX(G) 6|= ∃xt : [xt ≤ µ(x3)− 1 ∧ πX(B′)〈x3〉];

by the latter condition, formula ξX(G) is satisfiable and
ξX(G) 6|= πX(B′)〈µ(x3)− 1〉. By Theorem 23, we then
have ΞX(G,µ(x3)) |=X B′ and ΞX(G,µ(x3)− 1) 6|=X B′.
Furthermore, ΞX(G,µ(x3)) ⊆ ΞX(G,µ(x3)− 1) by Propo-
sition 22; moreover, first-order logic is monotonic, so we
have ΞX(G,µ(x3)− 1) |=X B′, which is a contradiction;
thus µ(x3) ∈ D. But then, µ ∈ evalX(P,G) and Points
1a–1c clearly hold.

Assume that P = B maxtime t3. The proof is com-
pletely analogous to the previous case.

Assume that P = P1 and P2 and consider an arbi-
trary mapping µ ∈ JP KXG . Let µ1 and µ2 be the mappings
compatible with µ such that dom(µi) = var(Pi) for each
i ∈ {1, 2}; clearly, we have µi ∈ JPiKXG .

• Consider an arbitrary variable x ∈ bind(P). By Ta-
ble 6, x ∈ bind(P1) or x ∈ bind(P2). If x ∈ bind(P1),
then x ∈ dom(µ1) and µ1(x) ∈ D by the induction
assumption; but then, x ∈ dom(µ) and µ(x) ∈ D.
By analogous reasoning for x ∈ bind(P2), we see that
Point 1a holds.

• If P is safe, then tvar(P) = bind(P). Consider now
an arbitrary variable x ∈ var(P): if x 6∈ tvar(P), then
µ(x) ∈ adX(G); otherwise, x ∈ bind(P) due to the
safety of P , so µ(x) ∈ D by Point 1a. Consequently,
rng(µ) ⊆ adX(G) ∪D, and Point 1b holds.

• Assume that rng(µ) ⊆ adX(G) ∪D; then clearly we
have rng(µi) ⊆ adX(G) ∪D for each i ∈ {1, 2}. Since
Point 1c holds for Pi and µi ∈ JPiKXG by the induction
assumption, we have µi ∈ evalX(Pi, G). But then,
µ ∈ evalX(P,G) by Table 8, so Point 1c holds.

Assume that P = P1 union P2 and consider an arbi-
trary mapping µ ∈ JP KXG . Clearly, we have µ ∈ JPiKXG for
i = 1 or i = 2.

• Consider an arbitrary variable x ∈ bind(P). Then
x ∈ bind(Pi) by Table 6, so x ∈ dom(µ) and µ(x) ∈ D
by the induction assumption, and Point 1a holds.

• If P is safe, then Pi is safe as well. But then, Point 1b
is satisfied for Pi and µ by the induction assumption,
we have rng(µ) ⊆ adX(G) ∪D, so Point 1b holds.

• Assume that rng(µ) ⊆ adX(G) ∪D. Since Point 1c
holds for Pi and µ by the induction assumption, we
have µ ∈ evalX(Pi, G). But then, µ ∈ evalX(P,G) as
well, so Point 1c holds.

Assume that P = P1 opt P2 and consider an arbitrary
mapping µ ∈ JP KXG . Let µ1 be the mapping compatible
with µ such that dom(µ1) = var(P1); clearly, µ1 ∈ JP1KXG .
Furthermore, let µ2 be the maximal mapping compatible
with µ such that dom(µ2) ⊆ var(µ1(P2)); clearly, µ2 = ∅
or µ2 ∈ Jµ1(P2)KXG .

• Consider an arbitrary variable x ∈ bind(P). Then
x ∈ bind(P1) by Table 6, so we have x ∈ dom(µ1) and
µ1(x) ∈ D by the induction assumption; but then,
x ∈ dom(µ) and µ(x) ∈ D, and Point 1a holds.

• Assume that P is safe. Then P1 is safe as well, so
Point 1b is satisfied for P1 and µ1 by the induc-
tion assumption, so we have rng(µ1) ⊆ adX(G) ∪D.
Point 1b clearly holds if µ2 = ∅. Therefore, assume
that µ2 6= ∅ and let P ′2 = µ1(P); clearly, P ′2 is safe,
since the actual values that µ1 assigns to the vari-
ables in bind(P1) do not affect the definition of safety.
Point 1b is satisfied for P ′2 and µ2 ∈ Jµ1(P2)KXG by
the induction assumption, so rng(µ2) ⊆ adX(G) ∪D.
Since µ = µ1 ∪ µ2, we have rng(µ) ⊆ adX(G) ∪D, so
Point 1b holds.

• Assume that rng(µ) ⊆ adX(G) ∪D. Then we have
rng(µi) ⊆ adX(G) ∪D for each i ∈ {1, 2}. Point 1c
holds for P1 and µ1, as well as for µ1(P2) and µ2, so
µ1 ∈ evalX(P1, G) and µ2 ∈ evalX(µ1(P2), G). But
then, µ ∈ evalX(P,G) by Table 8, and Point 1c holds.

Assume that P = P1 filter. Points 1a–1c hold for P1

by the induction assumption; but then, by the definition
of evalX(P,G) they clearly hold for P as well. �

Intuitively, evalX(P,G) evaluates P bottom-up, in a
way similar to the one shown in Table 1; however, in-
stead of matching the variables from P to the values in
the infinite set adX(G) ∪ T I±, the values from the finite
set adX(G) ∪ ti±X(G) ∪ {−∞,+∞} suffice because the def-
inition of safety ensures that each variable is “bound” by
a safe basic TGP.

Note that the computation of JP KXG is not a decision
(i.e., a yes/no) problem. Therefore, in order to determine
the complexity of our query language, we must consider
a decision version of the problem: given an entailment
relation X, a temporal graph G, a safe temporal group
pattern P , and a mapping µ, decide whether µ ∈ JP KXG .

18

A worst-case optimal procedure for deciding µ ∈ JP KXG
can be obtained by a slight modification of [30, Algorithm
1]: the only difference is in the treatment of basic TGPs,
which can be handled as shown in Theorem 23. Thus,
one can show that the complexity of deciding µ ∈ JP KXG is
either PSPACE or the complexity of the corresponding
nontemporal entailment, whichever is higher. The proof
of these claims is quite straightforward, so we refrain from
going into further detail.

One might näıvely try to solve the above mentioned de-
cision problem by computing evalX(P,G) and then check-
ing whether µ ∈ evalX(P,G). Function evalX(P,G), how-
ever, can return exponentially many mappings (in var(P)
and the number of URI references in G). Note that the
latter is not because evalX(P,G) is suboptimal: it is sim-
ply due to the fact that JP KXG can be exponential in size.
Thus, the näıve decision procedure outlined above might
use exponential space for storing intermediate results and
would therefore be suboptimal. Function evalX(P,G) is
nevertheless useful since it shows that the answers to safe
TGPs are finite: we would not be able to prove this by
considering only the decision version of the problem. Fur-
thermore, evalX(P,G) provides us with a bottom-up al-
gorithm that is quite similar to the algorithms used to
evaluate relational algebra queries [43].

6. Optimized Query Answering

In order to compute the answer to a safe basic TGP
P using the function evalX(P,G) presented in Section 5.2,
we can enumerate all candidate mappings and then de-
cide for each mapping whether the mapping is contained
in the answer. The latter problem can be solved using the
reduction from Section 5.1 by checking one or more non-
temporal entailments. Such an approach is very general
and can handle arbitrary entailment relations; however,
the resulting algorithm is unlikely to be practicable: the
set of all candidate mappings is likely to be much larger
than the answer to P , so the algorithm is likely to perform
a lot of computation. In this section we optimize this gen-
eral algorithm for specific entailment relations to make it
more goal-directed.

In Section 6.1 we present a goal-oriented approach for
evaluating TGPs under Simple Entailment. The resulting
algorithm uses a preprocessing phase in order to normalize
a temporal graph, after which temporal queries can be
evaluated by simple matching in the normalization. This
approach can be straightforwardly integrated into virtually
all existing RDF management systems.

In Section 6.2 we extend our optimization to entailment
relations that can be characterized by a set of deterministic
rules, such as RDF(S) and OWL 2 RL/RDF Entailment.
In particular, we show how to apply the rules to a tempo-
ral graph in a bottom-up fashion and thus materialize all
relevant consequences. The resulting materialized graph
can then be normalized, after which temporal queries can
be answered using the optimization from Section 6.1.

In order to simplify our definitions, in the rest of this
section we consider temporal triples of the form 〈s, p, o〉[t]
as syntactic abbreviations for 〈s, p, o〉[t, t].

6.1. Simple Entailment

Simple Entailment is the basic entailment relation in
which BGPs can be evaluated in nontemporal graphs by
simple lookup. Such an approach provides the basis of vir-
tually all practical RDF management systems, so it would
be beneficial if similar approaches were applicable to TGPs
and temporal graphs. As the following example demon-
strates, however, a näıve application of graph matching
would result in an incorrect algorithm.

Example 27. Let P be as in (65), and let G be the tem-
poral graph that contains the temporal triples shown in
(8)–(11) in Section 3; then, JP Ksimple

G is shown in (66).

P = {〈:LHR, :flightTo, :MUC 〉} maxint [x, y] (65)

JP Ksimple
G = {{x 7→ 50, y 7→ 150}} (66)

Note, however, that G does not contain temporal triple
α = 〈:LHR, :flightTo, :MUC 〉[50, 150], so JP Ksimple

G can-
not be computed by simple lookup. Temporal graph G
is equivalent under Simple Entailment to the normalized
temporal graph nrm(G) obtained from G by replacing (8)
and (9) with α; furthermore, P can be evaluated in nrm(G)
by simple lookup. ♦

Based on these observations, we develop our optimized
approach for TGP evaluation.

Let G be a temporal graph, and let A = 〈s, p, o〉[t1, t2]
be a temporal triple in G. Then A directly overlaps with
〈s, p, o〉[t′1, t′2] ∈ G if max(t1, t

′
1) ≤ min(t2, t

′
2); overlaps is

the transitive closure of “directly overlaps”; and GA is the
set that contains precisely all temporal triples in G that
overlap with A. The normalization of A w.r.t. G is the
temporal triple nrmA(A) defined as follows:

nrmG(A) = 〈s, p, o〉[t1, t2]

t1 = min
〈s,p,o〉[ti1,ti2]∈GA

ti1

t2 = max
〈s,p,o〉[ti1,ti2]∈GA

ti2

Finally, the normalization of G is the temporal graph
nrm(G) obtained from G by replacing each temporal triple
C ∈ G with nrmG(C).

Temporal graph nrmG(C) can be computed from G us-
ing Algorithm 1. Due to sorting, all temporal triples in
G are grouped by s, p, and o, and within each group, the
triples are ordered by t1 and t2. Thus, at each point in
time during the execution of the for-loop, either sc is un-
defined or 〈sc, pc, oc〉[tc1, tc2] is the normalization w.r.t. G of
all triples of the form 〈sc, pc, oc〉[t1, t2] processed thus far.
Consequently, the algorithm correctly computes nrm(G).
In a system where G is stored in a relational database,

19

Algorithm 1 Computing nrm(G)

Sort the triples 〈s, p, o〉[t1, t2] in G by s, p, and o, t1, and t2
R := ∅
sc := pc := oc := tc1 := tc2 := undefined
for all 〈s, p, o〉[t1, t2] ∈ G do

if s 6= sc or p 6= pc or o 6= oc or t1 > tc2 then
if sc 6= undefined then

R := R ∪ {〈sc, pc, oc〉[tc1, tc2]}
end if
sc := s, pc := p, oc := o, tc1 := t1, tc2 := t2

end if
tc2 = max(tc2, t2)

end for
if sc 6= undefined then

R := R ∪ {〈sc, pc, oc〉[tc1, tc2]}
end if
return R

Algorithm 1 can be straightforwardly implemented using
a stored procedure.

We next show how to answer TGPs under Simple En-
tailment using nrm(G).

Definition 28. Let B be a BGP containing 〈si, pi, oi〉 for
1 ≤ i ≤ k; and let ~x = 〈x1, . . . , xk〉, ~y = 〈y1, . . . , yk〉, z1,
and z2 be distinct variables not occurring in B. Then,
MB(~x, ~y, z1, z2) is the following conjunction:

MB(~x, ~y, z1, z2) ≡
(

k∧
i=1

〈si, pi, oi〉[xi, yi]
)
∧

z1 = max(x1, . . . , xk) ∧
z2 = min(y1, . . . , yk) ∧
z1 ≤ z2

For P a basic TGP, ϕP is the first-order formula de-
fined as shown in Table 9.

Let G be a temporal graph. For P a safe basic temporal
group pattern, seval(P,G) is the set of mappings obtained
by evaluating ϕP in nrm(G), where the latter is treated
in the obvious way as a relation in a relational database.
For P a safe TGP of any other type, seval(P,G) is defined
analogously as in Table 8.

Theorem 29. For each temporal graph G and each safe
temporal group pattern P , seval(P,G) = JP Ksimple

G .

Proof. Temporal graphs G and nrm(G) are obviously
equivalent w.r.t. any entailment relation. Furthermore,
by the definition of normalization, 〈s, p, o〉[t1, t2] ∈ nrm(G)

if and only if J{〈s, p, o〉} maxint [t1, t2]Ksimple
G 6= ∅—that is,

each temporal assertion in nrm(G) covers the maximal in-
terval in which the assertion is valid.

Now let P be a safe TGP of the form B maxint [t1, t2].
Conjunction (

k∧
i=1

〈si, pi, oi〉[xi, yi]

)

is true in nrm(G) precisely for each mapping σ such that
dom(σ) = var(P) ∪ {~x, ~y} and

〈σ(s), σ(p), σ(o)〉[σ(t1), σ(t2)] ∈ nrm(G),

so MB(~x, ~y, z1, z2) is true if and only if, in addition, in-
terval (z1, z2) is the nonempty intersection of all intervals
(xi, yi); consequently, ϕP is true in nrm(G) precisely for

those mappings µ such that µ ∈ JP Ksimple
G .

The proofs for the remaining forms of P are analogous
and are omitted for the sake of brevity. �

Computing answers to safe basic TGPs can thus be re-
duced to the evaluation of first-order queries in the normal-
ization of a temporal graph, and the latter can be imple-
mented using SQL. Furthermore, all other types of TGPs
can be handled by translating them into SQL, so Theorem
29 provides the foundation for a practical implementation
of our framework in RDF systems.

We finish this section with an observation that, in SQL,
mintime and maxtime can be handled using aggregate func-
tions, rather than nested subqueries. We do not discuss
this optimization any further because of the well-known
problems involved in capturing the semantics of aggregate
functions in first-order logic.

6.2. Entailments Characterized by Deterministic Rules

Let X be an entailment relation that can be character-
ized by a set ΓX of deterministic rules of the form (67).

A1 ∧ . . . ∧An → B (67)

Numerous RDF systems, such as such as Jena [3], Jena2
[4], Sesame [5], and Oracle [6], use a materialization ap-
proach to deal with such X: they initially compute and
store all consequences w.r.t. ΓX of a nontemporal graph.
Any query can then be evaluated in the materialization by
straightforward lookup.

We next show how to materialize the temporal closure
clsX(G) of a temporal graph G using the rules from ΓX .
After this is done, we can normalize clsX(G) and use the
algorithm from Section 6.1 in order to answer TGPs.

By examining the semantics of temporal entailment in
Section 3, one might näıvely try to transform each rule of
the form (67) into

A1[xt] ∧ . . . ∧An[xt]→ B[xt] (68)

and then apply the transformed rules to G. Such an ap-
proach, however, will not work: most triples in a temporal
graph are likely to be of the form 〈s, p, o〉[t1, t2] rather than
〈s, p, o〉[t], so a rule such as (68) will not match to most
triples in a graph. We can, however, use a slight modifica-
tion of this idea. In the rest of this section, we slightly
abuse notation and allow a temporal graph G without
blank nodes to be infinite; then, πX(G) =

⋃
A∈G πX(A).

20

Table 9: Evaluation of Safe TGPs under Simple Entailment

P ϕ~v

B at t3 ∃~x, ~y, z1, z2 : MB(~x, ~y, z1, z2) ∧ z1 ≤ t3 ≤ z2
B during [t1, t2] ∃~x, ~y, z1, z2 : MB(~x, ~y, z1, z2) ∧ z1 ≤ t1 ≤ t2 ≤ z2
B occurs [t1, t2] ∃~x, ~y, z1, z2 : MB(~x, ~y, z1, z2) ∧max(z1, t1) ≤ min(z2, t2)

B maxint [t1, t2] ∃~x, ~y, z1, z2 : MB(~x, ~y, z1, z2) ∧ t1 = z1 ∧ t2 = z2

B mintime t3 ∃~x, ~y, z1, z2 : MB(~x, ~y, z1, z2) ∧ t3 = z1 ∧ ∀~x′, ~y′, w1, w2 : MB(~x′, ~y′, w1, w2)→ z1 ≤ w1

B maxtime t3 ∃~x, ~y, z1, z2 : MB(~x, ~y, z1, z2) ∧ t3 = z2 ∧ ∀~x′, ~y′, w1, w2 : MB(~x′, ~y′, w1, w2)→ z2 ≥ w2

Definition 30. For X and ΓX as stated above, let ΣX be
the set containing the rule (69) for each rule (67) in ΓX .

A1[x1, y1] ∧
. . .
An[xn, yn] ∧
z1 = max(x1, . . . , xn) ∧
z2 = min(y1, . . . , yn) ∧
z1 ≤ z2 → B[z1, z2]

(69)

Let G be a temporal graph containing only triples of the
form 〈s, p, o〉[t1, t2].3 The temporal closure of G is the
(possibly infinite) temporal graph clsX(G) obtained by ex-
haustively applying the rules in ΣX to the X-skolemization
of G.

Example 31. Let G be the temporal graph that contains
the temporal triples shown in (8)–(11) in Section 3. By ap-
plying the approach from Definition 30 to G under RDFS
entailment, one can see that (10) and (11) produce the
following temporal triple:

〈:Munich, :hasEvent , :Oktoberfest〉[130, 180] (70)

This triple captures the RDFS consequences of G. ♦

The following proposition shows that, instead of eval-
uating TGPs in G under X-entailment, one can evaluate
them in clsX(G) under simple entailment.

Theorem 32. Let X and G be as stated in Definition 30,
and let G′ = clsX(G). Then, for each temporal group pat-

tern P , we have JP KXG = JP Ksimple
G′ .

Proof. Let P be an arbitrary TGP, and let G1 be the X-
skolemization of G. Clearly JP KXG = JP KXG1 , so the claim

of this theorem holds if and only if JP KXG1 = JP Ksimple
G′ .

Let G2 be the temporal graph that contains 〈s, p, o〉[t]
for each 〈s, p, o〉[t1, t2] ∈ G1 and each t with t1 ≤ t ≤ t2.
Furthermore, let ΩX be the set containing a rule of the

3As explained earlier, triples of the form 〈s, p, o〉[t] can be consid-
ered abbreviations for 〈s, p, o〉[t, t].

form (68) for each rule of the form (67) in ΓX ; and let G3

be the temporal graph obtained by applying exhaustively
the rules in ΩX to G2. Since ΩX is a deterministic set
of rules, it can be understood as a datalog program; fur-
thermore, G3 can be seen as the least fixpoint of G2 w.r.t.
ΩX . Thus, by [43], for each temporal triple A of the form
〈s, p, o〉[t], we have πsimple(G3) |= πsimple(A) if and only if

πX(G1) ∪ {∀xt : ϕ〈xt〉 | ϕ ∈ ΓX} |= πsimple(A),

so JP KXG1 = JP Ksimple
G3 .

Let G4 be the temporal graph that contains 〈s, p, o〉[t]
for each 〈s, p, o〉[t1, t2] ∈ G′ and each t with t1 ≤ t ≤ t2.
It is straightforward to see that each derivation tree for
a triple 〈s, p, o〉[t] ∈ G3 can be transformed to a deriva-
tion tree of 〈s, p, o〉[t1, t2] ∈ G′ such that t1 ≤ t ≤ t2; sim-
ilarly, one can easily see that each derivation tree for a
triple 〈s, p, o〉[t1, t2] ∈ G′ can be transformed to a deriva-
tion tree of the triple 〈s, p, o〉[t] ∈ G3 for each t1 ≤ t ≤ t2.
Consequently, G3 = G4, so πsimple(G3) and πsimple(G′) are

equivalent, and JP Ksimple
G3 = JP Ksimple

G′ . �

We next comment on a somewhat technical issue in-
volved in Definition 30. For the sake of generality, our def-
initions allow ΓX to be infinite so, given a finite temporal
graph G, the closure clsX(G) can be infinite as well. Thus,
to correctly state our results, we need the ability to deal
with infinite temporal graphs. Note, however, that blank
nodes are encoded using existential quantifiers; therefore,
to correctly capture the semantics of blank nodes in infi-
nite temporal graphs, we might need to existentially quan-
tify over infinite sets of formulae, which is not possible in
standard first-order logic. In order to avoid such techni-
cal problems, Definition 30 simply skolemizes blank nodes
in G before applying the rules. This does not affect the
answers to TGPs since the definition of TGP semantics
already involves skolemizing the blank nodes in G.

Rules of the form (69) are just plain datalog rules so,
provided that ΓX is finite, clsX(G) can be computed us-
ing standard datalog evaluation techniques, such as vari-
ants of the seminäıve strategy [44]. These techniques are
used in most materialization-based RDF systems to handle

21

nontemporal RDF, so extending the mentioned systems to
handle temporal graphs should be straightforward.

7. Related Work

The management of validity time has been extensively
studied in relational databases and artificial intelligence.
Neither RDF nor OWL, however, supports validity time,
and SPARQL does not provide the primitives for temporal
querying of data. These deficiencies have been recognized
in the Semantic Web community, and several proposals
have emerged. In this section we present an overview of
these related proposals and discuss the similarities and dif-
ferences with our work.

Chomicki presented an extensive overview of the prin-
ciples of the representation and querying of validity time
in relational databases [39], and Vila did the same in the
context of artificial intelligence [40]. The surveyed results,
however, are quite general and do not handle the family
of Semantic Web languages. In this paper we adapted
the principles from [39, 40] to the specifics of RDF, OWL,
and SPARQL, and we provided appropriate reasoning al-
gorithms. In particular, we distinguish logical from phys-
ical temporal databases as in [39], and we use temporal
arguments to associate time instants with facts as in [40].

Gutierrez et al. presented a comprehensive framework
for representing and querying validity time in RDF [22].
They defined a syntactic notion of temporal RDF graphs
quite similar to the one presented in this paper. To obtain
a notion of temporal entailment, they defined the snapshot
of a temporal graph G at a time instant t ∈ T I as the
nontemporal graph G(t) that contains each 〈s, p, o〉 such
that 〈s, p, o〉[t] ∈ G or 〈s, p, o〉[t1, t2] ∈ G and t1 ≤ t ≤ t2;
then, for G1 and G2 temporal graphs, G1 |= G2 holds if
and only if G1(t) |= G2(t) for each t ∈ T I. To obtain a
practical characterization of temporal entailment, the au-
thors defined the slice closure of a temporal graph G as the
union of the closures of G(t) for each t ∈ T I, where the
notion of a closure of a nontemporal graph is taken from
[45]. Finally, the authors also developed an encoding of
temporal graphs into nontemporal graphs that preserves
temporal entailment, and they presented a basic temporal
query language. This framework was extended in [23] with
more general temporal constraints.

Although there are many similarities between our work
and the framework presented in [22], our work differs in
several important ways.

• The notion of temporal graph entailment from [22]
is not applicable to OWL 2 Direct Entailment, and
the notion of slice closures is applicable only to de-
terministic entailment relations without existential
quantifiers, which excludes OWL 2 RDF-Based En-
tailment. In contrast, our work provides a unifying
semantic and algorithmic framework for the man-
agement of validity time in the Semantic Web that

is applicable to an arbitrary entailment relation, in-
cluding OWL 2 Direct Entailment and OWL 2 RDF-
Based Entailment. Note that our approach produces
the same consequences as [22] for RDFS Entailment.

• Expressions of the form 〈s, p, o〉[t1, t2] are considered
in [22] to be syntactic abbreviations for temporal
triples 〈s, p, o〉[t] for each t1 ≤ t ≤ t2, rather than
full-fledged parts of a temporal graph. Thus, t1 and
t2 in such an expression cannot be −∞ and +∞, as
this would result in an infinite temporal graph and
would consequently invalidate key technical results,
such as [22, Proposition 2]. Such a definition has
another side-effect: each triple 〈s, p, o〉[t1, t2] con-
tributes O(t2 − t1) to the size of a temporal graph
(this is implicitly assumed in all technical results in
[22]): since the slice closure of G is defined as the
union of a closure of G(t) for each t ∈ T I, if G con-
tains 〈s, p, o〉[t1, t2], at least t2− t1 + 1 time instants
must be considered during the computation of a slice
closure. Thus, the presence of large time intervals in
a temporal graph can adversely affect the complexity
of the employed algorithms. In contrast, temporal
triples of the form 〈s, p, o〉[t1, t2] are “first-class citi-
zens” in our framework, they can be used to express
facts with unbounded validity intervals, and the size
of their time intervals does not affect the complexity
of our reasoning algorithms.

• Third, the query language presented in [22] does not
address the issues we discussed in Section 4.

Pugliese et al. [24] extended the approach by Gutier-
rez et al. in several ways. First, they allowed temporal
triples to refer to unknown, rather than precisely named
time points; second, they defined a temporal query lan-
guage based on graph matching; and third, they presented
a way for indexing temporal graphs. Since the approach
by Pugliese et al. is based on [22], it does not handle
nondeterministic entailment relations or entailment rela-
tions that involve existential quantification; furthermore,
the presented query language does not address the prob-
lems discussed in Section 4.

Tappolet and Bernstein [25] discussed various technical
issues involved in an implementation of the approach by
[22] and presented a temporal extension of SPARQL. How-
ever, neither the syntax nor the semantics of the presented
query language has been formally specified.

There are numerous proposals in the literature for ex-
tending description logics with validity time; Artale and
Franconi [26] and Lutz et al. [27] presented comprehen-
sive surveys of the relevant results. These works, however,
typically focus on expressing and reasoning with complex
temporal constraints. Such constraints usually allow for
quantification over (potentially unknown) time instants;
thus, the computational problems in temporal description
logics are usually quite different from the ones in the Se-
mantic Web, since the latter typically deal with efficient

22

retrieval and management of known time instants.
Milea et al. presented a temporal extension of OWL

[28]. Time instants are encoded as values of a particular
concrete domain, and predefined concepts and properties
are used to associate time intervals with facts. The au-
thors, however, do not discuss an appropriate temporal
query language.

In a somewhat independent line of research, several
frameworks for annotating RDF triples were developed.
One of the first such proposals was by Udrea et al. [46];
Straccia et al. extended this proposal in [29] with a more
general deductive system and they presented in [47] a lan-
guage for querying annotated RDF. These frameworks al-
low an RDF triple to be annotated by an element of a suit-
ably defined annotation domain. The latter is assumed to
exhibit some very general mathematical properties, such as
being partially ordered or being a lattice, which is used to
define the semantics of annotated RDF graphs and obtain
an adequate deductive system. RDF annotation frame-
works are thus very general and can capture a wide range
of annotation information, such as fuzziness, provenance,
or validity time. The latter can be captured by an an-
notation domain that contains time intervals; thus, the
temporal domain is interval-based. This is in contrast to
the work by Gutierrez et al. [22] and our work in which the
temporal domain is point-based. Furthermore, unlike the
work presented in this paper, none of the frameworks listed
above are applicable to nondeterministic entailment rela-
tions, entailment relations that involve existential quanti-
fiers, or OWL 2 Direct Entailment.

8. Implementation and Outlook

In this paper we presented an approach for representing
validity time in RDF and OWL, an extension of SPARQL
that allows for querying temporal graphs, and two query
answering algorithms. We implemented our approach in
ExperienceOn’s backend system. The system is based on
a proprietary extension of RDF that supports n-ary rela-
tions; it uses an ontology language based on OWL 2 RL;
and it implements a proprietary query language based on
the primitives and the notion of safety outlined in Sec-
tion 4. The PostgreSQL database is used for data per-
sistence and query processing. Ontology reasoning is im-
plemented by translating the ontology into a datalog pro-
gram, which is then compiled into a plSQL script that im-
plements the seminäıve datalog evaluation strategy [44].
Datalog rules are modified as described in Section 6.2 in
order to deal with validity time; furthermore, the resulting
set of facts obtained by applying the rules is normalized
to allow for efficient query answering. Finally, temporal
queries are translated into SQL as outlined in Section 6.1
and then evaluated using the query engine of PostgreSQL.
The source code of the system is not open, and Experi-
enceOn has no plans for licensing the system to third-party
developers. Therefore, we do not present a performance
evaluation since such results could not be validated by the

community. We merely note that ExperienceOn is success-
fully using our approach with datasets consisting of tens
of millions of triples, which we take as confirmation that
our approach is amenable to practical implementation.

An important open question is to see whether the gen-
eral algorithm from Section 4 can be successfully used with
entailment relations such as OWL 2 Direct Entailment.
We believe this to be possible provided that the algorithm
is adequately optimized.

References

[1] G. Klyne, J. J. Carroll, Resource Description Framework
(RDF): Concepts and Abstract Syntax (February 10 2004).

[2] B. Cuenca Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-
Schneider, U. Sattler, OWL 2: The next step for OWL, Journal
of Web Semantics: Science, Services and Agents on the World
Wide Web 6 (4) (2008) 309–322.

[3] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne,
K. Wilkinson, Jena: Implementing the Semantic Web Recom-
mendations, in: S. I. Feldman, M. Uretsky, M. Najork, C. E.
Wills (Eds.), Proc. of the 13th Int. Conf. on World Wide Web
(WWW 2004)—Alternate Track, ACM, New York, NY, USA,
2004, pp. 74–83.

[4] K. Wilkinson, C. Sayers, H. A. Kuno, D. Reynolds, Efficient
RDF Storage and Retrieval in Jena2, in: I. F. Cruz, V. Kashyap,
S. Decker, R. Eckstein (Eds.), Proc. of the 1st Int. Workshop on
Semantic Web and Databases (SBWCB 2003), Berlin, Germany,
2003, pp. 131–150.

[5] J. Broekstra, A. Kampman, F. van Harmelen, Sesame: A
Generic Architecture for Storing and Querying RDF and RDF
Schema, in: I. Horrocks, J. A. Hendler (Eds.), Proc. of the
1st Int. Semantic Web Conf. (ISWC 2002), Vol. 2342 of LNCS,
Springer, Sardinia, Italy, 2002, pp. 54–68.

[6] E. I. Chong, S. Das, G. Eadon, J. Srinivasan, An Efficient SQL-
based RDF Querying Scheme, in: K. Böhm, C. S. Jensen, L. M.
Haas, M. L. Kersten, P.-Å. Larson, B. C. Ooi (Eds.), Proc. of
the 31st Int. Conf. on Very Large Data Bases (VLDB 2005),
Trondheim, Norway, 2005, pp. 1216–1227.

[7] D. Wood, P. Gearon, T. Adams, Kowari: A Platform for Se-
mantic Web Storage and Analysis, in: XTech 2005 Conference,
2005.

[8] S. Harris, N. Lamb, N. Shadbol, 4store: The Design and Imple-
mentation of a Clustered RDF Store, in: Proc. of the 5th Int.
Workshop on Scalable Semantic Web Knowledge Base Systems
(SSWS2009), Washington DC, USA, 2009.

[9] A. Harth, S. Decker, Optimized Index Structures for Querying
RDF from the Web, in: Proc. of the 3rd Latin American Web
Congress (LA-Web 2005), Buenos Aires, Argentina, 2005, pp.
71–80.

[10] C. Weiss, P. Karras, A. Bernstein, Hexastore: Sextuple Indexing
for Semantic Web Data Management, Proceedings of the VLDB
Endowment 1 (1) (2008) 1008–1019.

[11] D. Beckett, The Design and Implementation of the Redland
RDF Application Framework, in: Proc. of the 10th Int. World
Wide Web Conf. (WWW 2001), ACM, 2001, pp. 449–456.

[12] D. Tsarkov, I. Horrocks, FaCT++ Description Logic Reasoner:
System Description, in: Proc. of the 3rd Int. Joint Conf. on Au-
tomated Reasoning (IJCAR 2006), Vol. 4130 of LNAI, Springer,
Seattle, WA, USA, 2006, pp. 292–297.

[13] B. Parsia, E. Sirin, Pellet: An OWL-DL Reasoner, Poster at the
3rd Int. Semantic Web Conference (ISWC 2004) (November 7–
11 2004).

[14] B. Motik, R. Shearer, I. Horrocks, Hypertableau Reasoning for
Description Logics, Journal of Artificial Intelligence Research
36 (2009) 165–228.

[15] A. Sidhu, T. Dillon, E. Chang, B. S. Sidhu, Protein Ontology
Development using OWL, in: Proc. of the OWL: Expreiences

23

and Directions Workshop (OWLED 2005), Vol. 188 of CEUR
WS Proceedings, Galway, Ireland, 2005.

[16] C. Golbreich, S. Zhang, O. Bodenreider, The Foundational
Model of Anatomy in OWL: Experience and Perspectives, Jour-
nal of Web Semantics 4 (3) (2006) 181–195.

[17] J. Goodwin, Experiences of using OWL at the Ordnance Survey,
in: Proc. of the OWL: Expreiences and Directions Workshop
(OWLED 2005), Vol. 188 of CEUR WS Proceedings, Galway,
Ireland, 2005.

[18] S. Derriere, A. Richard, A. Preite-Martinez, An Ontology of As-
tronomical Object Types for the Virtual Observatory, in: Proc.
of the 26th meeting of the IAU: Virtual Observatory in Action:
New Science, New Technology, and Next Generation Facilities,
Prague, Czech Republic, 2006, pp. 17–18.

[19] D. Soergel, B. Lauser, A. Liang, F. Fisseha, J. Keizer, S. Katz,
Reengineering Thesauri for New Applications: The AGROVOC
Example, Journal of Digital Information 4 (4).

[20] L. Lacy, G. Aviles, K. Fraser, W. Gerber, A. Mulvehill,
R. Gaskill, Experiences Using OWL in Military Applications,
in: Proc. of the OWL: Expreiences and Directions Workshop
(OWLED 2005), Vol. 188 of CEUR WS Proceedings, Galway,
Ireland, 2005.

[21] R. T. Snodgrass, I. Ahn, Temporal Databases, IEEE Computer
19 (9) (1986) 35–42.

[22] C. Gutierrez, C. A. Hurtado, A. A. Vaisman, Introducing Time
into RDF, IEEE Transactions on Knowledge and Data Engi-
neering 19 (2) (2007) 207–218.

[23] C. A. Hurtado, A. A. Vaisman, Reasoning with Temporal Con-
straints in RDF, in: J. J. Alferes, J. Bailey, W. May, U. Schw-
ertel (Eds.), Proc. of the 4th Int. Workshop on Principles and
Practice of Semantic Web Reasoning (PPSWR 2006), Vol. 4187
of LNCS, Springer, Budva, Montenegro, 2006, pp. 164–178.

[24] A. Pugliese, O. Udrea, V. S. Subrahmanian, Scaling RDF with
Time, in: J. Huai, R. Chen, H.-W. Hon, Y. Liu, W.-Y. Ma,
A. Tomkins, X. Zhang (Eds.), Proc. of the 17th Int. Conf. on
World Wide Web (WWW 2008), ACM, Beijing, China, 2008,
pp. 605–614.

[25] J. Tappolet, A. Bernstein, Applied Temporal RDF: Efficient
Temporal Querying of RDF Data with SPARQL, in: L. Aroyo,
P. Traverso, F. Ciravegna, P. Cimiano, T. Heath, E. Hyvönen,
R. Mizoguchi, E. Oren, M. Sabou, E. P. B. Simperl (Eds.),
Proc. of the 6th European Semantic Web Conference (ESWC
2009), Vol. 5554 of LNCS, Springer, Heraklion, Greece, 2009,
pp. 308–322.

[26] A. Artale, E. Franconi, A survey of temporal extensions of de-
scription logics, Annals of Mathematics and Artificial Intelli-
gence 30 (1–4) (2000) 171–210.

[27] C. Lutz, F. Wolter, M. Zakharyaschev, Temporal Description
Logics: A Survey, in: S. Demri, C. S. Jensen (Eds.), Proc.
of the 15th Int. Symposium on Temporal Representation and
Reasoning (TIME 2008), IEEE Computer Society, Monteéal,
QC, Canada, 2008, pp. 3–14.

[28] V. Milea, F. Frasincar, U. Kaymak, Knowledge Engineering in a
Temporal Semantic Web Context, in: D. Schwabe, F. Curbera,
P. Dantzig (Eds.), Proc. of the 8th Int. Conf. on Web Engineer-
ing (ICWE 2008), IEEE, Yorktown Heights, NY, USA, 2008,
pp. 65–74.

[29] U. Straccia, N. Lopes, G. Lukácsy, A. Polleres, A General
Framework for Representing and Reasoning with Annotated Se-
mantic Web Data, in: M. Fox, D. Poole (Eds.), Proc. of the 24th
Nat. Conf. on Artificial Intelligence (AAAI 2010), AAAI Press,
Atlanta, GA, USA, 2010, pp. 1437–1442.

[30] J. Pérez, M. Arenas, C. Gutierrez, Semantics and complexity of
SPARQL, ACM Transactions on Database Systems 34 (3).

[31] M. Fitting, First-Order Logic and Automated Theorem Prov-
ing, 2nd Edition, Texts in Computer Science, Springer, 1996.

[32] H. B. Enderton, A Mathematical Introduction to Logic, 2nd
Edition, Academic Press, 2001.

[33] P. Hayes, RDF Semantics, W3C Recommendation (February 10
2004).

[34] M. Schneider, OWL 2 Web Ontology Language: RDF-Based

Semantics, W3C Recommendation (October 27 2009).
[35] B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fokoue,

C. Lutz, OWL 2 Web Ontology Language: Profiles, W3C Rec-
ommendation (October 27 2009).

[36] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. F. Patel-
Schneider (Eds.), The Description Logic Handbook: Theory,
Implementation and Applications, 2nd Edition, Cambridge Uni-
versity Press, 2007.

[37] P. F. Patel-Schneider, B. Motik, OWL 2 Web Ontology Lan-
guage: Mapping to RDF Graphs, W3C Recommendation (Oc-
tober 27 2009).

[38] B. Motik, P. F. Patel-Schneider, B. Cuenca Grau, OWL 2 Web
Ontology Language: Direct Semantics, W3C Recommendation
(October 27 2009).

[39] J. Chomicki, Temporal Query Languages: A Survey, in: D. M.
Gabbay, H.-J. Ohlbach (Eds.), Proc. of the 1st Int. Conf. on
Temporal Logic (ICTL ’94), Vol. 827 of LNCS, Springer, Bonn,
Germany, 1994, pp. 506–534.

[40] L. Vila, A Survey on Temporal Reasoning in Artificial Intelli-
gence, AI Communications 7 (1) (1994) 4–28.

[41] J. F. Allen, Maintaining Knowledge about Temporal Intervals,
Communications of the ACM 26 (11) (1983) 832–843.

[42] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini,
R. Rosati, EQL-Lite: Effective First-Order Query Processing
in Description Logics, in: M. M. Veloso (Ed.), Proc. of the 20th
Int. Joint Conf. on Artificial Intelligence (IJACI 2007), Hyder-
abad, India, 2007, pp. 274–279.

[43] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases,
Addison Wesley, 1995.

[44] R. Ramakrishnan, D. Srivastava, S. Sudarshan, Rule Ordering
in Bottom-Up Fixpoint Evaluation of Logic Programs, IEEE
Transactions on Knowledge and Data Engineering 6 (4) (1994)
501–517.

[45] C. Gutiérrez, C. A. Hurtado, A. O. Mendelzon, Foundations of
Semantic Web Databases, in: A. Deutsch (Ed.), Proc. of the
23rd ACM SIGACT-SIGMOD-SIGART Symposium on Princi-
ples of Database Systems (PODS 2004), ACM, Paris, France,
2004, pp. 95–106.

[46] O. Udrea, D. Reforgiato Recupero, V. S. Subrahmanian, Anno-
tated RDF, ACM Transaction on Computational Logic 11 (2).

[47] N. Lopes, A. Polleres, U. Straccia, A. Zimmermann, AnQL:
SPARQLing Up Annotated RDFS, in: P. F. Patel-Schneider,
Y. Pan, P. Hitzler, P. Mika, L. Zhang, J. Z. Pan, I. Horrocks,
B. Glimm (Eds.), Proc. of the 9th Int. Semantic Web Conf.
(ISWC 2010), Vol. 6496 of LNCS, Springer, Shanghai, China,
2010, pp. 518–533.

24

