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Abstract. Quantitative verification techniques are able to establish sys-
tem properties such as “the probability of an airbag failing to deploy
on demand” or “the expected time for a network protocol to success-
fully send a message packet”. In this paper, we describe a framework
for quantitative verification of software that exhibits both real-time and
probabilistic behaviour. The complexity of real software, combined with
the need to capture precise timing information, necessitates the use of
abstraction techniques. We outline a quantitative abstraction refinement
approach, which can be used to automatically construct and analyse ab-
stractions of probabilistic, real-time programs. As a concrete example of
the potential applicability of our framework, we discuss the challenges
involved in applying it to the quantitative verification of SystemC, an
increasingly popular system-level modelling language.

1 Introduction

Computerised systems pervade all aspects of modern society, including safety-
critical application domains such as the automotive and avionics industries. This,
combined with the growing complexity of such devices, necessitates the develop-
ment of rigorous techniques to verify their correctness. Furthermore, this analy-
sis must often take into account the quantitative aspects of the systems that are
being verified. This includes both real-time characteristics and probabilistic be-
haviour. Embedded devices, in safety-critical applications for example, will often
have strict timing requirements. Similarly, it is important to quantify the effect
of inherently stochastic behaviour, such as component failures or message loss
in communication between networked devices. Another source of probabilistic
behaviour is the use of randomisation, an essential ingredient of many network
protocols such as FireWire or Ethernet and wireless technologies including Blue-
tooth and ZigBee.

Quantitative verification is a formal method for the analysis of timed and
probabilistic systems. It is based on the construction of a mathematical model
capturing the system’s behaviour, followed by the analysis of formally specified
quantitative properties. These might include, for example, “the probability of an
airbag failing to deploy within 0.02 seconds”, “the expected time for a network
protocol to send a packet” or “the expected power consumption of a sensor
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network during 1 hour of operation”. Notice that this permits an analysis not
just of a system’s correctness, but also its performance and reliability.

Quantitative verification techniques have seen a great deal of progress in
recent years. For real-time systems, a prominent modelling formalism is timed
automata, for which mature verification tools such as UPPAAL [38] exist. For
probabilistic systems, the most commonly used models are Markov chains or
Markov decision processes (MDPs). Probabilistic model checking tools such as
PRISM [21] and MRMC [25] are widely used and have been successfully ap-
plied to the verification of a range of systems. Recent work [45,32,17,4] has seen
progress in the development of tools for systems with time and probabilities.

A weakness of all these tools, however, is that they require the user to specify
the system model in a custom modelling language. In order to minimise the
chance of errors introduced in the modelling phase and to encourage the use
of these tools, there is a need to extend quantitative verifications techniques to
the languages used by real system designers. In the context of non-probabilistic
verification, progress has been made in this direction. In particular, software
model checking tools and techniques can now be applied directly to mainstream
programming languages such as C and Java.

In this paper, we develop the underlying theory for quantitative verification
of software with both probabilistic and real-time characteristics. We formalise
the notion of probabilistic timed programs, whose semantics are defined in terms
of infinite-state MDPs. The complexity of real software means that the use of
abstraction is typically essential. Building on our previous work on tools and
techniques for verifying a probabilistic extension of ANSI-C [26], we propose a
quantitative abstraction refinement approach [27,31,32]. This builds successive,
increasingly precise abstractions of an MDP, represented as two-player stochas-
tic games [31]. At each step, the process is driven by refinement techniques
which construct a new abstraction using information derived from quantitative
verification of the stochastic game. This technique has already proven to be an
efficient approach to the verification of probabilistic timed automata [32].

As a concrete illustration of the potential applicability of our verification
framework, we discuss the challenges involved in applying it to the quantitative
verification of SystemC, a C++-based system-level modelling language. SystemC
is becoming increasingly prominent in the embedded systems domain, for exam-
ple in the development of System-on-Chips (SoCs). Building formal verification
techniques for SystemC has already been identified as an important but chal-
lenging direction of research [46]. Clearly, quantitative verification of SystemC
will be even more demanding. We describe how some of the existing approaches
and tools might be combined with our framework and identify some of the more
important directions of future work.

This is an extended and improved version of [33], including additional details
and proofs. All proofs are located in the Appendix.
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2 Background Material

A distribution over Q is a function λ :Q→[0, 1] where the support {q∈Q |λ(q)>0}
is countable and

∑
q∈Qλ(q)=1, let Dist(Q) denote the set of such distributions.

2.1 MDPs and Stochastic Games

Markov decision processes (MDPs) are used to model systems that exhibit both
nondeterministic and probabilistic behaviour.

Definition 1. An MDP M is a tuple (S, S,Act ,StepsM) where S is a set of
states, S ⊆ S is a set of initial states, Act is a set of actions and StepsM :
S×Act → Dist(S) is a partial probabilistic transition function.

For a state s of an MDP M, we write Act(s) for the set of actions available
in s, i.e., the actions a ∈ Act for which StepsM(s, a) is defined. The behaviour
in state s is both probabilistic and nondeterministic: first an available action
(i.e. an action in Act(s)) is selected nondeterministically, then a successor state
is chosen according to the distribution StepsM(s, a). A path is a sequence of
such choices and a state is reachable if there is a path to it from an initial
state. Under an adversary A, which resolves all nondeterminism, we can define
a probability measure over paths [28]. The fundamental quantitative property
for MDPs is that of probabilistic reachability which concerns the minimum or
maximum probability of reaching a set of states F . Formally, we have:

pmin
M (F )

def
= infs∈S infA pAs (F ) and pmax

M (F )
def
= sups∈S supA pAs (F )

where pAs (F ) denotes the probability of reaching target F , starting from s, when
the MDP behaves according to adversary A.

Stochastic two-player games [41,8] extend MDPs by allowing two types of non-
deterministic choice, controlled by separate players.

Definition 2. A stochastic game G is a tuple (S, S,Act ,StepsG) where S is
a set of states, S ⊆ S is a set of initial states Act is a set of actions and
StepsG : S×Act → 2Dist(S) is a partial probabilistic transition function.

The behaviour in a state s of a game G includes two successive nondeter-
ministic choices: first player 1 selects an available action, then a distribution
λ ∈ StepsG(s, a) is selected by player 2. Finally, the successor state is then cho-
sen according to the distribution λ. A pair of strategies (σ1, σ2) for players 1
and 2, resolve all the nondeterminism present in the game, and this induces a
probability measure over the paths of the game.

2.2 Quantitative Abstraction Refinement

As proposed in [31], we use stochastic games to represent abstractions of MDPs.
The key idea is to separate the two forms of nondeterminism: using player 1
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Fig. 1. Quantitative abstraction refinement for MDPs

choices to represent the nondeterminism caused by abstraction; and player 2
choices for the nondeterminism of the MDP. For an MDP M, the construction of
an abstraction is based on a partition P={S1, . . . , Sn} of its state space. For λ ∈
Dist(S), we let λP ∈ Dist(P) denote the distribution where λP(S′)=

∑
s∈S′ λ(s)

for all S′ ∈ P. Formally, we define the abstraction of an MDP as follows.

Definition 3. Let M=(S, S,Act ,StepsM) be an MDP and P a partition of S.
The abstraction of M with respect to P is given by the stochastic game G =
(P,P, 2Act×Dist(P),StepsG) where P={S′ ∈ P | S′ ∩ S 6= ∅} and for S′ ∈ P and
Θ ∈ 2Act×Dist(P): StepsG(S′, Θ) is defined and equals {λ | (a, λ) ∈ Θ ∧ a ∈ Act}
if and only if there exists s ∈ S′ such that Θ={(a,StepsM(s, a)P) | a ∈ Act(s)}.

If G is an abstraction of M, then the reachability probabilities on G yield lower
and upper bounds on the reachability probabilities of M:

plb,min
G (F )6pmin

M (F )6pub,min
G (F ) and plb,max

G (F )6pmax
M (F )6pub,max

G (F ) (1)

where, for example, in the stochastic game G:

plb,max
G (F )

def
= supS′∈P infσ1

supσ2
pσ1,σ2

S′ (F )

pub,max
G (F )

def
= supS′∈P supσ1

supσ2
pσ1,σ2

S′ (F )

and pσ1,σ2

S′ (F ) denotes the probability of reaching the target α(F ) under the pair
of strategies (σ1, σ2) when starting in the state S′. These reachability values can
be determined efficiently using value iteration [40] together with the correspond-
ing adversary or strategy-pair which achieves the value. In [47], the game-based
abstraction of Definition 3 above is phrased in terms of abstract interpretation
[9] and the resulting bounds obtained are shown to coincide with the “best”
values obtainable for a fixed abstraction of the MDP.

Quantitative abstraction refinement [27,32,26] is an approach for automatically
constructing abstractions of probabilistic models. Using the notion of abstracting
MDPs with stochastic games describe above, it has been successfully applied to
the verification of a probabilistic extension of ANSI-C [26], probabilistic timed
automata [32] and concurrent probabilistic systems [47].

Illustrated in Figure 1, the technique starts with an MDP M (or, in practice a
high-level model with MDP semantics) and coarse partition P of its state space.
It then constructs and analyses the resulting abstraction of M, yielding lower
and upper bounds on a property of interest (e.g. the probability of reaching a
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set of target states F as in (1) above). If the difference between these bounds
(the “error”) is below a pre-specified bound ε, the process terminates, producing
suitably tight lower and upper bounds. If not, the abstraction is refined, based on
information (strategies) from the analysis of the game. The abstraction, analysis
and refinement loop is repeated until the error drops below ε.

2.3 Clocks, Zones, Variables and Predicates

Clocks. Let X be a finite set of clocks. A function v : X → R is referred to as a
clock valuation and the set of all clock valuations is denoted by RX . For v ∈ RX ,
t ∈ R and X ⊆ X , we use v+t to denote the valuation which increments all
clocks by t and v[X:=0] for the valuation in which clocks in X are reset to 0.

Zones. The set of zones of X , written Zones(X ), is defined by the syntax:

ζ ::= true | x 6 d | c 6 x | x+c 6 y+d | ¬ζ | ζ ∨ ζ

where x, y ∈ X and c, d ∈ N. A zone ζ represents the set of clock valuations v
which satisfy ζ, denoted v /ζ, i.e. those where ζ resolves to true by substituting
each clock x with v(x). We will use several classical operations on zones [18,44]:

– ↗ζ contains all valuations that can be reached from ζ by letting time pass;

– ↙ζ contains all valuations that can reach ζ by letting time pass;

– [X:=0]ζ contains the valuations which are in ζ after resetting the clocks X;

– ζ[X:=0] contains the valuations obtained from ζ by resetting the clocks X.

In standard fashion, we restrict our attention to c-closed zones, in which con-
straints with bounds greater than c are removed, and where c is the largest such
bound appearing in the description of the model under study.

Data Variables and Predicates. Let D be a finite set of data variables. We denote
by Val(D) the set of data valuations over D and by Up(D) the set of updates, i.e.
the set of functions up : Val(D)→Val(D). Let Pred(D) be the set of predicates
over the data variables D. For a data predicate φ and valuation u, we say u / φ
if φ holds after substituting each variable d with the value u(d).

3 Probabilistic Timed Programs

We now introduce the formal model of probabilistic timed programs (PTPs), on
which the techniques in this paper are based. These combine:

– timed behaviour, through real-valued clocks in the style of timed automata;

– stochastic behaviour, through discrete probabilistic choice;

– nondeterminism and concurrency through parallel composition;

– control flow and discrete data variables to capture program behaviour.
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Example - PTP 

•  Simple communication protocol 
!  aims to send a message "

over an unreliable channel 
!  tries to send up to 5 times 
!  or until time-out of 4 secs 
!  delay between tries: 3-5 secs 

•  In  the PTP: 
!  L = {init, lost, done, fail} 
!  D = {c} (c counts number of tries) 
!  X = {x, y} (x for delay, y for timeout) 
!  Act = {send, retry, giveup, timeout} 

•  Property of interest: maximum probability of reaching “fail” 
!  actual max. probability is 0.1 (time-out after after 1 send) 

init 
x=0 

0.9 

retry 

done 
true 

lost 
x#5 

c++ 

fail 
true 

give-"
up 

time "
out 

y>4 c>5 
send 

x$3 

x:=0 

c#5%y#4 
0.1 

c:=0 

Fig. 2. Example of a PTP

PTPs are essentially probabilistic timed automata (PTAs) [23,35,2] with the
addition of discrete-valued variables. For timed automata formalisms, discrete
variables are typically considered to be a straightforward syntactic extension
since their values can simply be encoded into locations. Our focus in this paper
is how to use abstraction when such an encoding is not feasible in practice.

Definition 4. A probabilistic timed program (PTP) is a tuple of the form
P=(L, l,D, u,X ,Act , inv , enab, prob) where:

– L is a finite set of locations and l ∈ L is an initial location;
– D is a finite set of data variables and u ∈ Val(D) is an initial data valuation;
– X is a finite set of clocks;
– Act is a finite set of actions;
– inv : L→ Zones(X ) is an invariant condition;
– enab : L×Act → Pred(D)×Zones(X ) is an enabling condition;
– prob : L×Act → Dist(Up(D)×2X×L) is a probabilistic transition function.

A state of a PTP is a tuple (l, u, v) ∈ L×Val(D)×RX such that v / inv(l).
In a state (l, u, v), a certain amount of time t ∈ R can elapse, after which an
action a ∈ Act is performed. The choice of t requires that, while time passes, the
invariant inv(l) remains continuously satisfied. An action a can be chosen only if
it is enabled. We use enabD and enabX to denote the data and time components
of the enabling function, i.e. enab(l, a) = (enabD(l, a), enabX (l, a)). Action a
can be chosen if u satisfies enabD(l, a) and v+t satisfies enabX (l, a)). Once an
action a is chosen, the update of the data variables, clocks to reset and successor
location are selected at random, according to the distribution prob(l, a). We
call each element (l, a, up, X, l′) such that (up, X, l′) ∈ Up(D)×2X×L is in the
support of prob(l, a) an edge and, for convenience, assume that the set of such
edges, denoted edges(l, a), is an ordered list 〈e1, . . . , en〉.

Example 1. Figure 2 shows an example of a PTP modelling a simple commu-
nication protocol that aims to send a message over an unreliable channel. It tries
to send the message up to 5 times or until a time-out of 4 seconds has elapsed.
Between each attempt, there is a delay of between 3 and 5 seconds. The PTP
has a single discrete variable c and two clocks x and y. The variable c is used to
keep track of the number of attempts to send, clock x is used to time each delay
and y stores the total time elapsed.
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Definition 5. Let P=(L, l,D, u,X ,Act , inv , enab, prob) be a PTP. The seman-
tics of P is an (infinite-state) MDP [[P]] = (S, S,R×Act ,StepsP) where:

– S = {(l, u, v) ∈ L×Val(D)×RX | v / inv(l)} and S = {(l, u,0)};
– StepsP((l, u, v), (t, a)) = λ if and only if
• v+t′ / inv(l) for all 06t′6t;
• (u, v+t) / enab(l, a);
• for any (l′, u′, v′) ∈ S:

λ(l′, u′, v′) =
∑
{| prob(l, a)(up, X, l′) | (up, X) ∈ Upu7→u′×Xv+t 7→v′ |}

where the set of updates Upu7→u′ equals {up ∈ Up(U) | up(u)=u′} and
the set of clock resets Xv+t 7→v′ is given by {X ⊆ X | (v+t)[X:=0]=v′}.

Each transition of the semantics of a PTP is a time-action pair (t, a), rep-
resenting t time units elapsing, followed by a discrete a-labelled transition.
For any state (l, u, v) and time-action pair (t, a), if StepsP((l, u, v), (t, a)) is
defined and edges(l, a)=〈(l, a, up1, X1, l1), . . . , (l, a, upn, Xn, ln)〉, then we write

(l, u, v)
t,a−−→ 〈(l1, up1(u), (v+t)[X1:=0]), . . . , (ln, upn(u), (v+t)[Xn:=0])〉.

The definition of parallel composition for PTPs is a straightforward extension
of that for probabilistic timed automata [34].

Definition 6. Let Pi = (Li, li,Di, ui,Xi,Act i, inv i, enabi, prob) for i = 1, 2 be
PTPS such that D1 ∩ D2 = ∅ and X1 ∩ X2 = ∅. The parallel composition of P1

and P2, denoted P1‖P2, is given by the PTP:

P1‖P2 = (L1×L2, (l1, l2),D1 ∪D2, (u1, u2),X1 ∪X2,Act1 ∪Act2, inv , enab, prob)

such that for any location pair (l1, l2) ∈ L1×L2 and action a ∈ Act1 ∪Act2:

– the invariant condition inv((l1, l2)) equals inv1(l1) ∧ inv2(l2);
– the enabling condition is given by:

enab((l1, l2), a) =

 enab1(l1, a)∧enab2(l2, a) if a ∈ Act1∩Act2
enab1(l1, a) if a ∈ Act1\Act2
enab2(l2, a) if a ∈ Act2\Act1;

– the probabilistic transition function prob((l1, l2), a) equals λ where for any
(up, X, (l′1, l

′
2)) ∈ Up(D1 ∪ D2)×2X1∪X2×(L1×L2):

• if a ∈ Act1 ∩Act2, then

λ(up, X, (l′1, l
′
2)) = λ1(updD1 , X\X2, l

′
1) · λ2(updD2 , X\X1, l

′
2)

• if a ∈ Act1\Act2, then

λ(up, X, (l′1, l
′
2)) =

{
λ1(updD1

, X, l′1) if updD2
=idD2

, X\X1=∅ and l′2=l2
0 otherwise

• if a ∈ Act2\Act1, then

λ(up, X, (l′1, l
′
2)) =

{
λ2(updD2

, X, l′2) if updD1
=idD1

, X1\X2=∅ and l′1=l1
0 otherwise

where λ1=prob1(l1, a), λ2=prob2(l2, a) and, for D′ ⊆ D1 ∪ D2 and up :
Val(D)→Val(D), the function updD′ : Val(D′)→Val(D′) is obtained by re-
stricting up to the domain D′, while idD′ is the identity function over Val(D′).
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4 Abstraction of PTPs

We now consider the problem of constructing abstractions of PTPs, that is to say
building a stochastic game abstraction [31] for its underlying MDP semantics.
For this, we combine several different techniques. For the data part of PTPs,
we use predicate abstraction [15]. For the time aspect, we consider two possi-
bilities: first, we again use predicates (over clock, rather than data, variables);
secondly we use zones, which can be efficiently stored and manipulated using
difference-bound matrices (DBMs) [18,44]. The latter is better suited to the for-
wards reachability based techniques commonly used for timed automata (and
proposed for the construction of abstractions of PTAs in [32]).

We thus have two abstractions to consider: (i) using predicates for both data
and time; (ii) using predicates for data and zones for time. A crucial difference
between the two is that (i) induces a partition of the PTP states S (in which
case, Definition 3 applies directly), whereas (ii) gives instead a covering of S.

4.1 Abstract Domains for PTPs

We formally define the two different abstractions discussed above using the no-
tion of abstract domains from the abstract interpretation framework of [9].

Definition 7. For a given set of concrete states S, an abstract domain A is a
tuple ((Z,t,u,v), α, γ) where:

– (Z,t,u,v) is a lattice of abstract states;
– α : 2S→Z and γ : Z→2S are abstraction and concretisation functions;

such that (α, γ) form a Galois connection.

From this point on, we assume sets of data and clock predicates Φ={φ1, . . . , φn} ⊆
Pred(D) and Ψ = {ψ1, . . . , ψm} ⊆ Pred(X ). For a predicate ϕ and valuation w
(over D or X ), let ϕ(w) denote the value of ϕ evaluated against w. For predicates
Υ={ϕ1, . . . , ϕk}, let Υ (w) denote the predicate valuation (ϕ1(w), . . . , ϕ|Υ |(w)) ∈
BΥ and, for b ∈ BΥ , let Υ [b] denote the predicate ϕ̃1∧ . . .∧ϕ̃k where ϕ̃i=ϕi if
bi=true and ¬ϕi otherwise. Note that Ψ [b] can be considered as a zone.

The Abstract Domain AΦ,Ψ . The atoms of the lattice (ZΦ,Ψ ,t,u,v) are the tuples
z=(l, b1, b2) ∈ L×BΦ×BΨ , comprising a location l and predicate valuations b1
and b2. Since L×BΦ×BΨ form the atoms of the lattice, the operations t, u
and v can be considered as the standard set operators over 2L×B

Φ×BΨ . For any
S′ ⊆ S and (l, b1, b2) ∈ L×BΦ×BΨ the abstraction and concretisation functions
are defined as follows:

α(S′)=t(l,u,v)∈S′ (l, Φ(u), Ψ(v)) and γ(l, b1, b2)={(l, u, v) | Φ(u)=b1∧Ψ(v)=b2} .

The Abstract Domain AΦ,X . A basis for the lattice (ZΦ,X ,t,u,v) are the tuples
z=(l, b, ζ) ∈ L×BΦ×Zones(X ) comprising a location l, predicate valuation b and
zone ζ. For (l, b, ζ), (l′, b′, ζ ′) ∈ L×BΦ×Zones(X ):

(l, b, ζ) t (l′, b′, ζ ′) = if (l, b)=(l, b′) then {(l, b, ζ ∨ ζ ′)} else {(l, b, ζ), (l′, b′, ζ ′)}
(l, b, ζ) u (l′, b′, ζ ′) = if (l, b)=(l, b′) then {(l, b, ζ ∧ ζ ′)} else ∅
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and (l, b, ζ) v (l′, b′, ζ ′) if and only if (l, b)=(l′, b′) and ζ⇒ζ ′ ≡ true, while
Z′ v Z′′ if and only if for all z′ ∈ Z′ there exists z′′ ∈ Z′′ such that z′ v z′′. We
illustrate these operations with the following examples:

{(l, b, x64)} t {(l, b, y>1), (l′, b, x>4)} = {(l, b, (x64)∨(y>1)), (l′, b, x>4)}
{(l, b, x64)} u {(l, b, x>2)} = {(l, b, 26x64)}
{(l, b, x61), (l′, b′, y>3)} v {(l, b, (x64), (l′, b′, y>2)), (l′′, b′′, z61)} .

With regards to the abstraction and concretisation functions, we have:

α(S′)= t(l,u,v)∈S′ (l, Φ(u), [v]) and γ(l, b, ζ)={(l, u, v) | Φ(u)=b ∧ v / ζ} .

where [v] is the clock equivalence class (or clock region) of v [1].

For both abstract domains we use loc(z), data(z) and time(z) to denote the
different components of the tuple z representing an abstract state.

4.2 Abstract Post Operators

We now describe how to construct an abstract post operator for each abstract
domain, i.e. the “best” abstraction [9] of the concrete PTP transition semantics.
For convenience, we split the post operator into two parts, representing the elapse
of time in the current location l and the subsequent discrete transition along edge
e = (l, a, up, X, l′). For any set S′⊆S of concrete states, we have:

tpost[l](S′) = {(l, u, v+t) | (l, u, v) ∈ S′ ∧ t ∈ R ∧ ∀t′6t. (v+t′) / inv(l)}
dpost[e](S′) = {(l, up(u), v[X:=0]) | (l, u, v) ∈ S′ ∧ (u, v)/enab(l, a)}

For the abstract domain A=((Z,t,u,v), α, γ), the corresponding “best” abstract
time-post and discrete-post operators are given by:

tpostA[l](z) = α(tpost[l](γ(z))) and dpostA[e](z) = α(dpost[e](γ(z))) .

For both of the abstract domains introduced in the previous section, these oper-
ators can be efficiently computed, using DBMs to manipulate zones [18,44] and
SAT or SMT based techniques for predicates over data variables [37].

When representing clock valuations as zones, the elapse of time in l is cap-
tured by the function tpostX [l] : Zones(X )→Zones(X ) and the effect of edge e
by dpostX [e](ζ) : Zones(X )→Zones(X ). Both can computed with simple and ef-
ficient zone operations that can be implemented with DBMs. For ζ ∈ Zones(X ):

tpostX [l](ζ) = inv(l)∧ ↗ζ
dpostX [e](ζ) = (ζ∧enabX (l, a))[X:=0]∧inv(l′) .

For the representation of data using predicates, we define the function dpostΦD[e] :

BΦ→2B
Φ

giving the set of possible predicate valuations of the variables in succes-
sor states when taking edge e. Let p1, . . . , p|Φ| be Boolean variables correspond-
ing to the predicates φ1, . . . , φ|Φ| and b ∈ BΦ be a predicate valuation. Then

dpostΦD[e](b) contains all satisfying instances of p1, . . . , p|Φ| such that:

∃u, u′ ∈ Val(D). up(u)=u′ ∧ Φ(u)=b ∧
(
p1⇔φ1(u′) ∧ · · · ∧ p|Φ|⇔φ|Φ|(u′)

)
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which we use an SMT solver to enumerate. This assumes that the types of
variables in D and the operations occurring in up and predicates φi match the
underlying theory of the SMT solver used. Alternatively, a bit-level encoding of
data variables can be employed, and a SAT solver used for enumeration [7].

On the other hand, tpostΨX [l] : BΨ→2B
Ψ

and dpostΨX [e] : BΨ→2B
Ψ

, given b2
as input, return the satisfiable instances b′2 of the predicates:

Ψ [b′2] ∧ tpostX [l](Ψ [b2]) and Ψ [b′2] ∧ dpostX [e](Ψ [b2]) .

Using these functions, we are able to efficiently compute the abstract post oper-
ators for both domains. More precisely, for any (l, b1, b2) ∈ ZΦ,Ψ :

tpostΦ,Ψ [l](l, b1, b2) = {(l, b1, b′2) | b′2 ∈ tpostΨX [l](b2)}
dpostΦ,Ψ [e](l, b1, b2) = {(l′, b′1, b′2) | b′1 ∈ dpostΦD[e](b) ∧ b′2 ∈ dpostΨX [e](b2)}

and for any (l, b, ζ) ∈ ZΦ,X :

tpostΦ,X [l](l, b, ζ) = {(l, b, tpostX [l](ζ))}
dpostΦ,X [e](l, b, ζ) = {(l′, b′, dpostX [e](ζ)) | b′ ∈ dpostΦD[e](b)} .

4.3 Abstract Reachability Graphs

The abstract post operators of the previous section can be used to construct an
abstract reachability graph. This generalises the approach taken in [32] for PTAs.
In this section, for a given abstract domain, we formally define the concept of an
abstract reachability graph, describe how it can be used to construct a stochastic
game abstraction of a PTP, and then how to build such a graph. We fix a PTP
P and abstract domain A=((Z,t,u,v), α, γ) over P.

We begin by introducing the concept of abstract transitions. An abstract
transition of P with respect to the abstract domain A takes the form:

θ =
(
z, a, 〈z1, . . . , zn〉

)
∈ Z×Act × Z+

where n = |edges(loc(z), a)|. Intuitively, θ represents the possibility of, from a
PTP state in γ(z), letting time pass, then taking action a and, for each edge
ei = (l, a, upi, Xi, li) ∈ edges(loc(z), a), reaching a state in γ(zi). The notion
of validity for an abstract transition expresses the fact that a corresponding
concrete transition actually exists. More precisely, we define:

valid(θ)
def
=
{
s ∈ γ(z) | ∃t ∈ R.

(
s
t,a−−→ 〈s1, . . . , sn〉 ∧ ∀16i6n. si ∈ γ(zi)

)}
as the set of PTP states from which such a transition is possible, and we say
that θ is valid if the set valid(θ) is non-empty.

We now explain how validity can be checked for the abstract domains AΦ,Ψ

and AΦ,X . For simplicity, we will split the computation by considering validity
with respect to the data and time components of an abstract transition θ =
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(z, a, 〈z1, . . . , zn〉). More precisely, we let validD(θ) ⊆ Val(D) and validX (θ) ⊆
RX denote the sets of data valuations satisfying data(z) and clock valuations
satisfying time(z) from which it is possible to let time pass and perform the
action a such that taking the ith edge ei gives a state in zi. An abstract transition
is then valid if the valid sets for both data and time are nonempty and moreover:

valid(θ) = {(l, u, v) ∈ γ(z) | l = loc(z) ∧ u ∈ validD(θ) ∧ v ∈ validX (θ)} .

For the data component, validD(θ) is characterised by the formula:

Φ[data(z)] ∧
(

enabD(loc(z), a)∧ (∧ni=1 (wp[upi](Φ[data(zi)] ))
)

where wp[upi] denotes the weakest precondition for update upi. Thus, like in the
previous section, we can check emptiness of validD(θ) via a satisfiability check
of the above formula using an SMT/SAT solver.

For the time component, we can compute validX (θ) as a zone. For abstract
domain AΦ,X , where abstract states contain zones, validX (θ) is the zone:

time(z)∧ ↙
(

enabX (loc(z), a)∧ (∧ni=1 ([Xi:=0]time(zi) ))
)
.

Checking its emptiness is a simple DBM operation. For abstract domain AΦ,Ψ ,
we can perform the same computation after first converting predicate valuations
to zones, i.e. replacing time(·) with Ψ [time(·)] in the above.

We are now in a position to define abstract reachability graphs for PTPs.

Definition 8. An abstract reachability graph for PTP P with respect to target
locations F and abstract domain A=((Z,t,u,v), α, γ), is a tuple (Y, R) where:

– Y ⊆ Z is a covering multiset of abstract states, i.e. S ⊆ ∪z∈Y γ(z);
– R ⊆ Y×Act×Y+ is a set of valid abstract transitions;

such that, if z ∈ Y, loc(z) 6∈ F , s ∈ γ(z) and s
t,a−−→ 〈s1, . . . , sn〉, then R contains

an abstract transition (z, a, 〈z1, . . . , zn〉) such that si ∈ γ(zi) for all 16i6n.

An abstract transition θ = (z, a, 〈z1, . . . , zn〉) induces the probability distribu-
tion λθ over the abstract states Z where for any z′ ∈ Z:

λθ(z
′)

def
=
∑n
i=1 {| prob(l, a)(ei) | zi=z′ |} .

We now extend the notion of validity for abstract transitions to sets of abstract
transitions with the same source. For abstract state z ∈ Z, we let R(z) denote
the set of abstract transitions in R with source z. Then, for a set of abstract
transitions Θ ⊆ R(z), we define:

valid(Θ)
def
= (∩θ∈Θ valid(θ)) \

(
∪θ∈R(z)\Θ valid(θ)

)
(2)

and say that Θ is valid if valid(Θ) is non-empty. Thus, Θ is valid if there exists
a state s ∈ γ(z) such that it is possible to perform the transition encoded by
any abstract transition θ ∈ Θ, but it is not possible to perform a transition
encoded by any other abstract transition of R(z). To verify the validity of sets
of abstract transitions, we use the following result, which reduces the problem
to a satisfiability check for which we can employ a SMT/SAT solver.
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BuildGame(P, (Y, R), A)

1 Y = {y | (l, u,0) ∈ γA(y)}
2 for y ∈ Y

3 for Θ ⊆ R(y) such that Θ is valid
4 StepsG(y, Θ) := {λθ | θ ∈ Θ}
5 return G = (Y, Y, 2R,StepsG)

Fig. 3. Algorithm for building abstraction from reachability graph

Lemma 1. Consider any PTP P, target set F , abstract domain A and a reach-
ability graph (Y, R) for P with respect to F and A. If z ∈ Y and Θ ⊆ R(z), then Θ
is valid if and only if there exists s ∈ γ(z) such that:

– data(s) ∈ ∩θ∈ΘvalidD(θ) and time(s) ∈ ∩θ∈ΘvalidX (θ);
– for any θ ∈ R(z)\Θ either data(s) 6∈ validD(θ) or time(s) 6∈ validX (θ).

We use the approach of [31] to represent an abstraction of an MDP as a stochastic
two-player game. The basic idea is that the two players in the game represent
nondeterminism introduced by the abstraction and nondeterminism from the
original model. In an abstract state z of the game abstraction of a PTP, player
1 first picks a PTP state (l, u, v) ∈ γ(z) and then player 2 makes a choice over
the actions that become enabled after letting time pass from (l, u, v).

The algorithm BuildGame in Figure 3 describes how to construct for a PTP P,
from a reachability graph (Y, R) over an abstract domain A, a stochastic game.
In a state y of the game, player 1 chooses between any valid set of abstract
transitions Θ ⊆ R(y). Player 2 then selects an abstract transition θ ∈ Θ. As the
following result demonstrates, this game yields lower and upper bounds on both
the minimum and maximum reachability probabilities of the PTP.

Theorem 1. Let P be a PTP with target locations F and A an abstract domain
over P. If (Y, R) is a reachability graph for P with respect to F and A, then

plb,∗G {y ∈ Y | loc(y) ∈ F} 6 p∗P(F ) 6 pub,∗G {y ∈ Y | loc(y) ∈ F}

where G is returned by BuildGame(P,(Y,R),A) (see Figure 3) and ∗ ∈ {min,max}.
Finally, we describe the process of constructing the reachability graph for a
PTP. A generic reachability graph generation algorithm is given in Figure 4
which takes as input a PTP, target set of locations and abstract domain. The
following theorem states the correctness of this algorithm.

Theorem 2. Let P be a PTP with target locations F and A an abstract do-
main over P. If (Y, R) is returned by BuildReachGraph(P, F, A), then (Y, R) is a
reachability graph of P with respect to F and A.

The following proposition demonstrates that, for the abstract domain AΦ,Ψ , the
resulting abstraction corresponds to the one generated using the approach of [31],
applied to the (infinite-state) MDP semantics of a PTP based on the partition
of the state space induced from the predicates Φ and Ψ .
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BuildReachGraph(P, F, A)

1 Y := ∅
2 X := α(l, u,0)
3 while X 6= ∅
4 choose x ∈ X

5 l := loc(x)
6 X := X \ {x}
7 Y := Y ∪ {x}
8 for z ∈ tpostA[l](x)
9 for a ∈ Act such that enab(l, a) 6= false

10 for ei = (l, a, upi, Xi, li) ∈ edges(l, a) = 〈e1, . . . , en〉
11 Zi := dpostA[ei](z)
12 if li 6∈ F then X := X ∪ (Zi \ Y)
13 for 〈z1, . . . , zn〉 ∈ Z1 × · · · × Zn
14 R := R ∪ {(x, a, 〈z1, . . . , zn〉)}
15 return (Y, R)

Fig. 4. Algorithm for reachability graph construction

Example 2 – Time and data 

PTP: 

init, c=0, !
x=y=0 

0.1 

0.9 

fail, c"0, !
x=0#4<y$5 

lost, c=0, !
x=0#3$y$4 

done, c"0, !
x=0#3$y$4 

init, c=0, !
x=0#6$y$9 

init, c"0, !
x=0#3$y$5 

done, c=0, !
x=y=0 

lost, c"0, !
x=y=0 

lost, c"0, !
x=0#3$y$4 

init, c"0, !
x=0#6$y$9 

0.9 fail, c=0, !
x=0#6$y$9 

fail, c"0, !
x=0#6$y$9 

In this example: 
!  abstract time and data 
!  i.e. abstract states are of the form: 
!  (l,b,%) & L'{F,T}n'Zones(X) 
!  single data predicate: {c=0} 

init 
x=0 

0.9 

retry 

done 
true 

lost 
x$5 

c++ 

fail 
true 

give-!
up 

time !
out 

y>4 c>5 
send 

x(3 

x:=0 

c$5#y$4 
0.1 

c:=0 

send 

send 

time- 
out 

send 

retry 

time-!
out 

retry 

time-!
out 

retry 

Fig. 5. Abstract reachability graph for the PTP in Example 1 (Figure 2)

Proposition 1. Let P be a PTP with target locations F and abstract domain
AΦ,Ψ . If (Y, R) is the reachability graph returned by BuildReachGraph(P, F, AΦ,Ψ )
(see Figure 4), then the game BuildGame(P, (Z, R), AΦ,Ψ ) equals that constructed
by Definition 3 for the MDP [[P]] (after the states with locations in F are made
absorbing) when using the partition P = {γ(z) | z ∈ ZΦ,Ψ}.

Example 2. We now return to the PTP from Example 1, shown in Figure 2,
and consider the construction of an abstraction using the abstract domain AΦ,X

with predicate set Φ = {c = 0}. Figure 5 shows the abstract reachability graph
for this PTP that is constructed by the algorithm BuildReachGraph using AΦ,X

and set of target locations F = {fail}.
The corresponding stochastic game abstraction G of the PTP, under ab-

stract domain AΦ,X , is shown in Figure 6. We have plb,max
G (F ′) = 0.01 and

pub,max
G (F ′) = 0.1 where F ′ contains the states of G with location fail . The
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Example 2 – Time and data 

Stochastic game abstraction: 

PTP: 

init, c=0, !
x=y=0 

0.1 

0.9 
0.1 

0.9 

fail, c"0, !
x=0#4<y$5 

lost, c=0, !
x=0#3$y$4 

done, c"0, !
x=0#3$y$4 

0.1 

0.9 

init, c=0, !
x=0#6$y$9 

init, c"0, !
x=0#3$y$5 

done, c=0, !
x=y=0 

lost, c"0, !
x=y=0 

lost, c"0, !
x=0#3$y$4 

0.9 

0.1 init, c"0, !
x=0#6$y$9 

0.9 fail, c=0, !
x=0#6$y$9 

fail, c"0, !
x=0#6$y$9 

In this example: 
!  abstract time and data 
!  i.e. abstract states are of the form: 
!  (l,b,%) & L'{F,T}n'Zones(X) 
!  single data predicate: {c=0} 

init 
x=0 

0.9 

retry 

done 
true 

lost 
x$5 

c++ 

fail 
true 

give-!
up 

time !
out 

y>4 c>5 
send 

x(3 

x:=0 

c$5#y$4 
0.1 

c:=0 

Fig. 6. Stochastic game abstraction for the PTP in Example 1 (Figure 2) and reacha-
bility graph in Figure 5

interval [0.01, 0.1] represents lower and upper bounds on the actual maximum
probability of reaching the fail location in the PTP, which is 0.1.

5 Abstraction Refinement for PTPs

The previous section described how to compute the abstraction of a PTP for two
types of abstract domains, AΦ,Ψ and AΦ,X . To implement a quantitative abstrac-
tion refinement scheme similar to that described in Section 2.2, we also require
refinement techniques for automatically constructing more precise abstractions.
In practice, this means splitting one or more abstract states. There are two forms
of refinement, either in terms of zones or predicates. In both cases, the refine-
ment process works by modifying the abstract reachability graph. However, in
the former, we will split abstract states by breaking up the zone component of
an abstract state, while for the latter, we modify the abstract domain by adding
a new data or clock predicate.

Choosing a State to Refine. Given an abstraction for a PTP P with target
locations F , i.e. a reachability graph (Y, R) with respect to some abstract do-
main A, the refinement approach is guided by the analysis of the corresponding
stochastic game, i.e. the one generated by BuildGame(P, (Y, R), A). More precisely,
given the bounds for the probability of reaching F and player 1 strategies that
attain these bounds, we look at a single abstract state z for which the bounds
differ and for which distinct player 1 strategies yield each bound.3 In state z, a
player 1 strategy chooses an action available in z, which, by construction, is a
valid set of abstract transitions from R(z). Therefore, let Θlb , Θub ⊆ R(z) denote
the distinct player 1 strategy choices for the lower and upper bound respectively.

By construction, Θlb 6= Θub and hence there exists an abstract transition
θref ∈ R(z) such that either θref ∈ Θlb\Θub or Θub\Θlb . We will show that
if we refine by adding a predicate for validD(θref) and, depending on whether
the abstract domain is of the form AΦ,Ψ or AΦ,X , either adding a predicate for

3 From the results of [31,27] such a state exists when the bounds differ in some state.
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RefineDataPredicate(P, (Y, R), AΦ,?, φ′)

1 Φref := Φ ∪ {φ′}
2 Aref := AΦ

ref,?

3 Yref := {yref ∈ ZΦ
ref,? | ∃y ∈ Y. γAref(y

ref) ⊆ γA(y)}
4 Rref := ∅
5 for θ = (z0, a, 〈z1, . . . , zn〉) ∈ R

6 Θnew := {(z′0, a, 〈z′1, . . . , z′n〉) | γAref(z′i) ⊆ γA(zi) for all 06i6n}
7 for θnew ∈ Θnew such that valid(θnew ) 6= ∅
8 Rref := Rref ∪ {θnew}
9 return (Zref, Rref, Aref)

Fig. 7. Algorithm for refinement in terms of data predicates

validX (θref) or splitting the zone time(z) using validX (θref), then we eliminate
the player 1 choice between Θlb and Θub .

For example, consider the case where θref ∈ Θlb\Θub and the abstract domain
is of the form AΦ,Ψ . Now by adding predicates for validD(θref) and validX (θref)
to Φ and Ψ , it follows that Θlb can only be valid when both predicates hold.
Furthermore, if both predicates hold, then θref must be an element of any valid
set, since by definition for all s in the concretisation of the abstract state we
have data(s) ∈ validD(θref) and time(s) ∈ validX (θref) since validD(θref) and
validX (θref) hold respectively.

Notice that we add both data and clock predicates and adding only one of the
predicates is insufficient to remove the choice between Θlb and Θub . Similarly,
for the abstract domain AΦ,X , to ensure the choice is eliminated we must both
add a predicate for validD(θref) and split the zone time(z) using validX (θref). In
the next sections we explain the predicate and zone refinement procedures in
more detail.

Data Predicate Refinement. As outlined in the previous section, we refine by
adding a predicate φθref representing validD(θref). Notice that if predicate is such
that it represents the set data(z), then refinement will not change the abstract
model. However, in such a case, by definition of validity it follows that the
refinement using validX (θref) will yield a strict refinement. Similarly, there will
be cases where the refinement using validX (θref) will not change the abstraction,
however in these cases, again from definition of validity, it follows that the data
predicate refinement presented in this section will yield a strict refinement.

The data predicate refinement algorithm is given in Figure 7 where φ′ is a
predicate over D (which in practice would correspond to the predicate φθref).
The lines 1–3 create the new abstract domain, while lines 4–8 create an abstract
reachability graph over the new abstract domain, for which the corresponding
stochastic game is a refined abstraction of the PTP. The following demonstrates
the correctness of the data predicate refinement algorithm.

Proposition 2. Let P be a PTP with target locations F , AΦ,? an abstract domain
for P, (Y, R) a reachability graph for P with respect to F and AΦ,?, and G the
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RefineClockPredicate(P, (Y, R), AΦ,Ψ , ψ′)

1 Ψ ref := Ψ ∪ {ψ′}
2 Aref := AΦ,Ψ

ref

3 Yref := {yref ∈ ZΦ,Ψ
ref

| ∃y ∈ Y. γAref(y
ref) ⊆ γA(y)}

4 Rref := ∅
5 for θ = (z0, a, 〈z1, . . . , zn〉) ∈ R

6 Θnew := {(z′0, a, 〈z′1, . . . , z′n〉) | γAref(z′i) ⊆ γA(zi) for all 06i6n}
7 for θnew ∈ Θnew such that valid(θnew ) 6= ∅
8 Rref := Rref ∪ {θnew}
9 return (Zref, Rref, Aref)

Fig. 8. Algorithm for refinement in terms of clock predicates

game. If (Yref, Rref, Aref) is returned by RefineDataPredicate(P, (Y, R), AΦ,?, ϕ′) for
any data predicate ϕ′, and Gref is the resulting game, then:

(i) (Zref, Rref) is a reachability graph for P with respect to F and Aref;

(ii) plb,∗G (YF ) 6 plb,∗
Gref (Y

ref
F ) and pub,∗

Gref (YrefF ) 6 pub,∗G (YF ) for ∗ ∈ {min,max}

where YF = {y ∈ Y | loc(y) ∈ F} and Y
ref
F = {y ∈ Yref | loc(y) ∈ F}.

Clock Predicate Refinement. Similarly to the data case, we refine by adding a
predicate ψθref representing validX (θref). The clock predicate refinement is similar
to the data predicate case given in the previous section and the algorithm is
presented in Figure 8 where ψ′ is a predicate over X (which in practice would
correspond to the predicate ψθref). The following demonstrates the correctness
of the clock predicate refinement.

Proposition 3. Let P be a PTP with target locations F , AΦ,Ψ an abstract do-
main for P, (Y, R) a reachability graph for P with respect to F and AΦ,Ψ , and G
the game. If (Yref, Rref, Aref) is returned by RefineDataPredicate(P, (Y, R), AΦ,?, ϕ′)
for any clock predicate ψ, and Gref is the resulting game, then:

(i) (Zref, Rref) is a reachability graph for P with respect to F and Aref;

(ii) plb,∗G (YF ) 6 plb,∗
Gref (Y

ref
F ) and pub,∗

Gref (YrefF ) 6 pub,∗G (YF ) for ∗ ∈ {min,max}

where YF = {y ∈ Y | loc(y) ∈ F} and Y
ref
F = {y ∈ Yref | loc(y) ∈ F}.

Zone Refinement. In this case, the abstract domain is of the form AΦ,X and
we split the zone component of z into:

validX (θref) and time(z)∧¬(validX (θref)) . (3)

Clearly, if validX (θref)=time(z), then such a splitting will not change the ab-
straction, however, as explained above, in such a situation the data (predicate)
refinement yields a strict refinement.
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RefineZone(P, (Y, R), AΦ,X , z, (ζ1, . . . , ζk))

1 Ynew := {(loc(z), data(z), ζ1), . . . , (loc(z), data(z), ζk))}
2 Yref := (Y \ {z}) ] Ynew

3 Rref := ∅
4 for θ = (z0, a, 〈z1, . . . , zn〉) ∈ R

5 if z 6∈ {z0, z1, . . . , zn} then
6 Rref := Rref ∪ {θ}
7 else
8 Θnew := {(z′0, a, 〈z′1, . . . , z′n〉) | z′i ∈ Ynew if zi = z and z′i = zi o/wise}
9 for θnew ∈ Θnew such that valid(θnew ) 6= ∅

10 Rref := Rref ∪ {θnew}
11 return (Yref, Rref)

Fig. 9. Algorithm to perform zone refinement in abstract state z

The refinement algorithm is shown in Figure 9. It takes as input a PTP,
abstract domain and set of zones and returns a new reachability graph for the
PTP with respect to the same abstract domain. When using the algorithm the set
{ζ1, . . . , ζk} is given by the non-empty zones in (3). Lines 1–2 split the abstract
state z based on the set of zones given as input, then, based on this splitting,
lines 3–10 update the set of abstract transitions R resulting in a new reachability
graph, for which the corresponding stochastic game is a refined abstraction of the
PTP. The following result states the correctness of the zone refinement scheme.

Proposition 4. Let P be a PTP with target locations F , AΦ,X an abstract do-
main for P, (Y, R) a reachability graph for P with respect to F and AΦ,X and G
the game. If (Yref, Rref) is returned by RefineZone(P, (Y, R), AΦ,X , z, {ζ1, . . . , ζk})
for z ∈ Y and ζ1, . . . , ζk ∈ Zones(X ) and Gref=BuildGame(P, (Zref, Rref), AΦ,X ),
then:

(i) (Zref, Rref) is a reachability graph for P with respect to F and AΦ,X ;

(ii) plb,∗G (YF ) 6 plb,∗
Gref (Y

ref
F ) and pub,∗

Gref (YrefF ) 6 pub,∗G (YF ) for ∗ ∈ {min,max}

where YF = {y ∈ Y | loc(y) ∈ F} and Y
ref
F = {y ∈ Yref | loc(y) ∈ F}.

Quantitative Abstraction Refinement. The refinement schemes presented
above, combined with the techniques for abstraction given in the previous sec-
tion, can be combined into a quantitative abstraction refinement loop. This pro-
vides fully automatic construction of abstractions for PTPs.

This refinement scheme, applied in a iterative manner, provides a way of
computing exact values for minimum or maximum reachability probabilities of a
PTP. This algorithm, outlined in Figure 10, starts with some abstract domain,
then constructs the reachability graph and repeatedly: (i) builds a stochastic
game; (ii) solves the game to obtain lower and upper bounds; and (iii) refines
the abstract domain reachability graph, based on an analysis of the game. The
iterative process terminates when the difference between the bounds falls below
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AbstractRefine(P, F, A, ?, ε)

1 (Z, R) := BuildReachGraph(P, F, A)
2 G := BuildGame((Z, R), A)

3 (plb,?G , pub,?G , σlb
1 , σ

ub
1 ) := AnalyseGame(G, F, ?)

4 while pub,?G −plb,?G > ε

5 (Z, R, A) := Refine(Z, R, A, σlb
1 , σ

ub
1 )

6 G := BuildGame((Z, R), A)

7 (plb,?G , pub,?G , σlb
1 , σ

ub
1 ) := AnalyseGame(G, F, ?)

8 return [ plb,?G , pub,?G ]

Fig. 10. Abstraction-refinement loop to compute reachability probabilities

a given level of precision ε. In fact, as the following result states, this process is
guaranteed to terminate, in a finite number of steps, with the precise answer.

6 Quantitative Verification of SystemC

We now describe a specific potential instantiation of the verification framework
we have presented. In particular, we discuss its applicability to the quantita-
tive verification of SystemC, a system-level modelling language that is becom-
ing increasingly prominent in the development of embedded systems, e.g. for
System-on-Chip (SoC) designs. Currently, analysis of SystemC designs is primar-
ily performed using simulation; however, there is growing interest in applying
verification techniques [14,30,16,24,43,19].

SystemC is appealing to designers because it is close enough to the hardware
level to support synthesis to RTL (register transfer level) descriptions, but allows
modelling of complex designs at a higher level of abstraction. Based on C++, it
combines an imperative programming style, low-level data-types for hardware,
an object-oriented approach to design and convenient high-level abstractions of
concurrent communicating processes. Furthermore, systems can be efficiently
simulated at the design stage.

System-on-Chip designs typically include many different components, includ-
ing for example support for radio communications. Furthermore, these devices
may then become integrated into larger, networked embedded systems. In these
instances, reasoning about the behaviour of a SystemC design may need to take
account of the inherently stochastic characteristics of the unreliable or unpre-
dictable components that it interacts with. Another source of probabilistic be-
haviour is the use of randomisation. This is a key feature of, for example com-
munication technologies like ZigBee, which are increasingly found in today’s
embedded devices.

Considered in its entirety, a quantitative analysis of SystemC requires all of
the basic ingredients that we have proposed for probabilistic timed programs:

– software: basic process behaviour is defined in terms of C++ code, using a
rich array of data types;
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– concurrency: designs comprise multiple concurrent processes, communicat-
ing through message-passing primitives;

– timing: processes can be subjected to precisely timed delays, through inter-
action with the SystemC scheduler;

– probability: SystemC components may link to unpredictable devices, due
to communication failures, unreliable components or randomisation.

The development of (non-quantitative) verification techniques for SystemC has
already been identified as an important, but difficult, challenge [46]. Applying
quantitative verification offers more powerful analysis techniques but promises
to be even more demanding. In the remainder of this section, we outline how
some of the existing approaches and tools for SystemC verification might be
built upon to implement our framework. We then conclude by identifying some
useful directions and challenges for future work.

Translating SystemC to PTPs. A SystemC design is decomposed into mod-
ules, representing the separate components within a design. Modules are con-
nected, through ports, to channels, which model interactions between compo-
nents. Built-in “primitive” channels such as signals, FIFOs and mutexes are
provided. The behaviour of each module is described by a set of threads or pro-
cesses, specified as C++ class methods.

In [19], a translation from SystemC to the timed automata based input lan-
guage of UPPAAL is proposed and implemented. Our probabilistic timed pro-
gram formalism is a superset of timed automata so the basic ideas can be used
directly.4 The approach of [19] is to translate each C++ method, representing a
process or thread into a timed automaton. This is based on an extraction of the
control flow graph: control vertices becomes locations, control flow edges become
transitions and branching conditions (e.g. on if statements or while loops) are
incorporated into the enabling conditions of transitions. The process of generat-
ing the control flow graph is facilitated by model extraction tools for SystemC
like Scoot [5] and PINAPA [39]. These have been designed with a variety of
applications in mind, including verification.

In order to ensure that the predicate abstraction techniques described in
this paper can be applied to SystemC C++ code, the underlying SMT/SAT
solvers used need to support the data-types and operations allowed in the lan-
guage. Since SystemC offers low-level datatypes aimed at hardware designs, a
SAT-based approach using a bit-level semantics is likely to be needed [7]. This
approach was already applied to abstraction-based software model checking of
SystemC in [30] and to a probabilistic extension of ANSI-C in [26].

Scheduling and Timed Behaviour. Concurrency between SystemC threads
is controlled by the scheduler, whose behaviour is precisely defined in the lan-
guage standard [22]. The SystemC scheduler is co-operative and non-preemptive:
threads suspend themselves explicitly by calling a wait() or wait(t) function.

4 In practice, we need to add various syntactic niceties such as urgent and committed
locations, and communication over channels, but this is relatively straightforward.
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The latter is an example of timed behaviour: the calling thread is suspended
until it receives a timed notification from the scheduler after delay t.

The translation scheme of [19] captures the behaviour of the SystemC sched-
uler as a network of timed automata. This keeps track of which processes should
be run in each part of each scheduler cycle. Uncertainty between the order in
which multiple ready processes are executed is modelled as a nondeterministic
choice. Delays in each process are handled by local clocks in each automaton.

Probabilistic Behaviour. As outlined above, it is often desirable to incorpo-
rate either randomisation or failures into SystemC models. For randomisation,
this is likely to appear as calls to a C/C++ rand() function. Alternatively,
as is done in [26], custom randomised functions could be added. In either case,
these can be intercepted and converted to a probabilistic branch in the PTP. For
failures, as in [26], SystemC code that corresponds to connections or communi-
cations with unreliable components can be replaced by a stub that captures the
stochastic behaviour (e.g. using rand() as above). Probabilistic timed automata
(PTAs) have already been applied to a large number of realistic case studies in
which randomisation or failures are modelled in this fashion [35,11,36,34].

Directions & Challenges. Implementing the verification techniques sketched
in this section represents a considerable challenge. As ever, the most immediate
difficulty is scalability: extending existing tools and techniques to handle the size
and complexity of real SystemC designs. In this respect, it may be beneficial to
consider state-of-the-art techniques for software model checking, which are not
currently applied to the probabilistic case because they are non-trivial to adapt.
These include, for example, the use of approximate abstractions and “lazy” con-
struction of abstractions. One particular source of complexity in SystemC models
is concurrency between processes. Development of software model checking tech-
niques for concurrent programs is another very active field of research, that may
yield gains in this area.

In a different direction, we may also aim to improve the expressivity of the
PTP formalism proposed in this paper. In the current version, probability and
time are largely orthogonal which, in many cases, is not a serious restriction for
system modelling. However, it would be interesting to explore to what extent
this can generalised. An extension with costs and rewards would be relatively
straightforward. Looking further ahead, the use of languages like SystemC in
embedded systems means that the digital components of the design will often
interact with analogue devices. This would necessitate the use of more general,
but less tractable, probabilistic models such as stochastic hybrid automata.

7 Related work

For quantitative verification of probabilistic timed automata (PTAs), a variety
of techniques [23,35,11,36,34,32] and tools [45,17,4] have been produced. In [17],
an extension of PTAs with discrete-valued variables, called VPTAs, is handled
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via a translation to the basic case. Another interesting extension is priced PTAs
[34,3], which add a notion of prices (or weights) to locations and actions.

The development of abstraction and refinement techniques for probabilistic
models such as MDPs is also an active area of research. This was first proposed in
[10], using MDPs as abstractions, rather than stochastic games as in [27,26,32]
(and this paper). In [20], MDP abstractions based on predicates are used to
form a probabilistic CEGAR (counterexample-guided abstraction refinement)
technique. Later work [47] adapted this to stochastic games. Other abstraction
refinement frameworks for MDPs are put forward in [12] and [6].

Abstraction-refinement approaches have been proposed for non-probabilistic
timed automata, e.g. [29], which uses bounded model checking and SAT-based
techniques, [42], which is based on the region graph construction, and [13], for
verifying PLC automata using UPPAAL [38]. Also related is [48], which applies
SAT-based techniques to timed automata with data.

Finally, as highlighted in the previous section, there is an increasing amount
of interest in developing verification techniques for SystemC [46]. A variety of
existing verification techniques have been explored, including BDD-based model
exploration [14], bounded model checking [16] and abstraction-refinement [30].
Another approach is to translate SystemC into other formalisms and languages
for which tool support exists. This includes translations to Petri nets [24],
Promela [43] and UPPAAL [19]. With the exception of [19], which models timing
information, none of the above consider quantitative properties of SystemC.

8 Conclusions

We have outlined a theoretical framework for the verification of programs that
exhibit both probabilistic and timed behaviour, based on quantitative abstrac-
tion refinement techniques. This represents the first steps towards quantitative
verification of complex software systems, such as those found in the domain of
embedded systems. We discussed some of the ongoing work and the challenges in
this direction of research, using the SystemC language as an illustrative example.
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Appendix

We include below proofs of the main results stated in the paper.

A Proof of Theorem 1

Consider any PTP P with target locations F and abstract domain A. Let [[P]] =
(S, S,R×Act ,StepsP), (Y, R) be a reachability graph for P with respect to F and
A and G = (Y, y, 2R,StepsG) the game returned by BuildGame(P,(Y,R),A). Before
we present the proof of Theorem 1 we require the following lemmas. For the
remainder of the section let YF = {y ∈ Y | loc(y) ∈ F}.

Lemma 2. For any adversary A of [[P]] and s ∈ S there exists a strategy pair
(σ1, σ2) of G where pAs (F ) = pσ1,σ2

z (YF ) for all z ∈ Y such that s ∈ γ(z).

Proof. Consider any adversary A of [[P]], concrete state s ∈ S and abstract state
z ∈ Y such that s ∈ γ(z). The proof follows similarly to [32], by constructing a
strategy pair of the game G which matches the choices made by A. More precisely,
we match the transitions chosen by A in [[P]] with transitions in G chosen by the
strategy pair (σ1, σ2) such that the targets of [[P]] are concretisations of the
targets in G. Supposing, in state s, under A the action (t, a) ∈ R×Act is chosen,
that is the transition:

s
(t,a)−−−→ 〈s1, . . . , sn〉

is performed, then since (Y, R) is a reachability graph (see Definition 8) there
exists a symbolic transition θ=(z, a, 〈z1, . . . , zn〉) ∈ R such that si ∈ γ(zi) for
all 16i6n and we construct the strategy pair (σ1, σ2) such that the player one
strategy σ1 choose some Θ ⊆ R(z) with θ ∈ Θ and let σ2 choose θ from Θ.
The fact that the reachability probabilities are the same for A and (σ1, σ2) then
follows from the fact that the corresponding transitions are constructed from
the same distribution, namely prob(l, a) when s is of the form (l, u, v) for some
u ∈ Val(D) and v ∈ RX . ut

Lemma 3. for any abstract state z and player 2 strategy σ2 of G there exists
an adversary A of [[P]] such that:

infσ1
pσ1,σ2
z (YF ) 6 pAs (F ) and supσ1

pσ1,σ2
z (YF ) > pAs (F )

for all s ∈ S such that s ∈ γ(z).

Proof. Consider any player 2 strategy σ2 of G, abstract state z ∈ Y and concrete

state s ∈ γ(z). By the assumptions we make on PTPs, s
(t,a)−−−→ 〈s1, . . . , sn〉

for some (t, a) ∈ R×Act . Now, since (Y, R) is a reachability graph, there exists
θ=(z, a, 〈z1, . . . , zn〉) ∈ R such that si ∈ γ(zi) for all 16i6n. It then follows by
definition that s ∈ valid(θ), and hence there exists Θ ⊆ R(z) such that:

– data(s) ∈ ∩θ∈ΘvalidD(θ) and time(s) ∈ ∩θ∈ΘvalidX (θ);
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– for any θ ∈ R(z)\Θ either data(s) 6∈ validD(θ) or time(s) 6∈ validX (θ).

Now, using Lemma 1 it follows that Θ is a valid set of abstract transitions,
and we let σ1 be the player 1 strategy which chooses Θ. Supposing σ2 chooses
some θ′=(z, a′, 〈z′1, . . . , z′m〉) ∈ Θ then, from properties of Θ we have that s ∈
valid(θ′), and hence, since (Y, R) is a reachability graph, there exists t′ ∈ R such

that s
(t′,a′)−−−−→ 〈s′1, . . . , s′m〉 and s′i ∈ γ(z′i) for all 16i6m. Now we construct A

such thatin state s the time-action pair (a′, t′) is chosen. Repeating this process
inductively on the paths of the game we arrive at a player 1 strategy σ1 and
adversary A of [[P]] such that

pσ1,σ2
z (YF ) = pAs (F )

which is sufficient to complete the proof. ut

Proof (of Theorem 1). From Lemma 2 it follows that for any s ∈ S:

infσ1,σ2
pσ1,σ2
z (YF ) 6 infA P

A
s (F )

supA p
A
s (F ) 6 supσ1,σ2

pσ1,σ2
z (YF )

for all z ∈ Y such that s ∈ γ(z), and hence p lb,min
G (YF ) 6 pmin

P (F ) and pmax
P (F ) 6

p ub,max
G (YF ). On the other hand, using Lemma 3, we have for any s ∈ S and
z ∈ Y such that s ∈ γ(z):

infA p
A
s (F ) 6 infσ2 supσ1

pσ1,σ2
z (YF ) = supσ1

infσ2 p
σ1,σ2
z (YF )

where the second step follows from properties of stochastic games [8]. Similarly,
we can show that:

infσ1 supσ2
pσ1,σ2
z (YF ) 6 supA p

A
s (F )

and therefore pmin
P (YF ) 6 p ub,min

G (YF ) and p lb,max
G (YF ) 6 pmax

P (F ) which com-
pletes the proof. ut

B Proof of Theorem 2

Proof (of Theorem 2). Consider any PTP P with target locations F and abstract
domain A, and suppose (Y, R) is returned by BuildReachGraph(P, F, A). First, con-
sidering the set of abstract states Y, from the definition of tpostA and dpostA it
follows that BuildReachGraph(P, F, A) includes a forwards search of the concrete
state space [[P ]] and hence Y will form a covering of abstract states.

It therefore remains to show that R is a set of valid abstract transitions such
that if z ∈ Y, loc(z) 6∈ F , s ∈ γ(z) and s

t,a−−→ 〈s1, . . . , sn〉, then R contains an
abstract transition (z, a, 〈z1, . . . , zn〉) such that si ∈ γ(zi) for all 1 6 i 6 n.
These properties follow from the definitions of [[P]], tpostA and dpostA completing
the proof. ut
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C Proof of Proposition 1

To present the proof of this proposition we first require the following lemma.

Lemma 4. Let P be a PTP with target locations F and abstract domain A. If
(Y, R) is the reachability graph returned by BuildReachGraph(P, F, A), then for any
abstract state z ∈ Y and concrete state s ∈ γ(z) the set Θz,s = {θ ∈ R(z) | s ∈
valid(θ)} is non-empty and:

– data(s) ∈ ∩θ∈Θz,s
validD(θ) and time(s) ∈ ∩θ∈Θz,s

validX (θ);
– for any θ ∈ R(z)\Θz,s either data(s) 6∈ validD(θ) or time(s 6∈ validX (θ).

Furthermore, for any abstract state z ∈ Y and valid set Θ ⊆ R(z), there exists a
state s ∈ γ(z) such that Θs = Θ.

Proof. Consider any PTP P with target locations F and abstract domain A

and let (Y, R) be the reachability graph constructed by BuildReachGraph(P, F, A).
Now if we consider any abstract state z ∈ Y and concrete state s ∈ γ(z), the
fact Θz,s is non-empty follows by the assumptions we have made about PTPs.
Next, by definition of validD and validX , we have data(s) ∈ ∩θ∈ΘsvalidD(θ) and
time(s) ∈ ∩θ∈ΘsvalidX (θ). To complete the proof of the first half, suppose for
a contradiction that there exists θ ∈ R(z)\Θz,s such that data(s) ∈ validD(θ)
and time(s) ∈ validX (θ). It then follows by definition of valid that s ∈ valid(θ)
which is a contradiction of θ ∈ R(z)\Θz,s.

To prove the second half of the lemma, consider any abstract state z ∈ Y and
valid set Θ ⊆ R(z). By Lemma 1 there exists s ∈ γ(z) such that:

– data(s) ∈ ∩θ∈ΘvalidD(θ) and time(s) ∈ ∩θ∈ΘvalidX (θ);
– for any θ ∈ R(z) \Θ either data(s) 6∈ validD(θ) or time(s) 6∈ validX (θ).

It then follows that Θz,s = Θ completing the proof. ut

Proof (Proof of Proposition 1). Consider any PTP P with target locations F
and abstract domain AΦ,Ψ . Let G1 be the game constructed by Definition 3
for the MDP [[P]] (after the states with locations in F are made absorbing)
when using the partition P = {γ(z) | z ∈ ZΦ,Ψ}. Furthermore, let (Y, R) be the
reachability graph returned by BuildReachGraph(P, F, AΦ,Ψ ) and G2 the stochastic
game returned by BuildGame(P, (Y, R), AΦ,Ψ ).

The fact that the states Y and initial states Y of the games G1 and G2 are
the same is a direct result of the construction of the games (see Definition 3 and
Figures 3 and 4). It therefore remains to show that the probabilistic transition
relations of the two games coincide. More precisely, we will show that for any
abstract state z ∈ Y:

1. if Λ ∈ 2Act×Dist(Y) and StepsG2
(z, Λ) is defined, then there exists Θ ∈ R(z)

such that StepsG1
(z, Θ) = StepsG2

(z, Λ);

2. if Θ ∈ R(z) and StepsG1
(z, Θ) is defined, then there exists Λ ∈ 2Act×Dist(Y)

such that StepsG2
(z, Λ) = StepsG1

(z, Θ).
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To prove the correctness of these properties we first require the following result,
which is a direct consequence of the definitions of tpostΦ,Ψ and dpostΦ,Ψ , for any
concrete state s of [[P]], action a ∈ Act and distribution λ ∈ Dist(Y):

s
t,a−−→ λ′ for some t ∈ R and λ′ ∈ Dist(S) such that λ′P=λ⇔
∃θ = (α(s), a, 〈z1, . . . , zn〉) ∈ R(α(s)) such that s ∈ valid(θ) and λθ=λ . (4)

Notice, in the case of the abstract domain AΦ,Ψ , α(s) is a well defined element
of Y. To prove the first property, consider any z ∈ Y and Λ ∈ 2Act×Dist(Y) such
that StepsG1

(z, Λ) is defined. By Definition 3 there exists s ∈ γ(s) such that

Λ = {((a, t),Steps [[P]](s, a)P) | (a, t) ∈ Act(s)} .

Now, again using Definition 3, we have:

StepsG1
(z, Λ) = {Steps [[P]](s, (t, a))P | (t, a) ∈ Act(s)}

= {λP | s
t,a−−→ µ and (t, a) ∈ A×R} by Definition 5

= {λθ | θ ∈ R(α(s)) and s ∈ valid(θ)} by (4)

= {λθ | θ ∈ Θz,s} by definition of Θz,s

= StepsG2
(z,Θz,s) by Lemma 4,

and hence the first property holds. The second property follows similarly, using
the second half of Lemma 4 which completes the proof. ut

D Proof of Proposition 2

Consider any PTP P with target locations F and abstract domain AΦ,?. Let (Y, R)
be a reachability graph for P with respect to F and AΦ,? with corresponding game
G. Furthermore, let ϕ′ be a data predicate and (Yref, Rref, Aref) be returned by
RefineDataPredicate(P, (Y, R), AΦ,?, ϕ′) with corresponding game Gref. Before we
give the proof we require the following lemmas and for the remainder of the
section we let YF = {y ∈ Y | loc(y) ∈ F}.

Lemma 5. If zref ∈ Yref, (zref, a, 〈zref1 , . . . , zrefn 〉) ∈ R(zref) and z ∈ Y such that

γ(zref) ⊆ γ(z), then there exists (z, a, 〈z1, . . . , zn〉) ∈ R such that γ(zrefi ) ⊆ γ(zi)
for all 16i6n.

Proof. The proof follows by construction of (Yref, Rref) see Figure 7. ut

Lemma 6. For any strategy pair (σref
1 , σref

2 ) of Gref and zref ∈ Zref there exists

a strategy pair (σ1, σ2) of G where pσ1,σ2
z (YF ) = p

σref
1 ,σref

2

zref
(YF ) for all z ∈ Y such

that γ(zref) ⊆ γ(z).

Proof. Consider any any strategy pair (σref
1 , σref

2 ) of Gref, zref ∈ Zref and z ∈ Y

such that γ(zref) ⊆ γ(z). We construct the strategy pair (σ1, σ2) of G so that
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in state z they match the choice made by the pair (σref
1 , σref

2 ) in zref. If in zref the

choice of (σref
1 , σref

2 ) corresponds to the symbolic transition (zref, a, 〈zref1 , . . . , zrefn 〉),
then, using Lemma 5, there exists (z, a, 〈z1, . . . , zn〉) of G such that γ(zrefi ) ⊆
γ(zi) for all 16i6n and we construct (σ1, σ2) such that their choice corresponds
to this symbolic transition. The remainder of the proof then follows in an iden-
tical fashion to Lemma 2. ut

Lemma 7. For any z ∈ Z and player 2 strategy σ2 of G there exists a strategy
pair (σref

1 , σref
2 ) of Gref where

infσ1
pσ1,σ2
z (YF ) 6 p

σref
1 ,σref

2

zref
(YF ) and p

σref
1 ,σref

2

zref
(YF ) 6 supσ1

pσ1,σ2
z (YF )

for all zref such that γ(zref) ⊆ γ(z).

Proof. Given a player 2 strategy σref
2 of Gref the proof follows by constructing a

player 1 strategy σref
1 of Gref and strategy pair (σ1, σ2) of G such that:

pσ1,σ2
z (YF ) = p

σref
1 ,σref

2

zref
(YF )

for all zref such that γ(zref) ⊆ γ(z). This follows similarly to Lemma 3 using

Lemma 5 to construct the choices of σref
1 and (σ1, σ2). ut

Proof (of Proposition 2). The fact that (Yref, Rref) is a reachability graph follows
by construction of (Yref, Rref) see Figure 7 The second part of the proof follows
similarly to the proof of Theorem 1 using Lemmas 6 and 7 instead of Lemmas 2
and 3. ut

E Proof of Proposition 3

Proof (of Proposition 3). The proof follows similarly to Proposition 2. ut

F Proof of Proposition 4

Proof (of Proposition 4). The proof is a straightforward extension of that pre-
sented in [32] for PTAs. ut
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