
Design and Implementation of the SPROUT

Query Engine for Probabilistic Databases

Jiewen Huang

Oriel College

Supervisor: Dr. Dan Olteanu

Submitted in partial fulfilment of the degree of

Master of Science by Research in Computer Science

Computing Laboratory

University of Oxford

August 2009

Acknowledgments

I would like to thank a number of people for their assistance and support.
First of all, I cannot overstate my indebtedness to my supervisor, Dan

Olteanu. Since the conception of the projects, Dan has been a source of con-
stant encouragement, sound advice, great company, and lots of good ideas.
More generally, he has taught me how to become a database researcher.
Without his guidance, SPROUT and MayBMS would not have been possi-
ble.

Aside from my supervisor, I must also thank Christoph Koch. He over-
came several obstacles to provide me with generous financial support. The
work on MayBMS was supported by a one-year scholarship from Cornell Uni-
versity. What is more, he initially proposed the implementation of MayBMS
and guided me during its execution.

I also would like to express my gratitude to those who helped in numerous
other ways, from proof-reading to providing much-needed feedback. In this
regard, I would like to thank Sebastian Ordyniak, Margarita Satraki, Hao
Wu and Haoxian Zhao.

Finally, no acknowledgment section would be complete without mention-
ing my family, but particularly my parents, for whose constant support in
this and all my endeavors I am singularly fortunate.

Abstract

SPROUT is an extension of the PostgreSQL backend with state-of-the-
art scalable techniques for confidence computation. SPROUT is publicly
available at sourceforge.net since March 2009 and was demonstrated at ACM
SIGMOD 2009.

This thesis introduces two novel techniques for scalable confidence com-
putation. The first technique generalizes the results of my previous papers
(published in IEEE ICDE 2009 and SUM 2008) to a novel class of tractable
conjunctive queries without self-joins and with inequalities (<) on tuple-
independent probabilistic databases. The problem of syntactically charac-
terizing tractable conjunctive queries with inequalities is fundamental to
probabilistic databases and was recently stated open. A confidence com-
putation technique is given based on efficient compilation of the lineage of
the query answer into Ordered Binary Decision Diagrams (OBDDs). For
practical purposes, a secondary-storage variant is developed that does not
need to materialize the OBDD, but computes, in one scan over the lineage,
the probabilities of OBDD fragments and combines them on the fly. The re-
sults on this first query processing technique appeared in an ACM SIGMOD
2009 research paper and passed the SIGMOD repeatability and workability
evaluation (RWE).

The second technique deals with arbitrary positive relational algebra
queries on representation systems for probabilistic data beyond tuple-indepe-
ndence. It is based on a novel deterministic approximation algorithm,
which uses a data structure called decomposition tree, and supports both
absolute and relative approximation for confidence computation. An im-
portant property of the algorithm is that it naturally captures all known
tractable conjunctive queries without self-joins on tuple-independent prob-
abilistic databases: In this case, the algorithm requires time polynomial in
the input size for exact computation. These contributions are part of an
IEEE ICDE 2010 submission.

Both techniques were implemented in SPROUT and, as shown by an
extensive experimental effort on various kinds of probabilistic databases,
they consistently outperform prior state-of-art techniques by several orders
of magnitude.

As part of my work, I have also implemented MayBMS, a state-of-the-
art probabilistic database management system which leverages the strengths
of previous database research. MayBMS stores probabilistic data in U-
relational databases, a succinct and complete representation system for large
sets of possible worlds. Queries are expressed in an extension of SQL with

specialized constructs for probability computation and what-if analysis. As
the query engine, MayBMS uses SPROUT. MayBMS has been released and
is available for download at http://maybms.sourceforge.net. The work on
MayBMS was supported by a one-year scholarship from Cornell University.

Contents

1 Introduction 7

1.1 State of the Art in Confidence Computation 10
1.2 Scalable Confidence Computation with SPROUT 11
1.3 Contributions . 15
1.4 Outline . 18

2 Preliminaries 20

2.1 Probabilistic Databases . 20
2.2 Syntax and Semantics of Queries 21

2.2.1 Syntax . 21
2.2.2 Semantics . 22

2.3 Ordered Binary Decision Diagrams 23

3 Tractable Conjunctive Queries with Inequality Joins 26

3.1 Tractable Conjunctive Queries 26
3.1.1 Non-Boolean Queries 27
3.1.2 Efficient-Independent Queries 28
3.1.3 Equality Joins . 28
3.1.4 Database Constraints 30

3.2 OBDD-Based Query Evaluation 31
3.2.1 Independent Subqueries 32
3.2.2 Queries with Inequality Paths 33
3.2.3 Queries with Inequality Trees 36

3.3 Confidence Computation in Secondary Storage 39

4 Lineage Decomposition Using D-Trees 45

4.1 Compiling DNFs into D-Trees 45
4.2 From Tractable Queries to Linear-Size D-Trees 49

5 Approximate Confidence Computation Using D-Trees 52

5.1 Lower and Upper Probability Bounds for DNFs 52
5.2 Lower and Upper Probability Bounds for D-Trees 54
5.3 Approximation Errors and Probability Bounds 55
5.4 Approximation Algorithms 56

5.4.1 A Naive Main-Memory Algorithm 56
5.4.2 An Incremental and Memory-Efficient Algorithm . . . 56

6 MayBMS with the SPROUT Query Engine 59

6.1 System Overview . 59
6.1.1 U-Relational Databases 60
6.1.2 The MayBMS Query Language 60
6.1.3 Query Processing . 62
6.1.4 Implementation . 63

6.2 An Application Scenario: Human Resources Management . . 63

7 Experiments 69

7.1 Experimental Setup . 69
7.2 Experiments for Tractable Queries with Inequality Joins . . . 69

7.2.1 TPC-H Data . 69
7.2.2 Queries . 70
7.2.3 Competitors . 70
7.2.4 Sizes of Query Lineage 72
7.2.5 Comparison with State-of-the-Art Algorithms 72
7.2.6 Cost of Lineage Sorting 73

7.3 Experiments for D-Trees . 74
7.3.1 Competitors . 74
7.3.2 Experiment Design . 74
7.3.3 TPC-H Experiments 76
7.3.4 Random Graph and Social Networks Experiments . . 79

8 Conclusions and Future Work 83

A Proofs 88

B Hard TPC-H Queries 98

C Tractable TPC-H Queries 100

D Random Graph Queries 102

E Social Network Queries 105

1 Introduction

Queries on probabilistic databases have numerous applications in informa-
tion retrieval [16], data cleaning [5], sensor data management [8, 15, 28],
business decision support [21], crime fighting [6], and computational science
[10, 1].

The computation of the probability of an event occurring in a query
result – usually the occurrence of a particular tuple – is a core operation
in discrete probabilistic databases: It is the key operation that probabilistic
databases add over more traditional databases. In short, the confidence in
a tuple t being in the result of a query on a probabilistic database is the
combined probability weight of all possible worlds in which t is in the result
of the query.

Recent probabilistic database management systems, including Trio [6],
MystiQ [10], and MayBMS [3, 25], have settled on essentially a single in-
ternal mechanism for representing uncertainty, which has also been shown
to be complete and succinct [6, 3]: conditional tables (cf. [20, 18]) over dis-
crete, independent random variables. In such a conditional table, each tuple
is associated with a condition that is a conjunction (or clause) of atomic
conditions of the form x = a. Here x is a random variable and a is a domain
value of x.

It is well known that for positive relational algebra, the conditions as-
sociated with tuples in conditional tables can be expressed as DNF for-
mulas. This can be done efficiently, essentially using traditional relational
query processing techniques with very simple extensions to combine condi-
tions. State-of-the-art confidence computation algorithms require conditions
in DNF form. Full relational algebra can be evaluated efficiently on c-tables
as well, but in general does not yield DNF conditions, and turning the re-
sulting conditions into DNFs takes provably exponential time and space in
general.1

Example 1.1. We view a social network as an undirected graph in which
nodes represent individuals and edges represent, say, friendship. Assume
that the presence of edges is uncertain and edges are associated with a
degree of belief in their presence (e.g., from mail server logs). No correlations
between the probabilities of edges are known, so the edge probabilities are
assumed independent.

1An important case in which difference operations can be dealt with efficiently in the
DNF framework is presented in [24].

7

Figure 1: Social network of Zachary’s Karate club [41]. In this
club, two factions have formed, the one of the trainer’s (node 1) sup-
porters and the faction of the administrator (node 34). The club
eventually split along the dashed line. (Image source: https://www-
eng.llnl.gov/eng sys ki/eng sys ki decomp.html)

E U V P φ

5 7 .9 e1
5 11 .8 e2
6 7 .1 e3
6 11 .9 e4
6 17 .5 e5
7 17 .2 e6

E′ U V ∈ P φ

5 7 1 .9 e1
5 7 0 .1 ¬e1
...

...
...

...

7 17 1 .2 e6
7 17 0 .8 ¬e6

(a) (b)
R φ

e3 ∧ e5 ∧ e6

R V φ

11 (e1 ∧ e2) ∨ (e3 ∧ e4)
(c) (d)

Figure 2: Tuple-independent (a) and block-independent-disjoint represen-
tation (b) of the yellow subgraph of the social network of Figure 1, plus
c-tables (c,d) for the results of the two queries of Example 1.1.

8

Consider the social network of Figure 1. For simplicity, we restrict our-
selves to the yellow subgraph. We can represent this edge relation (with
made-up edge probabilities) by a so-called tuple-independent table, shown
in Figure 2 (a). The Boolean random variables e1, . . . , e6 represent the six
edges – that is, the i-th edge is present in those worlds in which ei is true.
This table represents 26 possible worlds, each holding a relation of schema
E(U, V). For instance, the world with edges e1, e2, and e3, but not the
others, has probability .9 ∗ .8 ∗ .1 ∗ (1 − .9) ∗ (1 − .5) ∗ (1 − .2).

Now let us ask for the probability that there is a triangle (a 3-clique of
friends) in this graph.2 Using MayBMS syntax, we can express this by the
query

select conf() as triangle_prob

from E e1, E e2, E e3

where e1.v = e2.u and e2.v = e3.v

and e1.u = e3.u

and e1.u < e2.u and e2.u < e3.v;

The (Boolean) relational algebra part of this query computes the c-table
of Figure 2 (c). That is, there is a triangle in those worlds that contain the
third, fifth, and sixth edge, and the probability of this event is Pr[e3 ∧ e5 ∧
e6] = .1 ∗ .5 ∗ .2 = .01.

Note that we have modeled the edge relation E as a subset of the total
order induced by the numbering of the nodes. Thus, the edge relation E is
not yet symmetric, even though we mean the network to be an undirected
graph. The above query, however, deals with this. It is easy to construct a
c-table representing the symmetric closure of this relation by positive rela-
tional algebra. However, this table will not be tuple-independent. Starting
from such a table, writing the triangle query is straightforward.

Now consider the alternative representation of the edge relation, E′ in
Figure 2 (b), still as a subset of the total order on the nodes. This is a
block-independent-disjoint table (cf. [10], also called x-relation in [6]). The
difference to E is that now the alternatives – each edge is either present
or not – are both represented. Alternatives in a group are mutually ex-
clusive and different groups are independent from each other, that is, E′ is
equivalent to E and, taking the condition columns φ into account, both are
c-tables.

Starting from E′, we can ask queries involving the absence of an edge
from a world, such as the query for nodes within two, but not one, degrees of

2Such small patterns are also called motifs in this context.

9

separation from node number 7. The query shall be skipped here, although
it is not hard to write in positive relational algebra assuming a relation of
those edges missing with certainty from the graph is available. The result
is the c-table of Figure 2 (d). Thus, node 11 is possibly within two (but not
one) degrees of separation from node 7, but no other node is. To compute
the probability of the DNF (e1 ∧ e2) ∨ (e3 ∧ e4), we can use the inclusion-
exclusion principle:

Pr[(e1 ∧ e2) ∨ (e3 ∧ e4)] = Pr[e1 ∧ e2] + Pr[e3 ∧ e4]

− Pr[e1 ∧ e2 ∧ e3 ∧ e4]

= .7452

1.1 State of the Art in Confidence Computation

The inclusion-exclusion principle just mentioned yields a straightforward so-
lution method, which however is badly exponential in the number of clauses
of the DNF. It is known since [37] that counting the number of solutions
to a DNF is #P-hard, and computing the probability of a DNF with in-
dependent random variables is a generalization of this problem [17, 10]. It
was first shown in work by Karp, Luby, and Madras [22, 23] that there is
a fully polynomial-time randomized approximation scheme (FPTRAS) for
DNF counting based on Monte Carlo simulation. This algorithm can be
modified to compute the probability of a DNF over independent discrete
random variables [17, 10, 35, 24].

The techniques based on [22, 23] yield an efficiently computable unbi-
ased estimator that in expectation returns the probability p of a DNF of
n clauses such that computing the average of a polynomial number of such
Monte Carlo steps (= calls to the Karp-Luby unbiased estimator) is an
(ǫ, δ)-approximation for the probability (i.e., a relative approximation): If
the average p̂ is taken over at least ⌈3 · n · log(2/δ)/ǫ2⌉ Monte Carlo steps,
then Pr

[

|p− p̂| ≥ ǫ · p
]

≤ δ.
The work by Karp, Luby, and Madras has started a line of research

in the theory community to derandomize these approximation techniques,
eventually leading to a polynomial time deterministic (ǫ, 0)-approximation
algorithm [36] (for k-DNF, i.e., the size of clauses is bounded, which is not
an unrealistic assumption for probabilistic databases, where k is bounded
by the number of joins for DNFs constructed by positive relational algebra).
However, the constant in this algorithm is astronomical (above 250 for 3-
DNF) and the algorithm is not practical. This is in contrast to observations
that the Karp-Luby Monte Carlo algorithm is practical (e.g. [2, 35], and the

10

experiments of the present paper). In fact, the Karp-Luby algorithm is the
state-of-the-art (and only) approximation algorithm used in current discrete
probabilistic database management systems such as MystiQ and MayBMS.

More related work on counting in combinatorial structures has been done
in the AI community, e.g. [39], which however focuses on lower-bounding in
extremely large combinatorial problems, with bounds off the true count by
many orders of magnitude. Thus, while such techniques are of interest in
their application domains, they cannot be used for computing probabili-
ties. Further, extensions of the Davis-Putnam procedure have been used for
counting the solutions to formulae [7]. Our own recent work [25] uses simi-
lar ideas in the context of probabilistic databases, yielding exact confidence
computation algorithms that are more efficient than algorithms based on
the inclusion-exclusion principle. We also observed an easy-hard-easy pat-
tern in input instances. Outside a certain range of variable-to-clause ratios,
confidence computation tends to be easy, and our exact algorithm of [25],
even though exponential-time in the worst-case, is even competitive with
approximation techniques such as Karp-Luby which are guaranteed to be
polynomial-time.

1.2 Scalable Confidence Computation with SPROUT

Although confidence computation in probabilistic databases is #P-hard in
general, some classes of queries can be processed efficiently with scalable
techniques. For instance, MystiQ [10] and SPROUT [33] propose secondary-
storage algorithms for tractable conjunctive queries without self-joins on so-
called tuple-independent probabilistic databases. In addition, there is strong
theoretical and experimental evidence that MystiQ and SPROUT perform
orders of magnitude faster than existing main-memory techniques for ex-
act and approximate confidence computation techniques based on general-
purpose compilation techniques [25] or Monte Carlo simulations using the
Karp-Luby estimator [22]. This key observation supports the idea that spe-
cialized secondary-storage algorithms, which take the query and the prob-
abilistic database model into account, have better chances at improving
the state of the art in query evaluation on probabilistic databases. Surpris-
ingly, though, there is very little available beyond the aforementioned works.
While it is true that the tuple-independent model is rather limited, it still
represents a valid starting point for developing scalable query processing
techniques. In addition, independence occurs naturally in many large data
sets, such as census data [5] and social networks [1].

This thesis is the first to investigate the problem of efficiently computing

11

Subscribers
Id DomId RDate Vs Ps

1 1 1995-01-10 x1 0.1
2 1 1996-01-09 x2 0.2
3 1 1997-11-11 x3 0.3
4 2 1994-12-24 x4 0.4
5 2 1995-01-10 x5 0.5

Events
Description PDate Ve Pe

XMas party 1994-12-24 y1 0.1
Fireworks 1996-01-09 y2 0.2
Theatre 1997-11-11 y3 0.3

Query Answer before conf()

DomId Vs Ps Ve Pe

1 x1 0.1 y2 0.2
1 x1 0.1 y3 0.3
1 x2 0.2 y3 0.3
2 x4 0.4 y2 0.2
2 x4 0.4 y3 0.3
2 x5 0.5 y2 0.2
2 x5 0.5 y3 0.3

Query Answer
DomId P

1 0.098
2 0.308

Figure 3: Tuple-independent probabilistic database and the answer to our
query in Section 1.2.

the confidences of distinct tuples in the answers to conjunctive queries with
inequalities (<) on tuple-independent probabilistic databases. It provides a
characterization of a large class of queries that can be computed in poly-
nomial time data complexity and proposes an efficient secondary-storage
evaluation technique for such tractable queries. The characterizations, as
well as the technique, are based on structural properties of the inequalities
present in the query and of a special form of decision diagrams, called Or-
dered Binary Decision Diagrams (OBDDs) [29], which are used as a compiled
succinct representation of the uncertainty manifested in the query answer.

We illustrate our approach on a tuple-independent probabilistic database
of subscribers and events. Assume we have archived information on sub-
scribers, including a subscriber identifier, a domain identifier, and a date
of registration for event services. The information on events includes a
description and a publication date. Figure 3 gives a database instance,
where each tuple is associated with an independent Boolean random vari-
able (hence the database is tuple-independent). These variables are given in
the V -columns and their probabilities (for the “true” assignment) in the P -
columns. Such a tuple-independent database represents exponentially many
possible instances, one instance for each total valuation of the variables in
the database. For example, a valuation that maps x1 and y1 to true and all

12

Figure 4: Decision tree (left) and OBDD (right) for the lineage of the answer
tuple with DomId=1.

other variables to false defines the instance with one subscriber (with Id=1)
and one event (Xmas party). The probability of this instance can be simply
computed as the product of the probabilities of x1 and y1 being true and of
all remaining variables being false.

We would like to compute, for each domain, the likelihood that its sub-
scribers participated in the broadcasted events – subscribers can participate
in an event if their registration date is before the publication date of the
event:

select DomId, conf() as P from Subscribers, Events

where RDate < PDate group by DomId;

The aggregate function conf() is used here to specify the confidence com-
putation for each distinct DomId value.

The answer to a query on a probabilistic database can be represented
by a relation pairing possible result tuples with a formula over random vari-
ables, called lineage [6]. For example, the lineage of the answer tuple t with
DomId=1 is x1y2+x1y3+x2y3. The lineage of a tuple describes symbolically
the set of worlds in which that tuple occurs in the query result: There is
a one-to-one correspondence between these worlds and the total valuations
that satisfy the lineage [10]. Given a decision tree over all variables of this
lineage, as in Figure 4(left), the satisfying valuations are represented by the
root-to-leaf paths that lead to a leaf labeled 1 (true). Each node in the de-
cision tree corresponds to the decision for one variable. We follow the solid
outgoing edge in case the variable is assigned to true and the dotted edge
otherwise.

The confidence in a tuple is the probability for true of its associated
lineage [10]. Decision trees that represent lineage can be used to compute

13

tuple confidences: Simply sum up the probabilities of each path leading to 1.
This holds because the paths are pairwise mutually exclusive. This approach
is, however, extremely expensive as one has to iterate over an exponential
number of possible valuations.

Our approach is to directly compile the lineage into a compressed repre-
sentation of the decision tree, called OBDD: Figure 4(right) gives an OBDD
for the lineage of tuple t. To see the correspondence between the decision
tree and its equivalent OBDD, consider removing redundant nodes and fac-
toring out common subtrees and representing them only once. For example,
the first node n for variable y2 has two identical children. We only need to
represent them once and have both outgoing edges of n point to the same
subtree. This also means that n is redundant and can be removed, for the
decision on whether y2 is true or false at that point is not relevant for the
overall satisfiability.

Computing the probability of the OBDD can be done in one bottom-up
traversal. The probability Pr of a node n for a variable v and with children
l for v = false and r for v = true can be expressed using the probabilities
of the children as follows: Pr(n) = Pr(v) · Pr(l) + Pr(v) · Pr(r). In case of
a leaf node, Pr(1) = 1 and Pr(0) = 0.

We show that the lineage of any query from a large query class on
any tuple-independent database can be always efficiently compiled into an
OBDD whose size is polynomial in the number of variables of that lineage.
Moreover, we need not materialize the OBDD before computing its prob-
ability. In fact, we only need to keep around a small number of running
probabilities for fragments of the overall OBDD and avoid constructing it
entirely. This number depends on the query size and is independent of the
database size.

Consider first a bottom-up traversal of the OBDD and two values: px

for the probabilities of OBDD fragments rooted at nodes for Vs-variables x1

and x2, and py for Ve-variables y2 and y3. These values are updated using
recurrence formulas that can be derived from the query structure and mirror
the probability computation of OBDD nodes. Updating py and px at a node
for variable v is done using the formulas

py = Pr(v) · py + Pr(v) · Pr(1)

px = Pr(v) · px + Pr(v) · py

The difference between the recurrence formulas of px and py reflects the
position in the OBDD of nodes for variables of Vs and of Ve: Whereas the
nodes for Ve-variables have always a child 1 on the positive branch, those
for Vs-variables have a child node for a Ve-variable on the positive branch.

14

Using these two recurrence formulas, we go up levelwise until we reach
the root of the OBDD. The probability of the OBDD is then px. We now
apply the recurrence formulas and obtain the update sequence (initially,
px = py = 0)

Step 1. py = Pr(y3) · py + Pr(y3) · Pr(1) = Pr(y3) = 0.3

Step 2. px = Pr(x2) · px + Pr(x2) · py = 0.06

Step 3. py = Pr(y2) · py + Pr(y2) · Pr(1) = 0.44

Step 4. px = Pr(x1) · px + Pr(x1) · py = 0.098

The confidence of our tuple is thus 0.098.
Given the recurrence formulas for updating px and py, the same result

can also be obtained in one ascending scan of the relational encoding of
the lineage. This approach completely avoids the OBDD construction. The
updates to px or py are now triggered by changes between the current and
the previous lineage clauses. We first access x2y3 and trigger an update to
py. The next clause x1y3 differs in the Vs-variable from the previous clause
and triggers an update to px. When we read the last clause x1y2, the change
in the Ve-variable triggers an update to py. We then reach the end of table,
which triggers an update to px, which is then also returned as the probability
of the lineage.

1.3 Contributions

In summary, the thesis discusses (A) scalable exact confidence computation
for conjunctive queries with inequalities and (B) general-purpose approx-
imate confidence computation. The main technical contributions of this
thesis are as follows.

(A) Scalable Exact Confidence Computation for Conjunctive Queries
with Inequalities:

1 To the best of our knowledge, this work is the first to define tractable
conjunctive queries with inequalities (<) on tuple-independent proba-
bilistic databases. This problem is fundamental to probabilistic data-
bases and was recently stated open [11]. The tractable queries are
defined using the inequality relationships on query variables: Each
input table contributes with at most one attribute to inequality condi-
tions, yet there may be arbitrary inequalities between the contributing
attributes.

15

2 We cast the exact confidence computation problem as an OBDD con-
struction problem and show that the lineage of tractable queries can be
efficiently compiled into polynomial-size OBDDs. We relate the OBDD
size to properties of the tree of the inequality conditions present in the
query, and show that the OBDDs are linear in the number of variables
in the lineage.

3 The OBDD-based technique requires to first store the OBDDs in main
memory. We overcome this limitation by proposing a new secondary-
storage variant that avoids the materialization of the OBDD, and com-
putes, in one scan over the lineage, the probabilities of fragments of
the OBDD and then combines them on the fly.

4 We report on experiments with probabilistic TPC-H data and com-
parisons with an exact confidence computation algorithm and an ap-
proximate one with polynomial-time and error guarantees [25]. In
cases when the competitors finish the computation within the allo-
cated time, our algorithm outperforms them by up to two orders of
magnitude.

(B) General-Purpose Approximate Confidence Computation:

5 We introduce a novel deterministic approximation algorithm with er-
ror guarantees for computing confidences of tuples in query answers.
In contrast to much of the existing work in probabilistic databases, this
algorithm is not only applicable to restricted classes of queries (such
as hierarchical conjunctive queries without self-joins) or probabilis-
tic databases (such as tuple-independent tables or x-relations), but is
generic. The same algorithm can also be used for exact computation.

6 The approximation algorithm is based on a number of fundamental
ideas from combinatorial algorithms, constraint satisfaction, and ver-
ification (such as decompositions, variable elimination, and OBDDs),
and turns out to be both simple and extensible.

7 Our techniques incrementally compile the DNF condition into a novel
type of decision diagram called d-trees. Such diagrams decompose
DNFs using negative correlations, independence, and factored repre-
sentations that are easy to compute. Given a d-tree and an approxi-
mate (or exact) probability for each of its leaves, we can compute an
overall approximate (or exact) probability in just one pass over the
d-tree.

16

8 We then show how a given expression can be incrementally compiled
into fragments of a d-tree without fully materializing it. We devise
heuristics that allow us to obtain close lower and upper probability
bounds within a few compilation steps, thus avoiding exhaustive com-
plete traversal of a d-tree for that expression. For a given absolute or
relative error bound, our heuristics decide locally whether to further
compile a subexpression under a certain node of the d-tree or move on
to a following node. For this, we devise a safety check on which such
subexpressions can be discarded while still guaranteeing the overall
error bound.

9 We also show that d-trees in conjunction with our heuristics yield an
alternative polynomial-time algorithm for exact confidence computa-
tion for cases from the literature for which efficient algorithms for con-
fidence computation are known, namely the hierarchical queries with-
out self-joins [10], with inequalities [31], and certain additional cases
in which functional dependencies on the data yield tractability[33]. In
fact, these are all the currently known tractable cases in the absence
of self-joins. In these cases, our algorithm guarantees a running time
linear in query size and quadratic in the size of the DNF.

10 We experimentally verify the robustness of our algorithm. We evalu-
ate both tractable and hard queries on various kinds of probabilistic
databases, such as tuple-independent TPC-H, random graphs, and so-
cial networks. In all these experiments, our algorithm consistently
outperforms the Karp-Luby FPTRAS by orders of magnitude.

11 Our experiments also show that our algorithm performs well in practice
compared to special algorithms for known tractable queries, which
exploit knowledge about the query but are only applicable to those
tractable queries, while our algorithm is generic and only relies on a
smart choice of a heuristics that was not specifically designed to handle
such queries well. Thus, our algorithm bears promise of dealing well,
or being extensible to deal well, with “easy” cases not yet discovered.

12 We implemented both techniques and integrated them into the SPRO-
UT query engine [33] and MayBMS probabilistic database manage-
ment system. SPROUT is a scalable query engine for probabilistic
databases that extends the query engine of PostgreSQL with special
physical aggregation operators for confidence computation.

17

Several publications and submissions are based on the contributions of
this thesis:

• Contributions 1 to 4 appeared in the proceedings of ACM Special Inter-
est Group on Management of Data Conference 2009 (ACM SIGMOD
2009) under the title “Secondary-Storage Confidence Computation for
Conjunctive Queries with Inequalities” [31]. In addition, this paper
passed the repeatability and workability evaluation (RWE) of ACM
SIGMOD 2009 (63 research papers are accepted, 19 of them partici-
pated in RWE and 10 passed).

• Contributions 5 to 11 are already submitted to 26th International Con-
ference on Data Engineering (IEEE ICDE 2010) under the title “Ap-
proximate Confidence Computation in Probabilistic Databases” [32].

• Contribution 12, MayBMS probabilistic database management system
with SPROUT query engine, has been released in March 2009 as ver-
sion 2.1 beta and version 2.1 will be released in September 2009. The
system is publicly available at

http://maybms.sourceforge.net and

http://web.comlab.ox.ac.uk/projects/SPROUT/index.html

It was demonstrated at ACM SIGMOD 2009 under the title “MayBMS:
A Probabilistic Database Management System” [19].

1.4 Outline

The structure of the thesis is as follows.

• Section 2 introduces the background acknowledge by presenting proba-
bilistic databases (U-relational and tuple-independent databases), syn-
tax and semantics of queries and OBDDs.

• Section 3 defines syntactically the tractable conjunctive queries with
inequalities and without self-joins on tuple-independent probabilistic
databases, introduces an OBDD-based approach for efficiently process-
ing these queries and its secondary-storage variant.

• Section 4 introduces a novel type of decision diagrams, called d-trees,
for lineage decomposition and shows how they naturally capture the
lineage of currently known tractable queries.

18

• Section 5 develops a deterministic approximation algorithm for confi-
dence computation based on d-trees.

• Section 6 gives an overview of state-of-the-art MayBMS probabilistic
database management system with SPROUT as its query engine and
demonstrates an application scenario of human resources management
in MayBMS.

• Section 7 presents our experimental findings and compares the perfor-
mance of our techniques with the state of the art.

• Appendix A gives proofs for the major statements in the thesis.

• Appendices B, C, D and E list the queries used in the experiments.

19

2 Preliminaries

2.1 Probabilistic Databases

The data models used in this thesis are U-relational databases and tuple-
independent probabilistic databases. We first define U-relational databases
and then pose some restrictions on them to get tuple-independent databases.

We consider a finite set of independent random variables X with finite
domains. We denote the domain of a random variable x ∈ X by Domx.
Atomic events (or atomic formulas) are of the form x = a where x ∈ X and
a ∈ Domx. A (positive propositional) formula (or event) is constructed from
atomic events using the binary operations ∨ (logical “or”) and ∧ (logical
“and”). A conjunction of atomic events (x1 = a1)∧ · · · ∧ (xn = an) is called
a clause. A DNF formula is a disjunction of clauses, namely, of the form
c1 ∨ ... ∨ cn, where c1, ..., cn are clauses.

We define finite probability distributions on these variables and their do-
mains. Such a probability distribution is completely specified by a function
P that assigns a probability P (x = a) ∈ (0, 1] to each atomic event x = a
such that, for each random variable x,

∑

a∈Domx

P (x = a) = 1.

The variable, their domains and the probability distributions are stored in
a so-called world-table, which is a relation with schema W (Var,Dom,Prob)
which contains all triple of (x, a, p), in which x is a variable, a ∈ Domx and
p = P (x = a) [4].

A valuation of X is an assignment of random variables in X to one of
their domain values. We can identify possible worlds with valuations, or
equivalently, with clauses that contain exactly one atomic event for ecach of
the random variables. Since all variables are independent, the probability
of a valuation (possible world) (x1 = a1) ∧ · · · ∧ (xn = an) is

n
∏

i=1
P (xi = ai).

The world-set is represented by the finite set of all valuations. We are
now ready to define U-relational databases.

Definition 2.1. [4] A U-relational database for a world-set over schema
∑

= (R1[A1], ..., Rk [Ak]) is a tuple (U1, ..., Uk ,W), where W is a world-table
and each relation Ui has schema Ui[Di;Ai] such that Di defines clauses over
W . 2

20

The clauses in the U-relational databases can be represented relationally
by values in the additional variable (V) and domain value (D) columns. For
instance, {x1 = a1, x2 = a2} is represented by values x1, a1, x2 and a2 in
columns V1, D1, V2 and D2.

A U-relational database represents a set of database instances, also called
possible worlds. We define a function rep such that given a U-relational
database T , rep(T) is the set of possible worlds of T . Given a valuation
f , the instance of each U-relation U rep is the set of tuples ~a such that
(~a, φ) ∈ U rep and f(φ) is true, where φ is a clause.

Tuple-independent probabilistic databases are a special type of U-relational
databases. First, without loss of generality, all variables can considered to
have binary domain {true, false}. Second, every clause in tuple-independent
probabilistic databases is of the form of {x = true} and none of them share
any variables. For the sake of simplicity and fast query evaluation, we repre-
sent the clauses and world-table with a variable column (V) and a probability
column (P) in each tuple-independent relation.

2.2 Syntax and Semantics of Queries

2.2.1 Syntax

Two techniques introduced in this thesis target different classes of queries.
For d-tree approximation algorithm, discussed in Sections 4 and 5, we fo-
cus on positive relational algebra, namely, select-project-join-union queries,
in U-relational databases. For the OBDD-based technique, discussed in
Section 3, we consider conjunctive queries without self-joins and with in-
equalities (<) in tuple-independent probabilistic databases. In this section,
we mainly discuss the syntax of the latter.

We denote conjunctive queries without self-joins and with inequalities
(<) by queries in the sequel. We write queries in datalog notation. For
instance,

Q(x0):-R1(x1), . . . , Rn(xn), φ

defines a query Q with head variables x0 ⊆ x1∪ . . .∪xn and a conjunction of
distinct positive relational predicates R1, . . . , Rn, called subgoals, as body.
The conjunction φ defines inequalities on query variables or variables and
constants, e.g., B < C or B < 5. Equality-based joins can be expressed by
variables that occur in several subgoals. Equalities with constants can be
expressed by replacing the variables with constants in subgoals. Figure 5
gives four Boolean queries with inequalities.

21

R A Vr

2 x1

4 x2

6 x3

S B C
2 2
2 4
4 2
4 6
6 4

T D Vt

2 y1
4 y2
6 y3

R’ E F Vr′

1 3 x1

3 5 x2

5 7 x3

T’ G H Vt′

1 3 y1
3 5 y2
5 7 y3

S’ E F G H
1 3 1 3
1 3 3 5
3 5 1 3
3 5 5 7
5 7 3 5

The same lineage x1y1 + x1y2 + x2y1 + x2y3 + x3y2 is associated with the
answers to:

Q1:-R(X), S(X,Y), T (Y) on database (R,S, T).
Q2:-R

′(E,F), S(B,C), T ′(G,H), E < B < F,G < C < H on database
(R′, S, T ′).

Q3:-R(A), S(E,F,G,H), T (D), E < A < F,G < D < H on database
(R,S′, T).

Q4:-R(X), S(X,C), T ′(G,H), G < C < H on database (R,S, T ′).

Figure 5: Tuple-independent tables (P -columns not shown) and Boolean
conjunctive queries with inequalities.

2.2.2 Semantics

Figure 6 gives a graphical view of query evaluation under possible world
semantics in U-relational databases. Conceptually, queries are evaluated in
each possible world ({A1, . . . ,An}). Given a query q and a probabilistic
database T , the probability of a distinct answer tuple t is the probability of
t being in the result of q in the worlds of T , or equivalently,

Pr[t ∈ q(T)] =
∑

Ai: t∈q(Ai)

Pr[Ai].

However, performing query evaluation in all possible world is highly in-
efficient. Theorem 2.2 comes to rescue by showing that there is a corre-
sponding query q for input query q which can be evaluated efficiently.

Theorem 2.2. [4] For any positive relational algebra query q over any U-
relational database T, there exists a positive relational algebra query q of

22

T q(T)

{A1, . . . ,An} {q(A1), . . . , q(An)}

rep
q

q

rep−1

Figure 6: Semantics of query evaluation in U-relational databases[4]. T is
a U-relational database, rep is a function mapping T to a set of possible
worlds {A1, . . . ,An}, q is a positive relational algebra query, q(Ai) is the
output of evaluation of q in Ai and q is the corresponding efficient query of
q.

polynomial size such that

q(T) = rep−1({q(Ai) | Ai ∈ rep(T)}).

[[R× S]] := πUR.V D∪US .V D→V D,sch(R),sch(S)(

UR ⊲⊳UR.V D consistent with US .V D US)

[[σφR]] := σφ(UR)

[[π ~B
R]] := π

V D, ~B
(R)

[[R ∪ S]] := UR ∪ US

Figure 7: Operations in query evaluation in U-relational databases[4].

Figure 7 shows how to obtain q from q by mapping the operations in
q according to certain rules. The main message in Figure 7 is to carry
the variable columns and domain value columns (V D in the figure) of the
input U-relations to the output. Selection and union are the same as their
counterparts in relational algebra. Projection is to add V D to the attribute
list. Product is more complex: In addition to the product, it also checks the
consistency of values in V D and performs a union on them.

2.3 Ordered Binary Decision Diagrams

Ordered binary decision diagrams (OBDDs) are commonly used to repre-
sent compactly large Boolean expressions [29]. We find that OBBDs can
naturally represent query lineage.

23

Figure 8: OBDDs used in Examples 2.3 and 3.22.

The idea behind OBDDs is to decompose Boolean formulas using variable
elimination and to avoid redundancy in the representation. The decomposi-
tion step is based on exhaustive application of Shannon’s expansion: Given
a formula φ and one of its variables x, we have φ = x · φ |x +x̄ · φ |x̄, where
φ |x and φ |x̄ are φ with x set to true and false, respectively. The order of
variable eliminations is a total order π on the set of variables of φ, called
variable order. An OBDD for φ is uniquely identified by the pair (φ, π).

OBDDs are directed acyclic graphs with two terminal nodes represent-
ing the constants 0 (false) and 1 (true), and non-terminal nodes representing
variables. Each node for a variable x has two outgoing edges corresponding
to the two possible variable assignments: a high (solid) edge for x = 1 and
a low (dashed) edge for x = 0. To evaluate the expression for a given set
of variable assignments, we take the path from the root node to one of the
terminal nodes, following the high edge of a node if the corresponding input
variable is true, and the low edge otherwise. The terminal node gives the
value of the expression. The non-redundancy is what normally makes OB-
DDs more compact than the textual representation of Boolean expressions:
a node n is redundant if both its outgoing edges point to the same node, or
if there is a node for the same decision variable and with the same children
as n.

Constructing succinct OBDDs is an NP-hard problem [29]. The choice of
variable order can vary the size of the OBDD from constant to exponential in
the number of variables. Moreover, some formulas do not admit polynomial-
size OBDDs. In this paper, we nevertheless show that lineage associated

24

with the answer to any query can be compiled in OBDDs of polynomial
size.

Example 2.3. Figure 8(left) depicts the OBDD for

x1(y1 + y2 + y3) + x2(y2 + y3) + x3y3

using the variable order x1x2x3y1y2y3. We show how to construct this
OBDD. Let α2 = x2(y2 + y3) and α3 = x3y3. By eliminating x1, we obtain
y1 + y2 + y3, if x1 is true, and α2 + α3 otherwise. We eliminate x2 on the
branch of x1 and obtain y2 + y3 in case x2 is true, and α3 otherwise. We
continue on the path of x2 and eliminate x3: We obtain y3 in case x3 is
true, and false otherwise. All incomplete branches correspond to sums of
variables: y1 + y2 + y3 includes y2 + y3, which includes y3. We compile all
these sums by first eliminating y1. In case y1 is true, then we obtain true,
otherwise we continue with the second sum, and so on. Although some vari-
ables occur several times in the input, the OBDD thus has one node per
input variable. 2

The probability of an OBDD can be computed in time linear in its size
using the fact that the branches of any node represent mutually exclussive
expressions. The probability of any node n is the sum of the probabilities of
their children weighted by the probabilities of the corresponding assignments
of the decision variable at that node. The probability of the terminal nodes
is given by their label (1 or 0).

25

3 Tractable Conjunctive Queries with Inequality

Joins

Section 3.1 defines classes of tractable conjunctive queries with inequali-
ties and without self-joins. The confidence computation algorithms devel-
oped in Section 3.2 focus on a particular class of Boolean product queries
with a special form of conjunction of inequalities. Section 3.3 introduces
a secondary-storage variant of this algorithm. All the contributions in this
section appeared in [31].

3.1 Tractable Conjunctive Queries

In this section, we first define a class of tractable conjunctive queries with
inequalities and without self-joins. Sections 3.1.1 through 3.1.4 extend the
tractability to considerably larger query classes by taking into account head
variables, materialization, equality joins and database constraints.

Definition 3.1. Let the disjoint sets of query variables x1, . . . , xn. A con-
junction of inequalities over these sets has the max-one property if at most
one query variable from each set occurs in inequalities with variables of other
sets.

Definition 3.2. An IQ query has the form

Q:-R1(x1), . . . , Rn(xn), φ

where R1, . . . , Rn are distinct tuple-independent relations, the sets of query
variables x1, . . . , xn are pairwise disjoint, and φ has the max-one property
over these sets.

Example 3.3. The following are IQ queries

q1:-R
′(E,F), T (D), T ′(G,H), E < D < H

q2:-R
′(E,F), T (D), S(B,C), E < D,E < C

q3:-R(A), T (D)

q4:-R(A), T (D), R′(E,F), T ′(G,H), A < E,D < E,D < G 2

We will show in Section 3.2 that

Theorem 3.4. IQ queries can be computed on tuple-independent databases
in polynomial time.

26

We represent the conjunction of inequalities φ by an inequality graph,
where there is one node for each query variable, and one oriented edge from
A to B if the inequality A < B holds in φ. We keep the graph minimal by
removing edges corresponding to redundant inequalities, which are inferred
using the transitivity of inequality. Inequalities on variables of the same
subgoal are not represented, for they can be computed trivially on the input
relations. Each graph node thus corresponds to precisely one query subgoal.
We categorize the IQ queries based on the structural complexity of their
inequality graphs in paths, trees and graphs.

Example 3.5. Consider again the IQ queries of Example 3.3: q1 is a path,
q2 is a tree, and q3 and q4 are graphs. 2

IQ queries are limited in three major ways: they are Boolean, have no
equality joins, and have restrictions concerning inequalities on several query
variables of the same subgoal. We address these limitations next.

3.1.1 Non-Boolean Queries

Our first extension considers non-Boolean conjunctive queries, whose so-
called Boolean reducts are IQ queries.

Definition 3.6. The Boolean reduct of a query

Q(x0):-R1(x1), . . . , Rn(xn), φ

is Q′:-R1(x1 − x0), . . . , Rn(xn − x0), φ
′

where φ′ is φ without inequalities on variables in x0.

Example 3.7. The query from the introduction

q(DomId):-Subscr(Id,DomId,RDate), Events(Descr, PDate),

RDate < PDate

has as Boolean reduct the IQ query

q′:-Subscr(Id,RDate), Events(Descr, PDate), RDate < PDate2

In case the Boolean reduct of a query Q is in IQ, we can efficiently com-
pute the probability of each of the distinct answer tuples of Q by employing
probability computation algorithms for IQ queries. This is because for a
given value of the head variables, Q becomes a Boolean IQ query.

Proposition 3.8. The queries, whose Boolean reducts are IQ queries, can
be computed on tuple-independent databases in polynomial time.

27

3.1.2 Efficient-Independent Queries

Our next extension considers queries that can be efficiently materialized as
tuple-independent relations.

Definition 3.9. A query is efficient-independent if for any tuple-independent
database, the distinct answer tuples are pairwise independent and their prob-
ability can be computed in polynomial time.

Such queries can be used as subqueries at the place of tuple-independent
relations in an IQ query.

Proposition 3.10. Let the relations R1, . . . , Rn be the materializations of
queries q1(x1), . . . , qn(xn). The query

Q(x0):-R1(x1), . . . , Rn(xn), φ.

can be computed in polynomial time if q1, . . . , qn are efficient-independent
and Q’s Boolean reduct is an IQ query.

3.1.3 Equality Joins

One important class of efficient-independent queries is represented by the hi-
erarchical queries (without self-joins) whose head variables are maximal [12].

Definition 3.11. A conjunctive query is hierarchical if for any two non-
head query variables, either their sets of subgoals are disjoint, or one set is
contained in the other. The query variables that occur in all subgoals are
maximal.

Example 3.12. Consider a probabilistic TPC-H database with relations
Cust, Ord, Item. The following query asks for the probability that Joe
placed orders:

Q:-Cust(ckey,′ Joe′, regdate),Ord(okey, ckey, odate),

Item(okey, ckey, shipdate).

This query is hierarchical: subgoals(okey)⊂ subgoals(ckey), subgoals(odate)⊂
subgoals(okey), subgoals(discount)⊂ subgoals(okey), and subgoals(odate) ∩
subgoals(discount)= ∅. The query variable ckey is maximal. 2

The tractable conjunctive queries without self-joins on tuple-independent
databases are precisely the hierarchical ones [10]. The following result is fun-
damental to the evaluation of hierarchical queries and used for the generation
of safe plans [10] and for query plan optimization in general [33].

28

ckey

ckey,okey Cust(ckey,regdate)

Ord(ckey,okey,odate) Item(ckey,okey,shipdate)

Figure 9: Tree representation of the hierarchical query of Example 3.12.

Proposition 3.13. Hierarchical queries, whose head variables are maximal,
are efficient-independent.

We can allow restricted inequalities in hierarchical queries while still
preserving the efficient-independent property.

Proposition 3.14. Let Q(x0):-q1(x1), . . . , qn(xn), φ be a query, where ∀1 ≤
i < j ≤ n : x0 = xi ∩ xj, and φ has the max-one property over the dis-
joint variable sets x1 − x0, . . . , xn − x0. Then, Q is efficient-independent if
q1, . . . , qn are efficient-independent.

This class can be intuitively described using a tree representation of hi-
erarchical queries, where the inner nodes are the common (join) variables
of the children and the leaves are query subgoals [30]. The root is the set
of maximal variables. Each inner node corresponds to a hierarchical sub-
query where the head variables are the node’s variables. Such subqueries
are efficient-independent because their head variables are maximal by con-
struction. Figure 9 shows the tree representation of a hierarchical query.
Proposition 3.14 thus states that a hierarchical query with maximal head
variables remains efficient-independent even if max-one inequalities are al-
lowed on the children of its tree representation.

Example 3.15. The addition of the inequality shipdate > odate to the
query of Example 3.12 preserves the efficient-independent property. We
first join Ord and Item:

q′(ckey, okey):-Ord(ckey, okey, odate), Item(ckey, okey, shipdate),

shipdate > odate

According to Proposition 3.14, q′ is efficient-independent. We then join q′

and Cust and obtain our query, which according to Proposition 3.14, is also
efficient-independent. 2

29

ckey,regdate

ckey,regdate,okey,odate Cust(ckey,regdate)

Ord(ckey,regdate,okey,odate) Item(ckey,regdate,okey,odate,shipdate)

Figure 10: Tree representation of the FD-reduct of Example 3.18.

3.1.4 Database Constraints

Our last extension considers queries with inequalities that, under functional
dependencies (fds) that hold on probabilistic relations, can be rewritten into
IQ queries whose subgoals are efficient-independent subqueries. We use an
adaptation of the rewriting framework of our previous work [33].

Definition 3.16. Given a set of fds Σ and a query

Q(x0):-R1(x1), . . . , Rn(xn), φ

where φ is a conjunction of inequalities. Then, the FD-reduct of Q under
Σ is the query

Qfd:-R1(CLOSUREΣ(x1) − CLOSUREΣ(x0)), . . . ,

Rn(CLOSUREΣ(xn) − CLOSUREΣ(x0)), φ
′

where φ′ is obtained from φ by dropping all inequalities on variables in
CLOSUREΣ(x0).

Similar to the case of hierarchical FD-reducts [33], it follows from the
chase procedure that

Proposition 3.17. If there is a sequence of chase steps under fds Σ that
turns a query into an IQ query with efficient-independent subgoals, then the
fixpoint of the chase, i.e., the FD-reduct, is such an IQ query.

Example 3.18. Consider a modified version of the query of Example 3.12,
which asks for the likelihood of items shipped with delay to old customers
(see query 2 of the experiments):

Q′:-Cust(ckey,′ Joe′, regdate),Ord(okey, ckey, odate),

Item(okey, shipdate), regdate < odate < shipdate

Q′ is not in our tractable query class because it has equality joins and
yet is not hierarchical. In case ckey and okey are keys in Cust and Ord

30

respectively, the FD-reduct becomes

Q′:-Cust(ckey,′ Joe′, regdate),Ord(okey, ckey, odate, regdate),

Item(okey, shipdate, ckey, regdate, odate),

regdate < odate < shipdate.

Query Q′ is hierarchical and can be represented as in Figure 10. The
subquery corresponding to any of the tree nodes is efficient-independent. In
particular, each inequality is expressed on variables of the same node. 2

Proposition 3.19. The queries, whose FD-reducts are IQ queries with
efficient-independent subgoals, can be computed on tuple-independent databases
in polynomial time.

3.2 OBDD-Based Query Evaluation

This section shows that the lineage of IQ queries on any tuple-independent
database can be compiled into OBDDs of size polynomial in the number of
variables in the lineage.

We first study the class of IQ queries with inequality paths. Here, the
OBDDs have size linear in the number of variables in the lineage. We then
investigate the more general subclass of IQ queries with inequality trees,
in which case the OBDDs still have sizes linear in the number of variables
in the lineage, but with a constant factor that depends exponentially on
the size of the inequality tree. Cases of IQ queries with inequality graphs
are not discussed in this thesis. A technique processing IQ queries with
inequality graphs is introduced in [31] and its extension for less restricted
classes of queries is in [40].

Remark 3.20. Our confidence computation algorithms are designed for
IQ queries, but are applicable to a larger class of queries with efficient-
independent subqueries (see Section 3.1).

The straightforward approach to deal with such subqueries is to materi-
alize them. A different strategy is to consistently use OBDDs for the evalua-
tion of the most general tractable query class of Section 3.1, which is that of
IQ queries with efficient-independent subqueries. This approach is subject
to future work. We note that previous work of the authors [30] showed that
the hierarchical queries without self-joins, which represent together with
the IQ characterization ingredients of efficient-independent subqueries, also
admit linear-size OBDDs. 2

31

Figure 11: OBDD used in Example 3.21.

3.2.1 Independent Subqueries

Before we start with inequalities, a note on IQ queries that are products of
independent subqueries is in place here. The lineage of such queries can be
expressed as the product of the independent lineage of each of the subqueries.
For OBDDs, product of independent lineage is expressed as concatenation of
their OBDDs. We next exemplify with a simple query, but the same OBDD
construction applies to any query with independent subqueries.

Example 3.21. Let the query Q:-R(A), T (D) on the database (R,T) of
Figure 5. The lineage consists of one clause for each pair of variables from
R and of variables from T :

(x1 + x2 + x3)(y1 + y2 + y3).

An interesting variable order is (x1x2x3)(y1y2y3), i.e., a concatenation of
variable orders for the sums of variables in R and in T , respectively. The
OBDD, shown in Figure 11, is then the concatenation of the OBDDs for the
two sums. 2

We next consider only IQ queries whose subgoals are connected by in-
equality joins.

32

3.2.2 Queries with Inequality Paths

We study the structure of the OBDDs for IQ queries with inequality paths.
Examples of queries in this subclass are

Q5:-R(A), T ′(G,H), A < H

Q6:-R
′(E,F), T (D), T ′(G,H), E < D < H

In general, queries in this subclass have the form

Q:-R1(. . . , X1, . . .), . . . , Rn(. . . , Xn, . . .), X1 < . . . < Xn.

The lineage of such queries follows the inequalities on query variables. If
table R1 is sorted (ascendingly) on the attribute mapped to X1, then the
tuples of R2, which are joined with the i+1st tuple of R1, are also necessarily
joined with the ith tuple of R1 because of the transitivity of inequality. This
means that if the sorted table R1 has variables x1, . . . , xk, we can express
the lineage as Σixifxi

, where the cofactor fxi
of xi includes the cofactor

fxi+1
of xi+1. This property holds for the relationship between the variables

of any pair of tables that are involved in inequalities in Q.
The OBDDs are very effective at exploiting the overlapping between the

cofactors. We can easily find a variable order for the cofactor fxi
such that

its OBDD already includes the OBDDs of the cofactors fxj
of all variables

xj where j > i. This is because the clauses of fxi+1
are also clauses of fxi

- we write this syntactically as fxi
⊇ fxi+1

. We can obtain fxi+1
from fxi

by setting to false variables that occur in fxi
and not in fxi+1

. The variable
order for fx1

must then agree with constraints on variable elimination orders
imposed by migrating from fxi

to fxi+1
, for all i ≥ 1. Such a variable order

eliminates the variables of each table Ri in the order they occur after sorting
that table, and before the variables of table Ri+1.

Computing such a variable order can then be done very efficiently. Under
this variable order, the OBDD representations for the cofactors fxj

, where
j > 1, are obtained for free, once we computed the OBDD for fx1

.

Example 3.22. Example 2.3 discusses how the lineage of the query Q5

above on the database (R,T ′) of Figure 5 can be compiled into an OBDD
of linear size.

We next discuss the case of the query Q6:

Q6:-R
′(E,F), T (D), T ′(G,H), E < D < H.

Consider the probabilistic database (R′, T, T ′) of Figure 5, where the vari-
ables of T ′ are z1, z2, z3 instead of y1, y2, y3. The lineage of the answer to

33

query Q6 on this database is

x1[y1(z1 + z2 + z3)+ y2(z2 + z3)+y3z3]+

x2[y2(z2 + z3)+y3z3]+

x3[y3z3].

We can check that the inclusion relation holds between the cofactors of
variables xi: fx1

⊃ fx2
⊃ fx3

. The same applies to the cofactors of variables
yi. Although it is not here the case, in general the inclusion may not be
strict. That is, two variables may have the same cofactor. For instance, if
two tuples of R′ have the same E-value, then their variables have the same
cofactors.

The above lineage can be easily compiled into an OBDD of size linear
in the number of variables in the lineage, see Figure 8(right). We first
eliminate the variables x1, x2, x3, and then reduce the cofactor fx1

to fx2

by eliminating variable y1, and then to fx3
by eliminating y2. The variable

order of our OBDD has then y1 before y2 before y3. Note that the variables
y1 and z1 are those that occur in fx1

and not in fx2
, although to get from

fx1
to fx2

we only need to set y1 to false. The same applies to variables y2

and z2.
After removing y1, the branch y1 = 0 points to fx2

, and the other branch
y1 = 1 points to z1 + z2 + z3. After removing y2, we point to fx3

and to
z2 +z3. In case of y3, we point to 0 and to z3. The sums z1 +z2 +z3, z2 +z3,
and z3 can be represented linearly under the variable order z1z2z3, because
(z1 + z2 + z3) ⊃ (z2 + z3) ⊃ z3. 2

We can now summarize our results on inequality paths.

Theorem 3.23. Let φ be the lineage of any IQ query with inequality paths
on any tuple-independent database. Then, we can compute a variable order
π for φ in time O(|φ|·log |φ|) under which the OBDD (φ, π) has size bounded
in |V ars(φ)| and can be computed in time O(|V ars(φ)|).

We thus obtain linear-size OBDDs for lineage whose size can be expo-
nential in the query size. This result supports our choice of OBDDs as a
data structure that can naturally capture the regularity in the lineage of
tractable queries.

34

Assumptions:
Input tree is the query’s inequality tree and has n nodes.
Input t is the query answer before confidence computation.
For each node in tree, tuples in t have its column X involved
in inequalities and the variable column V of its table.

processLineage(IneqTree tree, Tuples t) {
assign indices {1,2,...,n} to each node in tree according to
its position in a depth-first preorder traversal;

sort t on (X1 desc, V1, ..., Xn desc, Vn), where Xi and Vi

are from the table of node with index i in tree;
let t′ be πV1,V2,...,Vn

(sorted t);

crtTuple = first tuple in t′;
varOrder = NULL;

foreach node no of tree do {
no.firstVar = crtTuple[Vno.index];
no.latestVarInVO = NULL;
no.varToInsert = crtTuple[Vno.index]; }

{ nextTuple = next tuple in t′;

find minimal i such that crtTuple[Vi] 6= nextTuple[Vi];

foreach node no of tree with index from n to i do {
if (no.varToInsert 6= NULL) {

insert no.varToInsert at the beginning of varOrder;

no.latestVarInVO = no.varToInsert;
no.varToInsert = NULL; }

if (crtTuple[Vno.index] 6= nextTuple[Vno.index] AND

crtTuple[Vno.index] = no.latestVarInVO AND

nextTuple[Vno.index] 6= no.firstVar)
no.varToInsert = nextTuple[Vno.index];

}

crtTuple = nextTuple;
} do while (crtTuple 6= NULL);

}

Figure 12: Incremental computation of variable orders for IQ queries with
inequality trees.

35

3.2.3 Queries with Inequality Trees

We generalize the results of Section 3.2.2 to the case of inequality trees.
Examples of such IQ queries are:

Q7:-R
′(E,F), T (D), S(B,C), E < D,E < C and

Q8:-R
′(E,F), T (D), S(B,C), T ′(G,H), E < D,E < C < H.

The lineage of queries with inequality paths and of queries with inequality
trees have different structures. We explain using the lineage of query Q7,
where we assume that table R′ has variables x1, . . . , xn, table T has variables
y1, . . . , ym, and table S has variables z1, . . . , zk, and that the tables are
already sorted on their attributes involved in inequalities. We will later
exemplify with a concrete database. As for inequality paths, the lineage
can be expressed as Σixifxi

, but now each cofactor fxi
of xi is a product

of a sum of variables yi and of a sum of variables zj . In contrast, for an
inequality path E < D < C, a cofactor fxi

would be a sum of variables yj,
each with a cofactor fyj

that is a sum of z-variables.
The inclusion relation still holds on the cofactors of variables xi: fx1

⊇
. . . ⊇ fxn , and we can thus obtain any fxi+1

from fxi
by setting to false

variables that occur in fxi
and not in fxi+1

. These variables can be both
y-variables and z-variables; to compare, in the case of inequality paths, the
elimination variables need only be y-variables. The inclusion relation holds
because of the transitivity of inequality: If we consider any two E-values e1
and e2 such that e1 < e2, the tuples of T and S joined with e2 are necessarily
also joined with e1. The inclusion relation holds even if the variables yi or zj
have themselves further cofactors due to further inequalities, provided the
cofactors of variables yi are independent from the cofactors of variables zj .

Example 3.24. Consider the database consisting of tables R′, T , and S
of Figure 5, where we add variables z1 to z5 to the tuples of table S. The
lineage of query Q7 is

x1(y1 + y2 + y3)(z1 + z3 + z2 + z5 + z4)+

x2(y2 + y3)(z2 + z5 + z4)+

x3(y3)(z4).

It indeed holds that fx1
⊃ fx2

⊃ fx3
. We can transform fx1

into fx2
by

eliminating in any order y1 and (z1, z3). We then transform fx2
into fx3

by
eliminating y2 and (z2, z5). According to the elimination order constraints
imposed by transformations on cofactors, an interesting variable order is
x1x2x3y1z1z3y2z2z5y3z4. Figure 15 gives a fragment of the OBDD for this
lineage in case x1 is set to false. As we can see, each variable xi has one

36

OBDD node, and each variable yi or zi has up to two OBDD nodes. This is
because the lineage states no correlation between the truth assignments of
any pair of variables yi and zj . Hence, in case we eliminate, say, yi, nodes
for variable zj can occur under both branches of the yi node.

There are, of course, other variable orders that do not violate the con-
straints. For instance, we could eliminate y1z1z3 after x1 and before x2, and
similarly for y2z2z5: We then obtain x1y1z1z3x2y2z2z5x3y3z4. The reverse
of any such order also induces succinct OBDDs. 2

As in the case of inequality paths, we can always find a variable order
for the cofactor fx1

such that its OBDD already includes the OBDDs of the
cofactors fxi

of all variables xi where i > 1. This order must agree with
constraints on variable elimination orders imposed by transforming fxi

into
fxi+1

, for all i ≥ 1. Example 3.24 (above) shows how such orders can be
computed for a reasonably small lineage. For the case of general IQ queries
with inequality trees, one can use the algorithm given in Figure 12.

This algorithm works on a relational encoding of the lineage (as produced
by queries) and, after sorting the lineage, it only needs one scan. It uses the
inequality tree to re-discover the structure of the lineage. Because of the
max-one property of the conjunction of inequalities, there is one table for
each node in the inequality tree. Each node in the inequality tree contains
four fields: index, firstVar, latestVarInVO and varToInsert. The field
index serves as an identifier of the node, whereas the other three fields
store information related to the variables from the corresponding table. The
field firstVar stores the first variable from the table that has been inserted
into the variable order. It is set as the variable in the first tuple after
sorting and does not change afterwards. The field latestVarInVO stores
the latest variable from the table inserted into the variable order, and the
field varToInsert stores the new variable encountered in the input tuples
but not yet inserted into the variable order.

The variable order construction is triggered by the changes in the vari-
able columns between two consecutive tuples. The sorting is crucial to the
algorithm, as it orders the lineage such that the cofactor fxi+1

is encoun-
tered before fxi

in one scan of the lineage. We thus compute the variable
order for fxi+1

before computing it for fxi
. Because the OBDD for fxi+1

represents a subgraph of the OBDD for fxi
, the variable order for fxi+1

is
a suffix of the variable order for fxi

. A key challenge here is to identify a
variable that has not been inserted into the variable order. An inefficient
approach is to look it up in the variable order constructed so far. This can
be solved more efficiently, however, by only using firstVar and latestVar-

37

InVO. Due to sorting and the inclusion property between the cofactors of
variables from the same table, all variables encountered after firstVar and
before latestVarInVO while scanning the cofactor of a variable have al-
ready been inserted into the variable order. After scanning the cofactor of
latestVarInVO, if the next variable in the same column of the next tuple
is not firstVar, this indicates that this variable has not been encountered
and we store it in varToInsert.

Example 3.25. Consider the lineage of Example 3.24. We scan it in the or-
der x3y3z4, x2y3z4, x2y3z5, x2y3z2 and so on. Initially, the first tuple is read
and firstVar and varToInsert are set to the variables in this tuple. On
processing the second tuple, a change is found on the first variable column,
all varToInsert values stored in the nodes are inserted into the variable
order and obtain x3y3z4. The fields latestVarInVO of nodes for query
variables E, D, and C are also updated accordingly to x3, y3, and z4 respec-
tively. On reading the third tuple, a change in the third variable column is
detected and varToInsert is updated to z5. On reading the fourth tuple,
a change is again detected in the third variable column and z5 is inserted
into the variable order. We thus obtain the order z5x3y3z4, In addition,
latestVarInVO is updated to z5 and varToInsert is set to z2. The final
variable order is x1y1z1z3x2y2z2z5x3y3z4. 2

Under such variable orders, the OBDDs can have several nodes for the
same variable. As pointed out in Example 3.24 for the lineage of query Q7,
this is because there is no constraint between variables yi and zj : Setting
a variable yi to true or false does not influence the truth assignment of a
variable zj .

We next analyze the maximum number of OBDD nodes for a variable
in case of an inequality tree consisting of a parent with n children:

Q8:-R(X), S1(Y1), . . . , Sn(Yn), X < Y1, . . . , X < Yn

whereR and Si have variables x1, . . . , xm, and yi
1, . . . , y

i
mi

, respectively. The

lineage is Σixi(
n

Π
j=1

fxi
(yj)), where each fxi

(·) is a sum of variables from the

same table. We know that the OBDD obtained by compiling the cofactor
of x1 contains the OBDDs for the cofactors of all other xi (i > 1), under
the constraint that the variable order transforms one cofactor into the next.
This means that, in order to compile the cofactor of x1, we need to use an
intertwined elimination of variables y1 to yn.

Consider we want to count the number of OBDD nodes for variable yi
j.

The OBDD nodes that can point to yi
j-nodes represent expressions that can

38

have any of the form s(yi)
l≤n

Π
k=1, 6=i

s(yk)) or simply s(yi), where the functions

s(yk) stand for sums over variables yk
1 , . . . , y

k
mk

. All such expressions nec-
essarily contain a sum over variables yi, which includes yi

j; otherwise, their

OBDD nodes cannot point to yi
j-nodes. The number of distinct forms is

exponential in n (more precisely, half the size of the powerset of {1, . . . , n};
those without s(yi) are dropped). Interestingly, there can be precisely one
OBDD node for each of these forms that point to an yi

j-node. This means

that the number of yi
j-nodes is in the order of O(2n). We explain this for

three of the possible forms. A node representing an expression s(yi) can
point to an yi

j-node if, according to our elimination order, the variables yi

preceding yi
j are all dropped, and precisely one variable from the remaining

variable groups is set to true. Then, there is a single path from the OBDD
root to the node for the expression s(yi), following the true and false edges
of the eliminated variables, and hence only one yi

j-node to point to. A node

representing an expression s(yi)
n

Π
k=1, 6=i

s(yk)), which is a product of sums of

variables from each variable group, can point to yi
j-nodes only if the sum

s(yi) contains the variable yi
j and all its preceding variables yi are set to

false. Then, again, there is one path from the root to that node that follows
the false edges of the eliminated variables yi, and hence one yi

j-node to point
to. In case of expression forms, where some of the sums are missing, we use
the same argument: precisely one variable from each of these sums is set to
true, and there is a single path from the root to the node representing that
expression, and hence one yi

j-node to point to. This result can be generalized
to arbitrary inequality trees.

Theorem 3.26. Let φ be the lineage of any IQ query with inequality tree t
on any tuple-independent database. Then, we can compute a variable order
π for φ in time O(|φ| · log |φ|), under which the OBDD (φ, π) has size and
can be computed in time O(2|t| · |V ars(φ)|).

The OBDD for φ does not need all O(2|t|) nodes for each variable. Fig-
ure 15 shows two OBDDs for a fragment of the lineage of query Q7 of
Example 3.24, one as constructed by our algorithm (right), and a reduced
version of it (left).

3.3 Confidence Computation in Secondary Storage

This section introduces a secondary-storage algorithm for confidence com-
putation for IQ queries with inequality trees.

39

OBDD Node: probability p, bool vector bv, children hi

from the solid edge and lo from the dotted edge

Level: a vector of OBDD Nodes nodes, index of the

inequality tree node whose table contains the variables at

this level index

n: the number of nodes in the inequality tree

obdd levels: Level[n + 1]

Figure 13: Data structures used by the algorithm of Figure 14.

This algorithm is in essence our algorithm for incremental computation
of variable orders for queries with inequality trees given in Figure 12 of
Section 3.2. An important property of this algorithm is that it does not
require the OBDD to be materialized before it starts the computation. The
key ideas are (1) to construct the OBDD levelwise, where a level consists
of the OBDD nodes for one variable in the input lineage, and (2) to keep
in memory only the necessary OBDD levels. Similar to the algorithm that
computes variable orders, this confidence computation algorithm needs only
one scan over the sorted lineage to compute its probability.

The algorithm is given in Figure 14 and uses data structures described
in Figure 13: The code in the topmost box should replace the inner box of
the algorithm for variable order computation given in Figure 12.

Let a query Q with inequality tree t of size n and let φ be the lineage of
Q on some database. As discussed in Section 3.2.3, each variable in φ can
have up to 2|t| OBDD nodes, which form a complete OBDD level. When
a new variable is encountered, instead of adding it to the variable order,
we construct a new level of nodes in the OBDD for this variable. The
major challenge lies in how to connect the low and high edges of a node to
the correct (lower) nodes in the levels kept in memory. Recall that every
OBDD node represents a partial lineage obtained by eliminating variables
at the upper OBDD levels. In an OBDD, none of the nodes represent the
same formula. The formulas determine the connection between nodes from
different levels. For instance, in Figure 15, the left and right nodes in the
level of y3 represent formulas y3z4 and y3 respectively. The formula at the
leftmost node x3 is x3y3z4, and hence the high edge of this node must point
to y3z4 and not to y3.

The formula can be, however, large and, instead of materializing it, we
use a compact representation of it. This is possible due to the lineage struc-
ture imposed by the query and the chosen variable elimination order. Our
compact representation is that of a Boolean vector of size n. A “true” value

40

Code to replace the inner box in Figure 12:

add level(i, no.varToInsert.prob);

Initialization:
create Level L; L.nodes = OBDD Node[2n]; L.index = 0;

foreach OBDD Node no in L.nodes do {

no.bv = distinct bool vector of size n;

if (any value in no.bv is false) no.p = 0;

else no.p = 1; }

insert L at beginning of obdd levels;

add level(int i, Prob p)
create Level L;
L.nodes = OBDD Node[2n−1]; L.index = i;

foreach OBBD node no in L.nodes do {

no.bv = distinct bool vector of size n where bv[i] = false;

no.lo = get node(no.bv, i, false);

no.hi = get node(no.bv, i, true);

no.p = p × no.hi.p + (1 − p) × no.lo.p; }

remove L′ from obdd levels such that L′.index = i;

insert L at beginning of obdd levels;

get node(bool vector bv, int i, bool is true)

bv[i] = is true; crtLevel = the first Level in obdd levels;

while(true)

if (crtLevel.index = 0 OR (!bv[crtLevel.index]

AND all ancestors set true(bv, crtLevel.index)))

foreach OBDD node no in crtLevel.nodes do

if (no.bv = bv) {

bv[i] = false;

return no; }

else

crtLevel = the next Level in obdd levels;

all ancestors set true(bool vector bv, int i)

foreach ancestor A of get ineqtree node with index(i) do

if (!bv[A.index]) return false;

return true;

Figure 14: Secondary-storage algorithm for confidence computation.

41

x2[FFF]

y2[TFF]

x3[FFF]

x2[FFT]

y2[TFT]

x3[FFT]

x2[FTF]

z2[TTF]

x3[FTF]

x2[FTT]

x3[FTT]

1

y2[FFF]

z2[FFF]

y2[FFT]

0

z2[TFF]

z5[TFF]

y3[TFT]

z5[TTF]z5[FFF]

z2[FTF]

z5[FTF]

y3[TFF]

z4[TTF]

Up: Reduced OBDD used in Section 3.2. Down: Partially reduced OBDD
as constructed by the algorithm of Section 3.3.
Constant nodes are merged, and nodes z4[FFF], z4[FTF], z4[TFF], y3[FFT]
and y3[FFF] are removed for compactness (although the algorithm con-
structs them). Grey nodes form the equivalent reduced OBDD on the left.

Figure 15: OBDDs for the lineage discussed in Example 3.24.

42

in this Boolean vector at position i indicates that a variable from the table
with index i has been set to true. This means that the formula at that node
does not contain further variables from the table with index i (property of
OBDDs representing lineage of queries with inequality trees). The Boolean
vectors act as the identifiers of the OBDD nodes so that the nodes from the
level above can identify a potential child node among the ones at this level.

The algorithm works as follows: We initially build a level of one constant
node 1 and 2n−1 constant nodes 0. Note that this construction does not lead
to reduced OBDDs, but it is sufficient for our processing task. For every new
variable encountered during the scan, we build a level of OBDD nodes, and
for each such node find its high and low children nodes in the existing levels.
The probability of a node can be computed only based on the probabilities
of the nodes it points to. Therefore, the probability computation and the
OBDD construction go in parallel. Instead of keeping all the levels of the
OBDD in memory, our algorithm keeps only one level for every table in the
condition tree t. As soon as a new level is built for a variable from a table,
the old level for the variable from the same table is dropped if there is any.
This is possible because of the following property of the OBDDs for queries
with inequality trees: Let x1 and x2 be variables from the same relation and
the level of x1 higher than the level of x2. Then, no edge from levels above
the level of x1 points to nodes in the level of x2. This is due to the inclusion
property between the cofactors in the lineage.

The algoritm also exploits two properties of such OBDDs:

• No OBDD node for a variable from a table is accessible via the high
edge of an upper OBDD node for a variable from the same table.

• Let a table R and its ancestors S1, . . . , Sn in the inequality tree. Then,
a path from the root to an OBDD node for a variable from R must
follow the high edges of at least one node for a variable from each
S1, . . . , Sn.

Both these properties are used in the outermost if-condition of the procedure
get node in Figure 14.

Example 3.27. We show how to compute the probability of the lineage of
query Q7 of Example 3.24. Figure 15 shows a fragment of its OBDD. The
inequality tree is of size 3. The number of constant nodes is thus 23 = 8
and of non-constant nodes per level is 22 = 4. The size of a Boolean vector
is 3 and the corresponding inequality tree nodes of tables R′, T and S are
assigned indices 1, 2 and 3 respectively.

43

We build a level of eight constant nodes: Seven nodes with at least one
false value (F) in the Boolean vector have probability 0 (they are merged
into one in Figure 15) and the remaining one with [T,T,T] has probability
1. We then construct four nodes in the level for z4. The corresponding
Boolean vectors of the nodes are [T,T,F], [T,F,F], [F,T,F], and [F,F,F]. The
value in all the vectors for the variables of table S is F because formulas of
all nodes at this level contain variable z4; otherwise, elimination of z4 will
be redundant. The first vector encodes a formula with variables only from
S. The second vector encodes a formula with variables only from T and S,
and so on.

The outgoing edges of nodes z4 can only point to the only level below,
which is made by constant nodes. For instance, the high and low edges
of node with vector [T,T,F] point to nodes with [T,T,T] and [T,T,F] re-
spectively, that is, to nodes 1 and 0 respectively. Hence, its probability is
Pr(z4) × 1 + Pr(z4) × 0 = Pr(z4).

Consider that the level for variable y3 is already constructed similarly
to the previous level (z4), and let us construct the level for x3. We create
four nodes with Boolean vectors [F,T,T], [F,T,F], [F,F,T], [F,F,F]. For the
node with vector [F,F,F], since the corresponding value for relation R′ in
the vector is F and the inequality tree node of R′ is the ancestor of those of
S and T , its low edge cannot point to nodes in y3 and z4 levels, but instead
points to constant node with vector[F,F,F], namely node 0. Its high edge
points to the node with vector [T,F,F] in the level for y3. Therefore, its
probability is Pr(x3) × (node with vector [T,F,F] in y3 level).p + Pr(x3) ×
0.

Let us consider the final step. We construct the level for x1. As the
other non-constant node levels, it has four nodes. Since x1 is the first to be
eliminated in the OBDD, the corresponding values for R′, S, and T in the
Boolean vector of the root should be F. Therefore, the probability of the
lineage is given by the value p of the node with vector [F,F,F] in the level x1

and the other three nodes are redundant. Its probability is Pr(x1)× (node
with [T,F,F] in y1 level).p + Pr(x1)× (node with [F,F,F] in x2 level).p. 2

44

4 Lineage Decomposition Using D-Trees

In Section 3, our discussion focuses on conjunctive queries with inequalities
and without self-joins in tuple-independent probabilistic databases, while
in Sections 4 and 5, we target positive relational algebra in complete rep-
resentation system, less restricted queries in a more general data model.
Section 4.1 introduces a novel type of decision diagrams called d-trees for
lineage decomposition. Section 4.2 shows how d-trees compactly represent
the lineage of all currently known tractable queries on tuple-independent
probabilistic databases with a variable elimination heuristic.

4.1 Compiling DNFs into D-Trees

Computing the probability of a formula is #P-hard. In general, there is
no efficient way of computing the probability P (φ ∧ ψ) or P (φ ∨ ψ) from
P (φ) and P (ψ). However, there are important special cases in which this is
feasible, in particular,

• if φ and ψ are independent, then

P (φ ∧ ψ) = P (φ) · P (ψ)

P (φ ∨ ψ) = 1 − (1 − P (φ)) · (1 − P (ψ))

• if φ and ψ are inconsistent with each other (i.e., there is no valuation
of the random variables on which both are true: the disjunction is
exclusive), then

P (φ ∨ ψ) = P (φ) + P (ψ).

We will use explicit notation to mark such ∧ and ∨-operations: We will
use ⊗ for independent-or, ⊙ for independent-and and ⊕ for exclusive-or.

Example 4.1. Consider the formula (x∨y)∧((z∧u)∨(¬z∧v)). It is easy to
verify that this formula satisfies the independence and mutual exclusiveness
properties expressed by the equivalent formula (x⊗ y)⊙ ((z⊙u)⊕ (¬z⊙ v)).
The probability of this formula thus is

(

1 − (1 − P (x)) · (1 − P (y)
)

·
(

P (z) ·
P (u) + P (¬z) · P (v)

)

. 2

For convenience, we also use the Boolean combinators on sets of formulae;
i.e., we write

∧

Φ for φ1 ∧ · · · ∧φn if Φ = {φ1, . . . , φn} and analogously
∨

Φ,
⊗

Φ,
⊕

Φ, and
⊙

Φ. (All the operations are associative, and computing
the probabilities of formulae using these set operations is straightforward.)

45

Definition 4.2. A (partial) d-tree (for decomposition tree) is a formula
constructed from ⊗, ⊕, ⊙ and nonempty DNFs (as “leaves”). A d-tree in
which each DNF is a singleton – i.e., contains a single clause – is called a
complete d-tree. Given a partial d-tree, the d-tree obtained by replacing a
leaf DNF by an equivalent partial d-tree is called a refinement. 2

Thus, in a d-tree (viewed as a parse tree of the d-tree formula), an ∧ or
∨ node never occurs above a ⊕, ⊗, or ⊙ node.

It follows from the definitions of ⊕, ⊗, and ⊙ that

Proposition 4.3. Given the probabilities of all the DNF leaves of a partial
d-tree, its probability can be computed in linear time. 2

Since computing the probability of a clause is straightforward, the prob-
ability of a complete d-tree can be computed in time linear in its size.

Next we present an algorithm for computing a complete (or, if we stop the
compilation early, a partial) d-tree from a DNF. For this purpose, we assume
a DNF is represented by a set of sets of atomic formulae. In essence, the
algorithm repeatedly applys three decomposition methods that correspond
to the three types of inner nodes in a d-tree ⊕, ⊗, and ⊙:

• Independent-or ⊗: Partition Φ into independent DNFs Φ1,Φ2 ⊂ Φ
such that Φ is equivalent to Φ1 ∨ Φ2.

• Independent-and ⊙: Partition Φ into independent DNFs Φ1,Φ2 ⊂ Φ
such that Φ is equivalent to Φ1 ∧ Φ2.

• Exclusive-or ⊕: Choose a variable x in Φ. Replace Φ by

⊕

a∈Domx,Φ|x=a 6=∅

(

{{x = a}} ⊙ Φ |x=a

)

where Φ |x=a denotes the DNF obtained from Φ by removing all clauses
φ ∈ Φ for which φ∧(x = a) is inconsistent and (syntactically) removing
the atomic formula x = a from the remaining clauses in which it
occurs. Thus, obviously, (x = a)∧Φ is equivalent to (x = a)∧Φ |x=a.

Figure 16 sketches our general compilation approach, which will be re-
fined in the next sections. Here, we consider that the compilation is exhaus-
tive, i.e., the leaves of the d-tree only hold DNFs that are singleton clauses.
If approximate probabilities are sought for, however, the compilation need
not be exhaustive and the leaves can hold larger DNFs.

46

Compile (DNF Φ with Φ 6= ∅) returns d-tree

if (∅ ∈ Φ) then return {∅}

1. remove all subsumed clauses Φ :

foreach s, t ∈ Φ such that s 6= t do

if (s ⊂ t) then Φ := Φ − {t}

2. apply independent-or:

if there are non-empty and pairwise indep. DNFs

Φ1, . . . ,Φ|I| such that Φ = Φ1 ∪ . . . ∪ Φ|I|

then return
⊗

i∈I

(

Compile(Φi)
)

3. apply independent-and:

if there are non-empty and pairwise indep. DNFs

Φ1, . . . ,Φ|I|

such that Φ is equivalent to Φ1 ∧ . . . ∧ Φ|I|

then return
⊙

i∈I

(

Compile(Φi)
)

4. apply Shannon expansion:

choose a variable x in Φ;

T := {φ | φ ∈ Φ, 6 ∃a ∈ Domx : (x = a) ⊆ φ};

∀a ∈ Domx : Φ |x=a:=
{

{y1 = b1, . . . , ym = bm} |

{x = a, y1 = b1, . . . , ym = bm} ∈ Φ
}

∪ T ;

return
⊕

a∈Domx,Φ|x=a 6=∅

(

{{x = a}} ⊙ Compile(Φ |x=a)
)

Figure 16: Compiling DNFs into d-trees.

Example 4.4. Figure 17 shows a DNF and the complete d-tree obtained by
executing the algorithm of Figure 16 to completion. 2

This algorithm is correct:

Proposition 4.5. If Φ is a DNF, then Φ is equivalent to Compile(Φ).

47

⊗

⊕

{{x = 1}} ⊙

{{x = 2}} ⊗

{{y = 1}} {{z = 1}}

⊕

⊙

{{u = 1}} {{v = 1}}

{{u = 2}}

Figure 17: D-tree of DNF Φ = {{x = 1}, {x = 2, y = 1}, {x = 2, z =
1}, {u = 1, v = 1}, {u = 2}}.

Both independent-or and independent-and partitioning tasks can be done
efficiently. The first one is finding connected components in the dependency
graph of the input DNF Φ, which consists of a node for each variable of Φ
and, for each clause

∧n
i=1 xi = ai of Φ, of the edges (xi, xi+1) for 1 ≤ i < n.

This can be done in time linear in the size of the Φ (using a well-known
depth-first algorithm for computing strongly connected components, Tar-
jan’s algorithm).

The independent-and partitioning is a special algebraic factorization of
DNFs, and requires time O(m ·n · logn), where n and m are the sizes of the
DNF and of the constituent clauses, respectively [34].

The order of the variable choices needed for Shannon expansion (also
known as variable elimination in e.g. the Davis-Putnam algorithm) greatly
influences the size of the d-tree. In general, the compilation of a DNF
creates a d-tree of exponential size, and an important challenge is to find
compilation strategies that lead to decision diagrams of small sizes [13, 25].
We introduce a heuristics for choosing variables in Section 4.2, and we will
resort to approximation of probabilities by compiling DNFs only into partial
d-trees, upper- and lower-bounding the residual DNFs.

Remark 4.6. D-trees are a generalization of the ws-trees of [25] in three
ways: We have decoupled the exclusive-or operation from our algorithm’s
method of obtaining exclusive-or decompositions (variable elimination). More-
over, we have added independent-and decompositions, which are crucial for
application of d-trees to hierarchical queries in the next section. Finally,
we have generalized the formalism to partial decompositions, which are the
foundation of the approximation techniques of Section 5. The probabilistic
and/xor trees of [27] are modeled on the ws-trees but are a weaker represen-

48

tation system in that they have tuples, rather than clauses, at their leaves.
In addition, decomposition using variable elimination is reminiscent of the
Davis-Putnam SAT solving algorithm [14] and OBDDs (cf. e.g. [30]). 2

4.2 From Tractable Queries to Linear-Size D-Trees

D-trees can represent compactly DNFs associated with answers to known
tractable queries on tuple-independent probabilistic databases. In such a
database, each tuple is associated with a distinct random Boolean variable.

The classes of queries considered here are (1) the tractable queries with-
out self-joins [10], (2) queries that are “hard” in general, but become tractable
on restricted databases [33], and (3) tractable queries with inequalities [31].

We first introduce a correspondence between a factored form of formulae
and d-trees. A formula Φ is in one-occurrence normal form (1OF) if any
variable of the formula occurs exactly once in Φ [30]. For instance, Φ of
Figure 2 is in 1OF. Such formulae can be arbitrarily nested using ∧ and ∨,
e.g., ((x1 ∨ x2) ∧ (¬y1 ∨ y2)) ∨ (x3 ∧ ¬y3). Complete d-trees can naturally
represent 1OF formulae by turning ∨ into ⊗ and ∧ into ⊙. It follows from
our compilation scheme in Fig. 16 that

Proposition 4.7. Any formula factorizable in 1OF can be compiled in poly-
nomial time into a complete d-tree with one leaf per distinct variable and
inner nodes ⊗ and ⊙. 2

The DNFs associated with answers to any tractable conjunctive query
without self-joins are factorizable in 1OF [30]. Such queries are called hier-
archical, and can be easily defined using a Datalog notation, where joins are
expressed by occurrences of query variables in several subgoals.

Definition 4.8 ([10]). A conjunctive query is hierarchical if for any two
non-head query variables, either their sets of subgoals are disjoint or one set
is contained in the other. 2

Example 4.9. The following queries are hierarchical:

q1:-R1(A,B), R2(A,C)

q2:-R1(A,B,C), R2(A,B), R3(A,D) 2

The query q:-R(X), S(X,Y), T (Y) is the prototypical #P-hard query[10].
It is non-hierarchical since the sets of subgoals of X and Y overlap, yet one
does not include the other.

The DNFs for hard queries are factorizable in 1OF for restricted tuple-
independent databases. Due to lack of space, we only present here without

49

MAX OCCUR: (DNF Φ with Φ 6= ∅) returns variable

V(Φ) := set of all variables in Φ;

foreach x ∈ V(Φ) do

#(x) := number of occurrences of x in Φ;

choose variable x ∈ V(Φ) such that

∀x′ ∈ V(Φ) : #(x) ≥ #(x′);

return x;

Figure 18: Order of variable elimination used in Shannon expansion.

proof new tractable cases that basically exploit regularities in the structure
of table S.

Theorem 4.10. The DNFs of hard query patterns R(X), S(X,Y), T (Y)
are factorizable in 1OF if each connected component of the bipartite graph
of S is functional or complete. 2

This result generalizes an early tractability result obtained for hard pat-
terns where functional dependencies hold on the entire table S [33].

Very recent work defines tractable queries with inequalities [31]. We only
consider here the core tractable language of so-called IQ queries defined in
that work.

Definition 4.11. Let the disjoint sets of query variables x1, . . . , xn. A con-
junction of inequalities over these sets has the max-one property if at most
one query variable from each set occurs in inequalities with variables of other
sets. 2

Definition 4.12. An IQ query has the form

Q:-R1(x1), . . . , Rn(xn),Φ

where R1, . . . , Rn are distinct tuple-independent tables, the sets of query vari-
ables x1, . . . , xn are pairwise disjoint, and Φ has the max-one property over
these sets. 2

50

Example 4.13. The following are IQ queries

q1:-R(E,F), T (D), T ′(G,H), E < D < H

q2:-R
′(E,F), T (D), S(B,C), E < D,E < C

q3:-R(A), T (D)

q4:-R(A), T (D), R′(E,F), T ′(G,H), A < E,D < E,D < G 2

We compile DNFs of IQ queries using the variable elimination order
MAX OCCUR given in Figure 18, where a variable that occurs most fre-
quently in the input DNF is chosen first. The following result summa-
rizes the core observation of our previous work [31], now expressed using
MAX OCCUR.

Lemma 4.14. Given a DNF Φ of an IQ query and variable v = MAX OCCUR(Φ).
Then, Φ|v subsumes Φ. 2

This property is what makes IQ queries tractable. We exemplify with a
query q:-R(X), S(Y),X < Y on a database with random Boolean variables
x1, . . . , xn in R and y1, . . . , ym in S (n ≥ m). Assume wlog that the indices
of these variables correspond to the sorting order of relations R and S. Then,
x1 = MAX OCCUR(Φ) in the DNF Φ of q and

Φ|x1
=

∨

j

(yj) ∨
∨

1<i≤n

(xi ∧ Φ|xi
)

Φ|¬x1
=

∨

1<i≤n

(xi ∧ Φ|xi
).

The formula
∨

j(yj) is a disjunction of all the variables in S that annotate
Y -values that are greater than the X-value annotated by x1. Following the
semantics of the inequality join and the max-occur property of x1, any other
variable xi can only be paired with a disjunction of a (non-necessarily strict)
subset of variables in S, hence

∨

j(yj) ∨
∨

1<i≤n(xi ∧ Φ|xi
) =

∨

j(yj). Both
formulas Φ|x1

and Φ|¬x1
can be decomposed using the same heuristic: Any

variable yj is chosen in Φ|¬x1
, and variable x2 (or some yj) is chosen in Φ|x1

.
This observation leads to the following result.

Theorem 4.15. DNFs of IQ queries can be compiled in polynomial time
into complete d-trees with one ⊕ node for each input atomic formula. 2

51

5 Approximate Confidence Computation Using D-

Trees

As discussed in Section 4.1, the exact confidence of a DNF can be eas-
ily computed following the DNF compilation into a complete d-tree. Such
an exhaustive compilation is not practical in general. If an approximate
confidence suffices, then we may only explore a few levels in a d-tree and
approximate the probability at its leaves using efficient heuristics.

The key challenges addressed in this section are (i) the design of efficient
and good heuristics for approximating the probability of DNFs at the leaves
of d-trees, and (ii) the design of an efficient algorithm that can compute an
approximate probability for a given DNF by incrementally refining its d-tree
compiled form.

5.1 Lower and Upper Probability Bounds for DNFs

We next discuss how to compute lower and upper bounds of the probabili-
ties of DNFs at the leaves of a d-tree without refining them. Figure 19 gives
two heuristics that partition the input DNF Φ into a set of buckets such
that the exact probability of each bucket can be computed efficiently. The
lower and upper bounds of the exact probability of Φ are then computed as
the maximum over the probabilities of the buckets, and the sum of proba-
bilities of the buckets, respectively. Both bounds are correct: Assume that
a bucket with the maximal probability is Bi. Since Φ is a set of clauses,
Φ = Bi ∨Φ′. Since each clause in Φ has a non-null probability by definition,
P (Bi) ≤ P (Bi ∨ Φ′) = P (Φ), and thus P (Bi) is indeed a lower bound for
P (Φ). To see why the sum of probabilities of the buckets is indeed an upper
bound, consider the following cases. If the buckets are negatively correlated,
then the probability of their disjunction is the sum of their probabilities. In
case they are independent or positively correlated, then it follows by defi-
nition that the probability of their disjunction is at most the sum of their
probabilities.

Let us now look closer at how the buckets are created. In case of the
first heuristic (Independent), each bucket only contains pairwise independent
clauses, and each such bucket is maximal, i.e., for a given bucket B there is
no clause in Φ and not in B that is pairwise independent with each clause in
B. The probability of each bucket can be computed efficiently, as shown in
Figure 19. As there may be several possible minimal partitionings of Φ, we
empirically noticed that the lower bound computed by this heuristic can be
further improved by first sorting Φ descending on the marginal probability of

52

Independent (DNF Φ with Φ 6= ∅) returns [Lower, Upper]

minimally partition Φ into B1 ∨ . . . ∨Bn such that

∀1 ≤ i ≤ n,∀d, d′ ∈ Bi : d, d′ are independent;

foreach bucket Bi do

P (Bi) := 0;

foreach clause d ∈ Bi do

P (Bi) := 1 − (1 − P (Bi)) · (1 − P (d));

return [
n

max
i=1

P (Bi),min(1,

n
∑

i=1

P (Bi))];

Exact-k (DNF Φ with Φ 6= ∅) returns [Lower, Upper]

n := ⌈
|S|

k
⌉;

partition Φ into B1 ∨ . . . ∨Bn such that

∀1 ≤ i ≤ n− 1 : |Bi| = k and

∀d′ ∈ (B2 ∨ . . . ∨Bn),∀d ∈ B1 : P (d′) ≤ P (d);

foreach bucket Bi do

P (Bi) :=

|Bi|
∑

i=1

(−1)i−1
∑

I⊆Bi,|I|=i

(
∧

d∈I

d);

return [
n

max
i=1

P (Bi),min(1,

n
∑

i=1

P (Bi))];

Figure 19: Computing lower and upper bounds for the probability of DNFs.

its clauses, and then constructing a bucket that contains the most probable
clause and subsequent independent clauses. It turns out that this heuristic
behaves very well for all of our experimental scenarios (see Section 7). This
heuristic requires time quadratic in the size of the input DNF, the most
expensive part being the minimal partitioning.

Example 5.1. Let the DNF Φ = c1 ∨ c2 ∨ c3, where

c1 = (x ∧ y), c2 = (x ∧ z), c3 = v

53

and P (x) = 0.3, P (y) = 0.2, P (z) = 0.7, P (v) = 0.8. One minimal parti-
tioning of Φ is B1 = c1 ∨ c3 and B2 = c2. Then,

P (B1) = 1 − (1 − 0.06) · (1 − 0.8) = 0.812, P (B2) = 0.21.

The bounds are L(Φ) = P (B1) = 0.812 and U(Φ) = min(1, 0.821+0.21) = 1.
Another minimal partitioning can be obtained by first sorting the clauses
descending on their marginal probabilities. Then, B1 = c2 ∨ c3, B2 = c1,
and

P (B1) = 1 − (1 − 0.21) · (1 − 0.8) = 0.842, P (B2) = 0.06.

The new bounds are L(Φ) = 0.842 and U(Φ) = 0.848, which approximates
better the exact probability of 0.8456. 2

In case of the second heuristic (exact-k), each bucket contains k clauses
(except possibly the last one), where k is chosen small (3-4). We then com-
pute the probability of each bucket using the inclusion-exclusion formula,
which can take time exponential in k. The first bucket consists of k clauses
with top marginal probability. The reason for this special bucket is to ensure
that the lower bound is computed based on the top-k most probable clauses.

The heuristic Exact-k requires time O(k · |Φ|+ ⌈ |Φ|
k
⌉ · 2k), which is linear

in the size of the DNF Φ for a fixed k.

Proposition 5.2. Let [L1, U1] = Independent(Φ) and [L2, U2] = Exact-k(Φ)
for a DNF Φ. It then holds that L1 ≤ P (Φ) ≤ U1 and L2 ≤ P (Φ) ≤ U2. 2

5.2 Lower and Upper Probability Bounds for D-Trees

The lower and upper bounds can be propagated from leaves to the root
of the d-tree. For this, we make use of the observation that the formulas
for probability computation of each decomposition type, are monotonically
increasing. (A function is monotonically increasing if for all x and y such
that x ≤ y, one has f(x) ≤ f(y).) If some of the children of an inner node
(⊗, ⊙, or ⊕) have smaller (larger) probabilities, then it immediately follows
that the probability at that node becomes smaller (larger).

Given bounds at the children, the lower and upper bounds at the parent
node are obtained by replacing in the formulas for computing the probability
of nodes ⊕, ⊗, and ⊙, the exact probability of the children with their lower
and upper bounds, respectively. We are now ready to generalize the result
of Proposition 5.2 from DNFs to d-trees.

54

Proposition 5.3. If a d-tree d for a DNF Φ has bounds [L,U], then it holds
that L ≤ P (Φ) ≤ U . 2

A key property of d-trees is the incremental refinement of their bounds
through compilation. This observation is used in the incremental algorithm
presented in Section 5.4.

Proposition 5.4. Given a d-tree d with bounds [Ld, Ud]. Then, for any
refinement e of d with bounds [Le, Ue], it holds that [Le, Ue] ⊆ [Ld, Ud]. 2

In case the refinement e is a complete d-tree, then its bounds are a point
interval.

5.3 Approximation Errors and Probability Bounds

We consider here two types of approximations, given a fixed error factor ǫ
(0 ≤ ǫ < 1).

Definition 5.5. A value p̂ is an absolute (or additive) ǫ-approximation of
a probability p if p− ǫ ≤ p̂ ≤ p+ ǫ.

A value p̂ is a relative (or multiplicative) ǫ-approximation of a probability
p if (1 − ǫ) · p ≤ p̂ ≤ (1 + ǫ) · p. 2

Given a d-tree for a DNF Φ, its bounds [L,U] may contain several ǫ-
approximations of P (Φ), although not every value between these bounds is
an ǫ-approximation. The connection between the bounds of a d-tree for Φ
and ǫ-approximations of P (Φ) is given by the following theorem.

Proposition 5.6. Given a DNF Φ, a fixed error ǫ, and a d-tree for Φ with
bounds [L,U].

• If U − ǫ ≤ L + ǫ, then any value in [U − ǫ, L + ǫ] is an absolute
ǫ-approximation of P (Φ).

• If (1 − ǫ) · U ≤ (1 + ǫ) · L, then any value in [(1 − ǫ) · U, (1 + ǫ) · L] is
a relative ǫ-approximation of P (Φ). 2

Proof. See Appendix A.

In the sequel, we call a d-tree for a DNF Φ an (absolute or relative)
ǫ-approximation of Φ if its bounds satisfy the above sufficient condition.
Written differently, the condition becomes

U − L ≤ 2 · ǫ in the absolute case, and

(1 − ǫ) · U − (1 + ǫ) · L ≤ 0 in the relative case.

55

This condition can be checked in linear time in the size of the d-tree:
We need one pass over the d-tree to compute its lower and upper bounds,
and then check the above condition, which only involves the bounds and the
fixed error.

Example 5.7. Recall the DNF Φ from Example 5.1. Its exact probability
is p = 0.8456. With bounds [0.842,0.848], we obtain precisely one absolute
0.03-approximation p̂ = 0.845, because 0.848 − 0.03 = 0.842 + 0.03. We can
also obtain an interval of absolute 0.04-approximations [0.844,0.846]. 2

5.4 Approximation Algorithms

5.4.1 A Naive Main-Memory Algorithm

Proposition 5.6 can be effectively used for approximate confidence compu-
tation as follows. While compiling a DNF into a d-tree, we can ask before
the construction of each node of the d-tree whether the sufficient condition
on the approximation is reached. If this is the case, then we can stop the
compilation and output the interval of ǫ-approximations. If this is not the
case, then we continue with the compilation and choose the leaf with the
largest bounds interval and further refine it. This already gives us a simple
incremental algorithm for computing an ǫ-approximation.

5.4.2 An Incremental and Memory-Efficient Algorithm

The algorithm sketched in Section 5.4.1 needs to keep every node it creates in
main memory. This is unfeasible. We therefore consider next the practical
question of whether the sufficient condition for ǫ-approximation can still
be fulfilled after subsequent refinement even if some leaves are not refined
anymore. In the sequel, we call such leaves closed; an open leaf may be
further refined to completion.

The technical challenge here is to obtain an ǫ-approximation condition
in the presence of closed leaves. Based on this, we can develop an algorithm
for computing ǫ-approximations for a DNF that incrementally compiles it
into a d-tree in depth-first left-to-right traversal, and decides locally whether
the current leaf under exploration can be closed or must be refined further.
When a leaf is closed, its bounds are used to update a pair of aggregated
bounds of all the leaves already closed, and the leaf is released.

This gives us a very efficient algorithm that need only keep in memory
the current root-to-leaf path under construction and some local information
at each node along this path.

56

In the sequel, we consider d-trees, where at most one child of each ⊙ node
may be closed without being complete. This does not restrict our encoding
of variable elimination as given in Figure 16, since the ⊙ nodes needed there
are binary and one of their children is always a clause, i.e., it is complete,
and for which the exact probability is known.

To understand the worst-case scenario in case we want to close a leaf
in a d-tree d, we need to compute the largest bounds interval of d for any
possible probability each open leaf may take. If these bounds fail to satisfy
the condition for an ǫ-approximation, then we may not reach such an ap-
proximation by any refinement that completes the open leaves. In this case,
we must not close that leaf.

Definition 5.8. The bound space of a d-tree d is the set of possible bounds
[L,U] of d obtained by choosing for each open leaf any point interval between
the bounds of that leaf. 2

Let us denote by L(d) the element of the bound space obtained by choos-
ing for each open leaf the point interval [Li, Li], where Li is a lower bound
for that leaf.

Lemma 5.9. For a d-tree d, L(d) is the pair of bounds [L,U] that maximizes
each of U −L and (1− ǫ) ·U − (1 + ǫ) ·L over the entire bound space of d.2

Proof. See Appendix A.

Lemma 5.9 gives us the necessary strategy to decide whether closing
leaves in a d-tree still allows to obtain an ǫ-approximation. Finding the
maximal values of U−L and (1−ǫ)·U−(1+ǫ)·L can be done very efficiently
by computing L(d) in just one scan of d. Our main result concerning the
closing of leaves follows then from Lemma 5.9 and Proposition 5.4.

Theorem 5.10. Given a d-tree d for a DNF Φ, and a fixed error ǫ. If
the bounds L(d) satisfy the sufficient condition for an ǫ-approximation in
Proposition 5.6, then there is a refinement of d that is an ǫ-approximation
of Φ. 2

Example 5.11. Consider the d-tree d of Fig. 20 and an absolute error
ǫ = 0.012. We are at Φ2 and would like to know (1) whether we can stop
with an absolute ǫ-approximation, and in the negative case, (2) whether we
can close Φ2.

(1) We compute the lower and upper bounds of the d-tree as if all the
leaves are closed. We plug in the lower bounds of the leaves and obtain

57

⊗

Φ1[0.1, 0.11] ⊕

⊙

{{x = 1}}[0.5, 0.5] Φ2[0.4, 0.44]

Φ3[0.35, 0.38]

Figure 20: D-tree. Leaves: Φ1 is closed, Φ2 is current, Φ3 is open.

L = 0.1 ⊗ ((0.5 ⊙ 0.4) ⊕ 0.35) = 0.595. Similarly for the upper bound:
U = 0.11 ⊗ ((0.5 ⊙ 0.44) ⊕ 0.38) = 0.644. The condition U − L = 0.049 ≤
2 · 0.012 = 0.024 is not satisfied. Hence, we cannot stop now.

(2) We compute L(d) as before: L(d) = [L,U ′], where U ′ = 0.11⊗((0.5⊙
0.44) ⊕ 0.35) = 0.6173. We then have that U ′ − L = 0.0223 ≤ 0.024. We
may thus close this point. 2

Our incremental algorithm is the compilation scheme of Figure 16, where
the variable choice is according to the variable elimination order of Fig-
ure 18. The nodes in the d-tree are constructed in depth-first manner.
Before constructing a node, we perform two checks: (1) the sufficient con-
dition of Proposition 5.6, which tells us whether we already reached an ǫ-
approximation and we can safely stop, and (2) the condition of Theorem 5.10
on whether the current node to be constructed can be safely closed, in case
the condition at step (1) is not satisfied. In step (2), we compute the bounds
of the DNF at the leaf using the Independent heuristic of Figure 19.

58

6 MayBMS with the SPROUT Query Engine

The MayBMS system (note: MayBMS is read as “maybe-MS”, like DBMS)
is a complete probabilistic database management system that leverages ro-
bust relational database technology. The MayBMS system has been un-
der development since 2005 and has undergone several transformations.
MayBMS has been released and is available for download at

http://maybms.sourceforge.net.

A fundamental design choice that sets MayBMS apart from existing re-
search prototypes such as Trio and MystiQ is that MayBMS is an extension
of the open-source PostgreSQL server backend , and not a front-end appli-
cation of PostgreSQL. Our backend is easily accessible through multiple
APIs (inherited from PostgreSQL), and has efficient internal operators for
processing probabilistic data.

Several demonstration scenarios (data cleaning using constraints, hu-
man resources management, and analysis of social networks) are available
at the MayBMS website. To demonstrate how easily applications can be
built on top of MayBMS, we used PHP to construct a website that of-
fers NBA3-related information based on what-if analysis of team dynamics
(player fitness, skill management) using data available at www.nba.com. We
show for instance how such an application can predict the players’ fitness
by simulating random walks on stochastic matrices encoding the transitions
in player’s fitness based on severity of recent injuries.

MayBMS was demonstrated at ACM SIGMOD 2009 under the title
“MayBMS: A Probabilistic Database Management System” [19].

6.1 System Overview

MayBMS stores probabilistic data in U-relational databases, a succinct and
complete representation system for large sets of possible worlds [4]. Queries
are expressed in an extension of SQL with specialized constructs for prob-
ability computation and what-if analysis [26]. In addition, MayBMS uses
several state-of-the-art exact and approximate confidence computation tech-
niques [9, 25, 33].

3NBA stands for National Basketball Association.

59

6.1.1 U-Relational Databases

A U-relational database consists of a set of U-relations. U-relations are stan-
dard relations extended with condition and probability columns to encode
correlations between the uncertain values and probability distribution for
the set of possible worlds [4]. The condition columns store variables from a
finite set of independent random variables and their assignments; the prob-
ability columns store the probabilities of the variable assignments occurring
in the same tuple. A U-relation can have several such condition (and prob-
ability) columns. Attribute-level uncertainty is achieved through vertical
decompositions, and an additional (system) column is used for storing tuple
ids and undoing the vertical decomposition on demand. A formal definition
of U-relational databases is in Section 2.

6.1.2 The MayBMS Query Language

The MayBMS query language extends SQL with uncertainty-aware con-
structs [26]. Its features include genericity, compositionality, and a well-
understood relationship to existing query languages. An important subset
of its constructs is presented next.

In the sequel, U-relations without condition and probability columns,
which correspond to standard relations, are called typed-certain (t-certain)
tables. The MayBMS query language has constructs that map (i) uncertain
tables to t-certain tables, such as confidence computation constructs, (ii)
uncertain to uncertain and t-certain to t-certain tables, such as full SQL,
and (iii) t-certain to uncertain tables, such as constructs that extend the
hypothesis space and create new possible worlds. Some restrictions are in
place to assure that query evaluation is feasible. In particular, we do not
support the standard SQL aggregates such as sum or count on uncertain
relations (but we do support expectations of aggregates). This can be eas-
ily justified: in general, these aggregates will produce exponentially many
different numerical results in the various possible worlds, and there is no
way of representing exactly these results in an efficient manner. In addi-
tion to standard SQL, MayBMS supports the following uncertainty-aware
constructs:

1. conf, aconf, tconf, and possible: These constructs map uncer-
tain tables to t-certain tables consisting of tuples possible in some of the
worlds represented by the input, with or without their exact or approximate
confidences.

The construct conf returns the exact confidence of each distinct tuple

60

while both conf(approach, ǫ) and aconf(ǫ, δ) computes an approximation.
conf(approach, ǫ) outputs an absolute or relative ǫ-approximation (specified
by the parameter approach). aconf(ǫ, δ) computes an (ǫ, δ)-approximation
of this confidence, i.e., the probability that the computed value p̂ deviates
from the correct probability p by more than ǫ · p is less than δ. Syntacti-
cally, the confidence computation constructs conf and aconf are treated like
SQL aggregates. By using aggregation syntax and not supporting select

distinct on uncertain relations, we avoid the need for conditions beyond
the special conjunctions that can be stored with each tuple in U-relations.

The construct tconf computes the marginal probability of each tuple in
isolation from the other (possibly duplicate) tuples. The construct possible
can be added to select statements and its effect is to filter out the tuples
with probability zero and eliminate the duplicates. It can thus be reformu-
lated using tconf.

2. repair-key and pick-tuples: These constructs map t-certain tables
to uncertain tables. Conceptually, repair- key takes a set of attributes ~K
and a relation R as arguments and nondeterministically chooses a maximal
repair of key ~K in R, that is, it removes a minimal set of tuples from R such
that the key constraint is no longer violated. The repair-key operation ac-
cepts an optional argument that allows us to assign nonuniform probabilities
to the possible choices.

The construct pick-tuples creates a probabilistic relation representing
all the possible subsets of the input table.

Note that repair-key and pick-tuples are queries, rather than update
statements. They have the following syntax:

• repair key <attributes> in <t-certain-query>
[weight by <expression>]

• pick tuples from <t-certain-query>
[independently] [with probability <expression>]

The parameter [independently] ensures that the output probabilistic rela-
tion is tuple-independent.

3. argmax: The aggregate argmax(arg,value) outputs all the arg values
in a group (specified by the group-by clause) whose tuples have a maximum
value within that group.

4. esum and ecount: Although the standard SQL aggregates are
forbidden on uncertain relations, MayBMS supports aggregate operations
on uncertain relations such as esum and ecount, which compute expected
sums and counts across groups of tuples. While it may seem that these

61

aggregates are at least as hard as confidence computation (which is #P-
hard), this is in fact not so. These aggregates can be efficiently computed
using linearity of expectation.

Uncertain queries can be constructed from t-certain queries (queries
that produce t-certain tables), select-from -where queries over uncer-
tain tables, the multiset union of uncertain queries (using SQL union),
and repair-key and pick-tuples statements. The select-from-where

queries may use any t-certain subqueries in the conditions, plus uncertain
subqueries in IN-conditions that occur positively.

6.1.3 Query Processing

MayBMS evaluates queries on top of U-relations.
Positive relational algebra: The answers to positive relational alge-

bra queries (without confidences) can be computed using a parsimonious
translation of such queries into (again) positive relational algebra queries
that are then evaluated in standard relational way on U-relations [4].

Approximate confidence computation with Monte Carlo Esti-

mation: The approximation algorithm used by MayBMS is a combination
of the Karp-Luby unbiased estimator for DNF counting in a modified ver-
sion adapted to confidence computation in probabilistic databases, and the
Dagum-Karp-Luby-Ross optimal algorithm for Monte Carlo estimation [9].
The latter is based on sequential analysis and determines the number of in-
vocations of the Karp-Luby estimator needed to achieve the required bound
by running the estimator a small number of times to estimate its mean and
variance.

Approximate confidence computation with d-trees: This is de-
scribed in Sections 4 and 5.

General-purpose exact confidence computation: Our general-purpose
exact algorithm for confidence computation is described in [25]. Given a
DNF (of which each clause is a conjunctive local condition), the algorithm
employs a combination of variable elimination and decomposition of the
DNF into independent subsets of clauses (i.e., subsets that do not share
variables), with cost-estimation heuristics for choosing whether to use the
former (and for which variable) or the latter. Outside a narrow range of
variable-to-clause count ratios, it outperforms the approximation techniques
[25].

Exact confidence computation on tractable queries: For tractable
conjunctive queries with only equalities on probabilistic databases, MayBMS

62

uses the techniques in [33] for scalable query processing by reduction of con-
fidence computation to a sequence of SQL-like aggregations. For tractable
conjunctive queries with also inequalities, OBDD-based technique in Sec-
tion 3 is applied.

Updates, concurrency control, and recovery: As a consequence of
our choice of a purely relational representation system, these issues cause
surprisingly little difficulty. U-relations are represented relationally and up-
dates are just modifications of these tables that can be expressed using the
standard SQL update operations.

6.1.4 Implementation

MayBMS is built entirely inside PostgreSQL. The major changes lie in the
system catalog, parser, and executor. U-relations are implemented by stor-
ing the variables and their possible assignments as pairs of integers, and
probabilities as floating-point numbers. The system catalog can distinguish
between U-relations and standard relational tables. Confidence computa-
tion and other aggregates such as esum and ecount are registered in the
system catalog and implemented as operators in the PostgreSQL executor.
The constructs repair-key, pick-tuples, and possible are implemented
by rewriting to SQL.

6.2 An Application Scenario: Human Resources Manage-

ment

We have developed several applications on top of MayBMS. They are avail-
able at the MayBMS website. We next discuss an implemented application
for risk management in the human resources space, in the context of bas-
ketball.

Using PHP, we have built on top of MayBMS a web-based application
that offers NBA-related decision support functionality based on what-if anal-
ysis of team dynamics such as player fitness and skill management. The
application uses data available at www.nba.com.

Team management. In the pre-season period, the manager intends to at-
tract new players to strengthen the team. An important question is whether
the skills status of the team can be improved. For this, we compute for each
skill (such as defense, three-point, and free shooting) the probability that
someone with that skill will be playing in the team given the current status
of the players (injured, top-form). In a scenario of financial crisis, the team

63

budget is reduced and the manager intends to lay off some players with high
salaries but at the same time without compromising the competitiveness of
the team significantly. For instance, we may want to keep the availability of
skill shooting at least 90% and of passing at least 95%. The manager needs
to know whether this is possible and who can be laid off. Figure 21 shows
the screen shots of this scenario.

Performance prediction. Coaches would like to predict the performance
of players, for example how many points a player will score in the next game.
Based on the player’s recent performance, one can build a simple model to
calculate this: if we associate higher weights to the more recent performance
of the players, their predicted performance can be expressed in terms of the
weighted points. Figure 22 shows the screen shots of this scenario.

Fitness prediction. Suppose there is a must-win match three days later
and some of the key players of the team have been recently plagued by
injuries. The report from the team doctor shows that the players are likely
to get injured and the time for comeback varies depending on the recovery
progress. We can model the fitness of each player using a stochastic matrix
that states the probabilities for one-day transitions between states such as fit
(F), seriously injured (SE), and slightly injured (SL). Asking for the three-
day fitness of a player can be performed as a random walk of length three on
this matrix. Random walks can be encoded as queries using repair-key and
confidence computation on top of relational encodings of stochastic matrices.
Figure 23 gives a stochastic matrix, its relational encoding FT, and the U-
relation R2 representing a 1-step random walk on FT. The 3-step random
walk on FT is achieved by the following query statements, where the initial
state of each player is considered given in a (certain) table States (Player,
State).

create table FT2 as

select R1.Player, R1.Init, R2.Final, conf() as p from

(repair key Player, Init in FT weight by p) R1,

(repair key Player, Init in FT weight by p) R2, States S

where R1.Player = S.Player and R1.Init = S.State

and R1.Final = R2.Init and R1.Player = R2.Player

group by R1.Player, R1.Init, R2.Final;

select R1.Player, R2.Final as State, conf() as p from

(repair key Player, Init in FT2 weight by p) R1,

(repair key Player, Init in FT weight by p) R2

where R1.Final = R2.Init and R1.Player = R2.Player

group by R1.player, R2.Final;

64

Figure 21: Screen shots of team management scenario.

65

Figure 22: Screen shots of performance prediction scenario.

66

Fitness stochastic matrix
For player Bryant

F SE SL
F 0.8 0.05 0.15
SE 0.1 0.6 0.3
SL 0.8 0.0 0.2

FT (FitnessTransition)

Player Init Final P

Bryant F F 0.8
Bryant F SE 0.05
Bryant F SL 0.15
Bryant SE F 0.1
Bryant SE SE 0.6
Bryant SE SL 0.3
Bryant SL F 0.8
Bryant SL SL 0.2

Other players

U-relation R2 (1-step random walk on FT)

Player Init Final condition P

Bryant F F x 7→ 1 0.8
Bryant F SE x 7→ 2 0.05
Bryant F SL x 7→ 3 0.15

Bryant SE F y 7→ 1 0.1
Bryant SE SE y 7→ 2 0.6
Bryant SE SL y 7→ 3 0.3

Bryant SL F z 7→ 1 0.8
Bryant SL SL z 7→ 2 0.2

Other players

Figure 23: Random walk on a stochastic matrix.

A 1-step random walk on FT is performed by nondeterministically choos-
ing from each Init state of each player a possible Final state using the repair-
key construct. We encode it as a U-relation (see R2) that only adds to FT a
condition column over independent random variables x, y, and z, which are
used to express the correlations created by repair-key: for each Init value,
the possible Final values are mutually exclusive, and the choices of Init val-
ues are pairwise independent. A 2-step random walk is expressed as a join of
two 1-step walks, whereby the Final state of the first walk becomes the Init
state of the second. The probability that each player has a certain state is
computed using the conf() construct. The table FT2 encodes the stochastic
matrix representing the product of the initial stochastic matrix with itself.
For a 3-step random walk, we join the outcome of the previous 2-step walk
with a 1-step walk. Figure 24 shows the screen shots of this scenario.

67

Figure 24: Screen shots of fitness prediction scenario.

68

7 Experiments

In this section, we report our experimental designs and findings for our
previously discussed OBDD-based technique (Section 3) and d-tree approx-
imation algorithm (Sections 4 and 5). Overall, experiments shows that our
approaches outperform state-of-the-art exact and approximation algorithms
for confidence computation by orders of magnitude. Sections 7.2 and 7.3
present the experimental results for the OBDD-based technique and d-tree
algorithm, respectively.

7.1 Experimental Setup

All experiments were conducted on an AMD Athlon Dual Core Processor
5200B 64bit/3.9GB/Linux2.6.25/gcc 4.3.0. We report wall-clock execution
times of queries run in the psql shell. All resources needed to reproduce
our experiments (algorithms, queries, data sets, data set generators) are
available at http://web.comlab.ox.ac.uk/projects/SPROUT/.

7.2 Experiments for Tractable Queries with Inequality Joins

Our experiments are focused on three key issues: scalability, comparison
with existing state-of-the-art algorithms, and comparison with “plain” query-
ing where we replaced confidence computation by a simple aggregation
(counting). The findings suggest that our confidence computation tech-
nique scales very well: We report on wall-clock times around 200 seconds to
compute the probability of query lineage of up to 20 million clauses. When
compared with existing confidence computation algorithms, our technique
outperforms them by up to two orders of magnitude in cases when the com-
petitors need less than the allocated time budget of 20 minutes. We also
found that lineage sorting has the lion’s share of the time needed to compute
the distinct answer tuples and their confidences.

7.2.1 TPC-H Data

We generated tuple-independent databases from deterministic databases
produced using TPC-H 2.8.0. We added to the table Customer a c registr-

ationdate column and set all of its fields to 1993-12-01. This value was
chosen so that the inequality predicates in our queries are moderately selec-
tive: 1993-12-01<o orderdate holds for instance for about one fourth of
the 1.5 million tuples in Orders (scale factor 1). We associated each tuple

69

with a distinct Boolean random variable and chose at random a probability
distribution over these variables.

7.2.2 Queries

We evaluated the six queries shown in Figure 25. The aggregate construct
conf() specifies confidence computation of distinct tuples in the query an-
swer.

The first query returns the likelihood that orders are shipped within five
days from the date of order. In case the database has violations regarding
order dates, this query also returns the wrong database entries for orders
that are placed after they are shipped. The query is a join on tables Orders
and Lineitem and involves one equality and one inequality join conditions.
The second query asks for likelihood of items shipped with delay to old
customers. It involves an inequality path of length two. Query 3 returns the
likelihood that the customers that ordered shortly after their registration
registration and have not yet received the ordered items. The condition
graph of this query is a tree. Query 4 returns the parts without profit.
Query 5 gives the likelihood that large quantities are shipped within a few
days after some particular order placements. Query 6 computes for each
nation the likelihood that a customer has a higher account balance than a
supplier.

7.2.3 Competitors

To the best of our knowledge, our technique (denoted by “ours” in the graph-
ics) is the first technique for exact confidence computation of conjunctive
queries with inequalities on tuple-independent probabilistic databases that
has polynomial-time guarantees. We cannot therefore experimentally com-
pare our technique with an existing one specifically designed to tractable
queries with inequalities.

We compare it instead with two state-of-the-art confidence computa-
tion algorithms that are applicable to arbitrary lineage. They represent the
query evaluation techniques of MayBMS [19], which is a publicly available
extension of the PostgreSQL backend (http://maybms.sourceforge.net).

The first algorithm (denoted by “conf”) is an exact confidence compu-
tation algorithm with good behaviour on randomly generated data [25]. It
compiles the lineage into a weak form of d-NNF (decomposable negation
normal form) on which probability computation can be done linearly [13].

70

1 select conf() from orders, lineitem where
o orderkey = l orderkey and o orderdate > l shipdate - 3;

2 select conf() from customer, orders, lineitem where
c custkey = o custkey and o orderkey = l orderkey
and c registrationdate + 30 < o orderdate and
o orderdate + 100 < l shipdate;

3 select conf() from customer, orders, lineitem
where c custkey = o custkey and o orderkey = l orderkey
and c registrationdate + 30 < o orderdate and
c registrationdate + 100 < l receiptdate;

4 select conf() from part, lineitem
where p partkey = l partkey and
l extendedprice / l quantity ≤ p retailprice;

5 select conf() from orders, lineitem
where o orderdate < l shipdate and l quantity > 49 and
o totalprice > 450000;

6 select s nationkey, conf() from supplier, customer
where s acctbal < c acctbal and s nationkey = c nationkey
and s acctbal > 9000
group by s nationkey;

Figure 25: Queries used in the experiments.

The second algorithm (denoted by “aconf”) is a Monte Carlo simula-
tion for confidence computation [35, 10] based on the Karp-Luby (KL) fully
polynomial randomized approximation scheme for DNF counting [22]. In
short, given a DNF formula with m clauses, the base algorithm computes
an (ǫ, δ)-approximation ĉ of the number of solutions c of the DNF formula
such that Pr[|c− ĉ| ≤ ǫ ·c] ≥ 1−δ for any given 0 < ǫ < 1, 0 < δ < 1. It does
so within ⌈4 ·m · log(2/δ)/ǫ2⌉ iterations of an efficiently computable estima-
tor. Following [25], we used in the experiments the optimal Monte-Carlo
estimation algorithm of [9].

In contrast to our technique, both competitors can process lineage of
arbitrary queries on complete probabilistic database models (such as U-
relations [25]), with no special consideration for tractable queries. On the
down side, they require main-memory representation of the entire lineage
and also random access to its clauses and variables. In addition, as our
experiments show, they are very time inefficient for the considered workload.

The experiments use TPC-H scale factors 0.005, 0.01, 0.1, 0.5, and 1 (a
scale factor of x means a database of size xGBs).

71

Query Lineage size # duplicates per distinct tuple

1 99,368 99,368 (Boolean query)
2 725,625 725,625 (Boolean query)
3 4,153,850 4,153,850 (Boolean query)
4 6,001,215 6,001,215 (Boolean query)
5 20,856,686 20,856,686 (Boolean query)
6 256,187 min #duplicates: 5028

max #duplicates: 14252
avg #duplicates: 10247

Figure 26: Lineage Characteristics (scale factor 1).

7.2.4 Sizes of Query Lineage

We experimented with queries that produce large lineage. Figure 26 reports
the sizes of the lineage (ie, number of clauses) for each of our queries, be-
fore confidence computation and duplicate elimination are performed, and
the number of duplicates per distinct answer tuple. The performance of
confidence computation algorithms depends dramatically on the number of
duplicates. In case of Boolean queries, all answer tuples are duplicates; for
scale factor 1, this means that our algorithm computes the probability of
a DNF formula of about 20 million clauses in one of our experiments – ac-
cording to Figure 27 it does so in about 200 seconds. Further inspection
shows that the actual confidence computation needs under one second, the
rest of the time being needed for sorting the lineage necessary for duplicate
elimination and confidence computation.

7.2.5 Comparison with State-of-the-Art Algorithms

Figure 27 shows the results of our experimental comparison. For aconf, the
allowed error is 10% with probability 99%. We also consider the time taken
by (unmodified) PostgreSQL to evaluate the queries, where confidence com-
putation has been replaced by counting (“plain”). Overall, our algorithm
outperforms the competitors by up to two orders of magnitude even for very
small scale factors such as 0.01.

The algorithm aconf runs out of the allocated time (20 minutes) in most
of the scenarios, and the diagrams for queries 3 and 4 do not have data
points for aconf. We also verified experimentally that the optimal Monte-
Carlo estimation algorithm [9] used for aconf in MayBMS is sensitive to
the probability distribution, while this is not true for our technique nor for
conf. For positive DNF formulas representing lineage of queries on tuple-
independent databases, aconf needs less time if the probability values for

72

the true assignments of the variables are close to 0. The algorithm conf
performs better than aconf, although conf also exceeds the allocated time
in about half of the tests.

 0.1

 1

 10

 100

 1000

 1 0.5 0.1 0.01 0.005

tim
e

in
 s

ec
 (

ln
 s

ca
le

)

TPC-H scale factor (ln scale)

Query 1

aconf
conf
ours
plain

 0.1

 1

 10

 100

 1000

 1 0.5 0.1 0.01 0.005

tim
e

in
 s

ec
 (

ln
 s

ca
le

)

TPC-H scale factor (ln scale)

Query 2

aconf
conf
ours
plain

 0.1

 1

 10

 100

 1000

 1 0.5 0.1 0.01 0.005

tim
e

in
 s

ec
 (

ln
 s

ca
le

)

TPC-H scale factor (ln scale)

Query 3

conf
ours
plain

 0.1

 1

 10

 100

 1000

 1 0.5 0.1 0.01 0.005

tim
e

in
 s

ec
 (

ln
 s

ca
le

)

TPC-H scale factor (ln scale)

Query 4

conf
ours
plain

 0.01

 0.1

 1

 10

 100

 1000

 1 0.5 0.1 0.01 0.005

tim
e

in
 s

ec
 (

ln
 s

ca
le

)

TPC-H scale factor (ln scale)

Query 5

aconf
conf
ours
plain

 0.01

 0.1

 1

 10

 100

 1 0.5 0.1 0.01 0.005

tim
e

in
 s

ec
 (

ln
 s

ca
le

)

TPC-H scale factor (ln scale)

Query 6

aconf
conf
ours
plain

Figure 27: Effect of varying the scale factor on query evaluation using our
technique, plain, conf, and aconf.

7.2.6 Cost of Lineage Sorting

We verified experimentally that in all of our scenarios, the actual confidence
computation time takes up to few seconds only. For instance, for scale factor
1, it stays within 5% of the total execution time, while the remaining time
is taken by sorting the answer tuples and their lineage. This sorting step is
necessary for duplicate elimination and confidence computation. Whereas
for non-Boolean queries both counting and confidence computation need
sorting for duplicate elimination, this is not the case for Boolean queries. In
the latter case, sorting is still required for confidence computation, but not
for counting. For query 5, the difference in execution time between counting
and confidence computation is indeed due to sorting. Besides sorting, both
counting and confidence computation require one scan over the answer tuples

73

and need comparable time.

7.3 Experiments for D-Trees

7.3.1 Competitors

We experimentally compare the following algorithms:
1. d-tree: This is the new algorithm developed in this thesis. It takes as
argument an error budget ǫ, which can be interpreted as either an absolute
or a relative error bound. Since this is a deterministic algorithm, repeating
an experiment for a given query and dataset yields exactly the same result,
at close to the same running times.
2. aconf: The algorithm aconf() computes an (ǫ, δ)-approximation of tu-
ple confidence and takes ǫ and δ as arguments. It is a combination of the
Karp-Luby unbiased estimator for DNF counting [22, 23] in a modified ver-
sion adapted for confidence computation in probabilistic databases (cf. e.g.
[24]) and the Dagum-Karp-Luby-Ross optimal algorithm for Monte Carlo
estimation [9]. The latter is based on sequential analysis and determines
the number of invocations of the Karp-Luby estimator needed to achieve
the required bound by running the estimator a small number of times to
estimate its mean and variance. We actually use the probabilistic variant
of a version of the Karp-Luby estimator described in the book [38] which
computes fractional estimates that have smaller variance than the zero-one
estimates of the classical Karp-Luby estimator.
3. OBDD-based techniques: These efficient secondary-storage algo-
rithms are the state-of-the-art exact confidence computation techniques for
all currently known classes of conjunctive queries with inequalities and with-
out self-joins on tuple-independent probabilistic databases [33, 31].

7.3.2 Experiment Design

Our experiments were designed to provide insight into the performance of
our confidence approximation algorithm across a variety of datasets and
queries that are representative of future applications of probabilistic databases.
Since no benchmark has been established so far for query processing in prob-
abilistic databases, and there is not even wide agreement yet on a set of most
relevant use cases, we have to rely on our understanding of the possible
sources of hardness in confidence computation that may arise in a variety of
applications.

In addition to the obvious sources of hardness (such as large data and
queries with many joins, which create complex conditions), there are a few

74

more subtle issues to be considered:
1. Tuple-independent databases versus databases with more com-

plicated lineage. The queries in our experiments create complex “lineage”
formulas. (This is the main reason why we have to study algorithms for
confidence computation.) However, we focus on queries whose relational al-
gebra part is positive since the relational difference operation is a substantial
source of complexity (cf. e.g. [34]). Thus, if we start with tuple-independent
relations in which each tuple is associated with its own Boolean random
variable, conjunctive queries will only create conditions that are conjunc-
tions of non-negated occurrences of these variables. This has an effect on
confidence computation algorithms; in fact, for our algorithm, mixed posi-
tive and negated variables in the conditions may possibly make confidence
computation easier, because it may allow the upper- and lower-bounding
mechanisms to converge more quickly.
2. Easy-hard-easy pattern. In [25], we observed such a pattern similar
to those observed in combinatorial algorithms for propositional satisfiability
and constraint satisfaction: When the ratio of variables to clauses is very
large, then the result probability is rather small and the input to the algo-
rithm is small: such a case tends to be easy. Similarly, if the ratio of variables
to clauses is very small, then the result probability tends to be very close
to 1 and lower-bounding with sufficient accuracy is easy. However, there is
a critical region of variable-to-clause ratios inbetween for which probability
computation is hard. For our experiments, this means that there is a pitfall
in increasing the instance sizes: If we do not proportionally add interest-
ing variability (and increase the probability space), then the instances get
easier rather than harder. On the other hand, an easy-hard-easy pattern
is also good news, because it shows that hard instances are only restricted
to a narrow section of the space of possible input instances and on many
instances we will do well without difficulty.
3. Absolute versus relative approximation. When result probabilities
are reasonably close to 1, then there is no great difference between absolute
and relative approximation. To study relative approximation, we thus have
to construct instances with small result probabilities. As pointed out in the
previous paragraph, this is not entirely trivial. However, understanding the
properties of relative approximation for the d-tree algorithm is important,
since relative approximation is a staple of the Karp-Luby approximation
scheme (aconf). Designing a Monte Carlo algorithm for efficient absolute
approximation is trivial.

Our experiments are designed to study all of these issues. In our exper-
iments with TPC-H data, we start with tuple-independent databases, but

75

 0.01

 0.1

 1

 10

 100

 0.005 0.01 0.05 0.1 0.5 1

T
im

e
in

 s
ec

 (
ln

 s
ca

le
)

TPC-H scale factor (ln scale)

TPC-H query B2, relative errors 0.01 and 0.05

aconf(error 0.01)
aconf(error 0.05)
d-tree(error 0.01)
d-tree(error 0.05)

 0.01

 0.1

 1

 10

 100

 0.005 0.01 0.05 0.1 0.5 1

T
im

e
in

 s
ec

 (
ln

 s
ca

le
)

TPC-H scale factor (ln scale)

TPC-H query B9, relative errors 0.01 and 0.05

aconf(error 0.01)
aconf(error 0.05)
d-tree(error 0.01)
d-tree(error 0.05)

 0.01

 0.1

 1

 10

 100

 0.005 0.01 0.05 0.1 0.5 1

T
im

e
in

 s
ec

 (
ln

 s
ca

le
)

TPC-H scale factor (ln scale)

TPC-H query B20, relative errors 0.01 and 0.05

aconf(error 0.01)
aconf(error 0.05)
d-tree(error 0.01)
d-tree(error 0.05)

 0.01

 0.1

 1

 10

 100

 0.005 0.01 0.05 0.1 0.5 1

T
im

e
in

 s
ec

 (
ln

 s
ca

le
)

TPC-H scale factor (ln scale)

TPC-H query B21, relative errors 0.01 and 0.05

aconf(error 0.01)
aconf(error 0.05)
d-tree(error 0.01)
d-tree(error 0.05)

Figure 28: Experimental results for hard TPC-H queries.

construct scenarios where the result probabilities are small and relative ap-
proximation is interesting. These experiments also exhibit interesting join
patterns arising from business decision support queries.

Our experiments with graph data study a wide variety of distributions
and data densities, and start with block-independent-disjoint tables which
lead to negated boolean random variables; this allows us to study the impact
of rich forms of lineage on our algorithm.

We considered both relative and absolute approximations (particularly
where the result probabilities are small and relative approximation is needed
for high-quality results).

7.3.3 TPC-H Experiments

The first broad class of experiments was performed on data generated by a
modified version of the TPC-H data generator which creates tuple-independent
probabilistic databases [10], that is, each tuple occurs in the database inde-
pendently with a given probability. We consider slightly modified versions of
the TPC-H queries without aggregations but with confidence computation.

The queries of the TPC-H benchmark fall into two main classes: tractable
queries with inequalities (six hierarchical queries used in [33] and three in-
equality queries used in [31]), and four #P-hard queries. Queries marked
with “B” are Boolean. Two of the tractable queries are selections on the

76

 10

 100

 300

1 15 B1 B6 B16 B17

W
al

l-c
lo

ck
 ti

m
e

in
 s

ec
 (

ln
 s

ca
le

)

Tractable TPC-H queries (aggregations/ineq-joins dropped) on tuple-independent tables

Scale factor 1, probabilities of input tuples in (0,1)

Timeout
aconf(rel error 0.01)
d-tree(rel error 0.01)

d-tree(error 0)
OBDD

(a)

 10

 100

 300

1 15 B1 B6 B16 B17

W
al

l-c
lo

ck
 ti

m
e

in
 s

ec
 (

ln
 s

ca
le

)

Tractable TPC-H queries (aggregations/ineq-joins dropped) on tuple-independent tables

Scale factor 1, probabilities of input tuples in (0,0.01)

Timeout
aconf(rel error 0.01)
d-tree(rel error 0.01)

d-tree(error 0)
OBDD

(b)

 100

 200

 600

IQ B1 IQ B4 IQ 6

W
al

l-c
lo

ck
 ti

m
e

in
 s

ec

Tractable TPC-H conjunctive queries with inequality joins used in [25]

TPC-H tuple-independent database with scale factor 1, relative errors 0.01 and 0, prob distrib in (0,1)

Timeout
aconf(0.01)
d-tree(0.01)

d-tree(0)
OBDD

(c)

Figure 29: Experimental results for tractable queries.

77

large lineitem table, all other tractable queries are joins of two large tables
(e.g., lineitem with supplier, or orders, or part). The hard queries are more
complex: 20B is a join on supplier, nation, partsupplier, and part, 21B is a
join on supplier, lineitem, orders, and nation, 2B is a join on part, supplier,
partsupplier, nation, and region, and 9B is a join on part, supplier, lineitem,
partsupplier, orders, and nation.

Fig. 29 shows the running times for computing the answers to tractable
queries and their confidences. Overall, d-tree performs worse than OBDD-
based technique because it learns the structure of the DNF from the query,
whereas d-tree has to rediscover it on its own. The timing of the two is
however comparable in almost all cases.

For hierarchical queries (Fig. 29(a) and (b)) we considered input data
with probability distributions in (0,1) and also in (0,0.01). Our algorithm
d-tree finishes in all cases within 100 seconds, even for computing the exact
confidence. In contrast, aconf only finishes in four out of the 12 experiments.
Overall, we obtain a better timing for error 0 than for relative error 0.01,
because in the former case we do not need to compute the lower and upper
bounds of each leaf during compilation. This becomes more evident in the
case of small probabilities. In case of queries B16 and B17 in Fig. 29(a),
checking the bounds clearly pays off: For these cases, no compilation is
needed, since the lower and upper bounds are already approximated very
well and we stop early. Without checking the bounds, we would have to
construct the entire d-tree, which is then more expensive.

For tractable queries with inequalities (Fig. 29(c)), aconf does not finish
in the allocated time, and d-tree follows closely OBDD-baed technique.

For all tractable queries, about 90% of the nodes in the d-tree are ⊗
nodes, which suggests that our approximation of lower and upper bounds for
non-independent sets of clauses works very well and avoids possible exponen-
tiality introduced by variable elimination. In addition, in case of inequality
joins, the clause subsumption procedure is very effective. As explained in
Section 4.2, this is vital for the overall polynomial time computation. For
instance, the IQ query 6 has about 25 distinct answer tuples, each with a
DNF of (in average) 10,000 clauses and 550 variables. For each answer tu-
ple, d-tree creates (in average) 20,000 nodes, and subsumes ca. one million
clauses (overall, on all branches of the d-tree).

Our algorithm d-tree performs consistently better than aconf also for
hard queries. The hard queries have many joins, which ultimately lead to
overall low probabilities of clauses, and with final confidences that range
from 10−3 to 0.93, while answers have up to 500 clauses and 500 variables
(query 20), up to 75,000 clauses and 150,000 variables (query 21), up to 640

78

clauses and 1,600 variables (query 2), and up to 350,000 clauses and 725,000
variables (query 9).

Statistics collected from d-tree traces show that in most of the cases, as
the size of DNF increases, the number of nodes constructed by our algorithm
also goes up. However, two scenarios may change this trend. First, in the
lower and upper bound computation, with more input clauses, both the
lower and upper bounds increase but maximal values of upper bounds are
1. If upper bounds reach 1 and lower bounds still increase, this can lead
to quick convergence. For instance, for TPC-H query B2 and relative error
0.01, the number of nodes constructed by our algorithm reaches its peak
at scale factor 0.5 and drops dramatically at scale factor 1. For larger
errors, the U-turn happens even earlier. Still, for TPC-H query B2 but
relative error 0.05, the maximal number of nodes appear at scale factor
0.1. Second, the DNF of some TPC-H queries (that have equality selections
with constants) has the property that very few variables from one input
table occur in most of the clauses. For instance, for queries B20 and B21,
there is only one variable coming from table nation. After we eliminate
this variable (chosen by MAX OCCUR), the remaining DNF consists of
many independent clauses and our approximation approach captures this
and tighten the lower and upper bounds very quickly. Therefore, the number
of nodes constructed remains low and are not affected by the DNF size.

7.3.4 Random Graph and Social Networks Experiments

The second broad class of experiments deals with graph data in which edges
are independently either in the graph or absent. We consider two classes
of datasets, which we model as block-independent disjoint tables. The first
are generated random graphs in which all edges have the same probability
pe. An undirected random graph with n nodes is a probabilistic database
in which the possible worlds are the subgraphs (obtained by removing zero
or more edges) of the n-clique. In case the membership of each edge in the
graph is uniform, the probability distribution over this set of possible worlds
is uniform, too, and each world has probability 2n·(n−1).

The second class of graph datasets are well-known social networks taken
from the literature (one is Zachary’s Karate club [41], with 34 nodes, a
classic, and the other represents friendship among a group of dolphins).
The social networks generalize our random graphs in that some edges are
missing with certainty and the remaining edges have varying probability of
being present in the graph. The idea here is that friendship between nodes is
established by observation and there may be a varying degree of confidence

79

 0

 50

 100

 150

 200

 6 10 15 20 25 30 35 40

T
im

e
in

 s
ec

Number of nodes in cliques

Triangle query, relative error 0.01

aconf(prob 0.7)
aconf(prob 0.3)
d-tree(prob 0.7)
d-tree(prob 0.3)

 0

 50

 100

 150

 200

 6 10 15 20 25 30 35 40

T
im

e
in

 s
ec

Number of nodes in cliques

Path-of-length-2 query, relative error 0.01

aconf(prob 0.7)
aconf(prob 0.3)
d-tree(prob 0.7)
d-tree(prob 0.3)

 0.01

 0.1

 1

 10

 100

 6 10 15

T
im

e
in

 s
ec

 (
ln

 s
ca

le
)

Number of nodes in cliques

Triangle and path-of-length-2 queries, absolute error 0.05

path(edge prob 0.1)
triangle(edge prob 0.1)

path(edge prob 0.01)
triangle(edge prob 0.01)

Figure 30: Experimental results for random graphs.

80

 0.01

 0.1

 1

 10

 100

 0.0001 0.0005 0.001 0.005 0.01 0.05

T
im

e
in

 s
ec

 (
ln

 s
ca

le
)

Relative error (ln scale)

Dolphin social network

aconf-s2
aconf-p3
aconf-p2

aconf-t
d-tree-s2
d-tree-p3
d-tree-p2

d-tree-t

 0.01

 0.1

 1

 10

 100

 0.0001 0.0005 0.001 0.005 0.01 0.05

T
im

e
in

 s
ec

 (
ln

 s
ca

le
)

Relative error (ln scale)

Karate social network

aconf-s2
aconf-p3
aconf-p2

aconf-t
d-tree-s2
d-tree-p3
d-tree-p2

d-tree-t

Figure 31: Experimental results for social networks.

81

in that a pair of nodes are friends (very credible for dolphins), or varying
degrees of friendship (very credible for karatekas).

We consider four different queries. The first two, triangle (t) and “path
of length 2” (p2) were discussed in the introduction. The query p3 computes
the probability that the graph contains at least one path of length 3. The
“separation” query (s2) computes the probability that two given nodes have
at most two degrees of separation.

Our experimental results on queries on random graphs and social net-
works are reported in Figures 30 and 31. In case of random graphs, for large
edge probabilities (above 0.5), d-tree converges quickly, since each clause
has a non-negligible marginal probability. When we consider smaller edge
probabilities (below 0.1), d-tree needs more time to converge, especially for
queries involving more joins (such as the path queries). We witness an easy-
hard-easy pattern for edge probabilities of 0.3 in case of triangle and path2
queries.

It is worth pointing out that while the random graphs and social networks
used here (on the order of 50 nodes) may not seem very large, they are
actually substantial; a 40-nodes random graph has up to 780 edges. The
triangle query uses a three-way self-join and generates DNF of 780 variables
and 9880 clauses; the path2 and path3 queries use a three-way and eight-way
self-joins, respectively.

82

8 Conclusions and Future Work

The two major contributions of the thesis are (1) OBDD-based confidence
computation technique for tractable conjunctive queries with inequalities
and without self-joins and (2) lineage decomposition using d-tree for general-
purpose confidence computation.

We first give a syntactical characterization of tractable conjunctive queries
with inequalities on tuple-independent probabilistic databases. For the
tractable queries, we present a new secondary-storage technique for exact
confidence computation based on OBDDs.

We then propose a generic deterministic approximation algorithm for
confidence computation. We compile the lineage into a novel kind of deci-
sion diagrams exploiting negative correlations, independence and factored
representations. We also show that in combination with our heuristic, d-
trees can naturally capture the special structures of the lineage of tractable
queries.

Both techniques are fully integrated into the SPROUT query engine and
achieve orders of magnitude improvement over state-of-the-art exact and
approximate confidence computation algorithms.

Exciting followup research can be centered around algorithms for exact
and approximate confidence computation for various classes of queries and
probabilistic database models. Some possible directions are listed as follows:

• Extend the tractability frontier of conjunctive queries with inequali-
ties. The thesis gives some classes of tractable queries but up to now
no boundaries between the easy and hard are found.

• Apply the tractability results and OBDD-based techniques on tuple-
independent probabilistic databases to block-independent disjoint ones
(BIDs). We conjecture that they are applicable to BIDs readily or only
with minor adjustments.

• Find efficient approaches to accommodate self-joins. All found tractable
queries exclude self-joins; however, since the use of self-joins are quite
common in real applications, extending the existing framework to take
self-joins into account is of significant importance.

• Develop more accurate approximation methods. We introduce in Sec-
tion 5.1 two simple ways of computing lower and upper bounds for
DNFs. Although d-trees outperform state-of-art techniques with these

83

approaches, more advanced and more accurate but still efficient tech-
niques for bound estimation are highly desired. A potential approach
is to construct maximal 1OFs with the clauses in DNFs.

• Design efficient query evaluation approaches for conditional probabil-
ity computation. To compute conditional probability P (A|B) of events
A and B, a naive approach is to compute both P (A) and P (B). More
sophisticated methods involving computation sharing may bring a sig-
nificant performance improvement.

84

References

[1] E. Adar and C. Ré. “Managing Uncertainty in Social Networks”. IEEE
Data Eng. Bull., 30(2), 2007.

[2] V. Akman. “Implementation of Karp-Luby Monte Carlo method: an
exercise in approximate counting”. The Computer Journal, 34(3):279–
282, 1991.

[3] L. Antova, T. Jansen, C. Koch, and D. Olteanu. “Fast and Simple
Relational Processing of Uncertain Data”. In Proc. ICDE, 2008.

[4] L. Antova, T. Jansen, C. Koch, and D. Olteanu. “Fast and Simple
Relational Processing of Uncertain Data”. In Proc. ICDE, 2008.

[5] L. Antova, C. Koch, and D. Olteanu. “10106

Worlds and Beyond: Ef-
ficient Representation and Processing of Incomplete Information”. In
Proc. ICDE, 2007.

[6] O. Benjelloun, A. D. Sarma, A. Halevy, and J. Widom. “ULDBs:
Databases with Uncertainty and Lineage”. In Proc. VLDB, 2006.

[7] E. Birnbaum and E. Lozinskii. “The Good Old Davis-Putnam Proce-
dure Helps Counting Models”. Journal of AI Research, 10(6):457–477,
1999.

[8] R. Cheng, D. V. Kalashnikov, and S. Prabhakar. “Evaluating Proba-
bilistic Queries over Imprecise Data”. In Proc. SIGMOD, pages 551–
562, 2003.

[9] P. Dagum, R. M. Karp, M. Luby, and S. M. Ross. “An Optimal Al-
gorithm for Monte Carlo Estimation”. SIAM J. Comput., 29(5):1484–
1496, 2000.

[10] N. Dalvi and D. Suciu. “Efficient Query Evaluation on Probabilistic
Databases”. VLDB Journal, 16(4), 2007.

[11] N. Dalvi and D. Suciu. “Management of Probabilistic Data: Founda-
tions and Challenges”. In Proc. PODS, 2007.

[12] N. Dalvi and D. Suciu. “The Dichotomy of Conjunctive Queries on
Probabilistic Structures”. In Proc. PODS, 2007.

[13] A. Darwiche and P. Marquis. “A knowlege compilation map”. Journal
of AI Research, 17:229–264, 2002.

85

[14] M. Davis and H. Putnam. “A Computing Procedure for Quantification
Theory”. Journal of ACM, 7(3):201–215, 1960.

[15] A. Deshpande and S. Madden. “MauveDB: supporting model-based
user views in database systems”. In Proc. SIGMOD, pages 73–84, 2006.

[16] N. Fuhr and T. Rölleke. “A Probabilistic Relational Algebra for the
Integration of Information Retrieval and Database Systems”. ACM
Trans. Inf. Syst., 15(1):32–66, 1997.

[17] E. Grädel, Y. Gurevich, and C. Hirsch. “The Complexity of Query
Reliability”. In Proc. PODS, pages 227–234, 1998.

[18] T. J. Green and V. Tannen. “Models for Incomplete and Probabilis-
tic Information”. In International Workshop on Incompleteness and
Inconsistency in Databases (IIDB), 2006.

[19] J. Huang, L. Antova, C. Koch, and D. Olteanu. “MayBMS: A Proba-
bilistic Database Management System”. In Proc. SIGMOD, 2009.

[20] T. Imielinski and W. Lipski. “Incomplete information in relational
databases”. Journal of ACM, 31(4), 1984.

[21] R. Jampani, F. Xu, M. Wu, L. L. Perez, C. M. Jermaine, and P. J. Haas.
“MCDB: a Monte Carlo Approach to Managing Uncertain Data”. In
Proc. SIGMOD, 2008.

[22] R. M. Karp and M. Luby. “Monte-Carlo Algorithms for Enumeration
and Reliability Problems”. In Proc. FOCS, pages 56–64, 1983.

[23] R. M. Karp, M. Luby, and N. Madras. “Monte-Carlo Approximation
Algorithms for Enumeration Problems”. J. Algorithms, 10(3):429–448,
1989.

[24] C. Koch. “Approximating Predicates and Expressive Queries on Prob-
abilistic Databases”. In Proc. PODS, 2008.

[25] C. Koch and D. Olteanu. “Conditioning Probabilistic Databases”.
PVLDB, 1(1), 2008.

[26] C. Koch, D. Olteanu, L. Antova, and J. Huang.
MayBMS: A Probabilistic Database System. User Manual.
http://maybms.sourceforge.net/manual/,2009.

86

[27] J. Li and A. Deshpande. “Consensus Answers for Queries over Proba-
bilistic Databases”. In Proc. PODS, 2009.

[28] X. Lian and L. Chen. “Monochromatic and Bichromatic Reverse Sky-
line Search over Uncertain Databases”. In Proc. SIGMOD, pages 213–
226, 2008.

[29] C. Meinel and T. Theobald. Algorithms and Data Structures in VLSI
Design. Springer-Verlag, 1998.

[30] D. Olteanu and J. Huang. “Using OBDDs for Efficient Query Evalua-
tion on Probabilistic Databases”. In Proc. SUM, 2008.

[31] D. Olteanu and J. Huang. “Secondary-Storage Confidence Computation
for Conjunctive Queries with Inequalities”. In Proc. SIGMOD, 2009.

[32] D. Olteanu, J. Huang, and C. Koch. “Approximate Confidence Com-
putation in Probabilistic Databases”. Submitted to ICDE 2010.

[33] D. Olteanu, J. Huang, and C. Koch. “SPROUT: Lazy vs. Eager Query
Plans for Tuple-Independent Probabilistic Databases”. In Proc. ICDE,
2009.

[34] D. Olteanu, C. Koch, and L. Antova. “World-set Decompositions: Ex-
pressiveness and Efficient Algorithms”. Theoretical Computer Science,
403(2-3), 2008.

[35] C. Ré, N. Dalvi, and D. Suciu. Efficient top-k query evaluation on
probabilistic data. In Proc. ICDE, 2007.

[36] L. Trevisan. “A Note on Deterministic Approximate Counting for k-
DNF”. In Proc. APPROX-RANDOM, pages 417–426, 2004.

[37] L. Valiant. “The Complexity of Enumeration and Reliability Prob-
lems”. SIAM J. Comput., 8:410–421, 1979.

[38] V. V. Vazirani. Approximation Algorithms. Springer, 2001.

[39] W. Wei and B. Selman. “A New Approach to Model Counting”. In
Proc. SAT, 2005.

[40] R. Wissman. “Tractable Queries with Inequalities on Probabilistic
Databases”. MSc Thesis at University of Oxford.

[41] W. W. Zachary. An information flow model for conflict and fission in
small groups. Journal of Anthropological Research, 33:452–473, 1977.

87

A Proofs

Theorem 3.23. Let φ be the lineage of any IQ query with inequality paths
on any tuple-independent database. Then, we can compute a variable order
π for φ in time O(|φ|·log |φ|) under which the OBDD (φ, π) has size bounded
in |V ars(φ)| and can be computed in time O(|V ars(φ)|).

Proof. (1) We first prove that the variable order algorithm in Figure 12 can
be done in time O(|φ|·log |φ|). The algorithm has two computation-intensive
components, namely, lineage sorting and a loop over all tuples. The sorting
takes time O(|φ| · log |φ|). Each step in the loop takes constant time and
hence the loop takes time O(|φ|) in total. Therefore, the algorithm takes
time O(|φ| · log |φ| + |φ|) = O(|φ| · log |φ|).

(2) We then prove that the OBDD (φ, π), where π is computed with the
variable order algorithm, has size bound |V ars(φ)| by showing that each
variable in φ appears only once in the OBDD.

As discussed in Section 3.2.1, the lineage of a query with independent
subqueries is the product of the independent lineage of each subqueries. The
OBDDs for such queries are the concatenation of OBDDs of independent
subqueries. Therefore, we next focus on IQ queries without independent
subqueries. In addition, if variables y1, . . . , yn share exactly the same co-
factor, we can factor them as y = y1 + . . . + yn and treat y as a single
variable. Therefore, we assume without loss of generality in the lineage that
all variables sharing the same cofactors are factored together.

Suppose the IQ query is

Q:-R1(. . . , X1, . . .), . . . , Rn(. . . , Xn, . . .), X1 < . . . < Xn.

and the lineage φ of Q is

φ =

m
∑

j1=1

(x1
j1

(

m
∑

j2=j1

(x2
j2

(...(

m
∑

jn=jn−1

(xn
jn

))))))

, where xi
1, . . . , x

i
m are variables in Ri and the cofactor of xi

j includes that

of xi
j+1. Since all variables sharing the same cofactors are factored together,

the number of variables involved in the lineage from each relation is the
same (m in this proof). As a notation, we define a function f such that

f(i, j) =

m
∑

j1=j

(xi
j1

(

m
∑

j2=j1

(xi+1
j2

(...(

m
∑

jn=jn−1

(xn
jn

))))))

. As we can see, φ = f(1, 1).

88

Since each node of variable x in OBDDs is associated with a unique
formula containing x, we need to prove that given any variable xi

j in φ,

where 1 ≤ i ≤ n and 1 ≤ j ≤ m, there is exactly one formula containing xi
j

after eliminating the variables prior to xi
j in the variable order. To be more

precise, this unique formula is

f(i, j) =
m

∑

j1=j

(xi
j1

(
m

∑

j2=j1

(xi+1
j2

(...(
m

∑

jn=jn−1

(xn
jn

)))))).

We prove this by showing that under the variable order generated by the
algorithm, the formulas of the nodes in the OBDD are always of the form
of f(i, j), where 1 ≤ i ≤ n and 1 ≤ j ≤ m.

The algorithm outputs a variable order

x1
1, . . . , x

n
1 , . . . , x

1
m, . . . , x

n
m.

That is, variable xi
j is eliminated and then the variables involved in the

clauses containing xi
j and not involved in the clauses containing xi

j+1 follows

immediately in the order of xi+1
j , . . . , xn

j .
Given a formula of the form

Φ = f(i, j) =

m
∑

j1=j

(xi
j1

(

m
∑

j2=j1

(xi+1
j2

(...(

m
∑

jn=jn−1

(xn
jn

)))))).

, with the above-mentioned variable order, variable xi
j is the next variable

to be eliminated. If xi
j is set to true, using the cofactor inclusion property,

we get

Φ|xi
j=true = f(i+ 1, j) =

m
∑

j2=j

(xi+1
j2

(...(
m

∑

jn=jn−1

(xn
jn

)))).

If xi
j is set to false, we get

Φ|xi
j=false = f(i, j + 1) =

m
∑

j1=j+1

(xi
j1

(

m
∑

j2=j1

(xi+1
j2

(...(

m
∑

jn=jn−1

(xn
jn

)))))).

(3) With the proof in (2), we can construct the OBDD in timeO(|V ars(φ)|)
by pointing the low edge of the node of variable xi

j (note that there is only

one node for each variable) to the node of variable xi
j+1 and high edge to

the node of variable xi+1
j . The nodes of xi

m+1 are the constant node 0 and

those of xn+1
j are the constant node 1, where 1 ≤ i ≤ n and 1 ≤ j ≤ m.

89

Theorem 3.26. Let φ be the lineage of any IQ query with inequality tree t
on any tuple-independent database. Then, we can compute a variable order
π for φ in time O(|φ| · log |φ|), under which the OBDD (φ, π) has size and
can be computed in time O(2|t| · |V ars(φ)|).

Proof. (1) As shown in the proof of Theorem 3.23, the variable order algo-
rithm takes time O(|φ| · log |φ| + |φ|) = O(|φ| · log |φ|).

(2) We then prove that the OBDD (φ, π), where π is computed with
variable order algorithm, has size bound O(2|t| · |V ars(φ)|) by showing that
each variable in φ has at most 2|t| nodes in the OBDD. As we do in the
proof of Theorem 3.23, we only consider IQ queries without independent
subqueries and factor together in the lineage the variables sharing the same
cofactors.

Similar to the strategy in the proof of inequality paths, we prove that
the formulas associated with the nodes in the OBDD are of particular forms,
of which the number is at most 2|t|.

Given an inequality tree T and the lineage φ of the query, we construct
a factored form of φ with T . Traverse T in a depth-first manner, factor
partially φ for each node in the following procedure: Suppose a node N has

n children and each of them has factored partial lineage
m
∑

k=1

φ1
k, . . . ,

m
∑

k=1

φn
k ,

respectively, where m is the number of variables from each relation in the
lineage (since variables sharing the same cofactors are factored together, the
numbers of variables from each relation are identical), the factored partial
lineage of N is

m
∑

i=1

xi(

n
∏

j=1

(

m
∑

k=i

φi−j
k))

. The factored partial lineage of the root is the factored form of φ. We now
define a notation ITF : Formula Φ is of form ITF (inequality tree form) if
Φ can be factored in the above-mentioned procedure or Φ is a product of
ITL formulas.

Given an ITF formula φ of form

φ =
n

∏

l=1

(
m

∑

i=a

xl
i(

nl
i

∏

j=1

(
m

∑

k=i

φl−i−j
k)))

. Wlog, we assume that variable x1
a is the next variable to be eliminated. If

90

x1
a is set to true, using the cofactor inclusion property, we get

n
∏

l=2

(
m

∑

i=a

xl
i(

nl
i

∏

j=1

(
m

∑

k=i

φl−i−j
k))) · (

n1
a

∏

j=1

(
m

∑

k=i

φ1−a−j
k))

If x1
a is set to false, we get

n
∏

l=2

(

m
∑

i=a

xl
i(

nl
i

∏

j=1

(

m
∑

k=i

φl−i−j
k))) · (

m
∑

i=a+1

x1
i (

n1
∏

j=1

(

m
∑

k=i

φ1−i−j
k)))

The formulas remain ITF no matter x1
a is true or false.

Under the variable order π and the structure of the corresponding OBDD,
the formula φ associated with a node N for variable x from relation R has
the following property:

1 It does not contain any variables coming from the relation whose in-
equality column is smaller than that from R.

2 It contains variables coming from the relation whose inequality column
is larger than that from R.

3 The variables from other relations, whose inequality columns are in-
comparable to that from R, may exist in φ or not.

Since the formula has to be of form ITF , the possible forms of φ is up to
2|t| according to the third property. To be more precise, the OBDD reach
its maximal size if in the inequality tree, all leaf nodes are children of the
root.

(3) OBDDs are constructed by following confidence computation algo-
rithm in Figure 14 and removing the redundant nodes without parents. This
algorithm constructs 2|t| nodes for each variables and takes time O(2|t| ·
|V ars(φ)|).

Theorem 4.10. The DNFs of hard query patterns R(X), S(X,Y), T (Y)
are factorizable in 1OF if each connected component of the bipartite graph
of S is functional or complete. 2

Proof. Consider the hard query pattern: R(X), S(X,Y), T (Y), where R
and T are tuple-independent probabilistic relations, and S is a deterministic

91

relation. Assume that R has random variables a1, . . . , a|R| and T has random
variables b1, . . . , b|T |.

If a connected component is functional, wlog, suppose the functional
dependency X → Y holds on tuples of this component (note that different
functional dependencies may hold on tuples of different components). Since
the component is connected, there is only one Y -value y in this component
and all X-values x′, . . . , x′′ are connected to y.

If a connected component is complete, every value x′, . . . , x′′ in column
X is connected to every value y′, . . . , y′′ in column Y in that component.

Assume now a1, . . . , ak are those variables paired with tuples with X-
values in {x′, . . . , x′′} in R, and b1, . . . , bl are those variables paired with
tuples with Y -values y in case of a functional component, or y′, . . . , y′′ in
case of a complete component. Then, this component creates the following
DNF in the answer to the hard pattern:

k
∨

i=1

l
∨

j=1

(ai ∧ bj) =
(

k
∨

i=1

ai

)

∧
(

l
∨

j=1

bj
)

.

The latter form is already in 1OF.
Since unconnected components do not share any vertices and edges,

DNFs of different unconnected component do not share any variables. There-

fore, the DNF of the query can be factorized in
n
∨

i=1
Φi, where n is the number

of connected components and Φi is the 1OF of the ith component.

Lemma 4.14. Given a DNF Φ of an IQ query and variable
v = MAX OCCUR(Φ). Then, Φ|v subsumes Φ. 2

Proof. Let the IQ query be R1(x1), . . . , Rn(xn), φ.
Case 1: v is a variable from relation Ri and there exists a condition

xi′ < xj′ in φ, where xi′ ∈ xi, xj′ ∈ xj and 1 ≤ i 6= j ≤ n. Let v come from
a tuple with a in column xi′ .

We prove the theorem by contradiction. Assume that there exists a
clause c in Φ|v such that the cofactor of v does not subsume c. Due to the
semantics of join operations, there exists in c a variable v′ coming from Ri in
a tuple with a′ in column xi′ . If a ≤ a′, v must be paired with all variables
in c except v′ because of transitivity of <; however, since the subsumption
does not hold, a′ < a. Therefore, v′ is paired with all variables that v is
paired with and the number of occurrences of v′ is larger than that of v.
Contradiction.

92

Case 2: v is a variable from relation Ri and there exists a condition
xi′ > xj′ in φ, where xi′ ∈ xi, xj′ ∈ xj and 1 ≤ i 6= j ≤ n. This can be
proved similarly as case 1.

Proposition 5.2. Let [L1, U1] = Independent(Φ) and [L2, U2] = Exact-k(Φ)
for a DNF Φ. It then holds that L1 ≤ P (Φ) ≤ U1 and L2 ≤ P (Φ) ≤ U2. 2

Proof. Note that both heuristics compute the exact confidence for each buck-
ets, namely, P (Bi) is the exact probability of bucket Bi. We prove the case
of heuristic Independent and Exact-k can be proved in the same way.

WLOG, suppose P (B1) =
n

max
i=1

P (Bi). The probability of Φ is

P (Φ) = P (B1) + P (B2 ∨ ... ∨Bn) − P (B1 ∧ (B2 ∨ ... ∨Bn))

Since P (B2 ∨ ... ∨Bn) − P (B1 ∧ (B2 ∨ ... ∨Bn)) ≥ 0, we get

P (Φ) ≥ P (B1) =
n

max
i=1

P (Bi)

The probability of Φ can also be expressed as

P (Φ) =

n
∑

i=1

P (Bi) − P (
∨

1≤i<j≤n

Bi ∧Bj)

So P (Φ) ≤
n
∑

i=1
P (Bi). In addition, any probability should not exceed 1.

Therefore,

P (Φ) ≤ min(1,

n
∑

i=1

P (Bi))

Proposition 5.3. If a d-tree d for a DNF Φ has bounds [L,U], then it
holds that L ≤ P (Φ) ≤ U . 2

Proof. We prove it by induction.
Basis: If the node is a leaf, this is Proposition 5.2.
Inductive step: Assume that an inner node N is associated with DNF φ

and its children N1, ..., Nn are associated with DNFs φ1, ..., φn. In addition,
∀1 ≤ i ≤ n, it holds that Li ≤ P (φi) ≤ Ui , where Ni has bounds [Li, Ui].

N may be any of ⊙, ⊗ or ⊕. We discuss them separately below.

93

Case of ⊙: Compute the exact probability of φ and the bounds of N .

P (φ) =

n
∏

i=1

P (φi)

LN =
n

∏

i=1

L(φi)

UN =

n
∏

i=1

U(φi)

Under the assumption, LN ≤ P (φ) ≤ UN .

Case of ⊗: Compute the exact probability of φ and the bounds of N .

P (φ) = 1 −
n

∏

i=1

(1 − P (φi))

LN = 1 −
n

∏

i=1

(1 − L(φi))

UN = 1 −
n

∏

i=1

(1 − U(φi))

Under the assumption, LN ≤ P (φ) ≤ UN .

Case of ⊕: Compute the exact probability of φ and the bounds of N .

P (φ) =

n
∑

i=1

P (φi)

LN =

n
∑

i=1

L(φi)

UN =

n
∑

i=1

U(φi)

Under the assumption, LN ≤ P (φ) ≤ UN .

Therefore, in any of the cases, it holds that

LN ≤ P (φ) ≤ UN

94

Proposition 5.6. Given a DNF Φ, a fixed error ǫ, and a d-tree for Φ with
bounds [L,U].

• If U − ǫ ≤ L + ǫ, then any value in [U − ǫ, L + ǫ] is an absolute
ǫ-approximation of P (Φ).

• If (1− ǫ) ·U ≤ (1 + ǫ) ·L, then any value in [(1− ǫ) ·U, (1 + ǫ) ·L] is a
relative ǫ-approximation of P (Φ). 2

Proof. Let p be the probability of Φ. According to Proposition 5.3, p ∈
[L,U]. For error ǫ it holds that 1 − ǫ ≥ 0.

For absolute ǫ-approximation, we have that

p− ǫ ≤ U − ǫ ≤p̂ ≤ L+ ǫ ≤ p+ ǫ.

For relative ǫ-approximation, we have that

(1 − ǫ) · p ≤ (1 − ǫ) · U ≤p̂ ≤ (1 + ǫ) · L ≤ (1 + ǫ) · p.

Lemma 5.9. For a d-tree d, L(d) is the pair of bounds [L,U] that maximizes
each of U −L and (1− ǫ) ·U − (1 + ǫ) ·L over the entire bound space of d.2

Proof. Consider the point interval of each open leaf be [xi, xi], where xi is
a distinct variable. The upper and lower bounds of d can be then expressed
as functions fU and fL, respectively, of such variables. We show that for
each such variable x, δ(fU−fL)

δx
≤ 0 and hence fU − fL is maximized when

x is minimized. That is, when x = L, where L is the lower bound of that
open leaf.

Base case: We are at the open leaf with variable x. Let us denote by n
the level of this leaf. We have fn

U = an
U · x+ bnU and fn

L = an
L · x+ bnL, where

an
U = an

L = 1 and bnU = bnL = 0. It then holds that

δ(fn
U − fn

L)

δx
= an

U − an
L ≤ 0.

Assume now the property holds at a node c at level j + 1, and c is an
ancestor of the open leaf with x. We show that the property it then also
holds at the parent of c.

Case 1: The parent of c is a ⊕ node: ⊕(c1, . . . , ck), where c is one of
c1, . . . , ck. Then,

f j
U = f j+1

U + αU = aj+1
U · x+ bj+1

U + αU

f j
L = f j+1

L + αL = aj+1
L · x+ bj+1

L + αL

95

where αU and αL represent the sum of the upper bounds, and lower bounds
respectively, of all the siblings of c. We then immediately have that

δ(f j
U − f j

L)

δx
= aj+1

U − aj+1
L ≤ 0.

Case 2: The parent of c is a ⊙ node: ⊙(c1, . . . , ck), where c is one of
c1, . . . , ck. Recall that we only consider restricted ⊙ nodes, where at most
one child is not a clause and can have different values for lower and upper
bounds. If this child is c, let q be the product of the (exact) probabilities
of all other children. Then, aj

U = aj+1
U · q and aj

L = aj+1
L · q and thus the

inequality aj
U − aj

L ≤ 0 is preserved.
Case 3: The parent of c is a ⊗ node: ⊕(c1, . . . , ck), where c is one of

c1, . . . , ck. Let

αL =
k

Π
i=1,ci 6=c

(1 − L(ci)), αU =
k

Π
i=1,ci 6=c

(1 − U(ci))

where L(ci) and U(ci) represent the formulas for the lower and upper bounds,
respectively, of node ci. It is easy to see that αL ≤ αU , given that L(ci) ≤
U(ci) for each node ci. Then,

f j
U = 1 − αU · (1 − f j+1

U)

= αU · aj+1
U · x+ 1 − αU + αU · bj+1

U

f j
L = 1 − αL · (1 − f j+1

L)

= αL · aj+1
L · x+ 1 − αL + αL · bj+1

L

δ(f j
U − f j

L)

δx
= αU · aj+1

U − αL · aj+1
L ≤ 0.

The latter inequality holds since αU ≤ αL (as discussed above) and aj+1
U ≤

aj+1
L (by hypothesis).

For relative approximation, we need to find x that maximizes (1 − ǫ) ·
U − (1 + ǫ) · L. This holds by a straightforward extension of the previous
proof: The coefficient of x is shown to be greater in L than in U for U −L.
Since 1 − ǫ ≤ 1 + ǫ, this property is preserved.

Proposition 5.10. Given a d-tree d for a DNF Φ, and a fixed error ǫ. If
the bounds L(d) satisfy the sufficient condition for an ǫ-approximation in
Proposition 5.6, then there is a refinement of d that is an ǫ-approximation
of Φ. 2

96

Proof. Suppose L(d) = [Ld, Ud]. According to Proposition 5.3, for any open
leaf N with DNF φ in d, N ’s bounds [LN , UN] satisfy that LN ≤ P (φ) ≤
UN . If N is expanded completely, then its bounds become a point interval
[P (φ), P (φ)]. If all the open leaves are expanded completely, the pair of
bounds [L′, U ′] of the new d-tree d′ is in the bound space of d. It follows
Lemma 5.9 that U ′ − L′ ≤ Ud − Ld and (1 − ǫ) · U ′ − (1 + ǫ) · L′ ≤ (1 − ǫ) ·
Ud − (1 + ǫ) · Ld. Therefore, bounds [L′, U ′] satisfy Proposition 5.6 and any
value in [L′, U ′] is an ǫ-approximation of Φ.

97

B Hard TPC-H Queries

B2 select

conf()

from

part,

supplier,

partsupp,

nation,

region

where

p_partkey = ps_partkey

and s_suppkey = ps_suppkey

and p_size = 15

and p_type like ’%BRASS’

and s_nationkey = n_nationkey

and n_regionkey = r_regionkey

and r_name = ’EUROPE’;

B9 select

conf()

from

part,

supplier,

lineitem,

partsupp,

orders,

nation

where

s_suppkey = l_suppkey

and ps_suppkey = l_suppkey

and ps_partkey = l_partkey

and p_partkey = l_partkey

and o_orderkey = l_orderkey

and s_nationkey = n_nationkey

and p_name like ’%green%’;

B20 select

conf()

from

supplier,

98

nation,

partsupp,

part

where

s_suppkey = ps_suppkey

and p_partkey = ps_partkey

and p_name like ’forest%’

and s_nationkey = n_nationkey

and n_name = ’CANADA’;

B21 select

conf()

from

supplier,

lineitem,

orders,

nation

where

s_suppkey = l_suppkey

and o_orderkey = l_orderkey

and o_orderstatus = ’F’

and l_receiptdate > l_commitdate

and s_nationkey = n_nationkey

and n_name = ’SAUDI ARABIA’;

99

C Tractable TPC-H Queries

1 select

l_returnflag,

l_linestatus,

conf()

from

lineitem

where

l_shipdate <= date ’1998-09-01’

group by

l_returnflag, l_linestatus;

15 select

s_suppkey,

s_name,

s_address,

s_phone,

conf()

from

supplier,

lineitem

where

s_suppkey = l_suppkey

and l_shipdate >= date ’1991-10-10’

and l_shipdate < date ’1992-01-10’

group by

s_suppkey,

s_name,

s_address,

s_phone;

B1 select

conf()

from

lineitem

where

l_shipdate <= date ’1998-09-01’;

B6 select

conf()

100

from

lineitem

where

l_shipdate >= ’1994-01-01’

and l_shipdate < ’1995-01-01’

and l_discount >= 0.05

and l_discount <= 0.07

and l_quantity < 24;

B16 select

conf()

from

partsupp,

part

where

part.p_partkey = partsupp.ps_partkey

and p_brand <> ’Brand#45’

and p_type like ’MEDIUM POLISHED%’;

B17 select

conf()

from

lineitem,

part

where

part.p_partkey = lineitem.l_partkey

and p_brand = ’Brand#23’

and p_container = ’MED BOX’;

101

D Random Graph Queries

drop table node;

drop table inout;

drop table total_order;

drop table to_subset;

drop table edge0;

drop table no_edge0;

drop table edge;

drop table no_edge;

create table node (n integer);

insert into node values (1);

insert into node values (2);

insert into node values (3);

insert into node values (4);

......

insert into node values (n); /* n is the number of nodes in the graph */

/* Here we specify the probability that an edge is in the graph.

Note: The explanation above assumes that p is 0.5.

*/

create table inout (bit integer, p float);

/* prob is the probability that edge is in the graph */

insert into inout values (1, prob);

/* (1 - prob) is the probability that edge is missing */

insert into inout values (0, 1 - prob);

create table total_order as

(

select n1.n as u, n2.n as v

from node n1, node n2

where n1.n < n2.n

);

/* This table represents all subsets of the total order over node as possible

worlds. We use the same probability -- from inout -- for each edge, but

102

in principle we could just as well have a different (independent)

probability for each edge.

*/

create table to_subset as

(

repair key u,v

in (select * from total_order, inout)

weight by p

);

create table edge0 as (select u,v from to_subset where bit=1);

create table no_edge0 as (select u,v from to_subset where bit=0);

create table edge as (select * from edge0);

insert into edge (select v as u, u as v from edge0);

create table no_edge as (select * from no_edge0);

insert into no_edge (select v as u, u as v from no_edge0);

/* Triangle query */

select

conf()

from

edge0 e1,

edge0 e2,

edge0 e3

where

e1.v = e2.u

and e2.v = e3.v

and e1.u = e3.u

and e1.u < e2.u

and e2.u < e3.v;

/* Path-of-length-2 query */

select

conf()

from

edge e1,

edge e2,

103

no_edge e3

where

e1.v = e2.u

and e2.v = e3.u

and e3.v = e1.u

and e1.u <> e2.u

and e1.u <> e3.u

and e2.u <> e3.u;

104

E Social Network Queries

We show below the queries for Dolphin social network construction and
asking for probabilities of different graph properties. Karate social network
can be constructed similarly.

drop table Dolphin_certain;

drop table Dolphin_temp;

drop table Dolphin;

drop table Dolphin_triangle;

drop table Dolphin_path2;

drop table Dolphin_path3;

drop table Dolphin_separation2;

drop table edge;

drop table no_edge;

create table Dolphin_certain(u varchar, v varchar, p real);

COPY Dolphin_certain FROM ’the_directory_of_the_data_file’ WITH DELIMITER AS E’\t’;

create table Dolphin_temp(u varchar, v varchar, inout boolean, p real);

insert into Dolphin_temp select u, v, TRUE, p from Dolphin_certain;

insert into Dolphin_temp select u, v, FALSE, 1 - p from Dolphin_certain;

create table Dolphin as repair key u,v in Dolphin_temp weight by p;

create table edge as select * from Dolphin where inout = TRUE;

create table no_edge as select * from Dolphin where inout = FALSE;

/* Triangle query */

select

conf()

from

edge e1,

edge e2,

edge e3

105

where

(e1.v = e2.u

and e2.v = e3.u

and e3.v = e1.u)

or

(e1.v = e2.v

and e2.u = e3.u

and e3.v = e1.u);

/* Path-of-length-2 query */

select

conf()

from

edge e1,

edge e2,

no_edge e3

where

e1.u = e3.u

and e1.v = e2.u

and e2.v = e3.v;

/* Path-of-length-3 query */

select

conf()

from

edge e1,

edge e2,

edge e3,

no_edge ne4,

no_edge ne5,

no_edge ne6

where

e1.v = e2.u

and e2.v = e3.u

and ne4.u = e1.u

and ne4.v = e2.v

and ne5.u = e1.u

and ne5.v = e3.v

and ne6.u = e2.u

and ne6.v = e3.v;

106

/* Separation query */

select

conf()

from

edge e1,

edge e2

where

e1.v = e2.u

and e1.u <> e2.v;

107

