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Abstract—Probabilistic model checking is a powerful tech-
nique for formally verifying quantitative properties of systems
that exhibit stochastic behaviour. Such systems are found
in many domains: probabilistic behaviour may arise, for
example, due to failures of unreliable components, commu-
nication across lossy media, or through the use of randomi-
sation in distributed protocols. In this paper, we give a
short overview of probabilistic model checking and of PRISM
(www.prismmodelchecker.org), currently the leading software
tool in this area. We then mention some of the limitations of
these techniques, describe some of the advances that are being
made to overcome them, and outline key challenges that remain
in this research area.

I. INTRODUCTION

Computerised systems can now be found in almost all
aspects of everyday life, from the complex control systems
found in today’s cars and planes, to communication and mul-
timedia devices such as mobile phones. There is a growing
need for rigorous, formal techniques to verify the correctness
of such systems. Furthermore, to ascertain the correctness of
complex devices operating in unknown environments, it also
becomes important to analyse quantitative properties such
as reliability, responsiveness or resource usage. For this, it
is essential to consider the inherently probabilistic nature
of real systems: components in an embedded device may
be prone to failure; or messages sent across communication
networks may get lost. Furthermore, wireless technologies
such as Bluetooth and ZigBee use randomisation to establish
networks of devices efficiently and reliably.

Probabilistic model checking is a formal verification
method for analysing quantitative properties of systems that
exhibit stochastic behaviour. The basic idea is to construct a
mathematical model that captures the system’s behaviour,
and then use it to analyse formally-specified quantitative
properties. These could include, for example, “the proba-
bility of an airbag failing to deploy within 0.02 seconds”,
“the expected time for a network protocol to send a packet”
or “the expected power consumption of a sensor network
during 1 hour of operation”. Considerable progress in the
field of probabilistic model checking has been made in
recent years. Tools such as PRISM [1] and MRMC [2] have
been developed and successfully applied to the quantitative

analysis of a diverse range of systems, from wireless com-
munication protocols to biological signalling pathways.

In this paper, we give an overview of probabilistic model
checking and of the software tool PRISM. We discuss some
of the research directions in which progress is being made
to advance these techniques and highlight some of the key
challenges that remain.

II. PROBABILISTIC MODEL CHECKING & PRISM
Probabilistic model checking is based on the construction

and analysis of a probabilistic model. It has been applied
to a variety of different types of model, typically variants
of Markov chains and Markov decision processes. We begin
this section by describing the process of probabilistic model
checking on the simplest of these models, discrete-time
Markov chains, and give a simple, illustrative example.
We then describe how this basic model can be extended
in several directions, including the addition of costs and
rewards, nondeterminism and continuous-time. Finally, we
give a brief overview of the PRISM model checker, which
provides support for all of these types of models.

A. Discrete-Time Markov Chains

Discrete-time Markov chains (DTMCs) model systems
whose behaviour at each point in time can be described by a
discrete probabilistic choice over several possible outcomes.
This might represent, for example, an electronic coin toss, as
used to implement a randomised algorithm, or transmission
of a message over an unreliable channel, which is known to
fail with a certain probability. Essentially, a DTMC can be
thought of as a labelled state-transition system in which each
transition is annotated with a probability value indicating the
likelihood of its occurrence.

Definition 1. A discrete-time Markov chain (DTMC) is a
tuple D = (S, s̄,P,AP , L) where:
• S is a set of states;
• s̄ ∈ S is an initial state;
• P : S × S → [0, 1] is a transition probability matrix

such that
∑

s′∈S P(s, s′) = 1 for all s ∈ S;
• AP is a set of atomic propositions;
• L : S → 2AP is a labelling function that assigns, to

each state s ∈ S, a set L(s) of atomic propositions.



For a state s ∈ S of a DTMC D, the probability of moving
to a state s′ ∈ S in one discrete step is given by P(s, s′).
Each state in D represents one possible configuration of
the system being modelled; each transition represents the
possibility to evolve from one configuration to another. A
path of D, which gives one possible evolution of the Markov
chain, is a sequence of states s0s1s2 . . . such that s0 = s̄
and P(si, si+1) > 0 for all i ≥ 0.

Classically, analysis of DTMCs often focusses on tran-
sient or steady-state behaviour, i.e. the probability of being
in each state of the chain at a particular instant in time or
in the long-run, respectively. Probabilistic model checking
adds to this the ability to reason about path-based properties,
which can be used to specify constraints on the probability
that certain desired behaviours are observed. Formally, this
is done by defining a probability space over the set of all
paths through the model [3]. Properties are then expressed
using temporal logic. For DTMCs, specifications can be
written in PCTL (Probabilistic Computation Tree Logic) [4],
a probabilistic extension of the temporal logic CTL.

Definition 2. The syntax of PCTL is given by:

Φ ::= true
∣∣ a
∣∣ ¬Φ

∣∣ Φ ∧ Φ
∣∣ Φ ∨ Φ

∣∣ P∼p[φ ]

φ ::= X Φ
∣∣ Φ U≤k Φ

∣∣ Φ U Φ

where a is an atomic proposition, ∼∈ {<,≤,≥, >}, p ∈
[0, 1] and k ∈ IN.

PCTL formulae are interpreted over the states of a DTMC.
We say that a state s ∈ S satisfies a PCTL formula Φ,
denoted s |= Φ, if it is true for s. The key operator in
PCTL is P∼p [φ ] which means that the probability of a
path formula φ being true in a state satisfies the bound ∼ p.
As path formulae (specified separately on the second line of
Definition 2), we allow X Φ (“Φ is satisfied in the next step”)
Φ1 U≤k Φ2 (“Φ2 is satisfied within k steps and Φ1 is true
until that point”) and Φ1 U Φ2 (“Φ2 is eventually satisfied
and Φ1 is true until then”). A simple example is:

P≤0.15 [ ¬failA U failB ]

which states that “the probability that component B fails
before component A is at most 0.15”. Here, failA and failB
are atomic propositions, used to label states of a DTMC in
which a property of interest (e.g. “component A has failed”)
is true. In practice, it is common to take a more quantitative
approach, instead writing formulae of the following kind:

P=? [ ¬failA U failB ]

which asks simply “what is the probability that component
B fails before component A?”.

Several other useful operators can be derived from the
basic PCTL syntax given above. This includes, for example,
F Φ ≡ true U Φ (“eventually Φ becomes true”), G Φ ≡
¬F¬Φ (“Φ is always true”) and time-bounded variants of
these. Examples of properties using these operators are:

1 − p
1 − p

1 − p
1 − p

q p p p

1 − q

p
s4s3 errs1 s2s

ok

Figure 1. Simple DTMC model of the Zeroconf protocol (N = 4).Figure 1. Simple DTMC model of the Zeroconf protocol.

• P=? [ F (failA ∨ failB) ] - “the probability that either
component A or B fails at some point”;

• P=? [ G≤3600 ¬(failA∨ failB) ] - “the probability of no
failures occurring in the first hour”.

Model checking a PTCL formula over a DTMC requires
a combination of graph-based algorithms and numerical so-
lution techniques. For the latter, the most common problems
(e.g. computing the probabilities that a U, F or G path
formula is satisfied), reduce to solving a system of linear
equations. For scalability reasons, in implementations of
probabilistic model checking this is usually done with iter-
ative numerical methods such as Gauss-Seidel, rather than
more classical direct methods such as Gaussian elimination.
A wider range of properties can be expressed by using more
expressive logics such as LTL or PCTL*, however model
checking becomes slightly more expensive.

B. Example: The Zeroconf Protocol

We now describe a small, but illustrative, example of a
system modelled as a DTMC. In fact, this is a simplified
version of a real probabilistic model checking case study:
the Zeroconf dynamic network configuration protocol [5].
Zeroconf provides a distributed, ‘plug-and-play’ solution for
the problem of configuring IP addresses in a small ad-
hoc network where address allocation is managed by the
individual devices connecting to the network.

The basic idea of the protocol is as follows. On connection
to the network, a device first randomly select an IP address
from a pool of 65024 available addresses, specifically al-
located for this purpose (169.254.1.0–169.254.254.255). It
then broadcasts four ARP (Address Resolution Protocol)
packets, called probes, to the other devices in the network.
These probes contain the chosen IP address and constitute
requests to start using this address. If another device is
already using the IP address, it should respond with an ARP
reply packet, asserting its claim to the address. In this case,
the original device will restart the protocol, i.e. randomly
select a new address and then send new probes.

Figure 1 shows a simple DTMC model of the protocol
operating. The state space S is {s̄, s1, s2, s3, s4, err , ok},
with s̄ representing the initial state in which a new device
is about to join a network. States are drawn as circles and
the transition probability matrix P by probability-labelled
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arrows between states. The two possible transitions from s̄
represent the possible outcomes when the device picks a
randomly selected IP address. Assuming that there are M
other devices already in the network, q = M/65024 gives
the probability that the address chosen is already in use.

In the case where the address is unique (with probability
1−q), we choose not to model the sending of probes, moving
directly to state ok . In the case where the joining devices
fails to select a unique address, the state si in the DTMC
models the ith probe being sent out. We assume that, with
probability p, a probe does not get a reply (due e.g. to a
message being lost or a receiving device being busy). If a
reply is received, the protocol is restarted and the DTMC
returns to state s̄; if all four probes fail to receive responses,
we move to state err , indicating that the joining device will
start using an invalid address.

We can capture some interesting properties of the Zero-
conf protocol using PCTL. Assuming that states err and ok
are labelled with atomic propositions of the same name, we
can express for example:
• P=? [ F err ] - “the probability that the protocol results

in an invalid IP being used”;
• P=? [ F≤k (ok ∨ err) ] - “the probability that the proto-

col completes within k time units”.

C. Adding Costs & Rewards

DTMCs (and other probabilistic models) can be aug-
mented with reward (or cost) information, which allows
reasoning about a wide range of additional quantitative mea-
sures. Formally, for a DTMC D = (S, s̄,P,AP , L), we de-
fine a reward structure (ρ, ι) that allows specification of two
distinct types of rewards: state rewards, which are assigned
to states by means of the reward function ρ : S → IR≥0,
and transition rewards, which are assigned to transitions by
means of the reward function ι : S × S → IR≥0. The state
reward ρ(s) is the reward acquired in state s per time step,
i.e. a reward of ρ(s) is incurred if the DTMC is in state s
for 1 time step and the transition reward ι(s, s′) is acquired
each time a transition between states s and s′ occurs.

Reward structures can be used to represent a variety
of different aspects of a system model, for example “the
number of messages successfully transmitted by a protocol”
or “the amount of time that a server spends operational”.
Although we consistently use the terminology “rewards”
here, these values can equally be considered as “costs”,
e.g. to model “power consumption” or “number of message
packages dropped”.

To express reward-based properties of DTMCs, the logic
PCTL can be extended [6] with additional operators:

R∼r[ C≤k ]
∣∣ R∼r[ I=k ]

∣∣ R∼r[ F Φ ]
∣∣ R∼r[ S ]

where ∼∈{<,≤,≥, >}, r ∈ IR≥0, k ∈ IN and Φ is a PCTL
formula. The R operators properties about the expected value
of rewards. The formula R∼r[ψ ], where ψ denotes one of

the four possible operators given in the grammar above, is
satisfied in a state s if, from s, the expected value of reward
ψ meets the bound ∼r. The possibilities for ψ are: C≤k,
which refers to the reward cumulated over k time steps; I=k,
the state reward at time instant k (i.e. after exactly k time
steps); F Φ, the reward cumulated before a state satisfying Φ
is reached; and S, the long-run (steady-state) rate of reward
accumulation. As for the P operator, we often use properties
of the form R=?[ψ ], with the meaning “what is the expected
reward?”.

Returning to the Zeroconf case study from the previous
section, we now give two examples of rewards structures and
accompanying temporal logic properties. Consider first the
reward structure (ρ

1
, ι1) which assigns ρ

1
(s̄) = 1, ρ

1
(s) = 0

to all other states s and ι1(s, s′) = 0 to all transitions s→s′.
Second, consider the reward structure (ρ

2
, ι2) which assigns

ρ
2
(s) = 0 to all states s, ι2(si, si+1) = ι2(s4, err) = 1 and

ι2(s, s′) = 0 to all other transitions s→s′. Using the formula
R=?[ F (ok ∨ err) ] with each reward structure would yield
the expected number of random IP addresses generated and
the expected number of message failures, respectively, for
the duration of the protocol.

Like for the basic operators of PCTL, model checking
for the reward operators above reduces to a combination of
graph algorithms and linear equation system solution. See
e.g. [6] for further details.

D. Adding Nondeterminism: Markov Decision Processes

DTMCs represent a fully probabilistic model of a system,
i.e. in each state of the model, the exact probability of
moving to each other state is always known. In many
instances, this does not realistically model a system’s be-
haviour, because it behaves in a nondeterministic fashion.
Nondeterminism can be useful to model, for example: con-
currency between system components operating in parallel;
unknown behaviour of a system’s environment; underspec-
ification of certain system parameters; or abstraction of
a complex system using a simpler one. Markov decision
processes (similar to probabilistic automata) are one of the
most common formalisms for modelling systems with both
probabilistic and nondeterministic behaviour.

Definition 3. A Markov-decision process (MDP) is a tuple
M = (S, s̄,Act ,Steps,AP , L) where:
• S, s̄ ∈ S, AP and L : S → 2AP are as for DTMCs;
• Act is a set of action labels;
• Steps : S × Act → Dist(S) is the (partial) transition

probability function, with Dist(S) denoting the set of
all discrete probability distributions over S.

In each state s of an MDP, the successor state is decided
in two steps: first, nondeterministically selecting an available
action a ∈ Act (i.e. one for which Steps(s, a) is defined);
and, second, randomly choosing the successor according to
the probability distribution Steps(s, a).
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To reason formally about the behaviour of MDPs, we use
the notion of adversaries, which resolve all of the nondeter-
ministic choices in a model. In the case, for example, where
nondeterminism is used to model concurrency between com-
ponents, an adversary represents one possible scheduling
of the components over the lifetime of the system. Under
a particular adversary, the behaviour of an MDP is fully
probabilistic and, as for DTMCs, we can define a probability
space over the possible paths through the model. We can
then reason about the best- or worst-case system behaviour
by quantifying over all possible adversaries: for example,
we can compute the minimum or maximum probability that
some event occurs.

To formally specify properties, we again use the logic
PCTL, with identical syntax to the DTMC case, but with an
implicit quantification over adversaries. The P=? operator
used for DTMCs is replaced with two variants Pmin=? and
Pmax=?. Example properties include:

• P≥1 [ F end ] - “under all possible adversaries, the
algorithm always terminates with probability 1”;

• Pmax=? [ F lost ] - “the maximum probability, across all
possible schedulers, of the protocol losing a message”.

Model checking MDPs requires solution of linear opti-
misation problems, rather than linear equation systems. In
practice, this is often done using dynamic programming [7].

E. Adding Time: Continuous-Time Markov Chains

DTMCs and MDPs are both discrete-time models: the
progress of time is modelled by discrete time steps, one
for each transition of the model. For many systems, it is
preferable to use a continuous model of time, where the
delays between transitions can be arbitrary real values. One
popular model is continuous-time Markov chains, in which
transition delays are assumed to be modelled by exponential
distributions. These are in common use across many fields,
for example in performance evaluation, to study the relia-
bility of computer networks or communication systems, and
in systems biology, to model cellular signalling pathways.

Definition 4. A continuous-time Markov chain (CTMC) is
a tuple C = (S, s̄,R,AP , L) where:

• S, s̄ ∈ S, AP and L : S → 2AP are as for DTMCs;
• R : S × S → IR≥0 is the transition rate matrix.

The matrix R assigns a rate to each pair of states in the
CTMC. A transition can only occur between states s and s′

if R(s, s′)>0 and, in this case, the delay before the transition
can occur is modelled as an exponential distribution with rate
R(s, s′), i.e. the probability of this transition being triggered
within t time-units is 1 − e−R(s,s′)·t. Usually, in a state s,
there is more than one state s′ for which R(s, s′)>0, which
is referred to as a race condition. The first transition to be
triggered determines the next state of the CTMC.

As for DTMCs, a probability space over the paths through
a CTMC can be defined [8] and we can reason about
the probability of certain events occurring. To specify such
properties, the logic CSL [9], [8] has been proposed, which
extends PCTL with continuous versions of the time-bounded
operators, such as P=? [ F≤t Φ ], and a steady state operator
S. Examples of CSL properties are:

• P=? [ F≤1.5failA ] - “the probability of component A
failing within 1.5 hours”;

• S=? [¬failA ∧¬failB ] - “the long-run probability that
both components A and B are operational”.

Model checking for CTMCs is similar to DTMCs, but also
uses techniques from performance evaluation, in particular
uniformisation, an efficient iterative numerical method for
computing transient probabilities of CTMCs.

F. The PRISM Tool

PRISM [1], [10] is a probabilistic model checker devel-
oped initially at the University of Birmingham and now at
the University of Oxford. It currently has direct support
for DTMCs, MDPs and CTMCs. As will be described
in the following sections, it is currently being extended
with support for other models such as probabilistic timed
automata. All of these models are specified using the PRISM
modelling language, a single high-level language for model
description based on guarded command notation.

PRISM provides model checking for the various types of
properties discussed in the previous section, namely those
expressible in the logics PCTL, CSL, LTL and PCTL*, as
well as extensions for quantitative properties (e.g. the P=?

operator) and for costs and rewards. For model checking,
multiple efficient engines are included. These are primarily
based on symbolic techniques (see Section III-D) but PRISM
also makes extensive use of explicit storage schemes such
as sparse matrices and arrays. Approximate computations,
based on Monte Carlo techniques, are also supported.

PRISM’s graphical user interface provides a model editor,
a simulator for model debugging and graph-plotting func-
tionality. The latter is particularly useful in combination with
PRISM’s notion of experiments, which is a way of automat-
ing multiple instances of model checking. This allows the
user to investigate the value of quantitative model checking
queries as one or more parameters of the model or property
are varied, and is often a very useful way of identifying
interesting patterns or trends in the behaviour of a system.

PRISM is free and open-source (released under the GPL
license), and runs on most major operating systems. The
website [10] provides downloads of the tool and its source
code, as well as an online manual, tutorials and publications.
The site also includes an extensive case study repository,
with more than 50 examples. These cover a broad range of
application domains: PRISM has been applied to the analysis
of wireless communication protocols such as Bluetooth and
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Zigbee, randomised security protocols for anonymity and
contract signing, biological signalling pathways, dynamic
power management schemes and many others [10].

III. RECENT ADVANCES

Probabilistic model checking has already shown itself to
be a powerful and widely applicable method. The ultimate
challenge, however, is to extend and improve these tech-
niques such that they can handle the scale and complexity
of real-world systems and become a valuable tool for the
designers of such systems. In this section, we survey some
of the recent advances in the field of probabilistic model
checking, focussing in particular on existing and ongoing
developments to the PRISM tool.

The topics we discuss fit into two distinct categories: (i)
extending the range of models to which probabilistic model
checking can be applied; (ii) improving the scalability of
the techniques. The directions are of course closely linked:
simpler models, such as those described in the previous
section, yield more tractable verification procedures, but
at the expense of a less precise system model. More ex-
pressive models can better capture the real behaviour of a
system: here, we focus on combining both nondeterminism
and timing characteristics into probabilistic models. With
regards to scalability, we discuss two topics: abstraction and
compositional verification. For the former, we discuss both
the different ways of defining abstractions, and the use of
abstraction refinement to automate their construction. For
the latter, we describe one particular approach, based on the
assume-guarantee paradigm.

A. Model Checking for Probabilistic Real-time Systems

Section II described how MDPs and CTMCs, respectively,
extend DTMCs with support for nondeterminism and a
continuous-model of time. Several different approaches exist
to combine both of these factors. One prominent model
in this area is probabilistic timed automata (PTAs) [11],
[12], [13]. These support probability, nondeterminism and
real-time. They can be seen as MDPs, extended with a set
of real-valued clocks or, alternatively, an extension of the
well-known timed automata [14] formalism with discrete
probabilistic choice.

The underlying semantics of a PTA is an MDP with an in-
finite state space. This necessitates specialised techniques for
their analysis. Perhaps the simplest is the digital clocks [15]
approach, which, for a (slightly) restricted class of PTAs,
performs a conversion to a finite-state MDP in which clocks
can only take integer values. By manually translating PTAs
in this way directly into the PRISM modelling language, a
variety of PTA case studies have been successfully studied
[10]. Automated translations also exist [16] and are being
developed for inclusion in PRISM.

Other techniques for PTA analysis make use of zones,
which capture sets of clock valuations symbolically in a

way that can be implemented efficiently with data struc-
tures such as difference-bound matrices (DBMs). Two such
zone-based approaches include forwards reachability [13]
and backwards reachability [17]. Another is the technique
of [18], which is built upon the quantitative abstraction-
refinement methods discussed in the next section. Recently,
there has been increased interest in the development of tools
and techniques for model checking PTAs [19], [18], [16],
[20]. The next version of PRISM will include native support
for PTAs, via the techniques of [18] and [15].

An alternative way to combine probability, nondetermin-
ism and a continuous model of time is to use models such as
continuous-time Markov decision processes (CTMDPs) [7]
and interactive Markov chains (IMCs) [21]. The former are
in fact well studied in the context of optimisation problems
on, for example, communication networks or queueing sys-
tems, but are now attracting attention in the probabilistic
verification community. Both models incorporate random
timing delays in the style of CTMCs; CTMDPs allow
nondeterminism between several such behaviours, in the
style of MDPs, and IMCs maintain a separation between
the two types of behaviour, permitting a more compositional
approach to modelling and analysis.

B. Quantitative Abstraction Refinement

The use of abstraction, in which certain aspects of a sys-
tem model are hidden to create a less precise but more man-
ageable model, has proved to be essential for the scalability
of non-probabilistic model checking. Substantial research in
this area has resulted in the development of both elegant
mathematical frameworks to reason about abstraction, and
state-of-the-art model checking tools that have implemented
the techniques and applied them to large real-life systems.
In the field of probabilistic model checking, abstraction is a
more complex topic and is thus less well developed, but it
is recognised as an essential research direction.

One important question is how to define the abstraction
of a given probabilistic model. The situation is more com-
plicated than the non-probabilistic case because: (a) there
are several different types of model in common use; and
(b) there are different ways of abstracting each one. For
DTMCs, it has been proposed to define an abstraction as
an abstract Markov chain [22] in which transitions between
(abstract) states are labelled with intervals of probabilities.
In fact, these abstractions can also be thought of as MDPs.
For CTMCs, a similar approach can be taken, treating
abstractions as CTMDPs [23]. In both cases, the DTMC
or CTMC can be related to its abstraction using the notion
of probabilistic simulation, which preserves some important
classes of properties, such as probabilistic safety properties.

Much of the work on abstraction for probabilistic models
has focussed, not on Markov chains, but on MDPs. Here,
two distinct approaches have proved popular: representing
an abstraction of an MDP either as another MDP [24] or
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Fig. 1. Quantitative abstraction refinement for MDPs

choices to represent the nondeterminism caused by abstraction; and player 2
choices for the nondeterminism of the MDP. For an MDP M, the construction of
an abstraction is based on a partition P={S1, . . . , Sn} of its state space. For λ ∈
Dist(S), we let λP ∈ Dist(P) denote the distribution where λP(S�)=

�
s∈S� λ(s)

for all S� ∈ P. Formally, we define the abstraction of an MDP as follows.

Definition 3. Let M=(S, S,Act ,StepsM) be an MDP and P a partition of S.
The abstraction of M with respect to P is given by the stochastic game G =
(P, P, 2Act×Dist(P),StepsG) where P={S� ∈ P | S� ∩ S �= ∅} and for S� ∈ P and
Θ ∈ 2Act×Dist(P): StepsG(S�,Θ) is defined and equals {λ | (a,λ) ∈ Θ ∧ a ∈ Act}
if and only if there exists s ∈ S� such that Θ={(a,StepsM(s, a)P) | a ∈ Act(s)}.
If G is an abstraction of M, then the reachability probabilities on G yield lower
and upper bounds on the reachability probabilities of M:

plb,min
G (F )�pmin

M (F )�pub,min
G (F ) and plb,max

G (F )�pmax
M (F )�pub,max

G (F ) (1)

where, for example, in the stochastic game G:

plb,max
G (F )

def
= supS�∈P infσ1

supσ2
pσ1,σ2

S� (F )

pub,max
G (F )

def
= supS�∈P supσ1

supσ2
pσ1,σ2

S� (F )

and pσ1,σ2

S� (F ) denotes the probability of reaching the target α(F ) under the pair
of strategies (σ1,σ2) when starting in the state S�. These reachability values can
be determined efficiently using value iteration [40] together with the correspond-
ing adversary or strategy-pair which achieves the value. In [47], the game-based
abstraction of Definition 3 above is phrased in terms of abstract interpretation
[9] and the resulting bounds obtained are shown to coincide with the “best”
values obtainable for a fixed abstraction of the MDP.

Quantitative abstraction refinement [26,32,27] is an approach for automatically
constructing abstractions of probabilistic models. Using the notion of abstracting
MDPs with stochastic games describe above, it has been successfully applied to
the verification of a probabilistic extension of ANSI-C [27], probabilistic timed
automata [32] and concurrent probabilistic systems [47].

Illustrated in Figure 1, the technique starts with an MDP M (or, in practice a
high-level model with MDP semantics) and coarse partition P of its state space.
It then constructs and analyses the resulting abstraction of M, yielding lower
and upper bounds on a property of interest (e.g. the probability of reaching a
set of target states F as in (1) above). If the difference between these bounds

Figure 2. Quantitative abstraction refinement. Left: quantitative results obtained from an abstraction of a model of the Zeroconf network protocol. Right:
Illustration of the quantitative abstraction-refinement loop for Markov decision processes.

as a stochastic two-player game [25]. The former is usually
cheaper to construct but yields less information. A stochastic
game G, abstracting an MDP M, gives both lower and upper
bounds on either the minimum or maximum probability
of a path formula being satisfied (e.g. on the results of
Pmin=? [ FT ] or Pmax=? [ FT ]). An MDP abstraction [24],
by contrast, gives only a one-sided bound on each property.
The plot in Figure 2 (left) shows an example of lower and
upper bounds obtained from a stochastic game abstraction
of a large MDP model of the Zeroconf protocol.

The other key question in this area is how to construct
“good” abstractions. In the work cited above, an abstraction
is defined based on a partition of the states of the original
model (called concrete states) into subsets (called abstract
states). The challenge is therefore to find a partition that
results in abstract model that is small enough to be tractable
but yields useful quantitative results, e.g. in the case of
stochastic games, tight lower and upper bounds on the
property of interest. A popular approach is to use abstraction
refinement, which takes an existing abstraction and produces
a finer (more precise) one. This can form the basis of fully
automated abstraction generation, starting with a simple
coarse abstraction and then iteratively refining until the
abstraction is sufficiently precise. Such techniques were first
proposed for MDPs in [24]. In [26], a probabilistic version
of the classic CEGAR (counterexample-guided abstraction
refinement) approach is presented, which combines several
different verification technologies: predicate abstraction, in-
terpolation and probabilistic counterexample generation.

We describe here in more detail an alternative approach
called quantitative abstraction refinement [27], [28], [18]. To
date, this has been applied primarily to the stochastic game
abstractions of MDPs described above, but the approach
is equally applicable to Markov chains. The basic idea,
illustrated in Figure 2 (right), is to build an initial abstraction
(say, from an MDP M and a coarse partition of its states)
and then iteratively refine it based on verification results for
some quantitative property (say, the maximum probability
of reaching a target T ). In particular, a stochastic game
abstraction of M gives lower/upper bounds on this property.
The difference between the bounds (the “error”) indicates
how precise the abstraction is. The bounds also identify

which parts of the model need to be refined. This process
is repeated iteratively until the error falls below some pre-
specified tolerance ε. Quantitative abstraction refinement has
been applied to the verification of PTAs [18], a probabilistic
extension of ANSI-C [28] and PRISM models [29].

C. Compositional Probabilistic Model Checking

Another direction of research to attack the scalability
problem of model checking is compositional techniques,
where the process is subdivided into separate verifica-
tion tasks for each component of the system being anal-
ysed. In non-probabilistic verification, the assume-guarantee
paradigm has been a success. As an example, consider the
problem of verifying property G on a two-component system
M1‖M2. An assume-guarantee-style approach to this would
be to establish a reduction to (i) checking that, under the
assumption that some property A holds, M2 is guaranteed
to satisfy G, denoted 〈A〉M2 〈G〉; and (ii) checking that M1

always satisfies the assumption A under any context.
In recent work [30], assume-guarantee techniques have

been developed for MDPs. Building on underlying existing
theories [31] for compositional reasoning about MDPs, [30]
proposes a framework based on assume-guarantee queries of
the form 〈A〉≥pA

M 〈G〉≥pG
. Here, the assumption 〈A〉≥pA

and guarantee 〈G〉≥pG
about the MDP M are probabilistic

safety properties, represented by finite automata. Informally,
this query states that “whenever M is part of a system
satisfying property A with probability at least pA, then
the system will guarantee property G with probability at
least pG”. Several proof rules are developed to support
compositional probabilistic model checking of MDPs.

The framework of [30] is also efficient in practice. Model
checking queries such as 〈A〉≥pA

M 〈G〉≥pG
is reduced to

multi-objective probabilistic model checking [32], which
requires solution of an LP problem. These techniques are
implemented in an extension of PRISM and successfully
applied to several large case studies, including examples
where non-compositional probabilistic model checking fails.
In subsequent work [33], the process of generating an
appropriate assumption 〈A〉≥pA

is also automated, using
algorithmic learning techniques based on the L* algorithm.
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D. Other Advances and Directions

We also mention some other developments in probabilistic
model checking that have shown promising results.

Model reduction techniques. In contrast to the abstraction
techniques discussed above, which construct a smaller model
with reduced precision, there exist a number of techniques
to reduce a probabilistic model to a smaller, equivalent one
without loss of precision. The key underlying notion is that
of bisimulation which, roughly speaking, captures the fact
that two models have the same step-wise behaviour. Well-
known approaches to constructing a minimised, bisimilar
model, based on a iterative splitting of a model’s state space,
can also be applied to probabilistic models and have been
shown to be beneficial [34]. Other, more specific classes of
reduction include exploiting symmetry [35], i.e. the existence
of replication within a model, and partial order reduction
[36], [37], which detects sequences of independent steps.

Efficient model representations. An alternative to reducing
a model’s size is to retain the full model, but devise efficient
ways of storing and manipulating it. A particularly success-
ful approach is the use of symbolic approaches, i.e. those
that use data structures based on binary decision diagrams
(BDDs). These provide compact representation and effi-
cient manipulation of large, structured models by exploiting
regularity from model descriptions in high-level modelling
languages. Extensions of BDDs that have been successfully
applied in the context of probabilistic verification include
multi-terminal BDDs (MTBDDs) and matrix diagrams (see
e.g. [38] for a survey). Other research directions in this
vein include disk-based techniques, which store use slower
but more plentiful hard-drive storage over RAM, and par-
allelisation, which aims to distribute the costs of storage or
execution across multiple processors or machines.

Approximate probabilistic model checking. Yet another
approach to avoiding the state space explosion problem is to
generate approximate results to quantitative model checking
queries based on Monte Carlo techniques, i.e. by sampling
a suitably large number of simulated random paths through
the model. Often referred to as statistical probabilistic model
checking, there are two two distinct approaches in this area:
estimation [39] and hypothesis testing [40]. The former
attempts to estimate the result of a quantitative query such
as P=? [φ ], offering a probabilistic guarantee as to the pre-
cision of the result. The latter takes a boolean valued query
such as P∼p [φ ] and stops generating sample paths through
the models as soon as the result can be shown to be either
true or false with high probability. Approximate techniques
such as these, in contrast to traditional probabilistic model
checking, scale to models of almost any size. They are,
however, only applicable to fully probabilistic models (i.e.
models without nondeterminism) and may require a large
number of samples to obtain sufficiently accurate results.

Probabilistic counterexamples. Finally, we mention a di-
rection of work that aims, not to increase the scalability
of probabilistic model checking, but to improve the quality
and usefulness of the results that it generates. In the non-
probabilistic setting, counterexamples are one of the key
reasons for the success of model checking. They provide, in
the case where model checking shows a property to be false,
evidence of this violation, typically in the form of a trace
through the model. The complication in the probabilistic
setting is that, to refute a property, typically a set of such
traces is required. The key ideas were proposed in in [41],
for DTMCs and PCTL properties of the form P∼p[ F≤k Φ ]
or P∼p[ F Φ ]. Subsequent and current research involves
extending the applicability of counterexample generation
(e.g. to other models such as CTMCs and MDPs, and to
other types of properties, such as LTL formulae), increasing
the efficiency of the generation process, and improving the
way in which the information is presented to the user.

IV. CHALLENGES

We conclude this paper by identifying some of the key
future challenges for probabilistic model checking.

Real software. While modelling languages for tools such
as PRISM are expressive enough for many purposes, it is
clearly desirable to support probabilistic model checking
directly for mainstream programming languages such as
C or Java. To make progress in this direction [28], [42],
developing good abstraction techniques will be essential.

Hybrid systems. Probabilistic model checking has clear
potential in the domain of embedded systems, for example
in quantitative verification of sensor networks or robotic
applications. In this setting, the interaction of (discrete)
computerised systems with their (continuous) environment
becomes a crucial issue. Such hybrid systems (or cyber-
physical systems) raise new challenges because they require
more powerful models such as stochastic hybrid automata.

Synthesis. While probabilistic model checking can verify
or analyse existing designs, synthesis has more ambitious
goals, aiming to use verification techniques to contribute
to the design process itself. This ranges from synthesising
system parameters [43], [44] guaranteeing some property, to
synthesising model components such as controllers.

Ubiquitous computing. The vision of ubiquitous or per-
vasive computing sees thousands of computerised devices
integrating seamlessly in daily life. This emphasises the
need for techniques to ensure their correctness, but also
demands the development of new modelling formalisms and
analysis techniques that can handle both the dynamic nature
the enormous scale of these systems.
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