
Using Probabilistic Model Checking for
Dynamic Power Management

Gethin Norman1, David Parker1, Marta Kwiatkowska1,
Sandeep Shukla2, and Rajesh Gupta3

1 School of Computer Science, University of Birmingham
Birmingham B15 2TT, United Kingdom

2 Bradley School of Electrical and Computer Engineering, Virginia Tech
Blacksburg, VA 24060, USA

3 Department of Computer Science and Engineering,
University of California at San Diego, La Jolla, CA, USA

Abstract. We present an approach to deriving stochastic Dynamic Power
Management (DPM) strategies that enables us to design both discrete
time and continuous time Markov chain based strategies, in a formal
and uniform framework. This is a novel application of formal model
checking of probabilistic systems in the area of system design. This ap-
proach allows us to obtain expected performance measures of the de-
rived strategies by automated analytical means without expensive simu-
lations. Moreover, one can formally prove various probabilistically quan-
tified properties pertaining to buffer sizes, delays, energy usage etc., for
each derived strategy. Comparison of various strategies under various
stochastic behavioral assumptions can also be done formally without
simulation. In this paper, we illustrate how we have implemented our
uniform approach in the PRISM model checker framework and present
results from realistic DPM scenarios based on a disk-drive example with
multiple power management states.

1 Introduction

Power Management is an important area of research [1,3,15,18,9] because of an
increasing trend in the usage of portable, mobile, and hand-held electronic de-
vices. These devices usually run on batteries and any savings in power usage
translate to extended battery life. Various approaches to low power design have
been explored, at device, circuit and micro-architecture level. System level power
management exploits application characteristics and manages various system
devices for power optimization. System components such as network interface
cards, disk drives, and DRAM, etc., are manufactured with a number of power
modes which can be changed by an operating system through standard APIs
such as ACPI [8] and power-aware API [13]. However, in order to take advan-
tage of these power modes and APIs, the power management strategies need
to be implemented at the O/S level. In this context, Dynamic Power Manage-
ment (DPM) strategies refer to strategies that attempt to make power mode



changing decisions based on information about their usage pattern available at
runtime. The objective of such strategies is to minimize power consumption,
while minimizing effect on performance.

Among the various methodologies for deriving DPM strategies, Stochastic
Modelling has been extensively studied in the literature [16,17,1,3,21]. Stochas-
tic Modelling of device behaviours, input characteristics and inherent delays in
the system, have led to stochastic modelling based techniques including: Discrete
Time Markov Chains [2,12], Continuous Time Markov Chains [15,16,17,11], and
Renewal Theory based methods [21] to derive stochastic DPM strategies. These
existing methodologies depend on formulating a stochastic optimization problem
to minimize the average energy consumption and the average delay in system
response. In this paper, we show how the probabilistic model checker PRISM
[10,14], can be used as a uniform framework to derive stochastic strategies. This
paper substantially complements our previous work on Continuous-Time Markov
Chain based strategies in [11] and conclusively shows that our PRISM based
framework provides a uniform methodology for deriving, analyzing, and validat-
ing stochastic DPM strategies. In particular, instead of restricting the derivation
of the strategies based on optimizing average cases, one can parameterize the
strategies on required extremal properties such as maximal delay bounds, prob-
abilistically quantified delay bounds, and maximal buffer size etc. On another
note, the existing research literature relied heavily on expensive trace based sim-
ulations to analyse variational effects such as varying the arrival rate of requests
from one standard distribution to another, whereas the PRISM framework can
perform such analysis quite easily without simulation. Moreover, one can for-
mally prove various properties pertaining to buffer sizes, delays, energy usage
etc, for any given strategy. In summary, this paper presents a uniform frame-
work for stochastic Dynamic Power Management with additional advantages, by
utilising a probabilistic model checker.

In the next section, we introduce the basic concepts of probabilistic model
checking and the PRISM tool. We also provide background information on
stochastic modeling based power management and existing literature on the
topic. In Section 3, we describe how we use the PRISM framework to derive DPM
strategies and parameterize the approach to obtain various strategies based on
varying stochastic assumptions on the environment. We also present experimen-
tal results in this section. Section 4 contains discussion and future work.

2 Background

In this section, we briefly outline concepts from system level power management,
probabilistic model checking, the tool PRISM, and stochastic modeling for DPM.

2.1 System Level Power Management

Power management in embedded computing systems is achieved by actively
changing the power consumption profile of the system by putting its components



into power/energy states which are sufficient to meet functionality requirements.
For example, an idling component (such as a disk drive) can be put into a slow-
down or shutdown state. Of course, bringing such a component into an active
state may then require additional energy and/or latency to service the tasks.
The DPM problem can be defined as:

Given a power managed component, such as a disk drive or a network
interface card, derive a randomized power management strategy which
minimizes average power dissipation, under the constraint that the av-
erage delay suffered by requests coming for service by the component is
bounded by an a priori constant.

We also seek to develop probabilistic guarantees on the worst case and best case
scenarios, that enables us to quantify the effectiveness of the DPM strategy.
These measures include the worst case delay, worst and best power consump-
tion. We also want to obtain information on buffer sizes and other design space
parameters (in a probabilistic sense). In other words, we want to know the val-
ues of these parameters as a function of probabilities of a certain delay or power
consumption in the system.

Dynamic Power Management (DPM) attempts to make optimal decisions
(usually under the control of the operating system) at runtime based on dynami-
cally changing system state, functionality and delay requirements [6,22,3,20,19,5,9].
A survey of the DPM techniques can be found in [1]. The authors in [1] classify
DPM strategies into two main groups: predictive schemes, and stochastic opti-
mum control schemes. Predictive schemes attempt to predict the timing of future
input to the system and, based on such prediction, schedule shutdown (usually
to a single lower power state) of the system. Stochastic optimum control is a well-
researched area [1,21,2,5,15,17]. The chief characteristic of these approaches is
construction (and validation) of a mathematical model of the system that lends
itself to a formulation of a stochastic optimization problem, and then creation
of strategies to guide the system power profile that achieve the highest power
savings in the presence of the uncertainty related to system inputs.

While several useful and practical techniques have been developed using pre-
dictive and stochastic optimum control schemes, as of now, it is difficult to
develop bounds on the quality of these results without extensive simulations
and/or model justification.

Stochastic control oriented dynamic power management work [2,15] has relied
on modelling inter-arrival times using an exponential distribution. In practice,
such stochastic modelling seems to work well for specific kinds of applications.
However, the approaches varied in the model of time; for example in [2], the
arrival process and service process are all modelled as discrete time Markov
chains, whereas in [15] these are modelled with continuous time Markov chains.
In more recent work, such as in [21], extended models to incorporate more general
stochastic processes for modelling event arrivals have been considered. In this
paper, we focus on discrete-time Markov chains following [2].



2.2 Probabilistic Model Checking

At a high level of abstraction, a model can often be simplified, for instance by
replacing determinism by nondeterminism. However, complete nondeterminism
often leads to an inability to prove any useful property of such systems. As a
result, probabilities are often used to abstract some of the low level disregarded
information, and a quantified nondeterminism can be represented in a proba-
bilistic model. For example, if one looks at the the service time by a disk-drive
per request, if one models the functionality of the disk-drive, the queues, the
environment, the device drivers and the operating system and the architecture,
one may be able to predict exactly for each request how much service time is re-
quired. However, often it is inconvenient, and certainly it is not easily amenable
to formal analysis, to model disk-drive behaviour in such detail. However, by
observing its behaviour for a sufficiently long time, one can infer that the disk-
drive exhibits probabilistic behaviour with certain parameters. As an example,
the service time per request is often modelled as an exponential distribution
with a mean of 3 ms. Such information is then useful in modelling and analysing
this behaviour and also in devising probabilistic algorithms for managing such
devices.

2.3 Probabilistic Model Checking and PRISM

Probabilistic model checking refers to a state space analysis technique for prob-
abilistic finite state systems. The system is usually specified as state transition
systems, with probability measures on the rate of transition, and a probabilistic
model checker applies algorithmic techniques to analyse the state space, and
calculate probabilities of reaching different states etc. Given probabilistic asser-
tions about the system, probabilistic model checkers can prove or disprove such
assertions by means of algorithmic techniques [4].

We use PRISM [10,14], a probabilistic model checker developed at the Univer-
sity of Birmingham. It supports analysis of three types of probabilistic models:
discrete-time Markov chains, continuous-time Markov chains and Markov deci-
sion processes. These models are described in a high-level language based on
guarded commands with probabilistic information attached to them. Properties
of the models to be analysed are specified in the probabilistic temporal logics
PCTL and CSL. This allows us to express various probabilistic properties such
as “some event happens with probability 1”, and “the probability of cost ex-
ceeding C is 95%”. The model checker then analyses the model and checks if the
property holds in each state.

2.4 Stochastic Modelling for DPM

Stochastic modelling based approaches to DPM have been based on the frame-
work of stationary discrete-time Markov chains [12], continuous-time Markov
Chains [15] or their variants [21].



Irrespective of whether they are based on stationary discrete-time Markov
chains, continuous-time Markov chains and their variants, existing methodolo-
gies depend on modelling the input arrival process and the behaviour of power
managed components by creating the stochastic matrices or generator matrices
for these processes by hand, and then creating and solving optimization prob-
lems from those to optimize the average case. One novelty of this work is that we
express the behaviour of the input generator and power managed component, as
well as the power manager, in a high level probabilistic language for expressing
stochastic state machines. This allows automatic generation of the matrices; the
rest of the required computation for designing strategies is then carried out in
the model checking framework. In [16], the power manager and managed compo-
nents are modelled using stochastic Petri nets. This allows automatic generation
of the stochastic matrices and the formulation of the optimization problems.
These exact optimization problems are meant to optimize the average energy
usage while minimizing average delay. They are usually validated by simulation
to check for the soundness of the modelling assumptions, and effectiveness of the
strategies in practice [15,12]. Since probabilistic model checking is inherently
exhaustive in its search among all possible scenarios, more useful information
can be obtained about the design space than using simulation. For example, op-
timal buffer sizes, average delays, probabilities of various corner case scenarios
etc, and probability based comparisons between various delay-cost possibilities
(obtainable by competing DPM strategies) can easily be predicted.

3 Experimental Results

We obtained all the data used by the authors of [2] directly from the authors,
and used PRISM to model the DTMC based strategy derivation problem. In this
section we describe the model of the disk drive as in [2], and briefly describe how
we modelled the discrete case in PRISM, and what other measures we obtained
for the derived strategies, and describe some of the properties proven.

3.1 Multiple Power States

Device and component manufacturers provide multiple power states which can be
controlled under the operating system through these standardized APIs. Table 1-
2 shows the data from [2] for a 5-state device (a commercially available hard disk
drive [7]). Note that, it is only in state active that the device can perform data
reads and writes. In state idle the disk is spinning while some of the electronic
components of the disk drive have been switched off. The state idlelp (idle low
power) is similar except that it has a lower power dissipation, the states stby
and sleep correspond to the disk being spun down.

3.2 The System Model

We consider the system model as illustrated in Figure 1. The model consists of
a Service Requester(SR), a Service Provider(SP), Service Request Queue(SRQ),



sleep stby idlelp idle active

Power (W) 0.1 0.3 0.8 1.5 2.5

Service Time (ms) 0 0 0 0 1

Table 1. Average power consumption and service times for the managed device
[2]

active idle idlelp stby sleep

active – 1ms 5ms 2.2sec 6sec

idle 1ms – 5ms 2.2sec 6sec

idlelp 5ms – – 2.2sec 6sec

stby 2.2sec – – – 6sec

sleep 6sec – – – –

Table 2. Average transition times for state transition of the managed device [2]

and the power manager(PM) modules. In both discrete-time as well as continuous-
time models, this level of description is the same. However, they differ in how
time is represented. In this paper time is considered to be discrete, whereas in
[11] we consider continuous time.

State Observations

Service Provider 
(SP)

Commands

Request 
Generator 

(SR)
Service Queue

(SRQ)

Power Manager (PM)

Fig. 1. The System Model.

3.3 Modeling in PRISM

To model the system we have chosen a time resolution of 1ms based on the
fastest possible transition performed by the SP.

To model the PM deciding which state SP should move to at the start of each
time step, we split each time step of the system into two parts: in the first the
PM (instantaneously) decides what the SP should do next (based on the current



state), and in the second the system makes a transition (with the SP’s move
based on the choice made by the PM). To achieve this we include the CLOCK
module given below.

module CLOCK

c : [0..1] init 0;

[tick1] c = 0 → c′ = 1;
[tick2] c = 1 → c′ = 0;

endmodule

The PM is then constructed to synchronize with the CLOCK on tick1, while
the remaining components are constructed to synchronize with the CLOCK on
tick2.

Modelling the PM As mentioned above, the PM synchronises with the clock
on tick1 and bases its choices on the current state of the system. A generic PM
has the following form:

module PM

pm : [0..4];
// 0− go to busy, 1− go to idle, 2− go to idlelp
// 3− go to standby and 4− go to sleep

[tick1] cond1 → p01 : sp′=0 + p11 : sp′=1+
p21 : sp′=2 + p31 : sp′=1 + p41 : sp′=4;

[tick1] cond2 → p02 : sp′=0 + p12 : sp′=1+
p22 : sp′=2 + p32 : sp′=1 + p42 : sp′=4;
...

endmodule

For example, if a state of the system satisfies cond1 then the PM decides that
with probability p01 the SP moves to active, with probability p11 the SP moves
to idle, with p21 to idlelp, p31 to standby, and p41 to sleep.

Modelling the SP Recall that the SP synchronises with the clock on tick2
and the behaviour of the SP depends on the PM. Furthermore, since a time
resolution of 1ms has been chosen, to correctly model transitions with delays
longer than this time resolution transient states are introduced. For example,



the transient state active idlelp is used to model the non-unitary time transition
from active to idlelp. Note that we suppose that the power dissipation in these
transient states is high (2.5W). The module representing the SP is given below.

module SP

sp : [0..10] init 9;
// 0=active, 1=idle, 2=active idlelp, 3=idlelp, 4=idlelp active
// 5=active stby, 6=stby, 7=stby active, 8=active sleep
// 9=sleep, 10=sleep active

// states where PM has no control (transient states)
[tick2] sp=2 → 0.75 : (sp′=2) + 0.25 : (sp′=3);
[tick2] sp=4 → 0.25 : (sp′=0) + 0.75 : (sp′=4);
[tick2] sp=5 → 0.995 : (sp′=5) + 0.005 : (sp′=6);
[tick2] sp=7 → 0.005 : (sp′=0) + 0.995 : (sp′=7);
[tick2] sp=8 → 0.9983 : (sp′=8) + 0.0017 : (sp′=9);
[tick2] sp=10 → 0.0017 : (sp′=0) + 0.9983 : (sp′=10);
// PM: goto active
[tick2] pm=0 ∧ (sp=0 ∨ sp=1) → sp′=0;
[tick2] pm=0 ∧ sp=3 → sp′=4;
[tick2] pm=0 ∧ sp=6 → sp′=7;
[tick2] pm=0 ∧ sp=9 → sp′=10;
// PM: goto idle
[tick2] pm=1 ∧ (sp=0 ∨ sp=1) → sp′=1;
[tick2] pm=1 ∧ (sp=3 ∨ sp=6 ∨ sp=9) → sp′=sp;
// PM: goto idlelp
[tick2] pm=2 ∧ (sp=0 ∨ sp=1) → sp′=2;
[tick2] pm=2 ∧ (sp=3 ∨ sp=6 ∨ sp=9) → sp′=sp;
// PM: goto stby
[tick2] pm=3 ∧ (sp=0 ∨ sp=1 ∨ sp=3) → sp′=5;
[tick2] pm=3 ∧ (sp=6 ∨ sp=9) → sp′=sp;
// PM: goto sleep
[tick2] pm=4 ∧ (sp=0 ∨ sp=1 ∨ sp=3 ∨ sp=6) → sp′=8;
[tick2] pm=4 ∧ sp=9 → sp′=9;

endmodule

Modelling the SR and SRQ As mentioned above, both the SRQ and the SR
will synchronise with the clock on tick2. The SR has two states: idle where no
requests are generated and 1req where one request is generated per time step
(1ms). The transitions between these states is based on time-stamped traces of
disk access measured on real machines [2]. The module of the SR is given by:



module SR

sr : [0..1] init 0;
// 0 - idle and 1 - 1req

[tick2] sr=0 → 0.898 : (sr′=0) + 0.102 : (sr′=1);
[tick2] sr=1 → 0.454 : (sr′=0) + 0.546 : (sr′=1);

endmodule

In the case of the SRQ, to model the arrival and service of requests the transitions
of the SRQ are dependent on the state of both the SR and SR. Since either the
SR is in state idle and no requests arrive, or in state 1req and one request arrives,
and on the other hand the SP can only serve requests when it is in state active,
the module of the SRQ is presented below.

const QMAX = 2; //maximum size of the queue

module SRQ

q : [0..QMAX] init 0; // size of queue

// SP is active
[tick2] sr = 0 ∧ sp = 0 → q′ = max(q− 1, 0);
[tick2] sr = 1 ∧ sp = 0 → q′ = q;
// SP is not active
[tick2] sr = 0 ∧ sp > 0 → q′ = q;
[tick2] sr = 1 ∧ sp > 0 → q′ = min(q + 1, QMAX);

endmodule

Modelling a Finite Time Horizon The policies we have calculated are the
optimum policies for minimizing power consumption under different performance
constraints, where these constraints concern the average size of the queue. In
addition, we suppose that there is a time horizon of one million time steps. To
model this horizon we include an additional module representing a battery which
has an expected life span of 1 million time steps.



module BATTERY

bat : [0..1] init 1;
// 0 - battery off and 1 - battery on

[tick2] bat = 1 → 0.999999 : (bat′=1) + 0.000001 : (bat′=0);

endmodule

Note that, once the battery reaches state 0, it cannot perform the action tick2
which prevents the system from performing the action tick2, and hence prevents
the rest of the system from moving (i.e. the states where bat = 0 act as sink
states).

3.4 Interpretation of Results

We have designed generic models of the the Power Management system in
PRISM s input description language, for the disk drive model of [2]. Then, using
PRISM, we are able to construct the full stochastic matrix of a system, and
hence construct the optimization problem whose solution is the optimal policy.
Moreover, once the optimal policy is found, by using the generic description we
can construct a model of the power manager module corresponding to this pol-
icy and investigate its performance. Varying the average queue length, we obtain
different stochastic policies where the calculation is done by generating the ma-
trices in PRISM and formulating and solving the linear optimization problem in
MAPLE symbolic solver.

The PRISM representation consists of a number of modules representing
the different components of the system, namely the power manager (PM), ser-
vice provider (SP), service requester (SR) service request queue (SRQ). In [2],
the authors created the SR model using disk usage traces, and we have used
their model verbatim. In order to parameterize the results on various alternative
strategies, we had to represent different stochastic strategies. For that, one needs
only to modify the PM module. This way we analyse performance under varied
constraints and Figure 2 illustrates the power consumption versus performance
both in terms of the average queue size and the average number of lost requests
for the case study. The computed strategies correspond to optimizing the power
consumption under a constraint on the average queue size.

We now examine representative results that demonstrate the utility and
power of our methodology. A representative selection of results are depicted
graphically in Figures 2–5. The delay measure is given by the queue length
(which indicates how much delay a new incoming request will suffer). We also
show the graphical representation of the probabilities of losing N requests by a
certain time, and probabilities of being served by a certain time T . The graphs
are shown for different strategies, where the strategies are derived under various
average queue length constraints. We note that probabilistic properties proven



0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

average queue length

po
w

er
 c

on
su

m
pt

io
n

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0

0.5

1

1.5

2

2.5

average number of lost customers

po
w

er
 c

on
su

m
pt

io
n

Fig. 2. Power versus performance for the disk-drive

about the strategies, or the variational effects of replacing the assumptions on
various probability distributions are not shown here. In [11] we have shown how
those can be done for Continuous-Time models, and their extension to Discrete-
Time cases is similar and omitted here for brevity. The results (obtained using
PRISM) presented in Figure 3 show the expected power consumption by time
T , the expected queue size at time T , and expected number of lost customers
by time T for a number of different values of T . Next, in Figure 4 we depict
the probability that a request is served by time T , given that it arrived into a
certain position in the queue. In Figure 4 the results are presented for a number
of performance constraints and values of T , both in the case when the request
arrives into the first and also second position of the queue. Finally, Figure 5
shows, from the initial state, the probability that N requests get lost by time T
for different performance constraints.

These results show that strategies which consume less power have in general
larger queue sizes (both in the long run and at time T ), and a larger number of
lost requests (both on average and by time T ). Furthermore, the graphs show
that the probability that requests get served or lost within a time bound increases
for those strategies that consume less power. These results are to be expected,
since to reduce power the strategies must force the service provider to spend more
time in low power states, that is, those states which cannot service requests (for
example, sleep and standby). Moreover, the fact that the results for the expected
queue size at time T initially increase and then decrease, follows from the fact
that the strategies wait for the queue to become full before switching the SP on.
Finally, we note that the results concerning the average power consumption and
average queue size given in Figure 2 coincides with the results presented in [2].

4 Conclusion and Future Work

We show that probabilistic model checking can provide a uniform framework
for deriving, analyzing and validating DPM strategies. This is accomplished
by virtue of derivation and analysis of strategies when the system is modelled



0 2 4 6 8 10
x 10

4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

T

ex
pe

ct
ed

 q
ue

ue
 s

iz
e 

at
 ti

m
e 

T

constraint=0.05
constraint=0.1
constraint=0.25
constraint=0.5
constraint=1

0 2 4 6 8 10
x 10

4

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

T

ex
pe

ct
ed

 n
um

be
r o

f l
os

t c
us

to
m

er
s 

by
 ti

m
e 

T constraint=0.05
constraint=0.1
constraint=0.25
constraint=0.5
constraint=1

0 2 4 6 8 10
x 10

4

0

0.5

1

1.5

2

2.5
x 10

5

T

ex
pe

ct
ed

 p
ow

er
 c

on
su

m
pt

io
n 

by
 ti

m
e 

T

constraint=0.05
constraint=0.1
constraint=0.25
constraint=0.5
constraint=1

Fig. 3. Power and performance by time T (ms)

using discrete-time Markov chain as in [2], and by virtue of our previous results
for the continuous time Markov chain models [11]. As opposed to deriving the
strategies to minimize average case power, and delays as done in the the recent
literature, we naturally obtain the power management policies under varied delay
constraints (rather than only the one that minimizes average delay). The ongoing
work focuses on building an analytical framework that derives and analyses
strategies for more general probabilistic assumptions.

Acknowledgments

This work was supported by NSF grant CCR-0098335, EPSRC grant GR/N22960,
QinetiQ, SRC, and DARPA/ITO supported PADS project under the PAC/C
program. Part of the work was possible by a visiting fellowship from University
of Birmingham.

We would also like to thank the authors of [2] for providing us with the details
specification of their hard-drive specification.



0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T

pr
ob

ab
ili

ty
 re

qu
es

t g
et

s 
se

rv
ed

 b
y 

tim
e 

T

request is first in the queue

constraint=0.05
constraint=0.1
constraint=0.25
constraint=0.5
constraint=1

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T

pr
ob

ab
ili

ty
 re

qu
es

t g
et

s 
se

rv
ed

 b
y 

tim
e 

T

request is second in the queue

constraint=0.05
constraint=0.1
constraint=0.25
constraint=0.5
constraint=1

Fig. 4. Probability that a request is served by time T (ms)

2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T

pr
ob

ab
ili

ty
 o

f l
os

in
g 

50
0 

re
qu

es
ts

 b
y 

tim
e 

T

constraint=0.05
constraint=0.1
constraint=0.25
constraint=0.5
constraint=1

4000 4500 5000 5500 6000 6500 7000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T

pr
ob

ab
ili

ty
 o

f l
os

in
g 

10
00

 re
qu

es
ts

 b
y 

tim
e 

T constraint=0.05
constraint=0.1
constraint=0.25
constraint=0.5
constraint=1

Fig. 5. Probability that N requests gets lost by time T (ms)

References

1. Benini, L., Bogliolo, A., and Micheli, G. D. A survey of design techniques for
system-level dynamic power management. IEEE Transactions on Very Large Scale
Integration (TVLSI) Systems, 8(3):299–316, 2000.

2. Benini, L., Bogliolo, A., Paleologo, G., and Micheli, G. D. Policy optimization for
dynamic power management. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 18(6):813–833, 1999.

3. Benini, L., De Micheli, G., and Macii, E. Designing Low-power Circuits: Practical
Recipes. IEEE Circuits and Systems Magazine, 1(1):6–25, 2001.

4. Bianco, A. and de Alfaro, L. Model checking of probabilistic and nondeterministic
systems. In Proc. Foundations of Software Technology and Theoretical Computer
Science, volume 1026 of LNCS, pages 499–513. Springer, 1995.

5. Chung, E. Y., Benini, L., Bogliolo, A., and Micheli, G. D. Dynamic Power Man-
agement for Non-Stationary Service Requests. In Proceedings of the Design Au-
tomation and Test Europe, 1999.

6. Hwang, C.-H., Allen, C., and Wu, H. A Predictive System Shutdown Method For
Energy Saving of Event-Driven Computation. In Proceedings of the IEEE/ACM
International Conference on Computer Aided Design, pages 28–32, 1996.



7. Technical specifications of hard drive IBM Travelstar VP 2.5inch. http://www.

storage.ibm.com/storage/oem/data/travvp.htm.
8. Intel and Microsoft and Toshiba. Advanced Configuration and Power Interface

Specification. Website, 1996.
9. Irani, S., Shukla, S., and Gupta, R. Competitive Analysis of Dynamic Power Man-

agement Strategies for Systems with Multiple Power Saving States. In Proceedings
of the Design Automation and Test Europe Conference, 2002.

10. Kwiatkowska, M., Norman, G., and Parker, D. PRISM: Probabilistic symbolic
model checker. In Field, T., Harrison, P., Bradley, J., and Harder, U., editors,
Proc. 12th International Conference on Modelling Techniques and Tools for Com-
puter Performance Evaluation (TOOLS’02), volume 2324 of LNCS, pages 200–204.
Springer, 2002.

11. Norman, G., Parker, D., Kwiatkowska, M., Shukla, S., and Gupta, R. Formal
analysis and validation of continuous time Markov chain based system level power
management strategies. In Rosenstiel, W., editor, Proc. 7th Annual IEEE Inter-
national Workshop on High Level Design Validation and Test (HLDVT’02), pages
45–50. OmniPress, 2002.

12. Paleologo, G. A., Benini, L., Bogliolo, A., and Micheli, G. D. Policy Optimization
for Dynamic Power Management. In Proceedings of Design Automation Conference,
pages 182–187. ACM Press, 1998.

13. Pereira, C., Gupta, R., Spanos, P., and Srivastava, M. A Power Aware API, chapter
8 - Power-Aware API for Embedded and Portable Systems. Kluwer Academic
Publishers, 2002.

14. PRISM web page. http://www.cs.bham.ac.uk/~dxp/prism/.
15. Q. Qiu and M. Pedram. Dynamic Power Management Based on Continuous-Time

Markov Decision Processes. In Proceedings of Design Automation Conference,
pages 555–561. ACM Press, 1999.

16. Q. Qiu and Q. Wu and M. Pedram. Dynamic power management of complex sys-
tems using generalized stochastic petri nets. In Proceedings of Design Automation
Conference, pages 352–356. ACM Press, 2000.

17. Q. Qiu, Q. Wu and M. Pedram. Stochastic Modeling of a Power-Managed System:
Construction and Optimization. In Proceedings of the International Symposium on
Low Power Electronics and Design, pages 194–199, 1999.

18. Ramanathan, D., Irani, S., and Gupta, R. An Analysis of System Level Power
Management Algorithms and their effects on Latency. IEEE Trans. on Computer
Aided Design, 21(3):291–305, 2002.

19. Ramanathan, D., Irani, S., and Gupta, R. K. Latency Effects of System Level Power
Management Algorithms. In Proceedings of the IEEE International Conference on
Computer-Aided Design, pages 350–356, 2000.

20. S. Shukla and R. Gupta. A Model Checking Approach to Evaluating System Level
Power Management for Embedded Systems. In Proceedings of IEEE Workshop
on High Level Design Validation and Test (HLDVT01), pages 53–57. IEEE Press,
2001.

21. Simunic, T., Benini, L., and Micheli, G. D. Event Driven Power Management of
Portable Systems. In In the Proceedings of International Symposium on System
Synthesis, pages 18–23, 1999.

22. Srivastava, M. B., Chandrakasan, A. P., and Broderson, R. W. Predictive Shut-
down and Other Architectural Techniques for Energy Efficient Programmable
Computation. IEEE Trans. on VLSI Systems, 4(1):42–54, 1996.

http://www.storage.ibm.com/storage/oem/data/travvp.htm
http://www.storage.ibm.com/storage/oem/data/travvp.htm
http://www.cs.bham.ac.uk/~dxp/prism/

	Using Probabilistic Model Checking for Dynamic Power Management

