
Tractable Queries with Inequalities

on Probabilistic Databases

Rasmus Wissmann
University College

Supervisor: Dr. Dan Olteanu

Dissertation submitted in partial fulfilment of the
degree of Master of Science in Computer Science

Computing Laboratory, University of Oxford

September 2009

Abstract

The problem of efficient evaluation of queries on probabilistic databases
has received a great attention in recent years. In this thesis, we introduce
novel classes of queries with inequalities (<,≤) that admit tractable eval-
uation, in the context where query evaluation is #P-hard in general. We
also introduce a new kind of hard query that is not captured by previous
characterizations. As an application outside database theory, we show that
particular tractable instances of our problem capture previously-open prob-
lems of counting vertex covers in bipartite chain and convex graphs, for
which we can now easily derive efficient algorithms. Our approach to both
query evaluation and counting vertex covers is based on a novel syntacti-
cal characterization of classes of k-DNFs that capture the lineage of queries
from our tractable classes and that can be compiled in at most quadratic
time into binary decision diagrams.

1

Acknowledgements

During the last year I have benefitted from the kind help and support of
many people and I want to use this possibility to thank them.

First and foremost, I want to thank Dan Olteanu for being an incredibly
inspiring and encouraging supervisor throughout the whole process of the
creation of this dissertation. He has introduced me to interesting research in
the field of probabilistic database theory and spent many hours discussing
and reflecting about new ideas and techniques. This dissertation would not
have been possible without his guidance and continuous feedback.

Ani Calinescu has supervised my coursework during the first two terms
and provided helpful answers to many questions, for which I want to ex-
press my gratitude. I also want to thank Prof. George Gottlob and Prof.
Michael Bennedikt for their enlightening lectures about database theory and
relational databases, which have provided me with much of the theoretical
background for this thesis.

University College and the Oxford University Computing Laboratory
have been institutional in making the last year in Oxford a great experi-
ence. This includes the academic life as well as the countless social activi-
ties organized by various student bodies, in particular the University College
WCR.

Finally, I want to thank my family and friends for their constant support
and encouragement.

This work was supported by a joint Hölderlin-scholarship from the Studien-
stiftung des Deutschen Volkes and Siemens Management Consulting.

2

Contents

1 Introduction 7
1.1 Background and Problem Statement 7
1.2 State of the Art . 8
1.3 Outline and Contributions . 8

2 Preliminaries 11
2.1 Tuple-Independent Probabilistic Databases 11
2.2 Conjunctive Queries with Inequalities 13
2.3 Query Semantics . 15
2.4 Disjunctive Normal Forms . 17
2.5 Binary Decision Diagrams . 19

3 BDD Construction for k-DNFs 22
3.1 Linear-Inclusion k-DNFs . 23

3.1.1 Main Results . 23
3.1.2 Efficient BDD Construction with BDDLinIncl 24

3.2 Cofactor-Separable 2-DNFs 31
3.2.1 Main Results . 31
3.2.2 Efficient BDD Construction with BDDCofSep 33

4 From BDD Construction To Query Evaluation 39

5 Tractable Queries 43
5.1 Acyclic Max-One Queries . 44
5.2 Single-Guard Query . 48
5.3 2-Edge Query . 51
5.4 Extensions . 55

6 Hard Queries 57
6.1 Hard Queries with Equalities 57
6.2 Hard Queries with Inequalities 60

3

7 Counting Vertex Covers in Graphs 64
7.1 Introduction . 64
7.2 Main Results . 66

8 Conclusion 68
8.1 Summary . 68
8.2 Open Problems and Future Work 68

9 Appendix 70

4

List of Figures

2.1 Example probabilistic database D 12
2.2 Possible database instance Dσ 12
2.3 Example query graph . 14
2.4 Example acyclic max-one query 15
2.5 Modified relational operators 16
2.6 Example BDDs for φ = x1y2 + x1y3 + x2y1 + x2y2 + x3y3 . . 20

3.1 BDDLinIncl . 25
3.2 Initial structure for Bφ in BDDLinIncl at level 1 25
3.3 Structure for Bφ in BDDLinIncl after compiling f(x1

1) 26
3.4 Pseudo-code implementation of BDDLinIncl 29
3.5 Array/table-based approach for BDDLinIncl 30
3.6 Example cofactor-separable 2-DNF 32
3.7 BDDCofSep . 34
3.8 Initial structure for BDDCofSep 34
3.9 Level i of BDDCofSep . 34
3.10 Pseudo-code implementation of BDDCofSep 37
3.11 Bφ for the example DNF in (3.17) 38

4.1 Algorithm BDDProb for probability computation on BDDs [15] 40
4.2 Example probability computation with BDDprob 41
4.3 High-level description of EvalQuery 41

5.1 Example acyclic max-one query 45
5.2 Example database D . 45
5.3 Exponentially sized BDD . 46
5.4 BDD for φQ, π1 . 47
5.5 Single-Guard Query . 49
5.6 Example structure of the Single-Guard Query lineage 49
5.7 Example tuple-independent probabilistic database D for the

Single-Guard Query . 49
5.8 2-Edge Query . 52
5.9 Possible tructures of the 2-Edge Query lineage 52

5

5.10 Example tuple-independent probabilistic database D for the
2-Edge Query . 52

5.11 BφQ for the 2-Edge Query with lineage (5.3) 54
5.12 Partial structure for a generalization of BDDCofSep 55

6.1 Example of a #P-complete query with equalities 58
6.2 Example of a #P-complete query with inequalities 59
6.3 Example of an acyclic #P-complete query with inequalities . 61

7.1 Bipartite graph for Example 7.3 65
7.2 Complexity of #VC for related graph and query classes . . . 66

7.1 Tuple-independent probabilistic database D to show ”convex
bipartite ⊂ 2-Edge Query” 75

7.2 Chordless cycle C2n (a.) and chordal bipartite graph (b.) . . 76
7.3 Counter-example to show ”2-Edge Query ⊂ chordal bipartite” 77

6

Chapter 1

Introduction

1.1 Background and Problem Statement

Recent years have seen increased interest in the general theory and applica-
tions of probabilistic databases [7, 1, 3, 23, 12, 25, 26], i.e. databases which
contain uncertain data that is only true with some probability. The stan-
dard model for this case is the tuple-independent probabilistic database, in
which independent Boolean random variables are added to each tuple of a
relational database to represent uncertainty [7]. Practicable applications of
these databases include scientific databases, data integration, data cleaning
and handling of sensor data [7, 1, 3, 23, 12, 25, 26]. A number of projects
at major universities and research institutions currently aims to develop
database management systems for probabilistic databases [4, 31, 12, 30].
Oxford is involved via the database management system MayBMS [2, 11]
(joint project with Cornell University) and the query engine SPROUT (Scal-
able Query PROcessing in Probabilistic Databases) [17].

Operations on tuple-independent probabilistic databases are in princi-
ple easy to define by modifying the semantics of the original operators. For
example, a Join operator (on two different, independent relations) would ex-
ecute a join of the underlying data and then AND the corresponding Boolean
variables. Correspondingly, duplicate elimination would keep one data entry
and replace its variable by a disjunctive combination of the variables of all
equal tuples.

While the operational semantics are relatively easy to define, a basic
difficulty is the calculation of the final probabilities of the answer tuples. Due
to joins and projections, formulas with complex combinations of Boolean
variables can arise. Evaluating these formulas is in general #P-complete
[7, 6].

Common approaches used to tackle this problem either resort to proba-
bilistic algorithms [22, 16, 11] or try to identify tractable classes of queries
and implement efficient algorithms for answering them [7, 8, 15, 16]. A

7

tractable query in this sense is a query which can be evaluated in polyno-
mial time w.r.t data complexity (the query itself being fixed).

Despite the question of which queries are tractable being a very cen-
tral and foundational one, it has only been completely solved for conjunc-
tive queries involving only equalities [7, 8, 6]. The tractability question for
queries with inequalities remaines largely unknown, despite first promising
results and algorithms [15, 16].

In this project, we aim to extend current results, describe new algo-
rithms and provide further insights into the tractability map of queries on
probabilistic databases. Our central problem is:

Given a conjunctive query Q with inequalities (<) over a
tuple-independent probabilistic database, is Q tractable?

1.2 State of the Art

Dalvi and Suciu completely answered the tractability problem for Boolean
conjunctive queries with equalities by showing that a query is either PTIME
or #P-complete, depending on whether it is hierarchical or not. [7, 6,
8] They also gave an optimization algorithm that computes the tractable
queries as well as approximate methods for the intractable ones.

Olteanu and Huang extended these results to larger classes of queries,
in particular those with inequalities (<) [15, 16]. They proved tractabil-
ity for Boolean conjunctive queries with inequalities and without self-joins
for which at most one query variable from each relation occurs in the in-
equalities. They also gave extensions towards certain non-Boolean and
mixed equality-inequality queries and generalized the concept of hierarchical
queries to include queries with inequalities [16].

1.3 Outline and Contributions

This thesis is structured as follows:

• Chapter 2 gives a brief overview over query answering on tuple-independent
probabilistic databases, disjunctive normal forms (DNFs) and binary
decision diagrams (BDDs). It introduces basic definitions and nota-
tion.

• Chapter 3 presents polynomial-time algorithms which compile two
newly defined classes of DNFs - linear-inclusion k-DNFs and cofactor-
seperable 2-DNFs - into equivalent BDDs.

• Chapter 4 shows how BDD compilation for DNFs and query evalua-
tion on tuple-independent databases are connected. It introduces the

8

general framework and an algorithm for probability computation on
BDDs.

• Chapter 5 presents new tractability results for queries with inequal-
ities. The results are obtained by relating the query lineages to the
DNF classes and algorithms from Chapter 3. It also discusses further
extensions of these techniques.

• Chapter 6 shows why query evaluation on tuple-independent proba-
bilistic databases is in general hard and describes known hard queries.
It also introduces a new kind of hard query and show possible direc-
tions towards a more general picture.

• Chapter 7 contains applications of the BDD compilation algorithms to
counting problems on graphs. It establishes new tractability results for
counting vertex covers on bipartite chain and convex bipartite graphs
by relating them to queries from Chapter 4.

• Chapter 8 summarizes the thesis work and contributions. It also de-
scribe open questions and gives possible directions for future work.

The main contributions of the thesis are:

1. Previous approaches for confidence computation of queries with in-
equalities on tuple-independent probabilistic databases were based on
OBDD construction [15, 16]. We extend this method towards general
BDDs and introduce a new technique for BDD compilation of query
lineages which creates polynomial BDDs by keeping track of a poly-
nomial number of parallel paths.

2. We define two classes of DNFs - linear-inclusion k-DNFs and cofactor-
seperable 2-DNFs - and show how they can be compiled in polynomial
time into BDDs.

3. We extend known tractability results for conjunctive queries with in-
equalities (<). So far, only tree-shaped queries with at most one
query variable per relation participating in inter-subgoal inequalities
were tractable [15, 16]. We show that the considerably larger class
of acyclic queries with at most one variable per relation participat-
ing in out-going inequalities is tractable, which subsumes the previous
results.1

4. Based on the results for cofactor-separable 2-DNFs, we show tractabil-
ity for queries beyond acyclic max-one queries and introduce ideas
towards tractability of even more general queries.

1An inequality R.X < S.Y is out-going from relation R and in-going to relation S.

9

5. We introduce a new kind of hard query which subsumes previous hard
queries and creates structurally more complicated lineages. Com-
bined with our tractability results this reveals more insights about
the tractability frontier for conjunctive queries with inequalities on
tuple-independent probabilistic databases.

6. We apply the algorithms for BDD construction to counting problems
on graphs. This allows us to show that counting vertex covers and
counting independent sets on bipartite chain and convex bipartite
graphs is tractable. To the best of our knowledge, this has not been
show before.

Parts of this thesis are in preparation for submission to 13th International
Conference on Database Theory (ICDT 2010) under the title “On Efficiently
Evaluating Inequality Queries on Probabilistic Databases and Counting Ver-
tex Covers”.

10

Chapter 2

Preliminaries

2.1 Tuple-Independent Probabilistic Databases

Let X be a finite set of independent Boolean random variables and P :
X → [0, 1] a function s.t.h Pr(x) is the probability of of x ∈ X being true.
A (finite) event or formula e over X is a (finite) combination of random
variables from X using the Boolean operators ∧ (AND), ∨ (OR), ¬ (NOT)
and brackets. For example, e = x1∧x2 represents the conjunction of random
variables x1, x2 ∈ X. We will also use ·, + and x to represent ∧ , ∨, and ¬x
resp.

A probabilistic relation R over a (data) schema R̃ and variable set X is a
relation over (R̃,E) where the column E contains events over X. R is called
tuple-independent if all events are pairwise independent. In this case, each
event can be considered a different random variable. This als means that
the functional dependency R̃→ E holds. The set of random variables of R
is denoted by V ars(R) ⊆ X.

A (tuple-independent) probabilistic database D is a set of (tuple-independent)
probabilistic relations. A tuple is certain if its associated random variable
is true with unit probability. A relation C is certain if all its random vari-
ables are certain. This subsumes the case of standard (non-probabilistic)
relations.

Example 2.1. Consider the probabilistic database in Figure 2.1. The rela-
tion R is tuple-independent, because all events in column R.E are indepen-
dent. In contrast, relation S is not tuple-independent, because y1 and y1∧y2

are not independent (unless one of them is always true or false). The sets
of relation variables are V ars(R) = {x1, x2, x3} and V ars(S) = {y1, y2}.

The interpretation of such a probabilistic database follows the possible
world semantics. A total truth assignment for a database D is a truth
assignment of all its random variables, i.e. a function σ : V ars(D) →
{0, 1}. The probability of a total truth assignment is given by the product

11

R A B E
1 1 x1

1 2 x2

2 2 x3

S C E
1 y1

3 y1 ∧ y2

Figure 2.1: Example probabilistic database D

R A B
1 1
2 2

S C
1

Figure 2.2: Possible database instance Dσ

of the probabilities of the truth values for the single random variables. In
mathematical terms,

Pr(σ,D) =
∏

x∈V ars(D)

Pr(x = σ(x)).

Each total truth assignment σ defines a possible world. The probability of
this possible world is thus the same as the probability of the total truth
assignment. The corresponding database instance Dσ is derived from D by
removing all tuples with random variables/events which evaluate to false.

It is possible for several possible worlds to contain the same database
instance D′. Thus, the probability of a distinct database instance is the
sum of the probabilities of all possible worlds which contain this instance:

Pr(D′) =
∑

σ:Dσ=D′

Pr(σ).

For tuple-independent databases, two possible worlds can only have equal
database instances if the probabilistic database contains duplicate tuples.
It is also worth pointing out that a probabilistic database D encodes an
exponentially large set of database instances, because there are in general
2|V ars(D)| different total truth assignments.

Example 2.2. Continuing the example from Figure 2.1, let Pr(x1) = Pr(y1) =
1/2, Pr(x2) = Pr(x3) = 1/4 and Pr(y2) = 1/8 and fix an assignment σ
with σ(x1) = σ(x3) = σ(y1) = 1, σ(x2) = σ(y2) = 0. The corresponding
database instance Dσ is R = {(1, 1), (2, 2)}, S = {(1)}. The probability of
this instance is Pr(Dσ) = Pr(σ) = Pr(x1) · (1− Pr(x2)) · Pr(x3) · Pr(y1) ·
(1 − Pr(y2)) = 1/2 · 3/4 · 1/4 · 1/2 · 7/8 = 21/512, because σ is the only
variable assignment that leads to this database instance. Dσ is shown in
Figure 2.2.

12

2.2 Conjunctive Queries with Inequalities

Using datalog notation, conjunctive queries with inequalities (’<’, ’>’) can
be written as

Q(X) : −R1(X1), ..., Rn(Xk),Λ

whereX,X1, ..., Xk are lists of distinct query variables and Λ is a conjunction
of inequalities between query variables. Not that the query variables are used
to encode connections between different columns and are different from the
random variables in X.

If not specified otherwise, in the following by ”query” we mean a Boolean
conjunctive query over tuple-independent probabilistic databases with in-
equalities, but without equalities (’=’) and inequalities of the from ’≤’,’≥’,’6=’.
We will also restric ourselves to Boolean queries, i.e. queries with X = ∅.
Non-boolean queries can be treated using their Boolean reducts:

Definition 2.3 (Boolean reduct). [16] The Boolean reduct of a query

Q(X) : −R1(X1), ..., Rn(Xk),Λ

is defined as

Q′ : −R1(X1 −X), ..., Rn(Xk −X),Λ′

where Λ′ is Λ without the inequalities involving query variables from X.

The Boolean reduct reduces a non-Boolean query to a Boolean query for
each fixed value of the head variables X. This leads to:

Proposition 2.4. [16][Tractability of Non-Boolean Queries]
Non-Boolean queries are tractable if their Boolean reducts are tractable.

To visualize queries and characterize tractable subclasses, we will use the
following graph representation:

Definition 2.5 (Query Graphs). The query graph associated with a query
Q() : −R1(X1), ..., Rn(Xk),Λ is the graph GQ = (VQ, EQ, RQ), where VQ
is the set of query variables involved in inequalities with query variables
from other subgoals, (Xi, Xj) ∈ EQ if and only if Λ contains the inequality
’Xi < Xj’ and RQ = {X1 ∩ VQ, ..., Xk ∩ VQ}.

The sets in RQ describe which query variables occur in the same relation.
Graphically, they can be visualized by relation nodes, which are clusters of
query variable nodes.

13

R

S

T

A

C

E

B

D

Figure 2.3: Example query graph

Example 2.6. Consider the query

Q() : −R(A, B), S(C), T (D, E), A < B, A < C, B < D, C < D, C < E, E < B.

Its query graph is shown in Figure 2.3. The sets of nodes, edges and relation
nodes are

VQ = {A,B,C,D,E},
EQ = {(A,C), (B,D), (C,D), (C,E), (E,B)},
RQ = {{A,B}, {C}, {D,E}}.

The inequality A < B is not represented in the graph, since it only involves
query variables from the same relation. Such inequalities can always be
trivially dealt with using a pre-processing with selections. In this example,
we only need to replace R(A,B) with R′(A,B) ≡ σA<B(R(A,B)). (Note
that σA<B here represents a standard relational selection and not a truth
assignment.)

Remark 2.7. Inequalities of the form ’X > Y ’ can always be rewritten as
’Y < X’. In the following we will thus restrict the inequalities to the latter
type.

The structure of connections between relations plays an important role in
the context of query answering tuple-independent probabilistic databases.
One particularly important definition is:

14

Figure 2.4: Example acyclic max-one query

Definition 2.8 (Max-one property). A query with subgoals R1, ..., Rk and
corresponding sets X1, ...,Xk of query variables has the max-one property
if at most one query variable from each subgoal participates in out-going
inequalities with query variables from other sets.

Remark 2.9. The max-one property is an immediate generalization of the
max-one property defined by Olteanu and Huang [16]. They demanded that
only one query variable from each subgoal participates in inequalities with
other subgoals. Our condition is a weaker, globally directed variant.

We call queries which have the max-one property max-one queries.

Example 2.10. The query shown in Figure 2.4 has the max-one property.

Finally, we need a definition of acyclicity of a query with a broken query
graph:

Definition 2.11. A query Q is called acyclic, if its broken query graph is
acyclic and contains no cycles of of length ≥ 1 broken nodes.

Example 2.12. The query in Figure 2.3 is cyclic. For example, R.B < T.D
and T.E < R.B. We could easily make it acyclic by removing the inequality
between B and E. In contrast, the query in Figure 2.4 is acyclic.

2.3 Query Semantics

Query evaluation on probabilistic databases is governed by the possible
world semantics: Q(D) is a probability distribution over possible answer

15

σ′λ ((r̃, er)) = (σλ(r̃), er)
π′A ((r̃, er)) = (πA(r̃), er)
(r̃, er)×′ (s̃, es) = (r̃, s̃, er ∧ es)
DupEl({(r1, e1), ..., (rn, en)}) =

⋃
1≤i≤n,

ri 6=rj∀1≤j<i

{(
ri,
∨

1≤k≤n:rk=ri
ek

)}

Figure 2.5: Modified relational operators

tuples, where the probability of a tuple t is the sum of probabilities of all
total truth assignments σ such that Q applied to Dσ returns a tuple set
containing t. In mathematical notation,

Pr(t) =
∑

σ:V ars(D)→{0,1}
s.th. t∈Q(Dσ)

Pr(σ). (2.1)

Note that the query answer is not defined as the probability distribution P
over all possible result sets of tuples, because the number of distinct result
sets is in general exponential in the number of distinct answer tuples [7].
For Boolean queries, t ∈ {true, false} and thus the query result is a single
real number pQ which gives the probability that the query returns true.

Equation 2.1 means that semantically the query is evaluated in every pos-
sible world and the result is weighted by the associated probability. Since the
number of possible worlds is exponential in the number of random variables,
the naive algorithm which computes the query result on each possible world
has exponential runtime. Consequently, more sophisticated approaches are
necessary and have been successfully investigated. [7, 15] They are based on
an equivalent description of the possible world semantics on the database D
using modified query evaluation operators. These follow standard semantics
on the data columns and additionally combine the event columns according
to the specific relational operation.

Figure 2.5 shows the modified versions of the relational operators rele-
vant to the kinds of queries investigated in this thesis. For example, when
two tuples with events e1 and e2 are combined during duplicate elimination
(’DupEL’), the resulting event is e1 ∨ e2, since the result tuple is in the
output relation when at least one of the events is true. Similar reasoning
leads to the formulas of the other operators [7]. (Note, that the projection
operator in Figure 2.5 does not use set semantics.)

The query answer is now a probabilistic relation with possible very com-
plex events associated with its tuples. For Boolean queries, the answer
relation has schema (E) - i.e. no data columns - and thus contains only one
tuple. We call the event φQ(D) associated with this tuple query lineage. The
probability Pr(φQ(D)) is the probability of Q(D) being true, i.e.

Pr(φQ(D)) = Pr(Q(D)). (2.2)

16

Each relation Ri in D contains data columns and the event coulmn with
independent Boolean random variables x(i)

1 , ..., x
(i)
ni . Furthermore, let Imax ≡

{(i1, ..., ik)|1 ≤ i1 ≤ |R1|, ..., 1 ≤ ik ≤ |Rk|}. Since the inequality joins in Q
are semantically equivalent to selections on the cross-product R1 × ...×Rk
of all relations in Q, the linage φQ(D) for each output tuple is of the form

φQ(D) =
∑

(i1,...,iN)∈I

x1
i1x

2
i2 · ... · x

k
ik
, I ⊆ Imax. (2.3)

In particular, I = Imax corresponds to the sum of all possible products of
Boolean random variables from different relations.

Remark 2.13. To simplify out notation, we will in the following often write
φQ instead of φQ(D), where the database D is clear from the context.

The query lineage φQ can be rewritten as:

φQ =
∑

(i1,...,ik)∈I

x1
i1x

2
i2 · ... · x

k
ik

=
∑

i1:∃(i1,...,ik)∈I

x1
i1

∑
(i1,...,ik)∈I

x2
i2 · ... · x

k
ik

=
∑

i1:∃(i1,...,ik)∈I

x1
i1 · f(x1

i1)

=
∑

i1:∃(i1,...,ik)∈I

x1
i1

∑
i2:∃(i1,...,ik)∈I

x2
i2 · f(x1

i1x
2
i2)

=
∑

i1:∃(i1,...,ik)∈I

x1
i1

∑
i2:∃(i1,...,ik)∈I

x2
i2 · f(x1

i1x
2
i2)

This leads to the definition of the central concept of cofactors:

Definition 2.14 (Cofactors). The partial sums f(x1
i1

), f(x1
i1
x2
i2

), ... are
called cofactors. As it can be seen from the calculation above, the cofactor
of x1

i1
x2
i2
. . . xl−1

il−1
is given by

f(x1
i1x

2
i2 . . . x

l−1
il−1

) =
∑

(i1,...,ik)∈I

xlil · ... · x
k
ik

for any 1 ≤ l ≤ k and 1 ≤ ij ≤ |Xj | ∀1 ≤ j ≤ l − 1.

2.4 Disjunctive Normal Forms

In the last section we introduced query lineages of conjunctive queries over
probabilistic databases. They are directly connected to a very well-known
normal form of Boolean formulas:

17

Definition 2.15 (k-DNF). A Boolean formula φ is a k-disjunctive normal
form (k-DNF) if it is a disjunction of conjunctions of k literals.

In our mathematical notation, k-DNFs are sums of products of k Boolean
variables. Dually, we interpret them as a set of conjunctions of k Boolean
variables.

Example 2.16. The general query lineage in Equation 2.3 is a k-DNF.

Additionally to being of size k, all the products in query lineages fulfill an
order on their literals: The variable at the l-th position is always from the
variable set Xl of relation Rl. We capture this property with the following
definition:

Definition 2.17 (Multipartite k-DNF). A k-DNF φ is multipartite with
variable sets X1, . . . , Xk if Xi ∩Xj = ∅ ∀1 ≤ i < j ≤ k and all conjunctions
in φ can be ordered such that for 1 ≤ l ≤ k the l-literal is always in Xl.

To capture queries with self-joins, we additionally define a larger class of
k-DNFs, where the variable sets are not necessarily distinct:

Definition 2.18 (Semi-multipartite k-DNF). A k-DNF φ is semi-multipartite
with variable sets X1, . . . , Xk if all conjunctions in φ can be ordered such that
for 1 ≤ l ≤ k the l-literal is always in Xl.

Remark 2.19. Every k-DNF φ is semi-multipartite with the variable sets
X1 = . . . = Xk = V ars(φ), where the latter denotes the set of all variables
in φ. It is thus clear that the variable sets are an important part of the
characterization of a semi-multipartite k-DNF.

From the last section we get

Proposition 2.20. Let Q be a query with subgoeals R1, . . . , Rk. Then the
lineage φQ is a semi-multipartite k-DNF with variable sets V ars{R1}, . . .,
V ars{Rk}. If Q has no self-joins, then φQ is a multipartite k-DNF.

Example 2.21. An example of a multipartite k-DNF is the query lineage
from Figure 6.2:

φQ′(D) = x1y2 + x1y3 + x2y1 + x2y2 + x3y3.

The variable sets are X1 = {x1, x2, x3} and X2 = {y1, y2, y3}.
A k-DNF which is not multipartite but semi-multipartite with non-trivial

variable sets is

φ = x1y1x1 + x2y1x2 + x2y2x1.

Here, X1 = X3 = {x1, x2} and X2 = {y1, y2}.

18

Definition 2.22. The size of a k-DNF φ is defined as

|φ| = k · n,

where n is the number of conjunctions in the disjunction.

Example 2.23. For the k-DNFs in Example 2.21 we get |φQ′(D)| = 2 · 5 =
10 and |φ| = 3 · 3 = 9.

Definition 2.24. Let φ, φ′ be a k-DNF, c be a conjunction of k Boolean
variables, X be a set of Boolean variables and σ : X → {0, 1} a truth
assignment. Then

• c ∈ φ denotes that c is one of the conjunctions in the disjunction of φ,

• σ(φ) denotes the DNF that arises from φ when all Boolean variables
in x ∈ X ∩ V ars(φ) are replaced by their assigned value σ(x),

• φ \X is defined as σ(φ) with σ : X → {0, 1}, σ ≡ 0,

• φ ∩ X denotes the set of conjunctions in φ which have at least on
variable from X in them,

• φ ⊆ φ′ denotes that c ∈ φ′ for every conjunction c ∈ φ.

Example 2.25. Let φ = x1y1 + x1y2 + x2y2, c = x1y1, c′ = x2y1 and
X = {y2}. Then c ∈ φ, c 6∈ φ, φ \X = x1y1 ⊆ φ and φ ∩X = {x1y2, x2y2}.
Furthermore, let σ : {x1, x2} → {0, 1} with σ(x1) = 1, σ(x2) = 0. Then
σ(φ) = y1 + y2.

Remark 2.26. Even though inclusion for k-DNFs is defined on a syntactic
level, it can easily be interpreted semantically. If φ ⊆ φ′, then φ = 1 implies
φ′ = 1, since all conjunctions from φ are in the sum of φ′ and at least one
of them is true. Conversely, ¬φ′ ⇒ ¬φ.

2.5 Binary Decision Diagrams

Binary decision diagrams (BDDs) are graphical representations of Boolean
formulas. Mathematically, a BDD is a rooted, directed and acyclic graph
which represents a Boolean function φ with (independent) variables x1, x2, ...
based on the Shannon expansion

φ = x1 · φ|x1=1 + x1 · φ|x1=0

= x1 · x2 · φ|x1=1,x2=1 + x1 · x2 · φ|x1=1,x2=0

+x1 · x2 · φ|x1=0,x2=1 + x1 · x2 · φ|x1=0,x2=0

= ...

19

x1

x2

y2

x2

0 1

x3

y1

x3

y3y3

y1

y2 y3

x1

x3

y3

x2

0 1

y2y2

y1

a. b.

Figure 2.6: Example BDDs for φ = x1y2 + x1y3 + x2y1 + x2y2 + x3y3

The node-set of the graph consists of two terminal nodes - 0 and 1 - which
have no out-going edges, and nodes for the random variables of the function,
each of which has two out-going edges - high and low. Following standard
notation, high (low) edges are visualized by solid (dotted) arrows. The high
edge represents the ’true/1’ case and the low edge represents the ’false/0’
case. Since the BDD is rooted, there exists one node which has no in-going
edges.

Ultimately, all paths in the BDD have to end in either the 1- or 0-
terminal node, depending on whether the represented assignment makes the
Boolean function true or false. If B is a BDD for φ then a path for a truth
assignment σ ends in 1 if and only if σ ∈ SAT (φ), where SAT (φ) is the set
of satisfying assignments of φ.

Example 2.27. Figure 2.6 shows BDDs for the example 2-DNF φ = x1y2 +
x1y3 + x2y1 + x2y2 + x3y3.

The size of a BDD can be measured in terms of the number of nodes, num-
ber of edges or a combination of both. It depends heavily on the order of
variable elimination along each path and possible recombinations of paths
with isomorphic subgraphs.

Example 2.28. In the he BDD in Figure 2.6.a no paths are recombined
on variable nodes (i.e. all non-terminal nodes have at most one in-coming
edge), which leads to unnecessary duplication: The x3-y3-subgraphs in the
left half of the graph are isomorphic and hence one of them could be dropped.

20

In contrast, in BDD in Figure 2.6.b is reduced, i.e. all isomorphic
subgraphs are merged. Additionally, it is ordered, which means that the
variable order is the same along each path in the BDD. In this case, the
order is x1, x3, y3, y2, y1, x2. Such reduced ordered BDDs (OBDDs) are an
important subclass of BDDs [5].

21

Chapter 3

BDD Construction for
k-DNFs

In this chapter, we introduce two classes of multipartite, monotone k-DNFs
- linear-inclusion k-DNFs and cofactor-separable 2-DNFs. We define them
based on syntactic properties and - exploiting those - give polynomial-time
algorithms which compile the k-DNFs into equivalent BDDs of polynomial
size. We also show that the second class is a strict superclass of the first for
k = 2.

Our algorithms make use the cofactor structure in the k-DNFs. In the
first part, we present BDDLinIncl, which compiles linear-inclusion k-DNFs φ
in time O(|φ|log|φ|) into BDDs of linear size. This is possible by eliminating
the Boolean variables in order of the inclusion of cofactors. In the second
part of this chapter, we introduce BDDCofSep, which can be applied to
cofactor-separable 2-DNFs. Again using a good variable elimination order,
it keeps the number of paths in the BDD linear, which results in a quadratical
BDD size and run-time.

In Chapter 4 we show how the results in this chapter are connected to
query evaluation on probabilistic databases and in Chapter 5 we use them
to proof that certain classes of conjunctive queries are tractable. However,
the results are not restricted to applications in probabilistic database theory
and hold independently of them. For example, in Chapter 7 we apply them
to counting problems on graphs and show tractability for counting vertex
covers on convex bipartite graphs.

22

3.1 Linear-Inclusion k-DNFs

3.1.1 Main Results

We start by defining the class of linear-inclusion k-DNFs:

Definition 3.1 (Linear-Inclusion k-DNF). A multipartite monotone k-DNF
φ with variable sets X1, . . . , Xk is a linear-inclusion k-DNF if there exist
orders π1, . . . , πk for the variable sets such that for any 1 ≤ l ≤ k, 1 ≤ i′l <
il ≤ Xl and 1 ≤ im ≤ |Xm| for 1 ≤ m ≤ l − 1 it holds

f(x1
i1 . . . x

l−1
il−1

xlπl(il)) ⊆ f(x1
i1 . . . x

l−1
il−1

xlπl(i′l)
) (3.1)

or

f(x1
i1 . . . x

l−1
il−1

xli′l
) = 0. (3.2)

Any such orders are called compatible orders.

Remark 3.2. For two cofactors f, f ′ the relation f ⊆ f ′ means that the in-
dex set of f is included in the index set of f ′ (Definition 2.24). Semantically,
it implies that f ⇒ f ′ and ¬f ′ ⇒ ¬f (Remark 2.26).

Intuitively, cofactor-separability means that if we choose arbitrary instances
x1
i1
, ..., xl−1

il−1
for the first l − 1 positions than the corresponding cofactors

of the variables in Xl are linearily included in each other. The order of
inclusions is specified by πl, i.e.

f(x1
i1 . . . x

l−1
il−1

xlπl(1)) ⊆ f(x1
i1 . . . x

l−1
il−1

xlπl(2))

⊆ f(x1
i1 . . . x

l−1
il−1

xlπl(3))
⊆

Example 3.3. Let us look at an example linear-inclusion k-DNF:

φ = r1{s1 [t1(u1 + u2 + u3) + t2(u2 + u3) + t3(u3)]
+s2 [t1(u1 + u2 + u3) + t2(u2 + u3)] + s3 [t1(u1 + u2 + u3)]}

+r2{s1 [t2(u2 + u3) + t3(u3)] + s2 [t2(u2 + u3)]} (3.3)
+r2{s1 [t3(u3)]} (3.4)

The variables are already enumerated such that all orders can be choosen to
be the trivial order π1 with π1(i) = i. We have

f(r1) = s1 [t1(u1 + u2 + u3) + t2(u2 + u3) + t3(u3)]
+s2 [t1(u1 + u2 + u3) + t2(u2 + u3)]
+s3 [t1(u1 + u2 + u3)]

⊃ f(r2) = s1 [t2(u2 + u3) + t3(u3)] + s2 [t2(u2 + u3)]
⊃ f(r3) = s1 [t3(u3)]

23

f(r1s1) = t1(u1 + u2 + u3) + t2(u2 + u3) + t3(u3)
⊃ f(r1s2) = t1(u1 + u2 + u3) + t2(u2 + u3)
⊃ f(r1s3) = t1(u1 + u2 + u3)

f(r1s1t1) = u1 + u2 + u3

⊃ f(r1s1t2) = u2 + u3

⊃ f(r1s1t3) = u3

and so on.

In the next section, we introduce the algorithm BDDLinIncl(φ, π1, . . . , πk)
which constructs a BDD for a linear-inclusion k-DNF φ. Our main result is

Theorem 3.4. Let φ be a linear-inclusion k-DNF with variable sets X1, . . . , Xk

and compatible orders π1, . . . , πk. Then BDDLinIncl(φ, π1, . . . , πk) returns
in time O(|φ| log |φ|) BDD Bφ for φ. The size of the BDD is bounded by

|Bφ| ≤ |φ| ≤ k · |X1| · . . . · |Xk|. (3.5)

This theorem follows immediately from Lemmas 3.6 and 3.7 in the next
section.

Remark 3.5. The variable orders are part of the input and must thus be
specified explicitly when calling BDDLinIncl.

3.1.2 Efficient BDD Construction with BDDLinIncl

The algorithm for BDD construction is described in Figure 3.1. It first sorts
φ according to the order π1, . . . , πk and renames the variables such that all
orders become the identity order π1. Then, starting at the first position,
BDDLinIncl creates nodes for the variables in X1. The low edges are then
connected in order and the high edges are connected to the corresponding
cofactors. (Figure 3.2) Subsequently, the cofactors are compiled, i.e. nodes
are created for X2 and similar connections are made. This is repeated until
all k sets of variables are compiled. (Figure 3.3)

The linear-inclusion property is important, as it allows all low edges from
cofactors to be connected to the 0-terminal node: We start by rewriting φ

24

BDDLinIncl(φ, π1, . . . , πk)

1. Sort and rename the variables in φ.

2. Create the initial structure for the BDD Bφ shown in Figure 3.2.

3. Apply step 2 to each of the cofactors φ = f(x1
1), ..., f(x1

n1
) (Figure

3.3). Recursively repeat this for the new subproblems until the
whole lineage is compiled.

4. Return the Bφ.

Figure 3.1: BDDLinIncl

x1_1

x1_2

f(x1_1)

x1_3

f(x1_2)

...

f(x1_3)

...

x1_n f(x1_n) 0

1

Figure 3.2: Initial structure for Bφ in BDDLinIncl at level 1

25

x1_1

x1_2

x2_1

x1_3

f(x1_2)

...

f(x1_3)

x1_n

...

f(x1_n1) 0

1

x2_2

f(x2_1)

...

f(x2_2)

x2_n2

...

f(x2_n2)

Figure 3.3: Structure for Bφ in BDDLinIncl after compiling f(x1
1)

26

according to partial assignments of the x1
i -variables using the Shannon ex-

pansion:

φ = x1
1 · φ|x1

1=1 + x1
1 · φ|x1

1=0

= x1
1 · φ|x1

1=1 + x1
1x

1
2 · φ|x1

1=0,x1
2=1 + x1

1x
1
2 · φ|x1

1=0,x1
2=0

= . . .

= x1
1 · φ|x1

1=1 + x1
1x

1
2 · φ|x1

1=0,x1
2=1 + . . .+ x1

1 . . . x
1
n1−1x

1
n1
·

·φ|x1
1=0,...,x1

n1−1=0,x1
n1

=1 + x1
1 . . . x

1
n1
· φ|x1

1=0,...,x1
n1

=0︸ ︷︷ ︸
=0

(3.6)

Expanding the j-th term in them sum we get

φ|x1
1=0,...,x1

j=1 = f(x1
j) +

n1∑
k=j+1

x1
k · f(x1

k). (3.7)

The inclusion condition implies that f(x1
j) ⊇ f(x1

k), ∀k ≥ j. This means

f(x1
j) = 0⇒ f(x1

k) = 0∀k ≥ j (3.8)

and thus

φ|x1
1=0,...,x1

j=1 = f(x1
j). (3.9)

This allows us to rewrite (3.6) to

φ = x1
1 · f(x1

1) + x1
1x

1
2 · f(x1

2) + . . .+ x1
1 . . . x

1
n1−1x

1
n1
· f(x1

n1
), (3.10)

which is exactly what Figure 3.2 represents.
Now the inclusion condition assures that similar expansions hold for the

cofactors of all subsequent levels. Thus, the same compilation technique can
be used on them (Figure 3.3). This proves the correctness of the iteration
step (step 3 in Figure 3.1). Consequently, BDDLinIncl(φ, π1, . . . , πk) level-
for-level compiles the formula into an equivalent BDD. This proves

Lemma 3.6. BDDLinIncl(φ, π1, . . . , πk) returns a BDD Bφ for φ.

Lemma 3.7. BDDLinIncl(φ, π1, . . . , πk) returns in time O(|φ| log |φ|) a
BDD Bφ of size

|Bφ| ≤ |φ| ≤ k · |X1| · . . . · |Xk|.

Proof. The size of Bφ is bounded by the size of φ: |Bφ| is the number of
variables in the formula of φ factored according to the variable set order
X1 → X2 → ... → Xk. This is obviously smaller than |φ| = k · |I|, which
is the number of variables in the expanded version φ, i.e. the k-DNF form

27

where no variables are factored out. Here, I is the index set of φ as intro-
duced in Section 2.3.

φ has at most |X1| · . . . · |Xk| summands. Since each summand has k
variables, |φ| is bounded by k · |X1| · . . . · |Xk|.

Figure 3.4 shows a pseudo-code implementation of BDDLinIncl. First,
the set of summands in the lineage φ is sorted ascendingly, which takes
O(|IQ| log |IQ|) steps. This is the same as O(|φ| log |φ|), because k is fixed.
Then the array/table-based approach (s. Figure 3.5) needs at most a con-
stant number c = c(k) of operations per summand in φ, which adds O(|φ|)
operations. Thus, the dominant term derives from the sorting step and the
overall run-time is O(|φ| log |φ|).

Remark 3.8. The size of a BDD could also by defined as the number of
edges or the sum of edges and nodes. Both measures would only differ by a
maximal factor of 2 and 3, resp., because in our BDDs every non-terminal
node has exactly two out-going edges.

Remark 3.9. The BDD which is returned by BDDLinIncl is ordered but it
is not reduced, because isomorphic substructures are not necessarily merged.
However, this could be done in linear time in the BDD size in a post-
processing step [24].

28

BDDLinIncl(int k, int NumOfSum,
array[1:NumOfSum] Phi of variable[1:k])

Sort Phi ascendingly and rename variables;
Create array[0:k+1] nodes of Node;
BDD B = new BDD();
Node n0 = new TerminalNode(0);
Node n1 = new TerminalNode(1);
B.addNode(n0);
B.addNode(n1);
Nodes[k+1] = n1;

For i=k...1 do
nodes[i] = new Node(Phi[1][i]);
nodes[i].high = nodes[i+1];
B.addNode(nodes[i]);

For j=2...NumOfSum do
l = 1;
While Phi[j][l] = Phi[j-1][l] do l++;

For i=k...l+1 do
nodes[i].low = n0;
nodes[i] = new Node(Phi[j][i]);
nodes[i].high = nodes[i+1];
B.addNode(nodes[i]);

nodes[0] = nodes[l];
nodes[l] = new Node(Phi[j][l]);
nodes[l].high = nodes[l+1];
nodes[0].low = nodes[l];
B.addNode(nodes[l]);

For i=1...k do
nodes[i].low = n0;

Return B;

Figure 3.4: Pseudo-code implementation of BDDLinIncl

29

j i=1 2 3 4
1 r1 s1 t1 u1

2 r1 s1 t1 u2

3 r1 s1 t2 u1

4 r1 s1 t2 u2

5 r1 s1 t3 u2

6 r1 s2 t2 u1 ←
7 r1 s2 t2 u2

8 r1 s2 t3 u2

9 r2 s1 t2 u1
...

...
...

...
...

r1 s1

s2

t1

t2

0 1

t2

u1

t3

u1

u1

u2

u2

u2

Figure 3.5: Array/table-based approach for BDDLinIncl

30

3.2 Cofactor-Separable 2-DNFs

3.2.1 Main Results

Let us first introduces two definitions, which will make the notation a lot
more compact:

Definition 3.10. Let φ be a semi-multipartite 2-DNF with variable sets
X = {x1, ..., x|X|} and Y . Then

φ[i, j] :=
∑
i≤l≤j

xl · f(xl). (3.11)

In particular, φ[1, |X|] = φ.

Definition 3.11. Let φ be a semi-multipartite 2-DNF with variable sets
X = {x1, ..., x|X|} and Y and σ : V ars(φ[1, i]) → {0, 1} be a partial truth
assignment. Then

f(σ, i) :=
⋃

1≤j≤i:σ(xj)=1

f(xj). (3.12)

Now we can define cofactor-separable 2-DNFs as follows:

Definition 3.12 (Cofactor-Separable 2-DNF). A multipartite monotone 2-
DNF φ with variable sets X,Y is a cofactor-separable 2-DNF if there exist
an order πX for the variable set X such that after renaming the variables
according to the order the following holds: For any 1 ≤ i ≤ |X| and any par-
tial truth assignments σ, σ′ : V ars(φ[1, i])→ {0, 1} which fulfill the following
conditions

σ(φ[1, i]) = σ′(φ[1, i]) = 0, (3.13)

σ(x1
i) = σ′(x1

i) = 1, (3.14)

f(x1
i) \ f(σ, i− 1) 6= ∅, f(x1

i) \ f(σ′, i− 1) 6= ∅ (3.15)

it follows that

σ(φ[i+ 1, n]) = σ′(φ[i+ 1, n]). (3.16)

Any such order πX is called compatible order.

The intuition behind equation (3.16) is that the assignment of the first i− 1
variables from X and their cofactors becomes irrelevant once xi is set true
and its cofactor is evaluated. If f(xi) is true, then φ is true. If f(xi) is
false, then we can combine all paths in a BDD corresponding to assignments
which meet the above conditions. Thus, the i-th level separates the history
- φ[1, i−1]|σ - and the future - φ[i+1, |X|] - for all those assignments. Since

31

x1

y1 y2

x2

y3y4

x3

y5 y6

x4 x5

y7

Figure 3.6: Example cofactor-separable 2-DNF

this property depends on the structure of the cofactors, we call such 2-DNFs
cofactor-separable.

The conditions in (3.13) to (3.15) can be understood as follows: (3.13)
assures that σ does not make φ true before the i+ 1-th position. Otherwise,
we would not have to consider it anymore. (3.14) means that the cofactor
of x1

i is relevant for the assignment σ. Condition (3.15) assures that f(xi)
is not already trivially false due to the implications of the first i− 1 levels,
in which would make it irrelevant and hence unnecessary to be considered.

All conditions will become clearer in the next section, because they are
naturally related to the BDD construction algorithm for cofactor-separable
2-DNFs.

Example 3.13. An example cofactor-separable 2-DNF is

φ = x1(y1 + y2) + x2(y2 + y3 + y4) + x3(y2 + y3 + y4 + y5 + y6)
+x4(y5) + x5(y6 + y7). (3.17)

The structure of φ is visualized in Figure 3.6. Intuitively, any cofactor
separates φ into two halves. That φ is in fact a cofactor-separable 2-DNF is
proven in Section 5.2.

Theorem 3.14. Let φ be cofactor separable 2-DNF with variable sets X,Y
and compatible order πX . Then BDDCofSep(φ, πX) returns in time O(|φ|2)
a BDD Bφ for φ. The size of the BDD is bounded by

|Bφ| ≤ 3/8 · |φ|2 + |φ|/2. (3.18)

This theorem follows immediately from Lemmas 3.16, 3.17 and 3.17 in the
next section.

As mentioned in the introduction to this chapter, the following theorem
connects cofactor-separable and linear-inclusion 2-DNFs:

Theorem 3.15. Every linear-inclusion 2-DNF is a cofactor-separable 2-
DNF.

32

Proof. φ can be written as

φ =
∑

1≤i≤n
xi · f(xi) (3.19)

with n ∈ N and f(x1) ⊇ f(x2) ⊇ Let now 1 ≤ i ≤ n and σ :
V ars(φ[1, i]) → {0, 1} be arbitrary with φ[1, i] = 0 and σ(xi) = 1. Then
f(xi) = 0, which implies σ(φ[i + 1, n]) = 0 independent of the exact choice
of σ, because f(xi) ⊇ f(xi+1) ⊇

3.2.2 Efficient BDD Construction with BDDCofSep

In this section we describe a polynomial-time algorithm that compiles cofactor-
separable 2-DNFs into polynomially sized BDDs. The basic idea is to make
use of the special structure of cofactor-separable DNFs and keep track of
variables in the cofactors which have already been set false along a path in
the BDD. This allows recombinations of paths and keeps the BDD polyno-
mial.

A high-level description of BDDCofSep is given in Figure 3.7. In con-
trast to the algorithm for linear-inclusion k-DNFs it is no longer possible
to connect cofactors to the 0-terminal node if they are false, because the
cofactors are not linearily included. Thus, we need to continue the path
in the BDD while remembering the relevant parts of the assignment so far.
Our approach uses the cofactor-seperable property to keep the number of
distinct relevant sets of already evaluated (falsified) variables (and hence the
number of parallel paths in the BDD) polynomial.

As for BDDLinIncl, the algorithm first sorts and rewrites φ according
the order given (Figure 3.7, Step 1). We again w.l.o.g. rename the Boolean
variables such that the order becomes trivial. This gives

φ =
∑

1≤i≤|X|

xif(xi)

The BDD construction now starts with the structure shown in Figure 3.8: A
node for x1 is created and its high edge is connected to f(x1). The latter is a
sum of variables from Y , which can be implemented as consecutive Y -nodes,
which are connected by their low edges and connected to the 1-terminal node
via their high edges. The low edges from x1 and the last node in f(x1) are
then connected to two separate x2-nodes, so that we can keep track of which
variables from Y are already set to false (none for the left path, f(x1) for
the right path).

Subsequently, for each level i ∈ {2, ..., |X|} the BDD is extended as
follows: There are incoming paths for subsets s0, s1, ... , sk of Y -variables
already set to false. For each of these a xi-node is created and for the
ones with with sj 6⊇ f(xi) its high edge is connected to a sum representing

33

BDDCofSep(φ, πX)

1. Sort and rename the variables in φ.

2. Create the initial structure for the BDD Bφ shown in Figure 3.8.

3. For each variable xi, i ∈ {2, ..., |X|} add the structure in Figure
3.9 to the BDD.

4. Connect all loose edges from the last level to the 0-terminal node.

5. Return the Bφ.

Figure 3.7: BDDCofSep

x_1

x_2

f(x_1)

x_2, f(x_1)

1

Figure 3.8: Initial structure for BDDCofSep

x_i, s_0

x_i+1, s_0

f(x_i)\s_0

x_i, s_1

x_i+1, s_1

f(x_i)\s_1

x_i, s_2 ...

x_i+1, s_2

x_i, s_t

x_i+1, s_t

f(x_i)\s_t

... x_i+1, s_t+1

1

Figure 3.9: Level i of BDDCofSep

34

f(xi) \ sj . The low edges from all xi-nodes are forwarded to the next level
and will later be connected to xi+1-nodes. The same is done for the high
edges of nodes with sj ⊇ f(xi). Finally, the high edges from all the sums of
Y -variables are connected to the 1-temrinal node and the low edges define
a new path with variable set sk+1 = f(xi). This is, where the cofactor-
separability is important: It allows that all paths may be combined into a
single one, because the history of the paths is no longer relevant. Otherwise,
we would set variables multiple times along one path and Bφ would not be
a BDD.

The whole procedure at level i is shown in Figure 3.9. In this example,
s0, s1, st 6⊇ f(xi) and s2 ⊇ f(xi).

After repeating this BDD extension for every variable in X, all loose
edges from the last level are connected to the 0-terminal node. This com-
pletes the BDD compilation of φ.

Lemma 3.16. The graph Bφ returned by BDDCofSep(φ, πX) is a BDD.

The rigorous mathematical proof of Lemma 3.16 can be found in the
Appendix.

Lemma 3.17. BDDCofSep(φ, πX) returns a BDD Bφ for φ.

Proof. Let σ : V ars(φ)→ {0, 1} be an arbitrary total truth assignment. We
have to show that the path representing σ ends in the 1-terminal node if
σ ∈ SAT (φ) and in the 0-terminal node if σ 6∈ SAT (φ).

”σ 6∈ SAT (φ)”: Assume σ 6∈ SAT (φ), but the path corresponding to σ
ends on the 1-terminal node. By construction, this node has only in-going
edges from yj nodes that are set to true. Furthermore, those yj nodes all
occur in sums which follow a xi node that is set to true and contains yj
in its cofactor. Thus, there exists i, j such that σ(xi) = 1, σ(yj) = 1 and
yj ∈ f(xi). This contradicts σ 6∈ SAT (φ). Consequently, the path cannot
end in the 1-terminal node. Since we have already shown that each path
ends in either the 1-terminal or the 0-temrinal node, it follows that the path
for σ ends in the 0-terminal node.

”σ ∈ SAT (φ)”: Assume σ ∈ SAT (φ). Then there exists a minimal i
and for this i a minimal j such that σ(xi) = 1, σ(yj) = 1 and yj ∈ f(xi).
It follows from the argument for the opposite direction that the path for σ
cannot be connected to the 1-terminal at a level k < i. It can also not be
connected to 0-terminal before the i-th level, because 0 only has in-going
edges from the last level. Consequently, the path reaches level i.

At level i, the path goes through a node for xi and follows the high
edge to the corresponding sum of Y -variables. Since yj is true, it has not
already been set along the path. This is true because all high edges from
Y -nodes are connected to node 1 and thus yj cannot have occured along the
path. Thus, yj occurs in the sum. Moreover, the xl, l < j, nodes which

35

(potentially) occur in this sum before yj all have σ(yl) = 0, because j was
choosen minimal with regard to i. Consequently, the path reaches the node
for yj and subsequently the 1-terminal node.

Lemma 3.18. BDDCofSep(φ, πX) returns in time O(|φ|2) a BDD Bφ of
size

|Bφ| ≤ min
(
3/8 · |φ|2 + |φ|/2, |X|2 · |Y |+ 1/2(|X|2 + |X|)

)
. (3.20)

Proof. The number of X-nodes in Bφ is 1/2 · |X| · (|X|+ 1). The number of
Y -nodes is bounded by |X|

∑
1≤i≤|X| |f(xi)| = |X| · |I| = |X| · |φ|/2, where I

is the index set of φ. Together with |X| ≤ |I| = |φ|/2 and |φ| ≤ 2 · |X| · |Y |
we get

Bφ ≤ 1/2 · |X| · (|X|+ 1) + |X| · φ/2
≤ |φ|2/8 + |φ|/4 + |φ|2/4
= 3/8 · |φ|2 + |φ|/2

and

Bφ ≤ 1/2 · |X| · (|X|+ 1) + |X| · φ/2
≤ 1/2(|X|2 + |X|) + |X|2 · |Y |.

The pseudo-code implementation of BDDCofSep in Figure 3.10 needs a sort-
ing step with cost O(|φ|log|φ|) and O(|X|2 · |Y |) operations for the BDD
creation. This implies that the run-time is O(|φ|2).

Remark 3.19. We could further reduce the size of the BDD by sharing
nodes among the different cofactors for each xi: Since all cofactors’ outgoing
edges are recombined into one path, they can share suffixes. In the best case,
this can reduce the number of Y -nodes per level to to |Y | (i.e. in particular
independent of |X|). However, the overall size of the BDD and run-time of
the algorithm will still be quadratic.

Example 3.20. The BDD for the cofactor-separable 2-DNF from the last
section is shown in Figure 3.11. All Y -nodes are connected with their high
edge to the 1-terminal node, which we have omitted for simplicity.

36

BDDCofSep(int NumOfSum,
array[1:NumOfSum] Phi of variable[1:2], int NumX)

Sort Phi ascendingly and rename variables;
BDD B = new BDD(); Node n0 = new TerminalNode(0);
Node n1 = new TerminalNode(1); B.addNode(n0); B.addNode(n1);
Array[1:NumX+1] lastX of Node; Node nx; NodeSum ny;
Array[0:NumX] s of NodeSet; s[0] = new NodeSet();

lastX[1] = new Node(Phi[1][1]);
B.addNode(lastX[1]);
lastX[NumX+1] = n0;
k = 1;
For i=1...NumX do

// Read cofactor of x_i
s[i] = new NodeSet();
s[i].addNode(new Node(Phi[k,2]));
While Phi[k,1] == Phi[k++,1] do

s[i].addNode(new Node(Phi[k,2]));

If i < NumX then
lastX[i+1] = new Node(Phi[k][1]);
B.add(lastX[i+1]);

// Create y_j and x_i+1 nodes and connect them
For j=1...i do

If i < NumX then
nx = new Node(Phi[k,1]);
B.addNode(nx);

else nx = n0;
lastX[j].low = nx;

If s[i]-s[j-1] != emptyset then
ny = new NodeSum(s[i] - s[j-1]);
B.addNodeSum(ny);
lastX[j].high = ny.firstNode();
ny.lastNode().low = lastX[i+1];

else
lastX[j].high = nx;

lastX[j] = nx;

Return B;

Figure 3.10: Pseudo-code implementation of BDDCofSep

37

x1

y1+y2

x2 x2

y1+...+y4

x3

y3+y4

x3 x3

y2+...+y6

x4

y3+...+y6

x4

y5+y6

x4 x4

y5

x5

y5

x5

y5

x5 x5 x5

y6+y7

0

y6+y7 y6+y7 y7 y6+y7

Figure 3.11: Bφ for the example DNF in (3.17)

38

Chapter 4

From BDD Construction To
Query Evaluation

There are in principle two approaches for query evaluation on tuple-independent
probabilistic databases [7]: Directly via computation of probabilities or indi-
rectly via compilation of complex events. In the first approach, all random
variables are replaced with their corresponding probability and those are
manipulated during the evaluation of the relational operators. This is very
efficient, but it works only for a subset of conjunctive queries called safe
queries [7]. In the second approach, the query lineage is computed as a
complex Boolean formula during query evaluation. The associated proba-
bility is then calculated after all relational operations have been applied.
This gives the correct result for all queries, but is #P-hard in general [7, 6].

To apply the second approach, tractable classes of queries have to be
identifed. For these classes, the lineage probabilites can be computed in
polynomial time. One important technique for this is due to Olteanu and
Huang [15], who introduced an approach that makes use of binary decision
diagrams for the computation of the query probability. They first compile
the query lineage into equivalent graphs called reduced ordered binary deci-
sion diagrams (OBDDs) - which are a subclass of BDDs - and then use a
linear time algorithm to calculate the probability of the OBDDs. This leads
to efficient state-of-the-art algorithms, which currently outperform the di-
rect ones by up to two orders of magnitude [16]. In the following, we will
extend this approach beyond OBDD-based algorithms.

After constructing the decision diagrams, it is important to be able to
efficiently calculate their probabilities. This can be done using the surpris-
ingly simple linear-time algorithm shown in Figure 4.1 [15]. We assume
that given a node n, n.prob is the probability of the associated random
variable being true and n.high and n.low point to the child-node along the
true/1 and false/0 edge edge. Additionally, n.p stores a probability and is
initialized to 0 for the 0-terminal node, 1 for the 1-terminal node and -1

39

BDDProb (Node n)
If (n.p = -1) then n.p = n.prob * BDDprob(n.high)

+ (1-n.prob) * BDDprob(n.low);
return n.p;

Figure 4.1: Algorithm BDDProb for probability computation on BDDs [15]

for all non-terminal nodes. Then BDDProb(root) recursively computes the
probability of the function represented by the BDD.

Even though the algorithm was originally designed for OBDDs [15], it
works just as well on general BDDs. The computation relies on the on
the fact that the two branches subsequent to each note represent mutually
exclusive assignments.

Proposition 4.1. BDDprob calculates the probability of a BDD in linear
time.

Example 4.2. Figure 4.2 shows the probabilities calculated by BDDprob for
the example BDD from Figure 2.6.b and the random variable probabilities

Pr(x1) = Pr(x2) = Pr(y2) = 1/2
Pr(x3) = Pr(y3) = 1/3

Pr(y1) = 2/3

The question of whether a query Q is tractable and how it can be evaluated
can thus be answered positively for tractable queries by giving a polynomial-
time algorithm which creates a polynomially sized BDD for the query lin-
eage. Since the probability of the BDD is the same as the probability of
the function represented by it, this approaches allows the computation of
Pr(φQ). By equation (2.2) this is the same as Pr(Q). Note, that tractabil-
ity here only refers to the probability computation for the query lineage, not
the construction of the query lineage itself.

Proposition 4.3. Let Q be a Boolean conjunctive query. If a polynomial-
time algorithm can be given that compiles the query lineage φQ into a BDD,
then Q can be evaluated in polynomial time in |φQ|.

A high-level description of the overall algorithm EvalQuery if given in Figure
4. Steps 1 and 3 are already completely specified. For step 2 we will use the
BDD construction algorithms introduced in the last chapter. We need to
show that a query Q is associated with a query lineage φQ that is a linear-
inclusion or cofactor-separable k-DNF. Additionally, we have to explicitly
specify compatible variable orders, because they are part of the input for
the BDD construction algorithms.

40

Figure 4.2: Example probability computation with BDDprob

EvalQuery(Query Q)

1. Evaluate the query using the modified operators defined in Fig-
ure 2.5 and pre-processing with selections for inequalities within
single relations. This returns the query lineage φQ.

2. Compile φQ into a BDD.

3. Calculate the probability of the BDD using the BDDProb algo-
rithm from Figure 4.1.

Figure 4.3: High-level description of EvalQuery

41

The run-time of our BDD compilation algorithms is only polynomial once
the number of relations is fixed. This is inevitable, because the number of
possible distinct conjunctions in the query lineage scales exponentially with
the number of sets of query variables. In terms of complexity of query
evaluation, this means that our results capture the data complexity for fixed
queries. Furthermore, since the run-times are bounded by polynomials in
the size of the lineage, combined polynomial complexity is preserved.

42

Chapter 5

Tractable Queries

In this chapter we introduce classes of tractable Boolean conjunctive queries
with inequalities. Our classification of queries is based on structural prop-
erties of their associated query graphs, which turns out to be a very natural
and clear way of characterizing them. The successive query classes allow for
increasingly more complicated query lineages, which we show to be captured
by the k-DNF classes introduced in Chapter 3. Consequently, the queries
can be evaluated in polynomial-time with the algorithm EvalQuery as de-
scribed in Chapter 4. Again, evaluation here only refers to the probability
computation for the query lineage.

In the first section, we establish tractability for acyclic max-one queries
by showing that their query lineages are captured by the class of linear-
inclusion k-DNFs. Additionally, the necessary orders for algorithm BDDLin-
Incl can be easily inferred from the query structure and database instance.
This class of queries already strictly includes all previously known tractable
queries with inequality [16].

In the second and third section, we extend the class of tractable queries
towards cyclic queries and queries without the max-one property. To this
end, we define two specific queries - the Single-Guard Query and the 2-
Edge Query - and show that their query lineages are cofactor-separable
2-DNFs. Finally, we discuss possible extensions of our techniques towards
other tractable queries, include the observation that all our tractability re-
sults hold for queries with smaller-or-equal-than inequalities (≤) as well.

43

5.1 Acyclic Max-One Queries

We start by considering queries with the max-one property (Definition 2.8),
i.e. queries in which at most one query variable per subgoal participates in
out-going inequalities with query variables from other relations. Addition-
ally, we demand that the queries be acyclic in the sense of Definition 2.11.
An example query was already shown in Figure 2.4.

The following theorem states the main result of this section:

Theorem 5.1. [Tractability of acyclic max-one queries]
EvalQuery can evaluate any acyclic max-one query Q without self-joins on
tuple-independent probabilistic databases in time O(|φQ| log |φQ|).

The proof is based on

Lemma 5.2. Let Q be any acyclic max-one query without self-joins. Then
φQ is a linear-inclusion k-DNF.

The intuition behind Lemma 5.2 is the following: Since Q is acyclic, we
can consider its subgoals - or equivalently its sets of random variables -
in topological order. Fixing data values for the first l − 1 positions leaves
only certain tuples in the l-th relation with a possibly non-empty cofactor,
namely those which data values fulfill all in-going inequalities.

Because of the max-one property, there is now at most only one column
which participates in out-going inequalities with subsequent relations. We
can order the tuples in relation Rl ascendingly on their value in this column.
Then the cofactor of a tuple t with value v includes the cofactor of a tuple
t′ with value v′ > v. This leads to a linear inclusion of cofactors on each
position 1 ≤ l ≤ k and for each choice of random variables of the first l − 1
positions.

A rigorous mathematical proof of Lemma 5.2 can be found in the Ap-
pendix.

Proof of Theorem 5.1. It is evident from the proof of Lemma 5.2 that the
ascending orders π1, . . . , πk for the relations in Q are compatible orders
in the sense of Definition 3.1. The variable sets X1, . . . , Xk are pairwise
intersection-free, becauseQ contains no self-joins and is evaluated on a tuple-
independent probabilistic database. Thus, BDDLinIncl(φQ, π1, . . . , πk) re-
turns in time O(|φQ| log |φQ|) a BDD BφQ of size

|BφQ | ≤ |φQ| ≤ k ·
(

max
1≤l≤k

{|Rl|}
)k

.

This together with Proposition 4.3 concludes the proof.

44

Figure 5.1: Example acyclic max-one query

R A E
1 r1
2 r2
3 r3

S B E
1 s1
2 s2
3 s3

T C D E
2 4 t1
3 3 t2
4 2 t3

U E E
3 u1

4 u2

5 u3

Figure 5.2: Example database D

Example 5.3. Consider again the example query from Section 2.2 (Figure
5.1) and the tuple-independent probabilistic database D is given in Figure
5.2.

Possible topological subgoal orders for Q are R → S → T → U and
S → R→ T → U . Choosing the first one we can write the query lineage as:

φQ = r1{s1 [t1(u1 + u2 + u3) + t2(u2 + u3) + t3(u3)]
+s2 [t1(u1 + u2 + u3) + t2(u2 + u3)] + s3 [t1(u1 + u2 + u3)]}

+r2{s1 [t2(u2 + u3) + t3(u3)] + s2 [t2(u2 + u3)]} (5.1)
+r2{s1 [t3(u3)]} (5.2)

This is again the lineage from Section 3.1. If follows from Lemma 5.2 that
it is in fact a linear-inclusiong k-DNF.

The relations are already sorted ascendingly, so the orders are all the
trivial identity order πR = πS = πT = πU = π1. The BDD Bφ which is
returned by BDDLinIncl(Q, π1, π1, π1, π1) is shown in Figure 5.4. For sim-
plicity, we have omitted the terminal nodes, but they can easily be inserted:
All variable nodes without a dotted out-going edge are connected to 0 and all
U -nodes are connected to 1. The BDD has 38 nodes, which is considerably
smaller than the worst case size of about 210 = 1024 nodes.

45

Figure 5.3: Exponentially sized BDD

Intuitively, a good variable generates a smaller BDD, because a lot of
paths end in the 0-terminal node after only a few steps. This is dependent
on inclusions of cofactors. Compare for example the cofactors of r2 and
r3: The expression within the ’{}’-brackets in line (5.2) is included in (5.1).
Thus, if r2 is true and its cofactor is false, we do not have to take r3 into
account any more and so r3 does not appear on any path in after where r2
is true. In contrast, if r3 was eliminated before r2, we would have to check
the latter along paths for both truth values of r3. This would for general
cofactors and r1 to rn lead to an exponential number of ri nodes. (Figure
5.3)

.

46

r1

r2

s1

r3

s1

s1

s2

t1

s2

t2

t3

s3

t1

t2

t1

t2

u1

t2

u1

u1

t3

u2

u2

t3

u2

u2

u3

u3

u3

u2

u2

u2

u3

u3

u3

u3

u3

u3

u3

Figure 5.4: BDD for φQ, π1

47

5.2 Single-Guard Query

Cyclic inequalities in conjunctive queries can be used to simulate equalities.
Imagine for example two relations R(A,B) and S(C) and the query

Q : −R(A,B), S(C), A < C,C < B.

We call this a guard [16]. We will show in Chapter 6, that for every lineage
created from an equality join we can construct a database instance such that
this query creates the same lineage. Based upon the #P-results for equality
queries this will imply that that queries with multiple guards can be hard
[16, 6].

As the simplest case of a non-trivial acyclic query consider the query in
Figure 5.5:

Q : −R(A,B), S(C), A < C,C < B.

We call this the Single-Guard Query. In this section we show that it is
possible to solve this query in polynomial time.

Theorem 5.4 (Tractability of the Single-Guard Query). The Single-Guard
Query

Q : −R(A,B), S(C), A < C,C < B

can be evaluated on tuple-independent probabilistic databases in O(|φQ|2)
using EvalQuery.

To prove this theorem, we use the following lemma:

Lemma 5.5. Let Q be the Single-Guard Query without self-joins. Then φQ
is a cofactor-separable 2-DNF.

The high-level intuition why the Single-Guard Query creates cofactor-separable
2-DNF is the following: We first sort the relation in R ascendingly first on
A and then on B and rename the variables according to that order. We
assume that the values in columns A, B and C are a1, a2, . . ., b1, b2, . . . and
c1, c2, . . ., resp. The order for R implies

xi < xj ⇔ (ai < aj) ∨ (ai = aj ∧ bi < bj).

Due to the structure of the inequality, the cofactor of each xi will be a
consequtive sum of yj ’s, namely all yj ’s with ai < cj < bi. An example for
this is shown in Figure 5.6.

The xi’s are evaluated from left to right. If an xi is true, its cofactor is
not included in an earlier one and the corresponding cofactor evaluates to
false, the linage is separated into a left half (the history) and a right half,
which is yet to be evaluated. Due to the order, no remaining cofactor can
include yj-variables from the left. Thus, the history of the path becomes
irrelevant.

A rigorous mathematical proof of Lemma 5.5 is given in the Appendix.

48

R

S

BA

C

Figure 5.5: Single-Guard Query

Figure 5.6: Example structure of the Single-Guard Query lineage

R A B E
0 3 x1

1 5 x2

1 7 x3

4 6 x4

5 8 x5

S C E
1 y1

2 y2

3 y3

4 y4

5 y5

6 y6

7 y7

Figure 5.7: Example tuple-independent probabilistic database D for the
Single-Guard Query

49

Proof of Theorem 5.4. It follows from the preceding proof that the ascend-
ing order πR is a compatible order for Definition 3.12. The variable sets
X and Y intersection-free, because R 6= S and Q is evaluated on a tuple-
independent probabilistic database. Thus, Lemma 5.5 together with Theo-
rem 3.14 implies that BDDLinIncl(φQ, πR,) returns in time O(|φQ|2) a BDD
BφQ of size

|BφQ | ≤ 3/8 · |φQ|2 + |φQ|/2.

This together with Proposition 4.3 concludes the proof.

Example 5.6. An example database D for the Single-Guard Query is shown
in Figure 5.7. The query lineage on D is the 2-DNF already introduced
in equation (3.17), which also proves that this 2-DNF is indeed cofactor-
separable. The structure of the lineage is shown in Figure 5.6. The corre-
sponding BDD was shown in Figure 3.11.

50

5.3 2-Edge Query

Alternatively to extending the class of acyclic max-one queries with cycles,
one can consider extensions towards subsets of queries without the max-one
property. In general, this also leads to intractable queries, as will be shown
in Chapter 6.

The simplest not max-one query

Q : −R(A,B), S(C), T (D), A < C,B < D

is similar to a max-one query if we use a reverse topological order for the
subgoals. This can be shown by explicit calculation, but it is immediately
clear because of the symmetry. Thus, the query shown in Figure 5.8 is prob-
ably the simplest acyclic query without the max-one property that cannot
be evaluated with BDDLinIncl. We call it 2-Edge Query. We assume that
Q has no self-joins, i.e. the relations in R and S are different.

The main result of this section is:

Theorem 5.7 (Tractability of the 2-Edge Query). The 2-Edge Query

Q : −R(A,B), S(C,D), A < C,B < D

can be evaluated on tuple-independent probabilistic databases in O(|φQ|2)
using EvalQuery.

As in the preceding section, the proof is based on showing that φQ is a
cofactor-separable 2-DNF.

Lemma 5.8. Let Q be the 2-Edge Query without self-joins. Then φQ is a
cofactor-separable 2-DNF.

Every cofactor of an xi in the query lineage associated with Q consists of all
yj ’s with values cj > ai and dj > bi. Thus, it can be visualized as a rectangle
in a two dimensional diagram. (Figure 5.9) If we sort R ascendingly first on
A and then on B, we encounter the cofactors top-to-bottom and right-to-left.

It is now easy to understand intuitively, why the cofactors separate his-
tory and future of a path σ: Let for σ with subset st at level i in BDDCofSep
f(xi) be not included in st. Then after elimination of f(xi), every cofactor
for i′ > i can only consist of variables which are either in the rectangle rep-
resenting f(xi) or to the left of it. This is situation is shown in Figure 5.9.a
for i = 2 and i′ = 3. Figure 5.9.b shows the corresponding situation where
st ⊇ f(xi). In this case, f(xi) is already false and not evaluated along σ.

A rigorous mathematical proof of Lemma 5.8 is given in the Appendix.

Proof of Theorem 5.7. The proof is essentially the same as in the last section
for Theorem 5.4: It follows from the preceding proof that the ascending
order πR is a compatible for Definition 3.12. The variable sets X and Y

51

Figure 5.8: 2-Edge Query

a. b.

Figure 5.9: Possible tructures of the 2-Edge Query lineage

R A B E
1 4 x1

2 2 x2

2 5 x3

3 3 x4

4 1 x5

S C D E
2 5 y1

3 3 y2

3 5 y3

3 6 y4

4 4 y5

4 5 y6

4 6 y7

5 2 y8

5 3 y9

5 4 y10

5 5 y11

5 6 y12

Figure 5.10: Example tuple-independent probabilistic database D for the
2-Edge Query

52

are intersection-free, because Q contains no self-joins and is evaluated on a
tuple-independent probabilistic database. Thus, Lemma 5.8 together with
Proposition 3.14 implies that BDDLinIncl(φQ, πR) returns in time O(|φQ|2)
a BDD BφQ of size

|BφQ | ≤ 3/8 · |φQ|2 + |φQ|/2.

This together with Proposition 4.3 concludes the proof.

Example 5.9. An example database D for the 2-Edge Query is shown in
Figure 5.10. The corresponding query lineage is

φQ = x1(y1 + y3 + y4 + y6 + y7 + y11 + y12)
+x2(y2 + . . .+ y7 + y9 + . . .+ y12) + x3(y4 + y7 + y12)
+x4(y5 + y6 + y7 + y10 + y11 + y12) + x5(y8 + . . .+ y12).(5.3)

The BDD returned by BDDLinIncl is shown in Figure 5.11. All Y -nodes
are connected with their high edge to the 1-terminal node, which we have
omitted for simplicity.

53

x1

y1+y3+y4+y6+y7+y11+y12

x2 x2

y2+...+y7+y9+...+y12

x3

y2+y5+y9+y10

x3 x3

y4+y7+y12

x4 x4 x4 x4

y5+y6+y7+y10+y11+y12

x5

y5+y10

x5 x5

y5+y6+y10+y11

x5 x5

y8+...+y12

0

y8+y9+y10 y8 y8+...+y11 y8+y9

Figure 5.11: BφQ for the 2-Edge Query with lineage (5.3)

54

x1 y1

x2

f(x1,y1)

y2 y2 \ f(x1,y1)

1

f(x1,y2)

x2 \ y1,y2

f(x1,y2) \ f(x1,y1)

x2 \ y1,y2,f(x1,y1) x2 \ y1,y2,f(x1,y2)

Figure 5.12: Partial structure for a generalization of BDDCofSep

5.4 Extensions

Having seen how certain cyclic and not max-one queries with two relations
can be treated, it is natural to ask if and how these techniques can be
extended towards such queries with multiple relations. In particular, is
there a k-DNF class which is an obvious generalization of cofactor-separable
2-DNFs and can be treated in a similar way?

An approach towards an algorithm for more general k-DNFs is shown in
Figure 5.12. On each level, we keep track of which relevant variables from
the following levels are already set to false. Given a property similar to the
cofactor-separability for 2-DNFs, this would result in a polynomial number
of paths once the number of relations is fixed.

Unfortunately, the generalization is not quite so simple. Consider again
Figure 5.12. What if y1 appears in the cofactor of x2 as well? Along the
path through the x2 \y1, y2, f(x1, y2)-node, y1 is actually true and not false.
Now if f(x2, y1) 6⊆ f(x1, y1) the algorithm should test whether the former
is true, but it will not, because y1 is in the set of already falsified variables.
Thus, Bφ would not correctly represent the k-DNF.

To avoid this problem, we could keep track of which variables are set true
along a path. However, this is not feasible, because it would in general result
in exponentially many paths. Instead, we need the implication f(x1, y1) =
0⇒ f(xi, y1) = 0∀i ≥ 1, i.e. we need an additional property on the k-DNF,
namely

f(x1, yj) ⊇ f(x2, yj) ⊇ f(x3, yj) ⊇ . . . (5.4)

55

for all non-empty cofactors and all yj . Similar inclusions have to hold on all
levels.

Due to the inequalities in our queries, these inclusions in fact hold for
many queries. This algorithmic approach should thus be able to answer
queries like a Single-Guard Query or 2-Edge Query within an arbitrary
acyclic max-one query graph. Additionally, it is likely that queries with
multiple such components are tractable, if the components are not directly
connected.

In conclusion, structural extensions towards more complicated query
classes are likely possible with a generalization of cofactor-separability for
k-DNFs which includes the inclusion property described above. Then an
algorithmic technique similar to the one in BDDCofSep should result in
a polynomial-time algorithm for those queries. They would in particular
include combinations of the queries presented in the last three sections.
However, the details of these extensions are not yet clear.

Alternatively to extensions of the query structure, one can also consider
different connections between query variables. In our case this in particular
includes inequalities of the kind ≤. In fact, the structure of the query lineage
for our tractable queries is not changed significantly if these inequalities are
used instead of or in connection with <. This gives

Proposition 5.10. Acyclic max-one queries, the Single-Guard Query and
the 2-Edge Query with inequalities (<,≤) are tractable on tuple-independent
probabilistic databases.

56

Chapter 6

Hard Queries

6.1 Hard Queries with Equalities

For arbitrary Boolean conjunctive queries on tuple-independent probabilistic
databases, the complexity of calculating the probability of the result can be
very hard. In 2004, Dalvi and Suciu showed that query evaluation can #P-
complete even for conjunctive queries with equalities and no self-joins [7].
#P is the complexity class of counting problems associated with decision
problems in NP [28]. In particular, if a decision problem is in NP, then the
problem of counting the number of positive answers is in #P.

The complexity class #P contains very difficult problems. In fact, NP
⊆ #P, because a problem is solvable if and only if its number of solutions
is larger or equal than 1. Furthermore, P#P - the class of polynomial-time
machines with a #P-oracle - includes the entire polynomial hierarchy PH
[27].

As for other complexity classes such as NP, one can find #P-complete
problems, which lie in #P and are as least as hard as any other problem in
#P. The latter means that any problem in #P can be reduced to them in
polynomial time, i.e. the solution can be computed in polynomial time from
the answer of the #P-complete problem.

For example, consider monotone 2-disjunctive normal forms (monotone
2-DNF), i.e. Boolean formulas of the form φ = xi1yj1 + xi2yj2 + ...+ xinyjn
over Boolean variables x1, ..., xk, y1, ..., yl. Deciding satisfiability (SAT) of
a given monotone 2DNF is obviously trivial and hence in P. Somewhat
counterintuitively, the counting version of this problem - i.e. the problem
#SAT of counting the number of satisfying assignments for monotone 2-
DNF - is not only in #P, but is in fact #P-complete [21]. Consequently,
it is also at least as hard as any problem in NP. Other well-known #P-
complete problems are the computation of the permanent of a 0,1-matrix
and the computation of the number of perfect matchings in a bipartite graph
[28, 29].

57

R A E
1 x1

2 x2

3 x3
...

...

S C D E
1 2 z1
1 3 z2
2 1 z3
2 2 z4
3 3 z5
...

...
...

T B E
1 y1

2 y2

3 y3
...

...

φQ(D) = x1y2 + x1y3 + x2y1 + x2y2 + x3y3

Figure 6.1: Example of a #P-complete query with equalities

As it turns out, counting the number of satisfying assignments of mono-
tone 2-DNFs and probabilistic databases are fundamentally related [7]: Con-
sider the Boolean conjunctive query

Q : −R(A), S(C,D), T (B), A = C,D = B

on a tuple-independet probabilistic database D. Let S be a certain relation,
i.e. all its random variables are true with probability one. If we omit the
trivial random variables from S, which are semantically equal to 1, then
this can create arbitrary monotone 2-DNF by pairing corresponding pairs
of random variables from R and T . An illustration of this is given in Figure
6.1: The variables x1, x2, . . . in R and y1, y2, . . . in T are associated with
tuple values 1, 2, To add the product xiyj to φQ, one adds a tuples with
data values S.C = i, S.D = j to S.

If R and T have a total of n random variables and all there probabilities
are set to 1/2, then each assignment is equally likely and the probability of
the query being true is

Pr(Q) = Pr(φQ)

=
#(satisfying assignments)

#(assignments)

=
#(satisfying assignments)

2n
. (6.1)

Thus, if we can evaluate the query - i.e. calculate Pr(Q) - we can count the
number of satisfying assignments. This reduces #SAT(monotone 2-DNF)
is to query evaluation, which implies that the later is also #P-hard. This
reasoning was originally used by Dalvi and Suciu as part of the proof of

Theorem 6.1. [7] Evaluation of Boolean conjunctive queries on tuple-independent
probabilistic databases is in general #P-complete.

In fact, Dalvi and Suciu were able to prove an even more fundamental result,
namely

58

R A E
1 x1

2 x2

3 x3
...

...

S C D E F E
0.9 1.1 1.9 2.1 z1
0.9 1.1 2.9 3.1 z2
1.9 2.1 0.9 1.1 z3
1.9 2.1 1.9 2.1 z4
2.9 3.1 2.9 3.1 z5
...

...
...

...
...

T B E
1 y1

2 y2

3 y3
...

...

S

R T

DC

A

FE

B

φQ′(D) = x1y2 + x1y3 + x2y1 + x2y2 + x3y3

Figure 6.2: Example of a #P-complete query with inequalities

Theorem 6.2. [7, 6] Let Q be conjunctive queries with equalities on tuple-
independent probabilistic databases. Then Q is either in PTIME or #P-
complete.

This implies a dichotomy for conjunctive queries with equalities on tuple-
independent probabilistic databases. A query is either in PTIME or #P-
complete, where the latter implies that it is fundamentally hard if P 6= NP .
Furthermore, the original theorem also contains a characterization of all
tractable and intractable queries:

Proposition 6.3. [6] A Boolean conjunctive query with equalities and with-
out self-joins is in PTIME if and only it is hierarchical. Otherwise it is
#P-complete.

Definition 6.4. [6] A query Q is hierarchical, if for any two of its query
variables either the sets of subgoals of this query variables are disjoint or
one of the sets is included in the other.

59

6.2 Hard Queries with Inequalities

The results above hold for conjunctive queries with equalities. However,
they can easily be related to queries with inequalities by creating an example
query that can be used to generate arbitrary monotone 2-DNF. Consider for
example the query [16]

Q′ : −R(A), S(C,D,E, F,), T (B), C < A,A < D,E < B,B < F. (6.2)

This query consists of two Single-Guards (Section 5.2), but importantly they
are connect within one relation. The chains of inequalities can be used to
simulate equalities: We again associated xi with i and yj with j. To pair xi
and yj , we add a tuple with values S.C = i−0.1, S.D = i+0.1, S.E = j−0.1
and S.F = j+0.1 to S. An example is shown in in Figure 6.2, which creates
the same lineage as in Figure 6.1. Thus, Q′ allows us to create arbitrary
monotone 2-DNF.

Proposition 6.5. Evaluation of Boolean conjunctive queries with inequali-
ties and without self-joins on tuple-independent probabilistic databases is in
general #P-complete.

An important question one can ask is: What kind of properties are necessary
so that conjunctive queries with inequalities become hard. Ideally, there
would be a theorem similar to Theorem 6.2. So far, we know from Section 5.1
that all acyclic max-one queries are tractable. (Theorem 5.1) This implies
that a hard query has to be at least cyclic or not max-one.

Unfortunately, the query (6.2) is cyclic and not max-one, so it does
not give new insights towards the minimal requirements. In contrast, the
following query is acyclic, not max-one and can generate arbitrary 2-DNFs:

Q′′ : −R(A,B), S(C,D,E, F), T (G,H), C < A,D < B,E < G,H < F.

To proof that φQ′′ can be an arbitrary 2-DNF, we use the following database:
The variables xi in R and yi in T are associated with data tuples (i,−i),
he variables in S are certain. To add a product xiyj to the query lineage,
we insert a data tuple (i − 0.1,−i − 0.1, j − 0.1,−j − 0.1) into S. (Figure
6.3). Out of all R-variables, this tuple will only be paired with xi, because
(i,−i, xi) is the only tuple from R with i− 0.1 < R.A and −i− 0.1 < R.B.
For every other integer i′ 6= i we have either i − 0.1 > i′ (for i′ < i) or
−i− 0.1 > −i′ (for i′ > i). The same reasoning holds the variables from T .

Proposition 6.6. The query Q′′ can create arbitrary 2-DNFs over tuple-
independent databases.

Q′′ is related to the 2-Edge Query in Section 5.3 in the same way Q′

is related to the Single-Guard Query. Both of them can be answered in

60

R A B E
1 -1 x1

2 -2 x2

3 -3 x3
...

...

S C D E F E
0.9 -1.1 1.9 -2.1 z1
0.9 -1.1 2.9 -3.1 z2
1.9 -2.1 0.9 -1.1 z3
1.9 -2.1 1.9 -2.1 z4
2.9 -3.1 2.9 -3.1 z5
...

...
...

...
...

T B C E
1 -1 y1

2 -2 y2

3 -3 y3
...

...

R

S

T

BA

DC F

H

E

G

φQ′′(D) = x1y2 + x1y3 + x2y1 + x2y2 + x3y3

Figure 6.3: Example of an acyclic #P-complete query with inequalities

61

PTIME on there own, but not if two are connected within one relation. It
also follows that a combined version

Q′′′ : −R(A,B), S(C,D,E, F), T (G), C < A,D < B,E < G,G < F.

is in general #P-complete. In the next section we additionally show that
the 2-Edge Query strictly subsumes the Single-Guard Query in the sense
that every lineage generated by the latter can also be generated using the
former, but not the other way round (Theorem 7.13).

Interestingly, no hard max-one query is currently known. Furthermore,
the discussion in Section 5.4 implies that every query with a combination of
cofactor-separability and sufficient inclusions of cofactor should be tractable.
Restricting the connections between subgoals to obey the max-one property
should be enough to assure that all the necessary order are compatible. This
leads us to believe that all max-one queries are tractable:

Conjecture 6.7. All max-one queries without self-joins are tractable.

It must be stressed that this is just a conjecture, as the algorithms pre-
sented in Chapter 5 are not able to evaluate all max-one queries in PTIME
and the ideas of Section 5.4 have yet to be turned into provably correct
algorithms. Nonetheless, Conjecture 6.7 provides an interesting question for
further research.

As is for example proven by the tractability of the 2-Edge Query, the
converse of Conjecture 6.7 - i.e. that all not max-one queries are intractable
- is not true. Thus, concerning hard queries we can state:

Proposition 6.8. Let Q be an intractable conjunctive query with inequal-
ities and without self-joins over tuple-independent probabilistic databases.
Then Q is cyclic, not max-one or both.

Conjecture 6.9. Let Q be an intractable conjunctive query with inequalities
and without self-joins over tuple-independent probabilistic databases. Then
Q is not max-one.

For comparison, we mention an alternative approach towards characterizing
hard queries, which is based on guards and equivalence classes of query
variables [16]. A pair X,Y of variables guards another variable Z if the
interval condition X < Z < Y holds and X,Y appear in the same subgoal
or are connected in a structurally equivalent way. The equivalence class of
a query variable is then given by the query variable itself, its guards and all
variables sharing guards with it.

It is now possible to extend the concept of hierarchical queries, which is
used in the concept of equality queries [6], to inequalities queries: A query
is hierarchical if the sets of subgoals of any two equivalence classes of its
query variables are either disjoint or one is included in the other [16]. Non-
hierarchical queries can then be used to create arbitrary monotone 2-DNF,
which immediately gives

62

Proposition 6.10. [16] Non-hierarchical queries are #P-complete.

This approach does not capture the fact that queries with multiple 2-Edge
Queries can be #P-complete, as was shown above. A possible combination
of both techniques should include a more generalized concept of equivalence
classes, such that Proposition 6.10 includes such queries.

63

Chapter 7

Counting Vertex Covers in
Graphs

7.1 Introduction

In the last chapter we showed how the problem #SAT(monotone bipartite
2-DNF) of counting the number of satisfying assignments of monotone bi-
partite 2-DNFs - monotone multipartite k-DNFs with k = 2 - can be reduced
to query-evaluation on tuple-independent probabilistic databases. Counting
the number of satisfying assignments is an interesting problem in its own
right, but it is also related to important problems on graphs: Let p ∝ p′

denote that a problem p is polynomial-time reducible to a problem p′, i.e.
the answer of p can be computed from the answer of p′ in polynomial time.
If p ∝ p′ and p′ ∝ p we write p ' p′. Provan and Ball showed [21]

Theorem 7.1. [21]

#VC(general graphs) ∝ #VC(bipartite graphs)
∝ #SAT(monotone bipartite 2-DNF),

where #VC is the problem of counting the number of vertex covers on a
graph.

Definition 7.2 (Vertex Cover). Let G = (V,E) be an (undirected) graph.
S ⊆ V is a vertex cover of G if for each edge e ∈ E at least one of endpoints
of e is in S.

Counting vertex covers on general graphs is #P-complete [9]. Thus, Theo-
rem 7.1 proofs that #VC(bipartite grahps) and #SAT(monotone bipartite
2-DNF) are #P-complete as well [21]. This also implies that the reduc-
tions in Theorem 7.1 hold both ways, i.e. the problems are polynomial-time
equivalent (which we denote by ’'’).

The connection between bipartite graphs and #SAT is as follows [21]:
Given a bipartite graph G = (X,Y,E), create a monotone bipartite 2-CNF

64

Figure 7.1: Bipartite graph for Example 7.3

(conjunctive normal form) φ with random variables for X and Y and xi∨yj ∈
φ if and only if (xi, yj) is an edge in G. Then S ⊆ X ∪ Y is a vertex cover
of G exactly if the assignment σ : X ∪ Y → {0, 1} with σ(z) = 1⇔ z ∈ S is
in SAT(φ).

φ is a monotone bipartite 2-CNF, but we can easily create a related
monotone bipartite 2-DNF φ′, if we exchange conjunctions and disjunctions.
Then σ ∈ SAT(φ) if and only if ¬σ 6∈ SAT(φ′) (i.e. ¬σ is in the set NSAT(φ′)
of non-satisfying assignments of φ′). Since the number of all total truth
assignment of |X∪Y | Boolean variables is 2|X∪Y |, we can easily relate #SAT
and #NSAT.

From now on, let G(φ) denote the bipartite graph associated with a
monotone bipartite 2-DNF φ with variable sets X and Y . It is given by
G(φ) = (X,Y,E) with (xi, yj) ∈ E if and only if xiyj ∈ φ.

Example 7.3. The graph G(φ) for the 2-DNF

φ = x1y2 + x1y3 + x2y1 + x2y2 + x3y3

from Example 2.27 is shown in Figure 7.1.

Before we state our results about #VC on graph classes, we introduce an-
other kind of subsets of graph vertices that is closely related to vertex covers:

Definition 7.4 (Independent Set). Let G = (V,E) be an (undirected) graph.
S ⊆ V is an independent set of G, if no two vertices from S are connected
by an edge e ∈ E.

It is easy to see that S is an independent set if and only if V \ S is a vertex
cover. This implies that there is a bijective mapping between independent
sets and vertex covers and hence the corresponding counting problems are
equivalent. In conclusion, we get

Proposition 7.5.

#VC(general graphs) ' #VC(bipartite graphs)
' #SAT(monotone bipartite 2-DNF)

' #IS(general graphs) ' #IS(bipartite graphs).

65

Figure 7.2: Complexity of #VC for related graph and query classes

All these problems are in general #P-complete and so their is little hope
of finding a polynomial time algorithm to solve there unrestricted version.
Consequently, efforts have been made to find solutions for restricted sub-
problems. For example, #VC/#IS is known to be in linear time for chordal
graphs and interval graphs [13, 14]. In contrast, it has been shown to be
#P-hard even for very restricted graphs such as 3-regular bipartite planar
graphs [32].

Common approaches to exact model counting for SAT make use of
bounded structural graph parameters such as (hyper)tree-width, clique-
width or existence of “backdoors” [10]. To our knowledge, none of these
existing restrictions are applicable to our DNFs.

7.2 Main Results

Based on our results from the earlier chapter we are now able to proof
tractability for bipartite chain and convex bipartite graphs, which to the
knowledge of the author has not been shown before:

Definition 7.6 (Bipartite Chain Graph). [18] A bipartite graph G = (X,Y,E)
is a bipartite chain graph if and only if for both X and Y the neighbourhoods
of the nodes can be ordered linearly w.r.t. inclusion (subset or equal).

66

Theorem 7.7. #VC is tractable for bipartite chain graphs.

Definition 7.8 (Convex Bipartite Graph). [20] A bipartite graph G =
(X,Y,E) is convex if there is an ordering < of X or Y such that the neigh-
bourhoods of the vertices in the other set are consecutive in the ordering <
(i.e. they are intervals).

Theorem 7.9. #VC is tractable for convex bipartite graphs.

These theorems are based on the fact that these classes of bipartite graphs
are captured by the lineage generated by tractable queries. The overall
situation is visualized in Figure 7.2. Note that Theorem 7.9 already implies
Theorem 7.7. We have stated them separately, because they are related to
different queries.

Lemma 7.10. Let Q : −R(A), S(B), A < B without self-joins. Then

{G(φQ(D))|D t-i prob database} = {G|G bipartite chain graph} (7.1)

Lemma 7.11. Let Q : −R(A,B), S(C), A < C,C < B without self-joins.
Then

{G(φQ(D))|D t-i prob database} = {G|G convex bipartite graph} (7.2)

Definition 7.12 (Chordal Bipartite Graph). [19] A bipartite graph is a
chordal bipartite graph if it has no chordles cycle of length ≥ 6.

Theorem 7.13. Let Q : −R(A,B), S(C,D), A < C,B < D without self-
joins. Then

{G|G convex bipartite graph} ⊂ {G(φQ(D))|D t-i prob database} (7.3)

and

{G(φQ(D))|D t-i prob database} ⊂ {G|G chordal bipartite graph} (7.4)

Here, ”t-i prob” stands for ”tuple-independent probabilistic”. The lemmas
are proven in the Appendix.

It follows from the proofs of Lemma 7.10 and 7.11 that for any bipartite
chain or convex bipartite graph we can create a tuple-independent proba-
bilistic database which generates an equivalent query lineage. Even simpler,
we can find the necessary order for BDDLinIncl/BDDCofSep by sorting
the variables according to the neighbourhoods. This concludes the proof of
Theorems 7.7 and 7.9.

67

Chapter 8

Conclusion

8.1 Summary

This project was concerned with exploring the questions of tractability
for Boolean conjunctive queries with inequalities (<) on tuple-independent
probabilistic databases. We reformulated the query evaluation problem as a
BDD compilation problem for Boolean formulas in disjunctive normal form
and identified two important classes of such formulas - linear-inclusion k-
DNFs and cofactor-separable 2-DNFs. Using their structural properties, we
derived polynomial-time algorithms for these classes using in particular a
new technique which keeps track of a polynomial number of parallel paths
in a BDD.

By showing that the k-DNF classes include the query lineages of acyclic
max-one queries and important cyclic and non max-one queries without
self-joins, we proved tractability for these queries via the efficient BDD
compilation algorithms. This considerably extends what is known about
tractability of queries with inequalities and in particular subsumes all ear-
lier results. The results also hold for smaller-than-or-equal inequalities (≤).
For the case of hard queries, we showed #P-completness for a new class of
queries and relate our work to previous approaches.

Finally, we applied the BDD compilation algorithms to counting prob-
lems on graphs. We proved that counting vertex covers and counting inde-
pendent sets is in PTIME for convex bipartite and bipartite chain graphs,
which has to our best knowledge not been shown before. This also demon-
strates how our results about BDD construction for k-DNFs can be used
outside the field of database theory.

8.2 Open Problems and Future Work

Even though we were able to considerably extend previous tractability re-
sults as well as show hardness for new kinds of queries, there are still a lot

68

of open questions. For example, there are many queries between acyclic
max-one queries and currently known hard ones for which the complexity is
unclear. A particular interesting starting point for further research would
be the question of whether all max-one queries are in fact tractable (Con-
jecture 6.7). This could possible be investigated base on the ideas present in
Section 5.4 about possible extensions of our BDD compilation algorithms.

Further interesting questions include the case of self-joins and combina-
tions of equality and inequality queries. It would be particularly helpful to
find a more unified framework, possibly based on extensions of the definition
of hierarchical queries and equivalence classes of query variables. Connecting
these ideas with the ordering and inclusion properties for our k-DNF classes
could lead to new algorithms as well as a better understanding of what is
structurally necessary to make a query hard. Ultimately, one should aim at
a complete tractability classification of conjunctive queries with inequalities.

69

Chapter 9

Appendix

Lemma 3.16. The graph Bφ returned by BDDCofSep(φ, πX) is a BDD.

Proof. Due to the way Bφ is constructed, each total truth assignment σ :
V ars(φ)→ {0, 1} belongs to exactly one path in Bφ and there are no loose
edges and circles, which implies that every path ends in either the 0-terminal
or the 1-terminal node. The x1-node is the only node with no in-going edges,
i.e. Bφ is rooted in x1.

We now need to show that along any path in Bφ every Boolean variable
is set at most once. This is clearly true for the variables in X. For the
Y -variables, assume the contrary, i.e. a yk variable is set along a path for
an assignment σ at a level i, even though it was set before at a level i′ < i.
Mathematically, ∃1 ≤ k ≤ |Y |, 1 ≤ i′ < i ≤ |X|, 1 ≤ t, t′ :

yk ∈ f(x′i) \ st′ , f(xi) \ st (3.1)

and ∃σ : V ars(φ[1, i])→ {0, 1} :

σ(xi′) = σ(xi) = 1, (3.2)
σ(φ[1, i− 1]) = 0, (3.3)
f(xi′) \ f(σ, i′ − 1) 6= ∅, f(xi) \ f(σ, i− 1) 6= ∅ (3.4)

where st, st′ are the subsets of already falsified variables along σ at level
i, i′. Since the subset si′ created at level i′ contains yk, but yk 6∈ st it holds
si′ 6= st and there has to exist at least one level i′′ between i′ and i at which
yk is dropped from the subset of already falsified variables. Mathematically,
∃i′ < i′′ < i with

σ(xi′′) = 1, f(xi′′) \ f(σ, i′′ − 1) 6= ∅ (3.5)

and

yk 6∈ f(xi′′). (3.6)

70

Let now σ = σ|V ars(φ[1,i′]) and σ′ : V ars(φ[1, i′′]) → {0, 1} with σ′(x1) =
. . . = σ′(xi′′−1) = 0, σ′(x′′i) = 1. Then σ, σ′ fulfill the requirements in 3.12
at level i′′, but

xi · yj 6∈ σ(φ[i′′ + 1, |X|]), xi · yj ∈ σ(φ[i′′ + 1, |X|) (3.7)
⇒ σ(φ[i′′ + 1, |X|]) 6= σ(φ[i′′ + 1, |X|]). (3.8)

This contradicts the condition in equation (3.16). Thus, no variable is set
twice and Bφ is a valid BDD.

Lemma 5.2. Let Q be an acyclic max-one query without self-joins. Then
φQ is a linear-inclusion k-DNF.

Proof. W.l.o.g. Q can be written as

Q : −R1

(
X1

1 , ..., X
1
N1
, X

1
)
, ..., Rk

(
Xk

1 , ..., X
k
Nk
, X

k
)
,Λ,Λ′ (5.9)

where X1, ..., Xk are the lists of query variables not participating in in-
equalities between relations and Λ and Λ′ are conjunctions of inequalities
over the query variables between and within relations, resp. Only the first
column of each relation participates in out-going inequalities.
The relations Ri, 1 ≤ i ≤ N , can be written as

Ri =
{

(vi1,1, ..., v
i
1,Ni , v1, x

i
1), ..., (vini,1, ..., v

i
ni,Ni , vni , x

i
ni)
}

(5.10)

where the vij,k and vij are the data entries of column Xi
k and columns Xi,

resp., and the xij are the corresponding random variables in column Ri.E.

We will subsequently drop the Xi and vij variables as well as Λ′, because
they are trivially dealt with during pre-processing. (Figure 4, step 1)

Since φQ is a query lineage from a query without self-joins, it is a mul-
tipartite k-DNF. (Proposition 2.20) To show that φQ is a linear-inclusion
k-DNF, we first choose a topological order of the subgoals in the query
graph, i.e. a order where a path from a subgoals Ri to a subgoals Rj im-
plies that Ri comes before Rj . This also determines the literal order in the
conjunctions in φQ.

Such an order is always possible and can easily be found, because Q is
acyclic. We will write Ri → Rj to denote that a subgoals Ri occurs before
an subgoals Rj . W.l.o.g. we can rename the subgoals such that the order is
R1 → . . .→ Rk.

For each of the relations Ri, we order its random variables based on a
ascending order of the data values in the first column. W.l.o.g. we rename
the tuples such that the resulting order is πi = 1, 2, . . . , ni.

Let now 1 ≤ l ≤ k and 1 ≤ i1 ≤ n1, ..., 1 ≤ il−1 ≤ nl−1 be arbitrary.
We can partition Λ into two conjunctions Λ1 and Λ2 of inequalities which
contain and do not contain query variables from Rl, resp.

71

Let 1 ≤ il ≤ nl, ..., 1 ≤ ik ≤ nk be arbitrary. If the product x1
i1
· ... · xli ·

... · xkik is in the lineage - i.e. (i1, ..., il, ..., ik) ∈ I - then the corresponding
column values fullfill all inequalities. Thus, both Λ1 and Λ2 are satisfied
over the values (v1

i1,1
, . . . , v1

i1,N1
), . . . , (vlil,1, . . . , v

l
il,Nl

), . . . , (vkik,1, . . . , v
k
ik,Nk

).
Consider now an arbitrary 1 ≤ i′l < i and f(x1

i1
. . . xl−1

il−1
xli′l

) 6= ∅. Since

the values for all columns other than X l are not changed, Λ2 is fulfilled over
(v1
i1,1
, . . . , v1

i1,N1
), . . . , (vli′l,1

, . . . , vli′l,Nl
), . . . , (vkik , . . . , v

k
ik,Nk

).
Because of the topological order and the max-one property, the out-going

inequalities from relation Rl in Λ1 are all from column 1. Therefore, all
inequalities in Λ1 are out-going inequalities from X l

1 or in-going inequalities
from relations with index 1 ≤ l′ < l, i.e. of the form X l′

m′ < X l
m (1 ≤ m ≤ nl,

1 ≤ m′ ≤ nl′).
If f(x1

i1
. . . xK−1

iK−1
xKi′l

) 6= 0 then all in-going inequalities of Λ1 are fulfilled

over the the values (v1
i1,1
, . . . , v1

i1,N1
), . . . , (vli′l,1

, . . . , vli′l,Nl
). Furthermore,

vli′l,1
< vlil,1 < vl

′
il′ ,m

′∀l′ ≥ l, 1 ≤ m′ ≤ Nl′ . (5.11)

Thus, all out-going inequalities from Λ1 are also satisfied. Since il and i′l
were arbitrary it follows

f(x1
i1 . . . x

K−1
iK−1

xKil) ⊆ f(x1
i1 . . . x

K−1
iK−1

xKi′l
) (5.12)

for arbitrary 1 ≤ l ≤ k, 1 ≤ i′l < il ≤ nl and 1 ≤ i1 ≤ n1, ..., 1 ≤ il−1 ≤ nl−1

for which f(x1
i1
. . . xl−1

il−1
xli′l

) 6= 0. Thus, φQ is a linear-inclusion k-DNF.

Lemma 5.5. Let Q be the Single-Guard Query without self-joins. Then φQ
is a cofactor-separable 2-DNF.

Proof. As explained above we first sort relations R ascendingly and rename
the variables accordingly. This allows to use the trivial orders πR = π1. For
simplicity of notation we also assume that S is sorted ascendingly.

Let now σ, σ′ be partial truth assignment which fulfill the properties
(3.13) to (3.15) in Definition 3.12 for a level 1 ≤ i ≤ |X|. We have to show
that

σ(φ[i+ 1, n]) = σ′(φ[i+ 1, n]). (5.13)

Assume the contrary, i.e.

σ(φ[i+1, n]) = φ[i+1, n]\f(σ, i) 6= φ[i+1, n]\f(σ′, i) = σ′(φ[i+1, n]) (5.14)

which is equivalent to

φ[i+ 1, n] ∩ f(σ, i) 6= φ[i+ 1, n] ∩ f(σ′, i). (5.15)

72

Then w.l.o.g. ∃1 ≤ j ≤ |Y | such that yj ∈ φ[i + 1, n], f(σ, i), yj 6∈ f(σ′, i).
We will soon show that

@yk ∈ V ars(f(σ, i) : ck > bi. (5.16)

Also ck 6∈ (ai, bi), since yj 6∈ f(σ′, i) ⊇ f(xi). Thus, cj < ai and cj 6∈
f(xk)∀k ≥ i. This is a contradiction to cj ∈ φ[i+ 1, n].

To prove (5.16), assume that such a yk existed. Then ∃k′ < i such that
σ(xk′) = 1, yk ∈ f(xk′), which implies ak′ < ck < bk′ . The order on relation
R assures ak′ ≤ ai. Also, ai < bi, because otherwise xi would have an empty
cofactor and thus be irrelevant. This gives

ak′ ≤ ai < bi < ck < bk′

⇒ f(xk′) ⊇ f(xi)
⇒ f(σ, i− 1) ⊇ f(xk′) ⊇ f(xi)
⇒ f(xi) \ f(σ, i− 1) = ∅,

which contradicts equation (3.15).

Lemma 5.8. Let Q be the 2-Edge Query without self-joins. Then φQ is a
cofactor-separable 2-DNF.

Proof. As in the proof of Lemma 5.5 we assume that R is sorted ascendingly
first on A and then on B. Let 1 ≤ i ≤ |X| and σ, σ′ : V ars(φ[1, i]) →
{0, 1} be partial truth assignments that fulfill properties (3.13) to (3.15) in
Definition 3.12 for level i. Assume that

φ[i+ 1, |X|] ∩ f(σ, i) 6= φ[i+ 1, |X|] ∩ f(σ′, i). (5.17)

W.l.o.g. this again implies ∃1 ≤ j ≤ |Y | such that yj ∈ φ[i+ 1, |X|], f(σ, i),
yj 6∈ f(σ′, i), f(xi). Then ∃j′ ≥ i + 1 : yj ∈ f(xj′). Because of the order
on R we have either ai < aj′ or ai = aj′ ∧ bi < bj′ . The latter would
imply f(xi) ⊇ f(x′j) which contradicts yj 6∈ f(xi). Thus ai < aj′ < cj and
bj′ < dj < bi has to hold.

Since yj ∈ f(σ, i) there exists an m < i such that yj ∈ f(xm) and
σ(xm) = 1. This leads to

am < ai < aj′ < cj , bm < dj and bj′ < dj < bi (5.18)

which implies

am < ai, bm < bi ⇒ f(xm) ⊇ f(xi). (5.19)

This contradicts f(xi)\f(σ, i) 6= ∅, because σ(xm) = 1 gives f(σ, i) ⊇ f(xm)
and thus f(xi) \ f(σ, i) ⊆ f(xi) \ f(xm) = ∅.

73

Lemma 7.10. Let Q : −R(A), S(B), A < B without self-joins. Then

{G(φQ(D))|D t-i prob database} = {G|G bipartite chain graph} (7.20)

Proof.
”⊆”: Enumerating the variables inR and S ascendingly implies thatN(x1) ⊇
N(x2) ⊇ . . . and N(y1) ⊆ N(y2) ⊆ Thus, G(φQ(D)) is a bipartite chain
graph.
”⊇”: Let G = (X,Y,E) be a bipartite chain graph. Then there exists an
enumeration for X and Y such that N(x1) ⊇ N(x2) ⊇ . . . and N(y1) ⊇
N(y2) ⊇ Now create a database D with relations R(A,E) and S(B,E)
according to the following scheme: For each xi ∈ X add a tuple (i, xi) to R.
For each yj ∈ Y add a tuple (k + 0.1, yj) to S, where k is the maximum i
such that yj ∈ N(xi).

For arbitrary i, j, the product xiyj is in φQ(D) if and only if i < k+0−1 =
maxi(yj ∈ N(xi)) + 0.1. Thus, xiyj ∈ φQ(D) if and only if ∃k ≥ i such that
yj ∈ N(xk). Because of N(x1) ⊇ N(x2) ⊇ . . . this implies that xiyj ∈ φQ
if and only if yj ∈ N(xi). Thus, an edge (i, j) is in G(φQ(D)) if and only if
(i, j) is in E.

Lemma 7.11. Let Q : −R(A,B), S(C), A < C,C < B without self-joins.
Then

{G(φQ(D))|D t-i prob database} = {G|G convex bipartite graph} (7.21)

Proof.
”⊆”: A variable xi from a tuple (ai, bi, xi) is paired with a variable yj from
a tuple (cj , yj) if and only if ai < cj < bi. Thus, if we enumerate the
Y -variables ascendingly, the X-neighborhoods are sets of consecutive yj ’s
(”intervals”).
”⊇”: W.l.o.g. let Y be the variable set for which an order exists such
that the N(xi) are sets of consecutive yj ’s. Then for each xi there exist
1 ≤ si ≤ ti ≤ |Y | such that N(xi) = {ysi , . . . , yti}. Now create a database
D with relations R(A,B,E) and S(C,E) according to the following scheme:
For each xi ∈ X add a tuple (si − 0.1, ti + 0.1, xi) to R. For each yj ∈ Y
add a tuple (j, yj) to S. Then xiyj ∈ φQ(D) if and only if yj ∈ N(xi).

Theorem 7.13. Let Q : −R(A,B), S(C,D), A < C,B < D without self-
joins. Then

{G|G convex bipartite graph} ⊂ {G(φQ(D))|D t-i prob database} (7.22)

and

{G(φQ(D))|D t-i prob database} ⊂ {G|G chordal bipartite graph} (7.23)

74

R A B E
1 3 x1

2 2 x2

3 1 x3

S C D E
1.1 3.1 y1

2.1 3.1 y2

2.1 2.1 y3

3.1 2.1 y4

3.1 1.1 y5

3.1 3.1 y6

Figure 7.1: Tuple-independent probabilistic database D to show ”convex
bipartite ⊂ 2-Edge Query”

Proof.
”convex bipartite ⊆ 2-Edge Query”: We already now from Lemma 7.11 that
for each convex bipartite graph there exists a tuple-independent database
D with relations R(A,B,E) and S(C,E) such that the Single-Guard Query
QSG on this database creates an equivalent query lineage. Create a database
D′ with relations R′(A,B,E) and S′(C,D,E) according to the following
scheme: For each tuple (ai, bi, xi) in R add a tuple (ai,−bi, xi) to R′ and for
each tuple (cj , yj) in S add a tuple (cj ,−cj , yj) to S′. Now a product xiyj
is in φQ(D′) if and only if

ai < cj ∧ −bi < −cj
ai < cj ∧ bi > cj

⇔ ai < cj < bi

⇔ xiyj ∈ φQSG(D).

”convex bipartite ⊂ 2-Edge Query”: Consider the database D in Figure 7.1.
The query lineage is

φQ(D) = x1(y1 + y2 + y6) + x2(y2 + y3 + y4 + y6) + x3(y4 + y5 + y6).

We now show by contradiction that the yj ’s cannot be ordered in a way
such that all N(xi), 1 ≤ i ≤, are intervals: Assume the contrary. Since
intersections of intervals are intervals, N(x1) ∩ N(x2) = {y2, y6}, N(x1) ∩
N(x3) = {y6} and N(x1) ∩ N(x2) = {y4, y6} have to be intervals. Thus,
y6 has to be adjacent to y2 on the one side and y4 on the other. W.l.o.g.
y2 < y6 < y4.

From N(x1) and N(x3) we get y1 < y2 < y6 < y4 < y5. Now N(x2)
implies that y3 has to be adjacent to y2, y6 or y4, which is not possible.
Hence, G(φQ(D)) is not a convex bipartite graph.
”2-Edge Query ⊆ chordal bipartite”: Chordal bipartite graphs are bipartite
and weakly chordal. G(φQ(D)) is by definition bipartite, which also implies
that it has no cycle of odd length. Thus we only have to show that G(φQ(D))
has no chordless cylce C2n with n ≥ 3.

75

a. b.

Figure 7.2: Chordless cycle C2n (a.) and chordal bipartite graph (b.)

Assume that there exists such a chordless cycle C2n as shown in Figure
7.2.a. We show that along each direction one of the values A and B has to
increase monotonically and the other has to decrease monotonically. This
leads to a contradiction when the circle is close.

Since x1 not connected to y2 but x2 is, either a1 > a2 or b1 > b2. Due
to symmetry we can w.l.o.g. assume that the latter is true. Then a1 < a2,
because otherwise N(x1) ⊇ N(x2), which is not true.

With similar reasoning, either a2 > a3∧ b2 < b3 (2a) or a2 < a3∧ b2 > b3
(2b). Assume that (2a) is true. Then c1 > a2 > a1, a3 and b3 > d1 > b2 > b1.
Also, x2 is connected to y2 and y3, which gives c2 > a2 and d2 > b3. In
conclusion, c2 > a2 > a1 and d2 > b3 > b1 and x1 has to be connected to
y2, which is a contradiction. Thus, (2b) has to be true.

We have a1 < a2 < a3 and b1 > b2 > b3. By inductively repeating the
argument we get

a1 < a2 < . . . < an and b1 > b2 > . . . > bn. (7.24)

But x1 and xn are connected to yn, which means cn > a1, an and dn > b1bn.
Together with (7.24) this implies

ai < an < cn, bi < b1 < dn ∀1 ≤ i ≤ n

⇒ yn ∈ N(xi) ∀1 ≤ i ≤ n,

which is a contradiction to C2n being chordless.
”2-Edge Query ⊂ chordal bipartite”: Consider the chordal bipartite graph
in Figure 7.2.b. The equivalent 2-DNF is

φ = x1(y1+y2)+x2(y4+y5)+x3(y2+y3+y4)+x4(y1+y2+y4+y5). (7.25)

76

a. b. c.

Figure 7.3: Counter-example to show ”2-Edge Query ⊂ chordal bipartite”

We again use proof by contradiction to show that φ cannot be generated
by a 2-Edge Query: Assume there exists a tuple-independent probabilistic
database D such that φQ(D) = φ. Due to symmetry we can w.l.o.g. assume
that V ars(R) = X and V ars(S) = Y . Since the neighborhoods of x1 and x2

are no included in each other we have a1 < a2∧ b1 > b2 or a1 > a2∧ b1 < b2.
Again due to symmetry we w.l.o.g. assume the the former is true. (Figure
7.3.a)

We have x2y4, x3y4 ∈ φ, x1y4 6∈ φ. This implies b3 < d4 ≤ b1. Similarly,
x1y2, x3y2 ∈ φ, x2y2 6∈ φ implies a3 < c2 ≤ a2. Combined with this, x3y3 ∈
φ, x1y3, x2y3 6∈ φ gives a1 < a3 < a2 and b2 < b3 < b1. (Figure 7.3.b)

Finally, x3y3, x4y1, x4y5 ∈ φ, x3y1, x3y5 6∈ φ. This implies

a4 < c1 ≤ a4 < c3 and b4 < d5 ≤ b1 < b3 (7.26)

and thus x4y3 ∈ φ, which is a contradiction. (Figure 7.3.c)

77

Bibliography

[1] L. Antova, T. Jansen, C. Koch, and D. Olteanu. Fast and simple rela-
tional processing of uncertain data. In Proc. ICDE, 2008.

[2] L. Antova, T. Jansen, C. Koch, and D. Olteanu. Fast and simple re-
lational processing of uncertain data. In Proc. ICDE, pages 983–992,
2008.

[3] O. Benjelloun, A. D. Sarma, A. Halevy, and J. Widom. Uldbs:
Databases with uncertainty and lineage. In Proc. VLDB, 2006.

[4] J. Boulos, N. Dalvi, B. Mandhani, S. Mathur, C. Re, and D. Suciu.
Mystiq: A system for finding more answers by using probabilities. In
SIGMOD Conference, 2005.

[5] R. E. Bryant. Graph-based algorithms for boolean function manipula-
tion. IEEE Transactions on Computers, 35:677–691, 1986.

[6] N. Dalvi and D. Suciu. The dichotomy of conjunctive queries on prob-
abilistic structures. In PODS, pages 293–302, 2007.

[7] N. Dalvi and D. Suciu. Efficient query evaluationon probabilistic
databases. VLDB Journal, 16(4):523–544, 2007.

[8] N. Dalvi and D. Suciu. Management of probabilistic data: Foundations
and challenges. In In Proc. PODS, 2007.

[9] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

[10] C. P. Gomes, A. Sabharwal, and B. Selman. Handbook of Satisfiability,
Chapter 20. IOS Press, 2008.

[11] J. Huang, L. Antova, C. Koch, and D. Olteanu. Maybms: A proba-
bilistic database management system. In Proc. SIGMOD, 2009.

[12] R. Jampani, M. Wu F. Xu, L. L. Perez, C. M. Jermaine, and P. J. Haas.
Mcdb: a monte carlo approach to managing uncertain data. In Proc.
SIGMOD, pages 687–700, 2008.

78

[13] M.-S. Lin. Fast and simple algorithms to count the number of vertex
covers in an interval graph. Information Processing Letters, 102:143–
146, 2007.

[14] Y. Okamoto, T. Uno, and R. Uehara. Linear-time counting algorithms
for independent sets in chordal graphs. In Proc. of 31st Int. Work-
shop on Graph-Theoretic Concepts in Computer Science, pages 433–
444, 2005.

[15] D. Olteanu and J. Huang. Using obdds for efficient query evaluation
on probabilistic databases. In Proc. of 2nd Int. Conf. on Scalable Un-
certainty Management (SUM),, Oct 2008.

[16] D. Olteanu and J. Huang. Secondary-storage confidence computation
for conjunctive queries with inequalities. In ACM SIGMOD 2009, 2009.

[17] D. Olteanu, J. Huang, and C. Koch. Sprout: Lazy vs. eager query
plans for tuple-independent probabilistic databases. In Proc. ICDE,
pages 640–651, 2009.

[18] University Rostock Information System on Graph
Class Inclusions Project. Graphclass: bipartite chain.
http://wwwteo.informatik.uni-rostock.de/isgci/classes/gc 442.html.

[19] University Rostock Information System on Graph Class
Inclusions Project. Graphclass: chordal bipartite.
http://wwwteo.informatik.uni-rostock.de/isgci/classes/gc 79.html.

[20] University Rostock Information System on Graph Class Inclu-
sions Project. Graphclass: convex. http://wwwteo.informatik.uni-
rostock.de/isgci/classes/gc 67.html.

[21] S. J. Provan and M. O. Ball. The complexity of counting cuts and of
computing the probability that a graph is connected. SIAM J. Comput.,
12(4):777–788, 1983.

[22] C. Re, N. Dalvi, and D. Suciu. Efficient top-k query evaluation on
probabilistic data. In Proc. ICDE, 2007.

[23] P. Sen and A. Deshpande. Representing and querying correlated tuples
in probabilistic databases. In Proc. ICDE, 2007.

[24] D. Sieling and I. Wegener. Reduction of obdds in linear time. Informa-
tion Processing Letters, 48(3):139–144, 1993.

[25] S. Singh, C. Mayfield, S. Mittal, S. Prabhakar, S. Hambrusch, and
R. Shah. Orion 2.0: Native support for uncertain data (demo). In
Proc. SIGMOD, 2008.

79

[26] M. Soliman, I. Ilyas, and K. Chang. Probabilistic top-k and ranking-
aggregate queries. ACM TODS, 33, 2008.

[27] S. Toda. On the computational power of pp and p. In Proceedings of
IEEE FOCS’89, pages 514–419, 1989.

[28] L. G. Valiant. The complexity of computing the permanent. Theoretical
Computer Science, 8(2):189–201, 1979.

[29] L. G. Valiant. The complexity of enumeration and reliability problems.
SIAM J. Comput., 8(3):419–421, 1979.

[30] D. Z. Wang, E. Michelakis, M. Garofalakis, and J. M. Hellerstein.
Bayesstore: managing large, uncertain data repositories with proba-
bilistic graphical models. In Proc. VLDB, 2008.

[31] J. Widom. Trio: A system for integrated management of data, accuracy,
and lineage. In Proc. Second Biennial Conference on Innovative Data
Systems Research (CIDR ’05), 2005.

[32] M. Xia and W. Zhao. #3-regular bipartite planar vertex cover is #p-
complete. In TAMC, pages 356–364, 2006.

80

