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Abstract

In this paper, we present our work on extending the
probabilistic model checking tool PRISM with Grid
computing capabilities. PRISM is a tool for the ver-
ification and analysis of large, probabilistic models, a
process which involves numerical solution techniques.
Like most verification tools, PRISM can be very re-
source intensive and will benefit greatly from paral-
lelisation efforts. Grid computing provides an invalu-
able means through which to invoke parallel numeri-
cal solution engines in PRISM, providing support for
job distribution, data transfer and task monitoring on
large-scale parallel and distributed computing envi-
ronments. We describe the middleware we are devel-
oping to integrate this functionality into PRISM and
illustrate its use on large model checking case study.

1 Introduction

The increasing dependence of society on computer
systems deployed in safety or business-critical do-
mains requires assurances of software correctness.
Formal verificationtechniques, such asmodel check-
ing, have proved very successful in this area. Model
checking involves the construction of a precise math-
ematical model of a real-life system, formal specifica-
tion of several required properties of this system, and
then an automated exhaustive analysis of the model in
order to verify that the specified properties are satisfied
by the model.

There are many examples of real-life systems for
which an accurate analysis must also take into ac-
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count stochasticaspects of the system’s behaviour.
These include systems that use randomisation, such
as communication protocols, as well as those that ex-
hibit uncertainty, for example computer networks and
manufacturing systems. In this domain,probabilistic
model checking[8] and, in particular, the tool PRISM
[5, 1] have proved very successful in discovering de-
sign flaws and investigating performance characteris-
tics. Like all formal verification techniques, however,
developing efficient implementations of these methods
is a major challenge.

The PRISM tool already incorporates sophisticated
symbolicimplementation techniques (using data struc-
tures based on binary decision diagrams) and is in the
process of being extended with parallelisation support.
These are used to handle the state space explosion
problem faced by all model checking technologies. By
applying the two approaches, PRISM has the poten-
tial to model and analyse very large real-life systems.
However, parallel numerical solution engines have not
yet been integrated into the PRISM tool and so man-
ual intervention is required. End users are required to
have certain knowledge and experience of the parallel
and distributed systems where parallel engines are run.
The procedure with manual intervention is tedious and
error-prone and hinders the procedure of using PRISM
in large and real-life systems. Here, we describe on-
going work to extend the range of real-life systems
to which probabilistic model checking can be applied
through the application of Grid computing.

The rest of this paper is organised as follows. Sec-
tion 2 gives a brief introduction to the PRISM proba-
bilistic model checking tool. Section 3 introduces the
Globus Toolkit used in this paper. Section 4 presents
the structure and details of extending PRISM with
Grid computing. We show some real-life case studies



with the middleware presented in Section 5. Section 6
concludes the paper.

2 Probabilistic model checking with PRISM

Probabilistic model checking [8] is a formal verifi-
cation technique for the analysis of systems which
exhibit stochastic behaviour. It has already proven
to be useful for studying a very wide range of sys-
tems. These include: real-time communication pro-
tocols, such as Bluetooth, IEEE 1394 FireWire and
Zeroconf; security protocols for anonymity, contract
signing and non-repudiation; dynamic power manage-
ment schemes; fault-tolerant architectures; computer
networks; and manufacturing systems. See e.g. [6, 5].

PRISM is an open source probabilistic model
checker written in Java and C/C++ being developed
at the University of Birmingham. Since its release in
2001, PRISM has been widely adopted for teaching
and research worldwide (see the website [1] for down-
loads, case studies and bibliography). It is designed
for the analysis of probabilistic systems and supports
discrete-time Markov chains (DTMCs), continuous-
time Markov chains (CTMCs) and Markov decision
processes (MDPs). The probabilistic models are spec-
ified using the PRISM language, a high-level system
description language from which models are automat-
ically constructed. PRISM then performs analysis of
a variety of properties of these models, as specified
by the user. A graphical user interface allows editing
of language descriptions, and facilitates automation of
the analysis and collation and visualisation of the re-
sults.

In order to perform model analysis, PRISM com-
bines graph-theoretic algorithms with numerical com-
putation, such as solution of linear equation systems.
As is typically the case with formal verification ap-
proaches, one of the main practical problems in this
area is the state space explosion problem: the fact
that models of real-life systems to grow prohibitively
large, and hence require excessive amounts of memory
and/or time to analyse. One way that PRISM coun-
teracts these effects is through the use of novelsym-
bolic implementation techniques. These employ so-
phisticated data structures based on binary decision
diagrams (BDDs) which allow compact storage and
manipulation of large probabilistic models by exploit-

ing high-level structure in the model. With these tech-
niques models as large as1020 states can be stored and
analysed.

Symbolic approaches, however, are unable to en-
sure efficient computation on their own. To this end,
we useparallel computingin combination with sym-
bolic approaches (see e.g. [10]), an approach cur-
rently being implemented in PRISM. This allows us
to distribute both storage requirements and computa-
tion time across several processes or computers run-
ning in parallel. Symbolic methods can be beneficial
in this setting because they can reduce the total amount
of communication required between parallel compo-
nents.

There are at least two ways to applyparallel com-
putingto PRISM. Firstly, end users can perform paral-
lel computing manually: using PRISM to generate and
export linear equation systems on a desktop machine;
then transferring the data to a parallel computing re-
source; starting a parallel numerical engine to solve the
linear equations; and, finally, transferring the results
back to their desktops and importing the results into
PRISM. Another approach is to develop middleware
to connect PRISM running on end users’ desktops and
parallel numerical engines running on remote parallel
computation resources. This approach will free end
users from learning the configurations of the remote
parallel systems and reduce the chances of user errors.
The whole procedure of transferring files and submit-
ting jobs is tedious and error-prone. Furthermore, the
middleware provides a platform for future parallel pro-
cessing for model checking. For example, numerical
results generated by parallel numerical engines can be
processed at remote parallel computing resources be-
fore being transferred back to end users’ desktops. The
aim of this work is to provide an efficient middleware
for end users to use parallel computation. The Globus
Toolkit [4] developed by the Globus Alliance provides
a good base for developing such middleware.

3 The Globus Toolkit

The Globus Toolkit [4] is an open source software
toolkit that supports Grids and Grid applications and
has been using to build Grid systems worldwide. It
provides essential services for solving basic issues dur-
ing the construction of such systems, including secu-
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rity, resource access and management, data movement
and management, and resource discovery.

The last two years have witnessed a dramatic
change in the Globus Toolkit, which has been chang-
ing to a service-oriented infrastructure based on Web
services. The Globus Toolkit 3 follows version 1.0
of the Open Grid Services Infrastructure specification
(OGSI) [9], released in July 2003. In Globus Toolkit
3, Grid services are stateful Web services. Globus
Toolkit 3 uses its own conventions and extensions of
WSDL (Web Service Definition Language). As the
Web services architecture evolves rapidly, OGSI has
become outdated. Now, the standard for Grid comput-
ing is the WS-Resource Framework [2].

The Globus Toolkit 4, GT4, is the latest release
from the Globus Alliance which follows the WS-
Resource Framework standard. It was released in
April 2005. GT4 has a service-oriented architecture
and follows the industry-standard Web services proto-
cols and mechanisms for service description, discov-
ery, access, authentication and authorisation.

GT4 provides a set of predefined services and com-
ponents for building service-oriented distributed sys-
tems. Among them, the following services and com-
ponents are essential for the key issues involved in
this paper: Grid Resource Allocation and Manage-
ment (GRAM) for job management, the Grid Security
Infrastructure (GSI) for security, GridFTP and GSI-
OpenSSH.

4 PRISM with Parallel Numerical Engines

Our aim is to use Grid computing to enhance the ca-
pabilities and performance of the PRISM tool. We
will first describe the structure of PRISM and how end
users currently invoke parallel numerical engine with
PRISM manually. Then, we will discuss what needs
to be done for the middleware which connects PRISM
and its parallel numerical engines.

To model check a system using PRISM, a num-
ber of tasks need to be executed. The whole proce-
dure is depicted in Figure 1. First, end users need to
construct a model specification of the system with the
high-level PRISM description language. They must
also specify properties of the system to be analysed.
These specifications are based on temporal logic: the
logic PCTL for properties of DTMCs and MDPs, and

the logic CSL for properties of CTMCs. This can ei-
ther be done using the PRISM GUI or independently.
Then, PRISM takes the model description, parses it
and constructs the corresponding probabilistic model.
This process includes determining the set of all reach-
able states of the model. Next, PRISM will generate
the matrices and initial solution vectors which define
the linear equation systems which must be solved to
analyse the model. Finally, it will use one of its three
numerical solution engine to solve the linear equation
system and, using the solution, return the results of the
model analysis to the user.

We are working on parallel and distributed numeri-
cal engines for PRISM. In our experience, the numer-
ical solution part is typically a bottleneck for model
checking. We have developed parallel and distributed
numerical engines for shared memory systems [7] and
message passing systems [10].

End users can presently use the parallel and dis-
tributed numerical engines manually with PRISM.
First, end users will input the model and properties for
verification. After that, PRISM will generate a ma-
trix and initial vectors for the corresponding numeri-
cal solution problem. The matrix is represented by a
BDD (binary decision diagram) based data structure.
The data of the matrix and vectors will be exported
into files by PRISM. The end user will then transfer
the files to the remote parallel computing resources
and invoke a parallel numerical engine to read in the
files and solve the linear equation system. After the
equation is solved, a file contained the solution vector
will be generated by the numerical engine. The user
will transfer the file back to the desktop and import it
back to PRISM. Finally, PRISM can use the solution
to present the results to the user.

The above usage of the parallel numerical engine
with PRISM has several drawbacks. First, end users
have to manage passwords on remote parallel re-
sources by themselves. When there are several re-
sources available, password management adds com-
plexity for end users. Second, users have to inter-
act with job scheduling systems on remote parallel
resources. There are many different kinds of job
scheduling systems and users have to spend time be-
coming familiar with these. When a new computa-
tion resource becomes available, end users may have
to learn a new job scheduling system. Then, users have
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Figure 1. The structure of PRISM

to manage the transfer of data and solution files them-
selves. This file management becomes even worse
when users want to handle several models at the same
time. Finally, users have to monitor the progress of
their jobs on remote resources. As job scheduling sys-
tems run on most resources, the finish time of a job
depends not only on the computation time of the job
but also on the load of the parallel resources and the
configuration of the job scheduling system on the re-
source.

4.1 The structure of Grid-enabled PRISM

We are developing middleware based on the Globus
Toolkit 4 (GT4) for the above procedure in order
to free end users from this tedious and error-prone
methodology. GT4 provides components based on
Web services and components that are compatible with
the Globus Toolkit 2. Our middleware uses the com-
ponents based on Web services.

The middleware has the following three main com-
ponents: job submission, data transfer and job moni-
toring. The structure of Grid-enabled PRISM is shown
in Figure 2. The structure shows how the three compo-
nents fit into PRISM. After the matrix and initial vec-
tors are created, PRISM exports the matrix and vec-
tors to files and uses the data transfer component to
put these files on remote systems. After that, the job
submission component will submit a job for the model
checking task to the remote system. Then, users can
monitor their jobs through the job monitoring compo-
nent. After the job has finished, the result vector will
be transferred back by the data transfer component.

All three components share the same the Grid Se-
curity Infrastructure (GSI) provided by the Globus

Toolkit. The GSI is based on Public Key Infrastructure
(PKI). It gives end users an effective single sign-on in
a Grid environment and allows users to access parallel
resources in a safe and secure manner.

4.2 Job Submission

The job submission component uses the Grid Re-
source Allocation and Management (GRAM) interface
to submit job to remote computing resources. This
interface is a key component in GT4 for monitoring,
managing, scheduling and coordinating remote com-
puting resources. GT4 provides two different GRAM
implementations: WS GRAM, based on Web services,
and Pre-WS GRAM, which is from GT2. At the
same time, GT4 supplies APIs for C, Java, and Python
clients. We use the C APIs for WS GRAM.

The job submission component works as follows.
Information about remote computing resources is
stored in a XML configuration file for PRISM. This in-
formation includes the end points of WS GRAM ser-
vices on remote computing resources, home directo-
ries of end users on remote computing resources, and
paths of parallel numerical engines. After PRISM cre-
ates the matrix and initial vectors, the job submission
component will take over and export the matrix and
initial vectors into several files. The file names, which
contain process id, model name, and time stamp, are
unique for each model checking session. In this way,
users can analyse several models simultaneously or
work on the same model with different parameters
without concerns about conflicts of file names. The
files will be transferred to the remote computing re-
source with the component which will be described
later. The job submission component will create a
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job description file in XML. This file includes details
of which parallel numerical engine will be used, how
long the program should be run for, where the data
files are, and where the result file should be written.
Then, the job submission component will invoke the
WS GRAM service on the remote computation re-
source with the XML file. The WS GRAM resource
on the remote site will parse the XML file and submit a
job to the local job scheduling system. With a success-
ful submission, a handle will be created and returned
to PRISM. The job monitoring component described
later can use this handle to monitor the status of the
job.

4.3 Data Transfer

Numerical solution in PRISM often requires huge
amounts of data. Matrices may be as large as several
hundred megabytes. The initial vectors and the result
vector may also require several gigabytes. Some ex-
amples will be given in Section 5. Efficient transfer of
such huge amounts of data is very important.

The Globus Toolkit 4 provides two tools for data
movement: GridFTP and SCP in GSI-OpenSSH. The
implementation of GridFTP in GT4 is based on the
protocol defined by the Global Grid Forum (Recom-
mendation GFD.020). GridFTP provides secure, ro-

bust, fast and efficient transfer of data. Grid sup-
ports parallel transferring and TCP buffer size control.
With the above techniques, GridFTP is extremely effi-
cient for transferring very large quantities of data. The
Globus Toolkit 4 also provides a set of web services
around GridFTP to enhance its functionality. These in-
clude: Reliable File Transfer (RFT), Replica Location
Service (RLS), and Data Replication Service (DRS).

GSI-OpenSSH is a new function provided in GT4.
It is an extension of OpenSSH with support for GSI au-
thentication and delegation. It provides a single sign-
on remote login to remote systems and file transfer ser-
vice without entering a password. GSI in GT4 pro-
vides a valid proxy credential for authentication for
GSI-OpenSSH. At the client side, SSH/SCP of GSI-
OpenSSH forwards proxy credentials to the remote
system on login. The remote systems can obtain the in-
formation and certificate of the user through the Grid-
mapfile on the systems.

For experiments on the Grid system in our e-
Science centre, we chose to use GSI-OpenSSH in our
middleware for PRISM. To use parallel numerical en-
gines with PRISM, we just need to transfer files be-
tween an end users’ desktop machine and remote par-
allel systems. The advanced features of GridFTP, such
as parallel transferring and Replica Location Service,
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Table 1. The Kanban Model’s parameters and statistics.
Model Size States Transitions Size (MB)

Matrix Vector
K=8 133,865,325 1,507,898,700 43 1,021
K=9 384,392,800 4,474,555,800 95 2,933
K=10 1,005,927,208 12,032,229,352 195 7,675

will not be used in our case. Furthermore, GridFTP
imposes too many requirements on firewalls. In our
environment, we have to deal with several firewalls.
On the other hand, GSI-OpenSSH provides efficient
and secure peer-to-peer file transfer functions. It uses
the standard TCP port for SSH which is enabled in
most firewalls. Based on our experience, the GSI-
OpenSSH is easier to configure and maintain than
GridFTP in an environment with many firewalls which
is a common case nowadays.

4.4 Job Monitoring

Job monitoring is an important function for PRISM to
let users know about the progress of their computation
tasks. The total time for running a model checking job
on a Grid is not easy to determine. First, the time at
which a model checking task will be started in a Grid
environment is not simple to determine: it is not the
case that we run jobs on a standalone desktop where
the job will start immediately. In a Grid environment,
the queueing time is determined by the job scheduling
system on the remote parallel system. Many factors
will affect the time, such as the number of jobs in the
queue and the priority of each job. We need to pro-
vide information to end users regarding approximately
how long their jobs will be in the queue and the current
load of the job scheduling system. Second, the execu-
tion time of the parallel numerical engine on a model
checking task is also difficult to determine. Usually,
the model checking tasks put on a Grid are too large
to solve on a single desktop. We have no idea how
much time is required to solve them on a standalone
machine. Furthermore, the configuration of a remote
parallel machine usually is quite different from a stan-
dalone desktop machine. The times required on a stan-
dalone machine gives little clue to the times required
on a parallel computing resources.

Job monitoring give users information about the
progress of their jobs at different stages. Such in-
formation will allow users to make prompt decisions.
When users find that there are too many jobs in a queue
on a remote system, they may switch to another queue
or system. Users can check the convergence rate of
their jobs. If they find that the jobs cannot finish within
the allocated time slot, they can stop the job or request
more time from the system.

At this moment, we use the default job monitoring
function from the WS-GRAM services. It supports
querying of the status of jobs and monitoring of the
output and error streams of running jobs. We plan to
create our own job monitoring Grid service which pro-
vides more detailed information about parallel numer-
ical engines.

4.5 Middleware Usage

When using the PRISM Grid middleware, the first step
for end users is to authenticate themselves with the
Grid Security Infrastructure (GSI). To use GSI, end
users must have valid GSI certificates. The certifi-
cates should be accepted by parallel resources where
end users want to use. To sign onto the Grid and use
remote resources, users need to use the “grid-proxy-
init” command to create valid proxies of certificates.
As described before, the information about available
remote resources and their endpoints has been stored
in a XML configuration file. Now, end users will use
PRISM the same way as they use a standalone version.
All tasks, such as authentication, file transfer and job
monitoring, will be handled by the middleware.

5 An Example of Usage of the Middleware

In this section, we demonstrate the usage of our mid-
dleware for invoking parallel numerical engines in
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PRISM. The case study we use is an analysis of a Kan-
ban flexible manufacturing system [3]. Information
about the probabilistic models we construct for this
case study is given in Table 1. We performed anal-
ysis of these models using our PRISM Grid middle-
ware on the Midlands e-science cluster. Table 2 pro-
vides performance results: the total computation time
for several different models executed on different num-
bers of parallel nodes. The time given includes both
model construction and numerical solution on the clus-
ter. The time for queueing on the remote system is not
included. Entries marked as “O/M” denote that there
was insufficient memory to complete the analysis.

Table 2. Total computation time (seconds) for
model checking of Kanban models.

Num. Kanban
nodes K=8 K=9 K=10

1 19,868 O/M O/M
4 8,666 38,451 O/M
8 4,698 18,120 O/M
16 2612 10,172 32,459
24 2,006 7,123 22,971

6 Conclusion

In this paper, we have described Grid-based mid-
dleware for integrating parallel computing resources
within the PRISM probabilistic model checking tool.
This provides an easy way for end users to use PRISM
together with parallel computing resources on a Grid,
free from the tasks of password management, file or-
ganisation and job monitoring. Users can easily switch
from one parallel resource to another without consid-
ering about the different job scheduling systems on
them.

The middleware provides a foundation for future
parallelisation work in PRISM. At this stage, PRISM
only uses parallel computing resources for numerical
solution. As models become larger and more complex,
so do the the result vectors and it becomes infeasible
to store and analyse the vectors on a single machine.
We plan to extend the middleware to handle the ma-
nipulation of result vectors.

The Globus Toolkit provides reliable and efficient
components for extending existing software with par-
allel and distributed computing capacity. We use the
latest release of GT4 which is well structured and doc-
umented. The run-time overhead of GT4 is very small
compared with the total time required by our problems.

In the future, we plan to develop new Grid services
for job monitoring and vector processing. The current
job monitoring function we use is a part of the WS
GRAM component GT4. It provides basic information
about the status of a process. We are aiming to create a
job monitoring service which provides detailed infor-
mation about our parallel numerical engines. We also
plan to develop a Grid service which processes the so-
lution vector on the parallel computing resources be-
fore sending results back to users’ desktop machines.
This will reduce the amount of data which is needed to
be send back.
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