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Abstract. We present novel techniques for automated compositional verification
of synchronous probabilistic systems. First, we give an assume-guarantee frame-
work for verifying probabilistic safety properties of systems modelled as discrete-
time Markov chains. Assumptions about system components are represented as
probabilistic finite automata (PFAs) and the relationship between components and
assumptions is captured by weak language inclusion. In order to implement this
framework, we develop a semi-algorithm to check language inclusion for PFAs
and a new active learning method for PFAs. The latter is then used to automati-
cally generate assumptions for compositional verification.

1 Introduction

Probabilistic model checking is a formal verification technique for analysing quantita-
tive properties of systems that exhibit stochastic behaviour. A key challenge in this area
is scalability, motivating the development of compositional verification methods that
decompose the analysis of a large system model into smaller sub-tasks. We focus on
the assume-guarantee paradigm, in which each system component is analysed under an
assumption about the other component(s) it is composed with. After checking that the
assumption is satisfied, proof rules are used to deduce properties of the overall system.

Several assume-guarantee frameworks for verifying probabilistic systems have been
proposed, mainly for models with both probabilistic and nondeterministic behaviour
[1,13,10]. The main difficulty when developing such a framework is formulating an
appropriate notion of assumptions that can support compositional reasoning. Our goal
is to develop assume-guarantee techniques for probabilistic model checking that are
practical, efficient and fully-automated. This means that assumptions should ideally:
(i) be expressive enough for practical applications; (ii) allow efficient, fully-automated
verification; and (iii) be amenable to automatic generation.

One promising direction is the framework of [13] (and its extensions in [10,9]). In
[13], assumptions are probabilistic safety properties (e.g. “event A always occurs before
event B with probability at least 0.98”) and [10] generalises this to boolean combina-
tions of ω-regular and reward properties. In both cases, this yields efficiently checkable
assumptions and the approaches were successfully implemented and applied to some
large case studies. Furthermore, [9] shows how to automatically generate probabilistic
safety property assumptions [13] using learning techniques based on L*.

In this work, we continue to develop probabilistic assume-guarantee techniques in
which assumptions can be automatically generated via learning. In particular, our fo-
cus is on using a more expressive class of assumptions. Probabilistic safety property



assumptions [13] can only capture a limited amount of information about a component,
restricting the cases where assume-guarantee reasoning can be applied. The framework
of [13] is incomplete in the sense that, if the property being verified is true, there does
not necessarily exists an assumption that can be used to verify it compositionally.

This paper proposes novel techniques for compositional probabilistic verification in
which assumptions are probabilistic finite automata (PFAs) [15]. Unlike [13,10], our
approach is complete. Furthermore, as in [10], we use learning to automatically gener-
ate assumptions. PFAs represent weighted languages, mapping finite words to proba-
bilities. In our framework, an assumption about a system component M is represented
by a PFA that gives upper bounds on the probabilities of traces being observed in M .
This is an inherently linear-time relation, which is well-known to be difficult to adapt to
compositional techniques for systems that exhibit both probabilistic and nondeterminis-
tic behaviour [16]. So, in the present work, we restrict our attention to fully probabilistic
systems. To do so, we model components as probabilistic I/O systems (PIOSs), which,
when combined through synchronous parallel composition, result in a (fully probabilis-
tic) discrete-time Markov chain (DTMC). The relation between a PIOS M and a PFA
A representing an assumption about M is captured by weak language inclusion. Based
on this, we give an asymmetric proof rule for verifying probabilistic safety properties
on a DTMC composed of two PIOSs.

In order to implement our framework, we give an algorithm to check weak language
inclusion, reducing it to the existing notion of (strong) language inclusion for PFAs.
Although checking PFA language equivalence (that each word maps to the same prob-
ability) is decidable in polynomial time [18,7], checking language inclusion is undecid-
able [5]. We propose a semi-algorithm, inspired by [18], to check language inclusion;
in the case where the check fails, a minimal counterexample is produced.

We also develop a novel technique for learning PFAs, which we use to automatically
generate assumptions for our framework. Our algorithm, like L*, is based on active
learning, posing queries in an interactive fashion about the PFA to be generated. Several
active PFA learning algorithms exist [12,17,4] but are not suitable for our needs: [12]
applies to a restricted class of PFAs, [17] needs to know the size of the PFA in advance,
and [4] actually learns multiplicity automata, which may contain negative values.

Full version: For an extended version of this paper, including additional details, expla-
nations and running examples, experimental results and proofs, see [8].

2 Preliminaries
We first briefly describe probabilistic finite automata and discrete-time Markov chains.
We use SDist(S) to denote the set of probability sub-distributions over set S, ηs for the
point distribution on s∈S, and µ1×µ2 for the product distribution of µ1 and µ2.

Definition 1 (PFA). A probabilistic finite automaton (PFA) is a tuple A = (S, s, α,P),
where S is a finite set of states, s ∈ S is an initial state, α is an alphabet and P : α→
(S × S → [0, 1]) is a function mapping actions to transition probability matrices. For
each a ∈ α and s ∈ S,

∑
s′∈S P(a)[s, s′] ∈ [0, 1].

A PFA A defines a mapping PrA :α∗→[0, 1] giving the probability of accepting each
finite word w ∈ α∗. Intuitively, the probability PrA(w) for a word w = a1 · · · an is
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determined by tracing paths throughA that correspond to w, with P(a)[s, s′] giving the
probability to move from s to s′ on reading a. More precisely, we let ι be an S-indexed
0-1 row vector with ι[s] = 1 if and only if s = s, κ be an S-indexed column vector of
1s and P(w) = P(a1)· · ·P(an). Then, we define PrA(w) = ιP(w)κ.

Definition 2 (Language inclusion/equivalence). Given two PFAs A1 and A2 with the
same alphabet α, we say A1 and A2 are related by (strong) language inclusion (resp.
language equivalence), denoted A1 v A2 (resp. A1 ≡ A2), if for every word w ∈ α∗,
PrA1(w) 6 PrA2(w) (resp. PrA1(w) = PrA2(w)).

Definition 3 (DTMC). A discrete-time Markov chain (DTMC) is a tupleD=(S, s, α, δ),
where S is a finite set of states, s ∈ S is an initial state, α is an alphabet of action labels
and δ : S × (α∪ {τ})→ SDist(S) is a (partial) probabilistic transition function, such
that, for any s, δ(s, a) is defined for at most one a ∈ α ∪ {τ}.

If δ(s, a) = µ, the DTMC can make a transition, labelled with action a, and move to
state s′ with probability µ(s′). We denote such transitions by s a−→ µ (or s a−→ s′). The
DTMC deadlocks when δ(s, a) is not defined for any a, which we denote by s 6→. We
use action label τ to denote a “silent’ (or “internal”) transition. A (finite or infinite) path
through D is a sequence of transitions θ = s0

a0→ s1
a1→ · · · with s0 = s.

In this paper, we consider probabilistic safety properties 〈G〉>p, where G is a regu-
lar safety property [3], defining a set of “good” executions, and p ∈ [0, 1] is a probability
bound. Model checking 〈G〉>p reduces to solving a linear equation system [3].

3 Assume-Guarantee for Synchronous Probabilistic Systems

We now define a compositional verification framework for fully probabilistic systems.
Components are modelled by probabilistic I/O systems (PIOSs). These exhibit (input)
nondeterminism but, when composed synchronously in parallel, result in a DTMC.

Definition 4 (PIOS). A probabilistic I/O system (PIOS) is a tuple M = (S, s, α, δ),
where S and s are as for DTMCs, and the alphabet α and transition function δ : S ×
(α ∪ {τ}) → SDist(S) satisfy the following two conditions: (i) α is partitioned into
three disjoint sets of input, output and hidden actions, which we denote αI , αO and
αH , respectively; input actions αI are further partitioned into m disjoint bundles αI,i

(1 6 i 6 m) for some m; (ii) the set enab(s) ⊆ α ∪ {τ} of enabled actions for each
state s (i.e. the actions a for which δ(s, a) is defined) satisfies either |enab(s)| = 1 if
enab(s) ∈ αO ∪ αH ∪ {τ} or enab(s) = αI,i for some input action bundle αI,i.

From any state s of a PIOS M , there is either a single transition with an output,
hidden or τ action, or k transitions, each with one action from a particular bundle
αI,i comprising k input actions. Transitions and paths in PIOSs are defined as for
DTMCs. The probability of a finite path θ = s0

a0−−→ s1 · · · an−1−−−−→ sn in M is given
by PrM (θ) =

∏n−1
i=0 δ(si, ai)(si+1). Since PIOSs only have nondeterminism on input

actions, the probability for a word w ∈ (α∪{τ})∗ is well defined: letting wd(θ) denote
the word a0 . . . an−1 of actions from path θ, we have PrM (w) =

∑
wd(θ)=w PrM (θ).

Then, letting st : (α ∪ {τ})∗α→ α∗ be the function that removes all τs, we define the
probability PrMτ (w′) for a τ -free word w′ ∈ α∗ as PrMτ (w) =

∑
w=st(w′) Pr

M (w′).

3



s
0

ready!M
1
:

0.9

0.1

s
1

s
2

fail!

s
3

s
4

receive

send

choose

d1?

d0?

s
5

s
6

d1? d0?
s
7

off

t
2t

0

t
3

d1!

ready?

fail?

d0!

M
2
:

0.8

0.2

t
1

init

Fig. 1. Running example: two PIOSs M1 and M2.

Example 1. Fig. 1 depicts two PIOSs M1 and M2. M1 is a data communicator which
chooses (probabilistically) to either send or receive data. This simple example only
models receiving; choosing to send results in a failure. M1 tells M2, a data generator,
that it is ready to receive using action ready .M2 should then send a sequence of packets,
modelled by the alternating actions d0 and d1 . IfM1 has failed, it sends a message fail .
M2 also has an initialisation step (init), which can fail. With probability 0.8, it is ready
to receive signals from M1; otherwise, it just tries to send packets anyway. Input/output
actions for M1,M2 are labelled with ?/! in the figure; all other actions are hidden. Each
PIOS has a single input action bundle: αI,11 = {d0 , d1}, αI,12 = {ready , fail}.

Given PIOSs M1, M2 with alphabets α1, α2, we say M1 and M2 are composable if
αI1=α

O
2 , αO1 =α

I
2 and αH1 ∩ αH2 =∅ and define their parallel composition as follows.

Definition 5 (Parallel composition). The parallel composition of composable PIOSs
Mi = (Si, si, αi, δi) for i=1, 2 is given by the PIOSM1||M2 = (S1×S2, (s1, s2), α, δ),
where α = αH = αI1 ∪ αO1 ∪

(
(αH1 ∪ {⊥}) ∗ (αH2 ∪ {⊥})

)
and, for bi ∈ αHi ∪ τ and

a ∈ αI1 ∪ αO1 , δ is defined such that (s1, s2)
γ→ µ1 × µ2 iff one of the following holds:

(i) s1
a→ µ1, s2

a→ µ2, γ = a; (ii) s1
b1→ µ1, s2

b2→ µ2, γ = b1 ∗ b2; (iii) s1
b1→ µ1, s2

a→
(or s2 6→), µ2 = ηs2 , γ = b1 ∗⊥; (iv) s1

a→ (or s1 6→), s2
b2→ µ2, µ1 = ηs1 , γ = ⊥∗b2.

Notice PIOSM1‖M2 has only τ or hidden actions and can thus be considered a DTMC.

We next introduce our notion of assumptions about PIOSs, for which we use a
specific class of PFAs and weak language inclusion, which relaxes the definition of
language inclusion for PFAs introduced earlier by ignoring τ actions.

Definition 6 (Assumption). Let M be a PIOS with alphabet α = αI ] αO ] αH
and input action bundles αI =

⊎m
i=1 α

I,i. An assumption A about M is a PFA A =
(S, s, α,P) satisfying, for each state s ∈ S: (i) either all or none of the actions in a
bundle αI,i (1 6 i 6 m) are enabled in s; (ii) pmax(s) ∈ [0, 1], where:

pmax(s)
def
=
∑

a∈αO∪αH

∑
s′∈S

P(a)[s, s′]+
m∑
i=1

pmax
i (s) and pmax

i (s)
def
= max
a∈αI,i

∑
s′∈S

P(a)[s, s′]

Definition 7 (Weak language inclusion/equivalence). For PIOS M with alphabet α
and an assumption A about M , we say that M and A are related by weak language
inclusion (resp. equivalence), denoted M vw A (resp. M ≡w A), if for every word
w ∈ α∗, PrMτ (w) 6 PrA(w) (resp. PrMτ (w) = PrA(w)).

A valid assumption A for M is one that satisfies M vw A. We can reduce the problem
of checking whether this is true to the problem of checking (strong) language inclusion
between two PFAs (see Section 4) by the following proposition.
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Fig. 2. Assumption A and its PIOS conversion pios(A).

Proposition 1. Let M = (S, s, α, δ) be a PIOS and A be an assumption about M .
pfa(M) = (S, s, α ∪ {τ},P) is the translation of M to a PFA, where P(a)[s, s′] =
δ(s, a)(s′) for a ∈ α ∪ {τ}. Letting Aτ be the PFA derived from A by adding τ to its
alphabet and a probability 1 τ -loop to every state, then: M vw A ⇔ pfa(M) v Aτ .

We will also need to perform a conversion in the opposite direction, translating an as-
sumption PFA A into a (weak language) equivalent PIOS, which we denote pios(A).

Definition 8 (Assumption-to-PIOS conversion). Given assumption A = (S, s, α,P),
and action partition α = (

⊎m
i=1 α

I,i) ] αO ] αH , its conversion to a PIOS is defined
as pios(A) = (S′, s, α, δ), where S′ = S ] {sa|s ∈ S, a ∈ αH ∪ αO} ] {si|s ∈
S, 1≤i≤m} and δ is constructed as follows. For any transition s a−→ s′, let p denote
P(a)[s, s′] and pmax(s) and pmax

i (s) be as defined in Definition 6. Then:

– if a ∈ αO ∪ αH , then δ(s, τ)(sa) = p
pmax(s) and δ(sa, a)(s′) = pmax(s);

– if a ∈ αI,i (for 16i6m), then δ(s, τ)(si) = pmax
i (s)
pmax(s) and δ(si, a)(s′) = p·p

max(s)
pmax
i (s) .

Example 2. Consider PIOSM1 from Example 1. Fig. 2 shows a valid assumptionA for
M1 (i.e. M1 vw A) and the corresponding PIOS pios(A). In A, state q0 has two output
actions leading to respective sub-distributions. Thus A is not a PIOS. In pios(A), a τ
transition and the states qready0 and qfail0 (abbreviated to qr0 and qf0 ) are added.

Now, we describe how to perform compositional verification using our framework. We
focus on verifying 〈G〉>p on a DTMC M1‖M2 where Mi are PIOSs. For simplicity,
we will assume that the property refers only to input/output actions of M1 and M2 and
assume that all hidden actions of M1 and M2 have been renamed as τ actions, which
affects neither the parallel composition M1‖M2 nor the probability of satisfying G.

An assume-guarantee triple 〈A〉M 〈G〉>p means “whenever component M is part
of a system satisfying the assumption A, the system is guaranteed to satisfy 〈G〉>p”.

Definition 9 (Assume-guarantee triple). If M is a PIOS with alphabet α, A is an
assumption about M and 〈G〉>p is a probabilistic safety property, then 〈A〉M 〈G〉>p
is an assume-guarantee triple, with the following meaning:

〈A〉M 〈G〉>p ⇔ ∀M ′. (M ′ vw A =⇒ M ′‖M |= 〈G〉>p).
Using the translation pios(A) from PFA to PIOS described above, checking whether a
triple is true reduces to standard probabilistic model checking (see Section 2).

Proposition 2. For A, M and 〈G〉>p as given in Definition 9, the assume-guarantee
triple 〈A〉M 〈G〉>p holds if and only if pios(A)‖M |= 〈G〉>p.
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Finally, we give an asymmetric assume-guarantee proof rule (in the style of those from
[14,13]) for verifying a system M1‖M2 compositionally.

Theorem 1. LetM1,M2 be PIOSs,A an assumption forM1 and 〈G〉>p a probabilistic
safety property for M1‖M2. Then the following proof rule holds:

M1 vw A and 〈A〉M2 〈G〉>p
M1‖M2 |= 〈G〉>p

(ASYM-PIOS)

Thus, given an appropriate assumption A about M1, we can decompose the verification
of M1‖M2 into two sub-problems: checking weak language inclusion between M1 and
A; and checking that 〈A〉M2 〈G〉>p. The former, as shown in Proposition 1, reduces to
(strong) language inclusion on PFAs, which we discuss in the next section. The latter,
as shown in Proposition 2, requires construction of the DTMC pios(A)‖M2 and then
application of standard probabilistic model checking techniques.

Example 3. Consider probabilistic safety property 〈G〉>0.9, whereGmeans “fail never
occurs”. We can check this on running example M1‖M2 using assumption A from
Example 2. Since M1 vw A, we just need to check that pios(A)||M2 |= 〈G〉>0.9. As
pios(A)||M2 has a single path (q0t0)

τ∗init,0.08−−−−−−−−→ (q2t1)
fail,1−−−−→ (q4t1) · · · containing

fail with probability 0.08, 〈G〉>0.9 is satisfied (since 1− 0.08 > 0.9) and we are done.

Completeness. Our framework is complete in the sense that, if M1‖M2 |= 〈G〉>p, we
can always find an assumption A to apply Theorem 1 by converting M1 to a PFA.

4 Deciding Language Inclusion for PFAs
As discussed above, verifying whether a component satisfies an assumption in our
framework reduces to checking language inclusion between PFAs, i.e. deciding whether
two PFAs A1 and A2 over the same alphabet α satisfy A1 v A2. In this section, we
propose a semi-algorithm for performing this check. IfA1 v A2 does not hold, then the
algorithm is guaranteed to terminate and return a lexicographically minimal word as a
counterexample; but if A1 v A2 does hold, then the algorithm may not terminate. The
latter case is unavoidable since the problem is undecidable (see [8]).

Input: PFAs A1 and A2 over the same alphabet α.
Output: true if A1 v A2; or false and a cex w′ ∈ α∗.
1: queue := {(ι1, ι2, ε)}, V := {(ι1, ι2, ε)}
2: while queue 6= ∅ do
3: remove (υ1,υ2, w) from the head of queue
4: for all a ∈ α do
5: υ′1 := υ1P1(a); υ′2 := υ2P2(a); w′ := wa
6: if υ′1κ1 > υ′2κ2 then return false and cex w′

7: else if (υ′1,υ′2, w′) does not satisfy (C1), (C2) then
8: add (υ′1,υ

′
2, w

′) to the tail of queue
9: V := V ∪ {(υ′1,υ′2, w′)}

10: return true

Fig. 3. Semi-algorithm for deciding PFA language inclusion

Fig. 3 shows the semi-
algorithm to decide if A1 v
A2, whereAi=(Si, si, α,Pi)
for i = 1, 2. We also de-
fine ιi and κi as in Section 2.
Inspired by the language
equivalence decision algo-
rithm in [18], our method
proceeds by expanding a
tree. Each node of the tree
is of the form (υ1,υ2, w),
where w is a word and υi =
ιiPi(w) (for i = 1, 2) is
the vector of probabilities of
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reaching each state via word w in Ai. Note that υiκi is the probability of PFA Ai ac-
cepting the word w. The root of the tree is (ι1, ι2, ε), where ε is the empty word. As
shown in Fig. 3, we use a queue of tree nodes, which expands the tree in breadth-first or-
der. In addition, we maintain a set V of non-leaf nodes, which initially only contains the
root. The main difference between our method and [18] is that we adopt different crite-
ria to decide when to add a node to the non-leaf set V . In [18], the set V is maintained
by calculating the span of vector space. However, for the language inclusion check, we
cannot simply use the same criteria.

In each iteration, we remove a node (υ1,υ2, w) from the head of queue. We then ex-
pand the tree by appending a set of its child nodes (υ′1,υ

′
2, w

′), where υ′1 := υ1P1(a),
υ′2 := υ2P2(a) and w′ := wa for all actions a ∈ α. If there is a node (υ′1,υ

′
2, w

′) such
that Pr1(w′) = υ′1κ1 > υ′2κ2 = Pr2(w

′), then the algorithm terminates and returns
w′ as a counterexample for A1 v A2. Otherwise, we check if we can prune each child
node (υ′1,υ

′
2, w

′) (i.e. make it a leaf node) by seeing if it satisfies either of the follow-
ing two criteria: (C1) υ′1κ1 = 0; (C2) There exist |V | non-negative rational numbers ρi

such that, for all (υi1,υ
i
2, w

i) ∈ V , υ′1 ≤
∑

0≤i<|V | ρ
iυi1 and υ′2 ≥

∑
0≤i<|V | ρ

iυi2,
where ≤ and ≥ denote pointwise comparisons between vectors.

Criterion (C1) is included because it is never possible to find a counterexample word
with accepting probability less than υ′1κ1 = 0. Criterion (C2) is included because any
node satisfying it would guarantee υ′1κ1 ≤ υ′2κ2; moreover, if the algorithm terminates
and a node satisfies (C2), all of its descendants also satisfy (C2). We can thus make it
a leaf node. In practice, (C2) can easily be checked using an SMT solver. If a node
cannot be pruned, we add it to the tail of queue and to the non-leaf set V. The algorithm
terminates if queue becomes empty, concluding that A1 v A2.

Correctness and termination. The correctness of the semi-algorithm in Fig. 3 is shown
formally in [8]. A guarantee of termination, on the other hand, cannot be expected due
to the undecidability of the underlying problem.

5 L*-Style Learning for PFAs
In this section, we propose a novel method to learn a PFA for a target weighted lan-
guage generated by an unknown PFA. It works in a similar style to the well-known L*
algorithm [2] for learning regular languages: it constructs an observation table (of ac-
ceptance probabilities for each word) based on two types of queries posed to a teacher.
Membership queries ask the probability of accepting a particular word in the target PFA;
equivalence queries ask whether a hypothesised PFA yields exactly the target language.

Fig. 4 shows the learning algorithm. It builds an observation table (P,E, T ), where
P is a finite, non-empty, prefix-closed set of words, E is a finite, non-empty, suffix-
closed set of words and T : ((P ∪ P ·α) · E)→ [0, 1] maps each word to its accepting
probability in the target language ( · denotes concatenation over sets). The rows of table
(P,E, T ) are labelled by elements in the prefix set P∪P ·α and the columns are labelled
by elements in the suffix set E. The value T (u·e) of the entry at row u and column e
is the acceptance probability of the word u·e. We use row(u) to represent the |E|-
dimensional row vector in the table labelled by the prefix u ∈ (P ∪ P ·α).

Inspired by [4], which gives an L*-style algorithm for learning multiplicity au-
tomata, we define the notions of closed and consistent observation tables by estab-
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Input: The alphabet α of a target weighted language generated by an unknown PFA.
Output: A PFA accepting the target language.
1: initialise the observation table (P,E, T ), letting P = E = {ε}, where ε is the empty word
2: fill T by asking membership queries for ε and each action a ∈ α
3: while (P,E, T ) is not closed or not consistent do
4: if (P,E, T ) is not closed then find u ∈ P, a ∈ α that make (P,E, T ) not closed
5: add u · a to P , and extend T to (P ∪ P · α) · E using membership queries
6: if (P,E, T ) is not consistent then find a ∈ α, e ∈ E that make (P,E, T ) not consistent
7: add a · e to E, and extend T to (P ∪ P · α) · E using membership queries
8: construct a hypothesised PFA A and ask an equivalence query
9: if answer = no, with a counterexample c then add c and all its prefixes to P

10: extend T to (P ∪ P · α) · E using membership queries, goto Line 4
11: else return PFA A

Fig. 4. L*-style learning algorithm for PFAs

lishing linear dependencies between row vectors. Observation table (P,E, T ) is closed
if, for all u∈P and a∈α, there exist non-negative rational coefficients φi such that
row(u · a) =

∑
ui∈P φirow(ui) and consistent if, for any rational coefficients ψi,

∀e ∈ E.∑ui∈P ψiT (ui·e) = 0 implies ∀a ∈ α, e ∈ E.∑ui∈P ψiT (ui·a·e) = 0. The
need for coefficients to be non-negative (for closed) is a stronger condition than in [4].

As shown in Fig. 4, the observation table is filled with the results of membership
queries until it is both closed and consistent. At each step, if (P,E, T ) is not closed
(resp. consistent), then the algorithm finds u ∈ P, a ∈ α (resp. a ∈ α, e ∈ E) that make
it not closed (resp. consistent), according to the definitions above, and adds u.a (resp.
a.e) to the table. When (P,E, T ) is closed and consistent, the learning algorithm builds
a hypothesis PFA A (see below) and poses an equivalence query. If the teacher answers
“no” (that A does not yield the target language), a counterexample c ∈ α∗ is given,
for which PrA(c) is incorrect. The algorithm adds c and all its prefixes to P , updates
the observation table and continues to check if the table is closed and consistent. If the
teacher answers “yes”, the algorithm terminates and returns A.

Construction of a hypothesis PFA A = (S, s, α,P), from a closed and consistent
table (P,E, T ), proceeds as follows. First, we find a subset of P , denoted con(P ), such
that every element of {row(u)|u ∈ P} can be represented as a conical combination
of elements in {row(v)|v ∈ con(P )}, i.e. there are non-negative rational coefficients
λi such that, for all u ∈ P , row(u) =

∑
vi∈con(P ) λirow(vi). The set of states in the

PFA is then S = {s0, . . . , sn−1}, where each state si corresponds to a row vector in
{row(v)|v ∈ con(P )} and the initial state s corresponds to row(ε). To obtain P(a) for
each a ∈ α, we compute, for si ∈ S, rational coefficients γj such that row(si · a) =∑
sj∈S γjrow(sj) and then define P(a)[si, sj ] := γj · (T (sj · ε)/T (si · ε)).

Correctness and termination. When the learning algorithm terminates, it returns a
correct PFA, as guaranteed by the equivalence query check. Unfortunately, we cannot
prove the termination of our method. For L*, the corresponding proof uses the existence
of a unique minimal DFA for a regular language. However, an analogous property does
not exist for weighted languages and PFAs. According to [4], the smallest multiplicity
automaton can be learnt given a weighted language. However, as shown in [6], con-
verting a multiplicity automaton to a PFA (even for the subclass that define stochastic
languages) is not always possible.
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(ii) 〈A〉M2 〈G〉≥p

Compute:

Check if A satisfies:

Property true:
〈G〉≥p
M1,M2

Update
table

Membership
query

Update
table

Generate
conjecture

Inputs: Outputs:

Property false:

(analyse word w)

Equivalence query

Fig. 5. L*-style PFA learning loop for probabilistic assumption generation.

6 Learning Assumptions for Compositional Verification

Finally, we build upon the techniques introduced in Sections 4 and 5 to produce a
fully-automated implementation of the assume-guarantee framework proposed in Sec-
tion 3. In particular, we use PFA learning to automatically generate assumptions to
perform compositional verification. Fig. 5 summarises the overall structure of our ap-
proach, which aims to verify (or refute) M1 ‖M2 |= 〈G〉>p for two PIOSs M1,M2 and
a probabilistic safety property 〈G〉>p. This is done using proof rule (ASYM-PIOS) from
Section 3, with the required assumption PFA A about component M1 being generated
through learning. The left-hand side of the figure shows the learning algorithm of Sec-
tion 5, which drives the whole process; the right-hand side shows the teacher.

The teacher answers membership queries (about word w) by computing the prob-
ability PrM1

τ (w) of word w in M1. It answers equivalence queries (about conjectured
PFA A) by checking if A satisfies both premises of rule (ASYM-PIOS): (i) M1 vw A,
and (ii) 〈A〉M2 〈G〉>p. The first is done using Proposition 1 and the algorithm in Sec-
tion 4. The second is done using Proposition 2, which reduces to probabilistic model
checking of the DTMC pios(A) ‖M2.

If both premises are true, we can conclude that M1 ‖M2 |= 〈G〉>p holds. Other-
wise, the teacher needs to provide a counterexample c for the learning algorithm to
update the observation table and proceed. If premise (i) failed, then c is taken as the
word showing the violation of (weak) language inclusion. If premise (ii) failed, we try
to extract c from the results of model checking. We extract a probabilistic counterexam-
ple [11]C: a set of paths showing pios(A)||M2 6|= 〈G〉>p. Following the same approach
as [9], we transform C into a (small) fragment ofM1 (denotedMC

1 ) and check whether
MC

1 ||M2 6|= 〈G〉>p. If so, we stop the learning loop, concluding thatM1||M2 6|= 〈G〉>p.
If, on the other hand, C is a spurious counterexample, we can always extract, from C
a counterexample (word) c such that the learning algorithm can update its observation
table. Full details can be found in the extended version of this paper [8].

From the arguments above, we can show that, when the learning loop terminates,
it always yields a correct result. It should be pointed out, though, that since the loop is
driven by the learning algorithm of Section 5, whose termination we cannot prove, we
are also unable to guarantee that the loop finishes. Furthermore, weak language inclu-
sion checks use the semi-algorithm of Section 4, which is not guaranteed to terminate.
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7 Implementation and Results

We have implemented the PFA language inclusion check from Section 4, the PFA learn-
ing algorithm from Section 5 and the assumption-generation loop described in Sec-
tion 6. Based on these, we have built a prototype tool that performs fully-automated
assume-guarantee verification, as described in Section 3. Due to space limitations, we
refer the reader to [8] for further details of this implementation, as well as experimental
results from its application to several benchmark case studies.
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