
Compositional Probabilistic Verification
through Multi-Objective Model Checking

Marta Kwiatkowskaa, Gethin Normanb, David Parkerc,1,∗, Hongyang Qua,2

aDepartment of Computer Science, University of Oxford, Oxford, OX1 3QD, UK
bSchool of Computing Science, University of Glasgow, Glasgow, G12 8RZ, UK

cSchool of Computer Science, University of Birmingham, Birmingham, B15 2TT, UK

Abstract

Compositional approaches to verification offer a powerful means to address the challenge of
scalability. In this paper, we develop techniques for compositional verification of probabilistic
systems based on the assume-guarantee paradigm. We target systems that exhibit both nondeter-
ministic and stochastic behaviour, modelled as probabilistic automata, and augment these models
with costs or rewards to reason about, for example, energy usage or performance metrics. De-
spite significant theoretical advances in compositional reasoning for probabilistic automata, there
has been a distinct lack of practical progress regarding automated verification. We propose a new
assume-guarantee framework based on multi-objective probabilistic model checking which sup-
ports compositional verification for a range of quantitative properties, including probabilistic
ω-regular specifications and expected total cost or reward measures. We present a wide selec-
tion of assume-guarantee proof rules, including asymmetric, circular and asynchronous variants,
and also show how to obtain numerical results in a compositional fashion. Given appropriate as-
sumptions to be used in the proof rules, our compositional verification methods are, in contrast to
previously proposed approaches, efficient and fully automated. Experimental results demonstrate
their practical applicability on several large case studies, including instances where conventional
probabilistic verification is infeasible.

Keywords: probabilistic verification, compositional verification, assume-guarantee reasoning,
probabilistic automata

1. Introduction

Many computerised systems exhibit probabilistic behaviour, for example due to the use of ran-
domisation (e.g., in distributed communication or security protocols), or the presence of failures
(e.g., in faulty devices or unreliable communication media). The prevalence of such systems in

∗Corresponding author
Email addresses: marta.kwiatkowska@cs.ox.ac.uk (Marta Kwiatkowska),

gethin.norman@glasgow.ac.uk (Gethin Norman), d.a.parker@cs.bham.ac.uk (David Parker),
h.qu@sheffield.ac.uk (Hongyang Qu)

1Contact details for David Parker: Telephone: +44 (0) 121 4143711
2Hongyang Qu is now with the Department of Automatic Control and Systems Engineering, University of Sheffield

Preprint submitted to Information and Computation October 14, 2013

today’s society makes techniques for their formal verification a necessity. This requires mod-
els and formalisms that incorporate both probability and nondeterminism. Although efficient
algorithms for verifying such models are known [1, 2, 3] and mature tool support exists [4, 5],
applying these techniques to large, real-life systems remains challenging, and hence techniques
to improve scalability are essential.

In this paper, we focus on compositional verification techniques for probabilistic and non-
deterministic models, in which a system comprising multiple interacting components can be
verified by analysing each component in isolation, rather than verifying the much larger model
of the whole system. In the case of non-probabilistic models, a successful approach is the use of
assume-guarantee reasoning [6, 7]. This is based on checking queries of the form 〈ΨA〉M 〈ΨG〉,
with the meaning “whenever component M is part of a system satisfying the assumption ΨA,
then the system is guaranteed to satisfy property ΨG”. Proof rules can then be established to
show, for example, that, if a component M1 satisfies assumption ΨA and 〈ΨA〉M2 〈ΨG〉 holds
for a second componentM2, then the combined systemM1‖M2 satisfies ΨG.

For probabilistic systems, compositional approaches have also been studied, but a distinct
lack of practical progress has been made. In this paper, we present novel assume-guarantee
techniques for compositional verification of systems exhibiting both probabilistic and nondeter-
ministic behaviour, and illustrate their applicability and efficiency on several large case studies.
This is the first approach that, given appropriate assumptions about components, can perform
compositional verification in an efficient and fully-automated manner.

We use probabilistic automata (PAs) [8, 9], a well-studied formalism that is naturally suited
to modelling multi-component probabilistic systems. We also augment PAs with rewards (or, du-
ally, costs), which can be used to model a variety of quantitative measures of system behaviour,
such as execution time or power consumption. We present compositional techniques for verifi-
cation of a range of quantitative properties, including probabilistic ω-regular properties (which
subsume, for example, probabilistic LTL and probabilistic safety properties) and expected total
reward/cost properties (which can also encode the expected reward/cost to reach a target and
time-bounded reward measures).

Probabilistic automata were developed as a formalism for the modelling and analysis of dis-
tributed, randomised systems [8], and a rich underlying theory has been developed, in particu-
lar for models in which PAs are combined through parallel composition. A variety of elegant
proof techniques have been created and used to manually prove the correctness of large, complex
randomised algorithms [10]. Key ingredients of the underlying theory of PAs include proba-
bilistic versions of strong and weak (bi)simulation [9] and trace distribution inclusion [8]. The
branching-time preorders (simulation and bisimulation) have been shown to be compositional
[9] (i.e., preserved under parallel composition), but are often too fine to give significant practical
advantages for compositional verification. Trace distribution inclusion, which is defined in terms
of probability distributions over sequences of observable actions, is a natural generalisation of
the (non-probabilistic) notion of trace inclusion but is known not to be preserved under paral-
lel composition [11]. Thus, other proposals for compositional verification frameworks based on
PAs tend to restrict the forms of parallel composition that are allowed [12, 13]. By contrast,
the approach we present in this paper does not impose restrictions on the parallel composition
permitted between components, allowing greater flexibility to model complex systems.

Our assume-guarantee framework uses multi-objective probabilistic model checking [14, 15],
which is a technique for verifying multiple, possibly conflicting properties of a probabilistic
automaton. Conventional verification techniques for PAs quantify over its adversaries, which
represent the various different ways in which nondeterminism in the model can be resolved. A

2

typical property to be verified states, for example, “the probability of a system failure is at most
0.01, for any possible adversary”. Multi-objective model checking, on the other hand, permits
reasoning about the existence of an adversary satisfying two or more distinct properties, for
example, “is there an adversary under which the probability of a system failure is at most 0.005
and the expected battery lifetime remains below 2 hours?”.

Our compositional approach to verification is based on queries of the form 〈ΨA〉M 〈ΨG〉,
with the meaning “under any adversary of PA M for which assumption ΨA is satisfied, ΨG is
guaranteed to hold”. The assumptions ΨA and guarantees ΨG are quantitative multi-objective
properties [15], which are conjunctions of predicates, each of which imposes a bound on either
the probability of an ω-regular property or the expected total value of some reward structure.
A simple example of an assumption is “with probability 1, component M1 eventually sends a
request, and the expected time before this occurs is at most 5 seconds”. We show that check-
ing these assume-guarantee queries can be reduced to existing multi-objective model checking
techniques [14, 15], which can be implemented efficiently using linear programming.

Building upon this notion of probabilistic assume-guarantee reasoning, we formulate and
prove several compositional proof rules, which can be used to decompose the process of ver-
ifying a multi-component probabilistic system into several smaller sub-tasks. One important
class of such proof rules is those that restrict assumptions and guarantees to be probabilistic
safety properties, which impose a bound on the probability of satisfying a regular safety prop-
erty. These are slightly cheaper to verify than the other properties we consider, but still represent
a useful set of system properties. In order to present proof rules for the more general class of
quantitative properties (probabilistic ω-regular and expected total reward), we incorporate a no-
tion of fairness, restricting our analysis to cases where each component in a system executes a
step infinitely often.

For both of these classes of properties, we present several different assume-guarantee proof
rules, including variants that are asymmetric (using assumptions only about one component) and
circular (assumptions about all components). We also give proof rules for systems with compo-
nents that are asynchronous and methods to decompose the analysis of reward-based properties.
Finally, we describe how to obtain numerical results from compositional verification, in particu-
lar, obtaining lower and upper bounds on the actual probability that a system satisfies a property
and constructing Pareto curves to investigate trade-offs between multiple system properties in a
compositional fashion.

We have implemented our assume-guarantee verification techniques by extending the PRISM
model checker [4], and present experimental results from its application to several large case
studies. We demonstrate significant speed-ups over conventional, non-compositional verifica-
tion, and also successfully verify models that are too large to be analysed without compositional
techniques.

1.1. Related Work

As mentioned above, there is a significant body of work which develops the underlying theory,
built upon in this paper, for the compositional modelling and analysis of probabilistic systems.
Segala and Lynch [8, 9] proposed the model of probabilistic automata, and defined many key
accompanying notions such as parallel composition, projections and various compositional pre-
orders, including strong and weak variants of probabilistic simulation and bisimulation. A num-
ber of compositional proof techniques were also developed and, in [10], applied to the manual
verification of Aspnes and Herlihy’s randomised consensus algorithm.

3

There are several proposals for compositional verification frameworks based on PAs. For
example, de Alfaro et al. define a probabilistic extension of Reactive Modules [16], which is
restricted to synchronous parallel composition [12]. This allows the formulation of assume-
guarantee rules based on the use of trace distribution inclusion [8] which, in general, is not
compositional [11]. However, there is no known algorithm to check trace distribution inclusion
and an implementation of the techniques in [12] is not considered. An alternative approach is the
formalism of switched probabilistic I/O automata by Cheung et al. [13]. This distinguishes be-
tween local resolutions of nondeterminism by individual components, and the global resolution
of nondeterminism by a scheduler. The result is a framework which does allow compositional,
traced-based relations to be established between models. Again, though, practical implementa-
tions of the techniques are not developed.

This paper is an extended version of [17], which presented the first fully-automated com-
positional verification techniques for probabilistic automata. That work focused specifically on
the use of probabilistic safety properties; here, we give methods to verify a much wider class of
properties, some of which were originally introduced in [15]. This paper also draws inspiration
from several other sources. In particular, the fragment of our framework that deals with safety
properties was inspired by the large body of work by Giannakopoulou, Pasareanu et al. (see,
e.g., [7]) on non-probabilistic assume-guarantee techniques. We also build upon ideas put for-
ward in [18], which suggests using multi-objective verification for compositional probabilistic
verification, but does not give a concrete proposal of how to achieve this.

The assume-guarantee techniques of [17] have also been extended with algorithmic learning
methods [19, 20], which are used to automatically generate assumptions for performing composi-
tional verification. In recent work, an alternative way to generate assumptions has been proposed
in [21], based on the use of an abstraction-refinement loop. In that work, components, assump-
tions and properties are all modelled as probabilistic automata, with the relationships between
them captured by strong simulation [9]. Our work, by comparison, permits verification for a
more expressive class of quantitative properties, including for example reward-based measures,
and supports a wider range of compositional proof rules.

We also mention the development of compositional verification techniques for other classes
of models. One example is the fully probabilistic setting, i.e., where models cannot exhibit non-
deterministic behaviour. In [22], compositional techniques are presented for probabilistic model
checking of hardware systems modelled as discrete-time Markov chains. This is based on a de-
composition of the property to be checked and the use of conditional probabilities. In [23], a
notion of contracts is proposed for probabilistic systems with a limited degree of nondetermin-
ism, i.e., a model that is less expressive than PAs. The authors consider additional operations over
contracts, such as refinement, but do not consider a practical implementation of their approach.
Moving away from probabilistic systems, [24] presents a theoretical framework for composi-
tional verification of quantitative properties of labelled transition systems and [25] presents tool
support for compositional analysis of timed systems.

1.2. Paper Structure

The remainder of the paper is structured as follows. Section 2 introduces the necessary back-
ground material regarding probabilistic automata, including notions required for compositional
methods such as parallel composition and projection. Section 3 summarises the classes of proper-
ties of PAs that we use in this paper and techniques for their verification. It also covers the topics
of multi-objective model checking and verification of PAs under fairness constraints. Section 4

4

introduces our assume-guarantee framework, defining the basic underlying ideas and presenting
instances of the two main classes of compositional proof rules that we consider. Section 5 gives
several additional proof rules and then Section 6 discusses how our techniques can be adapted to
produce numerical results. In Section 7, we describe an implementation of our techniques and
show results from its application to several large case studies. Section 8 concludes the paper.

2. Probabilistic Automata

We begin with some background material on probabilistic automata. In the following, we use
Dist(S) to denote the set of all discrete probability distributions over a set S , i.e. functions
µ : S → [0, 1] satisfying

∑
s∈S µ(s) = 1. We use ηs for the point distribution on s ∈ S and

µ1×µ2 ∈ Dist(S 1×S 2) for the product distribution of µ1 ∈ Dist(S 1) and µ2 ∈ Dist(S 2), defined by
µ1×µ2((s1, s2)) def

= µ1(s1) · µ2(s2). We also denote by SubDist(S) the set of sub-distributions over
S , i.e. functions µ : S → [0, 1] satisfying

∑
s∈S µ(s) ≤ 1.

2.1. Probabilistic Automata (PAs)

Probabilistic automata [8, 9] are commonly used for modelling systems that exhibit both prob-
abilistic and nondeterministic behaviour. They are a slight generalisation of Markov decision
processes.3 For the purposes of applying standard probabilistic verification techniques, the two
models can often be treated identically; however, probabilistic automata are particularly well
suited to compositional modelling and analysis of probabilistic systems.

Definition 1 (PA). A probabilistic automaton (PA) is a tupleM = (S , s, αM, δM, L) where:

• S is a set of states and s ∈ S is an initial state;

• αM is an alphabet of action labels;

• δM ⊆ S × αM × Dist(S) is a probabilistic transition relation;

• L : S → 2AP is a labelling function mapping states to sets of atomic propositions taken
from a set AP.

In any state s of a PA M, a transition, denoted s
a
−→ µ, where a is an action label and µ is a

discrete probability distribution over states, is available if (s, a, µ) ∈ δM. In an execution of the
model, the choice between the available transitions in each state is nondeterministic; the choice
of successor state is then made randomly according to the distribution µ. For presentational
convenience elsewhere in the paper, we do not identify a special “silent” action τ, but this can
easily be added if required.

A path throughM is a (finite or infinite) sequence π = s0
a0,µ0
−−−→s1

a1,µ1
−−−→ · · · where s0 = s and,

for each i ≥ 0, si
ai
−→ µi is a transition and µi(si+1) > 0. We denote by π(i) the (i+1)th state si of π

and by IPathsM (FPathsM) the set of all infinite (finite) paths inM. If π is finite, |π| denotes its
length and last(π) its last state. The trace, tr(π), of π is the sequence of actions a0a1 . . . and we
use tr(π)�α to indicate the projection of such a trace onto an alphabet α ⊆ αM.

To reason about PAs, we use the notion of adversaries (also called schedulers or strategies),
which resolve the nondeterministic choices in a model, based on its execution history.

3For Markov decision processes, the probabilistic transition relation of Definition 1 becomes a partial function δM :
(S×αM)→ Dist(S).

5

Definition 2 (Adversary). An adversary of a PA M = (S , s, αM, δM, L) is given by a function
σ : FPathsM → Dist(αM×Dist(S)) such that, for any finite path π of M, σ(π) only assigns
non-zero probabilities to action-distribution pairs (a, µ) for which (last(π), a, µ) ∈ δM.

Employing standard techniques [26], an adversary σ of a PAM induces a probability measure
Prσ
M

over IPathsM, which captures the (purely probabilistic) behaviour of M when under the
control of σ. We also use IPathsσ

M
(FPathsσ

M
) for the set of infinite (finite) paths ofM under σ.

The set of all adversaries for PA M is denoted by AdvM. Amongst these, we distinguish
several important classes. An adversary σ is deterministic if σ(π) is a point distribution for
all π, and randomised otherwise; σ is memoryless if σ(π) depends only on last(π), and finite-
memory if there are a finite number of memory configurations such that σ(π) depends only on
last(π) and the current memory configuration, which is updated (possibly stochastically) when
an action is performed. We will also sometimes need to distinguish between partial and complete
adversaries, which are discussed in the next section.

We augment PAs with rewards, which will be used to capture a variety of quantitative prop-
erties of the systems that we model. In this paper, we attach rewards to the transitions of a PA,
according to the actions that label them.

Definition 3 (Reward structure). A reward structure for a PAM is a mapping ρ : αρ → R>0
from some alphabet αρ ⊆ αM to the positive reals.

For an infinite path π = s0
a0,µ0
−−−→ s1

a1,µ1
−−−→ · · · , the total reward for π over reward structure ρ is

given by ρ(π) def
=

∑
i∈N∧ai∈αρ ρ(ai).

2.2. Parallel Composition of PAs

To model and analyse probabilistic systems comprising multiple components, we need parallel
composition of PAs. We use the definition of [8, 9], which is based on multi-way synchronisation
over transitions with identical action labels, in the style of the process algebra CSP.

Definition 4 (Parallel composition). Let M1,M2 be PAs such that Mi = (S i, si, αMi , δMi , Li)
for i=1, 2. Their parallel composition is the PAM1‖M2 = (S 1×S 2, (s1, s2), αM1∪αM2 , δM1‖M2 , L)
where δM1‖M2 is defined such that (s1, s2)

a
−→ µ1×µ2 if and only if one of the following holds:

• s1
a
−→ µ1, s2

a
−→ µ2 and a ∈ αM1 ∩ αM2 ;

• s1
a
−→ µ1, µ2 = ηs2 and a ∈ (αM1\αM2);

• µ1 = ηs1 , s2
a
−→ µ2 and a ∈ (αM2\αM1);

and L(s1, s2) = L1(s1) ∪ L2(s2). The atomic propositions used by the labelling functions (L1, L2
and L) are assumed to be from some global set AP. In practice, the atomic propositions labelling
the states of each individual PA are usually disjoint.

Example 1. Figure 1 shows a pair of PAs,Ms andMd, which we will use as one of our running
examples throughout the paper. We draw each transition of a PA as a group of arrows, joined
by an arc and annotated with its action. We label individual arrows with their corresponding

6

detect 0.8
s
1

s
0

s
3

0.2

warn

off

s
2

shutdown

(a) PAMs

0.9

t
1

t
0

t
2t

3

0.1

off

warn

fail

shutdown shutdown

(b) PAMd

Figure 1: Two probabilistic automataMs,Md , representing a sensor and a device (see Example 1)

warn shutdown

s
0
t
0

0.1

0.9

fail

s
1

s
2
t
0

t
0

s
2
t
1 s

3
t
2

detect

0.8

0.2

s
3

s
3
t
3

t
2

shutdown

off

off

(a) PAMs ‖Md

q
1

fail

q
0

fail

(b) DFAAerr
φG

Figure 2: Parallel composition of PAsMs,Md from Figure 1 and a DFAAerr
φG

for a safety property φG

probabilities, but omit this information if the probability is 1. A short incoming arrow denotes
the initial state of the PA.

We model a system with two components, each corresponding to one of the PAs. Compo-
nent Ms represents a sensor which, upon detection of a system failure, issues instructions to
other devices causing them to power down. Upon receipt of the detect signal, it first issues the
warn signal followed by shutdown; however, with probability 0.2 it will fail to issue the warn
signal. Md represents a device which, given the shutdown signal, powers down correctly if it
first receives the warn signal and otherwise only powers down correctly 90% of the time. The
combined system, i.e. the parallel compositionMs ‖Md of the two PAs, is shown in Figure 2(a).

For compositional reasoning about PAs, we also require the notion of projections [8], used to
decompose models that have been constructed through parallel composition. First, for any state
s=(s1, s2) of M1‖M2, the projection of s onto Mi, denoted by s�Mi , equals si. We extend this
notation to distributions over the state space S 1×S 2 ofM1‖M2 in the standard manner. Next, for
any (finite or infinite) path π ofM1‖M2, the projection of π ontoMi, denoted π�Mi , is the path
obtained from π by projecting each state of π ontoMi and removing all the actions not in αMi

together with the subsequent states. Notice that the projection of an infinite path may be finite.
To define projections of adversaries, we first need the notion of partial adversaries, which

are functions that map finite paths to sub-distributions over available transitions in the final state
of the path, rather than distributions. The interpretation is that such an adversary can opt to
(with some probability) take none of the available transitions and remain in the current state.
This generalises the normal definition of an adversary, which we will sometimes refer to as a
complete adversary.

Definition 5 (Partial adversary). A partial adversary of a PAM = (S , s, αM, δM, L) is a func-
tion σ : FPathsM → SubDist(αM×Dist(S)) such that, for any finite path π of M, σ(π) only
assigns non-zero probabilities to action-distribution pairs (a, µ) for which (last(π), a, µ) ∈ δM.

7

The probability space Prσ
M

for a partial adversary σ is defined in a similar manner as for a com-
plete adversary. We use Advpart

M
to denote the set of all partial adversaries ofM and sometimes,

for consistency, use Advcomp
M

to refer to the set all complete adversaries (i.e. AdvM).
Compositional reasoning about PAs may require partial adversaries since, even if an ad-

versary of M1‖M2 is complete, its projection onto one component may be partial. Later, in
Section 3.5, we will show that, by restricting our attention to fair adversaries, we can ensure that
the projection of a complete adversary remains complete.

Definition 6 (Adversary projection). LetM1 andM2 be PAs and σ an adversary ofM1‖M2.
The projection of σ ontoMi, denoted σ�Mi , is the (partial) adversary onMi where, for any finite
path πi ofMi and (last(πi), a, µi) ∈ δMi :

σ�Mi (πi)(a, µi) =

∑{∣∣∣∣ Prσ
M1‖M2

(π)·σ(π)(a, µ)
∣∣∣ π ∈ FPathsσ

M1‖M2
∧ π�Mi=πi ∧ µ�Mi=µi

∣∣∣∣}
Pr

σ�Mi
Mi

(πi)

and, for a finite path π ofM, Prσ
M

(π) denotes Prσ
M

({
π′ ∈ IPathsσ

M
| π is a prefix of π′

})
.

For any partial adversary σ of a PAM, a complete adversary σ′ ofM is called a completion of
σ if σ(π)(a, µ) ≥ σ′(π)(a, µ) for all paths π and action-distribution pairs (a, µ) ofM. Any partial
adversary always has at least one completion.

Finally, in this section, we define the notion of alphabet extension for a PAM. This operation
ensures that all of the actions from a set α are included in the alphabet ofM and, for any new
action a, adds an a-labelled self-loop to each state ofM.

Definition 7 (Alphabet extension). For any PAM = (S , s, αM, δM, L) and set of actions α, we
extend the alphabet ofM to α, denotedM[α], as follows:M[α] = (S , s, αM∪α, δM[α], L) where
δM[α] = δM ∪ {(s, a, ηs) | s ∈ S ∧ a ∈ α\αM}.

3. Quantitative Verification of Probabilistic Automata

In this section, we describe how to specify and verify a variety of quantitative properties of prob-
abilistic automata. We also discuss multi-objective probabilistic model checking and verification
under both partial and fair adversaries.

3.1. Specifying Properties of PAs

There are various different ways of formally specifying properties of PAs for the purposes of
verification. In this paper, we focus primarily on linear-time, action-based properties (i.e those
defined in terms of the action labels attached to PA transitions). More precisely, we will use prob-
abilisticω-regular properties (which subsume, for example, probabilistic LTL) and expected total
reward properties. For the former, we will make particular use of the subclass of probabilistic
safety properties. The latter, as mentioned earlier, also allows a variety of other reward-based
properties to be encoded, including the expected reward to reach a target and time-bounded re-
ward measures; see below for details.

In this section, we introduce the required properties; in the following section, we outline the
corresponding techniques to perform model checking. Throughout, we will assume a fixed PA
M = (S , s, αM, δM, L). We begin by defining probabilistic predicates and reward predicates.

8

Definition 8 (Probabilistic predicate). A probabilistic predicate [φ]∼p comprises an ω-regular
property4 φ ⊆ (αφ)ω over some alphabet αφ ⊆ αM, a relational operator ∼ ∈ {<,≤, >,≥} and a
rational probability bound p. The probability of satisfying φ under adversary σ is:

Prσ
M

(φ) = Prσ
M

({
π ∈ IPathsM | tr(π)�αφ ∈ φ

})
and satisfaction of [φ]∼p byM under adversary σ, denotedM, σ |= [φ]∼p, is defined as follows:

M, σ |= [φ]∼p ⇔ Prσ
M

(φ) ∼ p .

We say thatM satisfies [φ]∼p, denotedM|= [φ]∼p, if it does so under all adversaries:

M|= [φ]∼p ⇔ ∀σ ∈ AdvM .M, σ |= [φ]∼p .

Definition 9 (Reward predicate). A reward predicate [ρ]∼r comprises a reward structure ρ :
αρ → R>0 over some alphabet αρ ⊆ αM, a relational operator ∼ ∈ {<,≤, >,≥} and a rational
reward bound r. The expected total reward for ρ under adversary σ is:

ExpTotσ
M

(ρ) =

∫
π∈IPathsM

ρ(π) dPrσ
M

(π) ,

satisfaction of [ρ]∼r byM under adversary σ, denotedM, σ |= [ρ]∼r, is defined as:

M, σ |= [ρ]∼r ⇔ ExpTotσ
M

(ρ) ∼ r

and satisfaction of [ρ]∼r byM is defined as:

M|= [ρ]∼r ⇔ ∀σ ∈ AdvM .M, σ |= [ρ]∼r .

It is worth noting that expected total reward properties (i.e. reward predicates) can also be used
to specify the expected total reward accumulated until some set T of target states is reached,
which is another commonly used class of properties. This is done by modifying the PA M to
ensure that no rewards are accumulated after a state in T is reached for the first time. In the worst
case, this requires adding a second copy of each state in the PA. Properties of this kind can, in
turn, be used to encode other useful classes of properties, such as the expected amount of reward
accumulated over a fixed time period (see [28] for details).

Probabilistic predicates and reward predicates will be collectively referred to as quantita-
tive predicates. We typically use [φ]∼p and [ρ]∼r to denote probabilistic and reward predicates,
respectively, and [ψ]∼x for an arbitrary quantitative predicate.

In this work, we will often use a particular class of probabilistic predicates called probabilis-
tic safety properties, defined in terms of regular safety properties.

Definition 10 (Regular safety property). A regular safety property φ ⊆ (αφ)ω for PAM is a set
of infinite words over alphabet αφ ⊆ αM that is characterised by a regular language φ of bad
prefixes. These are finite words, any extension of which is not in φ, i.e.:

φ =
{
w ∈ (αφ)ω | no prefix of w is in φ

}
.

We represent φ by its error automaton Aerr
φ , a (complete) deterministic finite automaton (DFA)

(Q, q, αφ, δφ, F), comprising states Q, initial state q ∈ Q, alphabet αφ, transition function δφ :
Q × αφ → Q and accepting states F ⊆ Q, whose corresponding language equals φ.

4We use the term ω-regular property as a synonym for ω-regular language [27].
9

Definition 11 (Probabilistic safety property). A probabilistic safety property [φ]≥p is a proba-
bilistic predicate comprising a regular safety property φ and a rational (lower) probability bound
p. The probability of φ and satisfaction of [φ]≥p by M, under adversary σ, are defined as for
probabilistic predicates above (see Definition 8).

Regular safety properties, by their definition, are a strict subclass of ω-regular properties and
thus probabilistic safety properties are a special case of the probabilistic predicates introduced
in Definition 8. Probabilistic safety properties can be used to represent a wide range of useful
properties of probabilistic automata. Examples include:

• “the probability of an error occurring is at most 0.01”,

• “event A occurs before event B with probability at least 0.98”,

• “the probability of terminating within k time-units is at least 0.75”.

The last of these represents an important class of properties for timed probabilistic systems,
perhaps not typically considered as safety properties. Using the digital clocks approach of [29],
verifying real-time probabilistic systems can often be reduced to analysis of a PA with time steps
encoded as a special action type. Such requirements are then naturally encoded as probabilistic
safety properties.

Example 2. Consider the two PAsMs andMd from Example 1 (see Figure 1) and their parallel
compositionMs ‖Md, shown in Figure 2(a). We define a simple regular safety property φG for
Ms ‖Md with the meaning “action fail never occurs”. This is represented by the DFAAerr

φG
, over

alphabet { fail }, shown in Figure 2(b). The accepting state of the DFA is shaded grey. In this
simple example,Ms ‖Md has just a single adversary, under which the probability of satisfying
φG is 1 − 0.2 · 0.1 = 0.98. Thus, we have thatMs ‖Md |= [φG]≥0.98.

3.2. Model Checking for PAs

As illustrated in the previous section, we typically verify properties of PAM by quantifying over
all possible adversaries ofM. For example, for a quantitative predicate [ψ]∼x, we have:

M|= [ψ]∼x ⇔ ∀σ ∈ AdvM .M, σ |= [ψ]∼x .

A model checking procedure for verifying whether M satisfies a probabilistic predicate [φ]∼p

reduces to the computation of the minimum or maximum probability of satisfying φ:

Pr min
M

(φ) def
= infσ∈AdvM Prσ

M
(φ) and Pr max

M
(φ) def

= supσ∈AdvM Prσ
M

(φ) .

In particular, if ∼ ∈ {≥, >}, then M|= [φ]∼p if and only if Pr min
M

(φ) ∼ p, while if ∼ ∈ {<,≤},
thenM|= [φ]∼p if and only if Pr max

M
(φ) ∼ p. Similarly, for a reward predicate [ρ]∼r, minimum or

maximum expected total rewards are required:

ExpTot min
M

(ρ) def
= infσ∈AdvM ExpTotσ

M
(ρ) and ExpTot max

M
(ρ) def

= supσ∈AdvM ExpTotσ
M

(ρ) .

In the remainder of this section, we discuss how these values can be computed. For the proba-
bilistic case, the problem reduces to the calculation of reachability probabilities. For an atomic

10

proposition q from the set AP used to label states of PAM, we define the probability of reaching
a q-labelled state under adversary σ, denoted Prσ

M
(♦ q), as:

Prσ
M

(♦ q) def
= Prσ

M

({
π ∈ IPathsM | q ∈ L(π(i)) for some i ≥ 0

})
and, as for other probabilistic properties, we define:

Pr min
M

(♦ q) def
= infσ∈AdvM Prσ

M
(♦ q) and Pr max

M
(♦ q) def

= supσ∈AdvM Prσ
M

(♦ q) .

Computation of the values Pr min
M

(♦ q) or Pr max
M

(♦ q) forM can be achieved by solving a linear
programming problem of size |M| [30, 1], and thus performed in time polynomial in |M|. In
practice, other techniques, such as value iteration or policy iteration, are often used [31].

The probabilities Pr min
M

(φ) or Pr max
M

(φ) for an ω-regular property φ can be computed by re-
ducing the problem to calculating reachability probabilities in a product PA composed from the
PAM and an ω-automaton for the property φ. In the implementation developed for this work,
we follow the approach of [3], which is based on the use of deterministic Rabin automata and
then determining the maximum probability of reaching a set of accepting end components. The
presentation in [3] uses ω-regular properties over atomic propositions (on states) rather than the
action labels (on transitions) used here, but the procedure is essentially the same. Full details for
the action-based case can be found in [28]. The total time complexity for computing probabilities
is polynomial in the sizes of both the PAM and the deterministic ω-automaton for φ.

We now describe in more detail the computation of probabilities for regular safety properties,
since these are used in various places throughout the paper. Although a regular safety property
φ is an instance of an ω-regular property, it is more efficient to bypass the use of ω-automata
and end component identification, instead computing reachability probabilities directly from the
product of the PAM and the error automaton for φ.

Definition 12 (PA-DFA product). LetM=(S , s, αM, δM, L) be a PA and Aerr
φA

=(Q, q, αA, δA, F)
be the DFA for a regular safety property φA with αA ⊆ αM. The product ofM andAerr

φA
is given by

the PAM⊗Aerr
φA

= (S×Q, (s, q), αM, δ′, L′), where δ′ is defined such that we have (s, q)
a
−→ µ×ηq′

if and only if one of the following holds:

• s
a
−→ µ, q′ = δA(q, a) and a ∈ αA;

• s
a
−→ µ, q′ = q and a < αA;

and L′((s, q)) = L(s) ∪ {errA} if q ∈ F and L′((s, q)) = L(s) otherwise.

Intuitively, the product M⊗Aerr
φA

records both the state of the PA M and the state of the DFA
Aerr

φA
, based on the actions seen so far in the history ofM. States of the product that correspond

to accepting states of the DFA are labelled with atomic proposition errA. The key property of a
PA-DFA product is the following.

Lemma 1. For a PAM and DFA Aerr
φA

, there is a bijection fM,A between the adversaries ofM
and the adversaries of the productM⊗Aerr

φA
. Moreover, for any adversary σ ofM, we have the

following correspondence between the probability of satisfying the regular safety property φA

and the probability of reaching an errA-labelled state in the productM⊗Aerr
φA

:

Prσ
M

(φA) = 1 − Pr fM,A(σ)
M⊗Aerr

φA
(♦ errA) .

11

a
0

warn

a
2

shutdown

a
1

 warn,

shutdown

 warn,

shutdown

(a) DFAAerr
φA

warn shutdown

s
0
a
0

s
1

s
2
a
0

a
0

s
2
a
1 s

3
a
1

detect

0.8

0.2
off

off

s
3
a
2

shutdown

(b) PAMs ⊗ A
err
φA

Figure 3: A DFAAerr
φA

for safety property φA and the productMs ⊗A
err
φA

(see Example 3)

Proof. The existence of bijection fM,A follows directly from the definition of the PA-DFA prod-
uctM⊗Aerr

φA
(which relies on the fact that the automatonAerr

φA
is both deterministic and complete).

The remainder of the lemma then follows from Theorem 10.51 of [32]. ut

Using Lemma 1, the (minimum) probability of satisfying regular safety property φA relates to
(maximum) reachability probabilities in the product as follows:

Pr min
M

(φA) = 1 − Pr max
M⊗Aerr

φA
(♦ errA) .

and therefore:
M|= [φA]≥pA ⇔ Pr max

M⊗Aerr
φA

(♦ errA) ≤ 1 − pA

which means that satisfaction of a probabilistic safety property [φA]≥pA can be checked in time
polynomial in the size ofM⊗Aerr

φA
.

Example 3. We return to the PA Ms from Example 1 (see Figure 1(a)) and consider a prob-
abilistic safety property [φA]≥0.8 where φA is a regular safety property over alphabet αA =

{warn, shutdown} with the meaning “warn occurs before shutdown”. The error automaton Aerr
φA

for φA is shown in Figure 3(a). To verify [φA]≥0.8 against Ms, we construct the product PA
Ms ⊗ A

err
φA

, shown in Figure 3(b). States labelled with atomic proposition errA, i.e. those
corresponding to the accepting state a2 of the DFA are marked with grey shading. We have
Pr min
Ms

(φA) = 1 − Pr max
Ms⊗A

err
φA

(♦ errA) = 1 − 0.2 = 0.8, and thusMs |= [φA]≥0.8.

Finally, we mention the computation required for expected total reward properties, i.e. to cal-
culate ExpTot min

M
(ρ) or ExpTot max

M
(ρ) for a reward structure ρ. In fact, for this, we can use very

similar techniques to those for reachability probabilities, such as value iteration or linear pro-
gramming. We refer the reader to, for example, [3] for details.

3.3. Multi-objective Model Checking for PAs

In addition to conventional quantitative verification techniques for probabilistic automata, the
approach presented in this paper requires the use of multi-objective model checking [14, 15].
The conventional approach, described in the previous section, allows us to check whether a single
quantitative (probabilistic or reward) predicate holds for all adversaries of a PA (or, dually, for
at least one adversary). Multi-objective queries allow us to reason about whether adversaries
satisfy multiple properties of this form.

12

Definition 13 (qmo-property). A quantitative multi-objective property (qmo-property) for PA
M is a finite conjunction5 of quantitative predicates ΨP = [ψ1]∼1 x1 ∧ . . . ∧ [ψk]∼k xk , where each
[ψi]∼i xi is a quantitative predicate forM, i.e. a probabilistic predicate [φi]∼i pi or a reward predi-
cate [ρi]∼iri . We use αP to denote the set of all actions in ΨP, i.e., αψ1 ∪ . . . ∪ αψk . We say thatM
satisfies ΨP under adversary σ, denotedM, σ |= ΨP, ifM, σ |= [ψi]∼i xi for all 1 ≤ i ≤ k.

We first observe that verifying whether a qmo-property ΨP = [ψ1]∼1 x1 ∧ . . .∧ [ψk]∼k xk is satisfied
for all adversaries of a PA, denotedM|= ΨP, reduces simply to k separate checks:

M|= ΨP ⇔ ∀σ ∈ AdvM .
(
∧k

i=1M, σ |= [ψi]∼i xi

)
⇔ ∧k

i=1M|= [ψi]∼i xi .

However, a typical multi-objective query (often called an achievability query) asks if there exists
an adversary ofM satisfying all k predicates, i.e. whether:

∃σ ∈ AdvM .
(
∧k

i=1M, σ |= [ψi]∼i xi

)
.

For the case where a qmo-property comprises only probabilistic ω-regular properties, an algo-
rithm for checking the existence of such an adversary is given in [14]. This is based on a reduction
to a linear programming (LP) problem, yielding a time complexity polynomial in the sizes of the
PAM and the ω-automata representing the k ω-regular properties ψi. Whenever such an adver-
sary exists, the solution of the LP problem yields a randomised, finite-memory adversary σ of
M satisfying all k predicates. In [15], this LP-based approach to multi-objective model check-
ing is extended to include expected total reward properties, i.e. for the class of qmo-properties
described in Definition 13. In [33], an alternative approach to model checking qmo-properties is
presented, based on value iteration. This has higher time complexity (exponential in the size of
the model, in the worst case) but tends to perform better in practice.

Another useful class of multi-objective properties, also treated in [15, 33], is that of numerical
queries. These yield the minimum or maximum achievable value for the probability of an ω-
regular property φ or the expected total value of a reward structure ρ, whilst still satisfying some
qmo-property ΨP. For example, in the maximum case:

Pr max
M

(φ � ΨP) def
= sup {Prσ

M
(φ) | σ ∈ AdvM ∧M, σ |= ΨP },

ExpTot max
M

(ρ � ΨP) def
= sup {ExpTotσ

M
(ρ) | σ ∈ AdvM ∧M, σ |= ΨP }.

The techniques for numerical queries in [33] are further extended to the class of Pareto queries,
which can be used for a more detailed analysis of the trade-off between two or more properties.
For example, given two ω-regular properties φ1 and φ2, we can consider the Pareto curve of
points (p1, p2) such that [φ1]≥p1 ∧ [φ2]≥p2 is achievable but any increase in either p1 or p2 would
necessitate a decrease in the other. We discuss the use of numerical and Pareto queries for
compositional verification in Section 6.

3.4. Model Checking PAs under Partial Adversaries

In this section, we explain how to perform model checking of PAs over the class of partial
(rather than complete) adversaries, which will be needed later in the paper. We cover two cases.

5Quantitative multi-objective properties are introduced in [15], where a more general form is proposed: arbitrary
Boolean combinations of predicates, rather than just conjunctions.

13

Firstly, we show that, for model checking of probabilistic safety properties, these two classes of
adversaries are equivalent. Secondly, we show any other kind of property can be handled using
a simple transformation of the PA. In both cases, we then have a reduction from model checking
of PAs over partial adversaries to the problem of model checking over complete adversaries, as
described in the preceding sections.

The following proposition states that satisfaction of probabilistic safety properties is equiva-
lent whether quantifying over complete adversaries or over the larger class of partial adversaries.
This is because checking probabilistic safety properties reduces to the computation of maximum
reachability probabilities.

Proposition 1. For any PAM and probabilistic safety property [φA]≥p, we have:

M|= [φA]≥p ⇔ ∀σ ∈ Advpart
M

.M, σ |= [φA]≥p .

Proof. Consider any PAM and probabilistic safety property [φA]≥pA . By Definition 8, we have:

M|= [φA]≥p ⇔ ∀σ ∈ AdvM .M, σ |= [φA]≥p

and from Lemma 1 there is a bijection fM,A between the adversaries of PAM and the PA-DFA
productM⊗Aerr

φA
.

For the ⇒ direction, we assume M|= [φA]≥p and consider any partial adversary σ of M.
Now, letting σ′ be a completion of σ, it follows that fM,A(σ′) is a completion of fM,A(σ) and, by
the definition of reachability probabilities, we have:

Pr fM,A(σ′)
M⊗Aerr

φA
(♦ errA) ≥ Pr fM,A(σ)

M⊗Aerr
φA

(♦ errA) . (1)

Next, using Lemma 1, we have:

Prσ
M

(φA) = 1 − Pr fM,A(σ)
M⊗Aerr

φA
(♦ errA)

≥ 1 − Pr fM,A(σ′)
M⊗Aerr

φA
(♦ errA) by (1)

= Prσ
′

M
(φA) by Lemma 1

≥ p since M |= [φA]≥p.

Therefore, since σ was an arbitrary partial adversary ofM, this half of the proof is complete.
For the⇐ direction, the result follows directly from the fact that AdvM ⊂ Advpart

M
. ut

The next proposition shows that satisfaction of qmo-properties in a PAM using partial adver-
saries is equivalent to satisfaction under complete adversaries after performing a simple transfor-
mation ofMwhich adds a probability 1 self-loop to every state. We formalise this transformation
as a special case of alphabet extension (see Definition 7) using a fresh action b. The transformed
PA is thus denotedM[{b}].

Proposition 2. For any PAM, action b < αM and qmo-property ΨP, we have:

∃σ ∈ Advpart
M

.M, σ |= ΨP ⇔ ∃σ′ ∈ AdvM[{b}] .M[{b}], σ′ |= ΨP .

14

Proof. Consider any PA M = (S , s, αM, δM, L) and action b < αM. By Definition 7 the only
difference between the PAsM andM[{b}] is that the probabilistic transition relation ofM[{b}]
extends the one ofM with a ‘self-loop’ transition for each state, labelled with the action b.

For the direction ⇒, the proof follows by showing that, for any partial adversary σ of M,
we can construct a complete adversary σ′ of M[{b}] which satisfies precisely the same qmo-
properties that do not include b in their alphabet. The construction proceeds as follows. For any
finite path π′ ∈ FPathsM[{b}] we have the following two cases to consider.

• If π′ ∈ FPathsM, then for any action distribution pair (a′, µ′) ∈ Dist(αM[{b}]×Dist(S)):

σ′(π′)(a′, µ′) =

σ(π′)(a′, µ′) if a ∈ αM

1 −
∑

(a,µ)∈Dist(αM×Dist(S)) σ(π′)(a, µ) if (a′, µ′) = (b, ηlast(π))
0 otherwise.

• If π′ < FPathsM, then for any action distribution pair (a′, µ′) ∈ Dist(αM[{b}]×Dist(S)):

σ′(π′)(a′, µ′) =

{
1 if (a′, µ′) = (b, ηlast(σ′))
0 otherwise.

The fact that these adversaries satisfy the same qmo-properties (not including b in their alphabet)
follows by construction of the probability measure for σ and σ′.

For the direction ⇐, the proof follows by showing that, for any complete adversary σ′ of
M[{b}], we can construct a partial adversary σ of M[{b}] which satisfies precisely the same
qmo-properties that do not include b in their alphabet. Before giving the construction, we need
to define a mapping from paths ofM[{b}] to paths ofM. This mapping essentially removes the
transitions of the path labelled with the action b. This always yields feasible paths ofM since all
transitions ofM[{b}] labelled with the action b correspond to self-loops. Formally, for any finite
path π′ ∈ FPathsM[{b}], let π′�αM be the finite path of FPathsM where:

π′�αM =

π′′�αM

(a,µ)
−−−→ s if π′ is of the form π′′

(a,µ)
−−−→ s and a , b

π′′�αM if π′ is of the form π′′
(b,ηs)
−−−−→ s

π′ otherwise.

From Definition 7, in the ‘otherwise’ case above, it follows that π′ is a path of length 0, that is, a
state ofM.

Now, considering any complete adversary σ′ of M[{b}], we construct the following par-
tial adversary σ of M. For any finite path π ∈ FPathsM and action distribution pair (a, µ) ∈
Dist(αM×Dist(S)):

σ(π)(a, µ) =

∑{∣∣∣∣ Prσ
′

M[{b}](π
′)·σ′(π′)(a, µ)

∣∣∣ π′ ∈ FPathsM[{b}] ∧ π
′�αM = π

∣∣∣∣}
Prσ
M

(π)

The remainder of the proof follows from the construction of the probability measures for the
adversaries σ′ and σ. ut

15

3.5. Model Checking PAs under Fairness

We conclude our discussion of model checking techniques for PAs with the topic of fairness.
When verifying systems where multiple PAs are composed in parallel and can execute asyn-
chronously, it is often necessary to impose conditions that ensure the PAs are scheduled in a fair
manner. These fairness conditions, which typically correspond to reasonable assumptions about
the system being modelled, may be essential in order to verify even trivial properties.

In this paper, we use a simple but effective notion of fairness called unconditional fairness,
in which it is required that each component makes a transition infinitely often. For probabilistic
automata, a natural approach to incorporating fairness (as taken in, e.g., [34, 35]) is to restrict
analysis of the system to a class of adversaries in which fair behaviour occurs with probability 1.

IfM = M1‖ . . . ‖Mn is a PA comprising n components, then an (unconditionally) fair path
of M is an infinite path π ∈ IPathsM in which, for each component Mi, there exists an action
a ∈ αMi that appears infinitely often. A fair adversary σ of M is an adversary for which
Prσ
M
{ π ∈ IPathsM | π is fair } = 1. We let Advfair

M
denote the set of fair adversaries ofM.

An important consequence of our definition of fairness is that the projection of a fair adver-
sary onto its component PAs results in a complete, rather than partial, adversaries.

Lemma 2. IfM1,M2 are PAs and σ ∈ Advfair
M1‖M2

, then σ�Mi is a complete adversary for i=1, 2.

Proof. Consider any PAsM1 andM2 and adversary σ ∈ Advfair
M1‖M2

. Suppose for a contradiction
that σ�Mi is a partial adversary for some i=1, 2. Since σ�Mi is partial, by definition there exists
some finite path πfin

i ofMi such that:∑
(last(πfin

i),a,µi)∈δMi
σ�Mi (π

fin
i)(a, µi) < 1 .

Now, by Definition 6, it follows that:

1 −
∑

(last(πfin
i),a,µi)∈δMi

σ�Mi (π
fin
i)(a, µi) = Prσ

M1‖M2

({
π ∈ IPathsσ

M1‖M2
| π�Mi = π

fin
i

})
.

By the definition of a fair path, we have that the projection of a fair path is always infinite and,
combining this fact with the above, yields:

Prσ
M1‖M2

({
π ∈ IPathsσ

M
| π is not fair

})
≥ Prσ

M1‖M2

({
π ∈ IPathsσ

M1‖M2
| π�Mi = π

fin
i

})
> 0

which contradicts the fact that σ is a fair adversary as required. ut

Verification of a quantitative predicate [ψ]∼x against a multi-component PAM = M1‖ · · · ‖Mn

under fairness is defined by quantifying only over fair adversaries:

M|=fair [ψ]∼x ⇔ ∀σ ∈ Advfair
M

.M, σ |= [ψ]∼x .

Model checking algorithms for verifying PAs under fairness are presented in [35]. These tech-
niques apply to more general notions of strong and weak fairness, of which unconditional fairness
is a special case. The algorithms work by restricting the set of end components of the PA under
consideration. A related problem is realisability: determining whether a PA has any (uncon-
ditionally) fair adversaries. Efficient techniques for this problem, based on an analysis of the
underlying graph of a PA, can be found in [36].

16

We can also pose multi-objective queries, as discussed in the previous section, in the con-
text of fairness, i.e., ask whether there exists a fair adversary satisfying all conjuncts of a qmo-
property ΨP = [ψ1]∼1 x1 ∧ . . . ∧ [ψk]∼k xk :

∃σ ∈ Advfair
M

.
(
∧k

i=1M, σ |= [ψi]∼i xi

)
.

This can be reduced to a normal multi-objective query, i.e. over all adversaries. Our definition of
a fair adversary can be captured by a single ω-regular probabilistic predicate [φfair]≥1, where:

φfair = ∩n
i=1{w ∈ (αM)ω | some action a ∈ αMi appears in w infinitely often} .

Thus, we can check for a fair adversary satisfying ΨP by checking for an arbitrary adversary that
satisfies ΨP ∧ [φfair]≥1.

4. Assume-Guarantee Verification for Probabilistic Automata

We now present our compositional verification framework for probabilistic automata. The ap-
proach is based on the well-known assume-guarantee paradigm and builds on the multi-objective
model checking techniques summarised in Section 3.3. In this section, we define the basic under-
lying ideas and then introduce our two main classes of assume-guarantee proof rules, for safety
properties and general quantitative properties. In Section 5, we will consider a number of further
assume-guarantee proof rules.

4.1. Assume-Guarantee Triples

The key ingredient of classical assume-guarantee reasoning is the assume-guarantee triple, com-
prising a component, an assumption and a guarantee. To enable compositional verification of
probabilistic systems, we introduce probabilistic assume-guarantee triples. These triples take
the form 〈ΨA〉M

? 〈ΨG〉, where M is a PA, representing a component of a probabilistic sys-
tem, and ΨA and ΨG are qmo-properties, representing an assumption and a guarantee, respec-
tively. Triples are also parameterised by a class of adversaries for M, denoted by the symbol
? ∈ {part, comp, fair}, indicating the set of partial, complete or fair adversaries, respectively. The
triple 〈ΨA〉M

? 〈ΨG〉 asserts that any adversary forM (of type ?) which satisfies the assumption
ΨA also satisfies the guarantee ΨG. Formally, we have the following definition.6

Definition 14 (Probabilistic assume-guarantee triple). Let M be a PA, ΨA and ΨG be qmo-
properties such that αG ⊆ αA ∪ αM and ? ∈ {part, comp, fair} be a class of adversaries. Then
〈ΨA〉M

? 〈ΨG〉 is a probabilistic assume-guarantee triple with the following semantics:

〈ΨA〉M
? 〈ΨG〉 ⇔ ∀σ ∈ Adv?

M[αA] . (M[αA], σ |= ΨA →M[αA], σ |= ΨG) .

Notice that Definition 14 quantifies over adversaries of the alphabet extension M[αA] of M
(see Definition 7), rather than M itself. This is because, when we come to use these triples
to formulate assume-guarantee proof rules, ΨG will be a property of the overall system being
verified, of which M is just one component. Property ΨG may therefore be defined over a

6Our definition of assume-guarantee triple generalises the one we originally presented in [17], where the parameter
? is omitted. In that work, the set of partial adversaries is always used, i.e. ? = part.

17

superset of the actions in the alphabet αM of M and, as a result, the assumption ΨA may also
include additional actions not in αM.

Because probabilistic assume-guarantee triples are stated in terms of quantification over ad-
versaries, checking whether or not a triple is true can be reduced to a multi-objective model
checking problem of the form described in the previous section. More precisely, we ascertain
whether 〈ΨA〉M

? 〈ΨG〉 is not true by checking for the existence of an adversary that satisfies the
assumption ΨA but does not satisfy the property ΨG.

Proposition 3. Let PAM, qmo-properties ΨA,ΨG and ? ∈ {part, comp, fair} be as given in Defi-
nition 14. Furthermore, let ΨG be of the form [ψG]∼xG , i.e., a single quantitative predicate.7 Then,
checking whether the assume-guarantee triple 〈ΨA〉M

? 〈ΨG〉 holds reduces to multi-objective
model checking as follows:

〈ΨA〉M
? 〈ΨG〉 ⇔ ¬∃σ ∈ Adv?

M[αA] .
(
M[αA], σ |= ΨA ∧M[αA], σ 6|= [ψG]∼xG

)
.

This can be done using the techniques from [15], described in Section 3.3, with time complexity
polynomial in the sizes of the PA M and the (deterministic Rabin) automata representing the
probabilistic predicates that occur in ΨA and ΨG.

Proof. The result follows directly from Definition 14. ut

Moreover, for the special case of assume guarantee triples restricted to probabilistic safety prop-
erties and partial adversaries, checking whether the triple holds reduces to the simpler multi-
objective model checking algorithm of [14].

Proposition 4. LetM be a PA, Ψ
safe
A = [φ1]≥p1 ∧ . . . ∧ [φn]≥pn be a conjunction of probabilistic

safety properties and Ψ
safe
G = [φG]≥pG be a single probabilistic safety property. If M′ is the

product PAM[αA]⊗Aerr
φ1
⊗ · · · ⊗Aerr

φn
⊗Aerr

φG
, then:

〈Ψ
safe
A 〉M

part 〈Ψ
safe
G 〉 ⇔ ¬∃σ′∈Advpart

M′
.
((
∧n

i=1Prσ
′

M′
(♦erri) ≤ 1−pi

)
∧ Prσ

′

M′
(♦errG) > 1−pG

)
.

This can be checked in time polynomial in the sizes ofM,Aerr
φ1
, . . . ,Aerr

φn
andAerr

φG
.

Proof. Consider any PA M, conjunction of probabilistic safety properties Ψ
safe
A = [φ1]≥p1 ∧

. . . ∧ [φn]≥pn and single probabilistic safety property Ψ
safe
G = [φG]≥pG . LettingM′ be the product

M[αA]⊗Aerr
φ1
⊗ · · · ⊗Aerr

φn
⊗Aerr

φG
, through repeated application of Lemma 1, we can construct a

bijective function f : Advpart
M[αA] → Advpart

M′
such that, for any (partial) adversary σ ofM[αA] and

φi ∈ {φ1, . . . , φn, φG}:
Prσ
M[αA](φi) = 1 − Pr f (σ)

M′
(♦erri) . (2)

Now, using Definition 14, we have:

〈Ψ
safe
A 〉M

part 〈Ψ
safe
G 〉 ⇔ ∀σ∈Advpart

M[αA].
((
∧n

i=1Prσ
M[αA](φi)≥pi

)
→ Prσ

M[αA](φG)≥pG

)
⇔ ∀σ∈Advpart

M[αA].
((
∧n

i=1Pr f (σ)
M′

(♦erri)≤1−pi

)
→ Pr f (σ)

M′
(♦errG)≤1−pG

)
using (2)

⇔ ∀σ′∈Advpart
M′
.
((
∧n

i=1Prσ
′

M′
(♦erri)≤1−pi

)
→ Prσ

′

M′
(♦errG)≤1−pG

)
since f is a bijection

⇔ ¬∃σ′∈Advpart
M′
.
((
∧n

i=1Prσ
′

M′
(♦erri)≤1−pi

)
∧ Prσ

′

M′
(♦errG)>1−pG

)
rearranging

which completes the proof. ut

7For clarity of presentation, we restrict our attention in Proposition 3 to the case where ΨG is a single predicate and
then later generalise to arbitrary triples in Theorem 3.

18

4.2. Assume-Guarantee Verification for Safety Properties

We now present, using the definitions above, asymmetric assume-guarantee proof rules for com-
positional verification of probabilistic automata, that is, those which use only a single assumption
about one system component. Experience in the non-probabilistic setting [7] indicates that, de-
spite their simplicity, rules of this form are widely applicable. First, in this section, we discuss
an approach in which both assumptions and guarantees are probabilistic safety properties. Then,
in Section 4.3, we describe how to handle a wider class of quantitative properties, including ω-
regular and reward properties, by incorporating fairness. To simplify the presentation, here and
in Section 4.3 we restrict our attention to guarantees consisting of a single predicate, however in
Section 4.4 we extend the approach to allow general guarantees.

Our first proof rule, (Asym-Safety), can be stated as follows.8

Theorem 1. If M1,M2 are PAs, Ψ
safe
A is a conjunction of probabilistic safety properties and

Ψ
safe
G is a single probabilistic safety property such that αA ⊆ αM1 and αG ⊆ αM2 ∪ αA, then the

following proof rule holds:

M1 |= Ψ
safe
A

〈Ψ
safe
A 〉M2

part
〈Ψ

safe
G 〉

M1 ‖M2 |= Ψ
safe
G

(Asym-Safety)

Theorem 1 means that, given an appropriate assumption Ψ
safe
A = [φ1]≥p1 ∧ . . . ∧ [φn]≥pn , we can

check the correctness of a probabilistic safety property [φG]≥pG on a two-component system,
M1‖M2, without constructing and model checking the full system. Instead, we perform one
instance of (standard) model checking onM1, to check the first premise of rule (Asym-Safety),
and one instance of multi-objective model checking onM2[αA], to check the assume-guarantee
triple in the second premise (recall, from Definition 14, that a triple forM2 is defined in terms
ofM2[αA]). If the error automata Aerr

φi
for the regular safety properties φi in the assumption are

much smaller than the PA for component M1, we can expect significant gains in terms of the
overall performance for verification. Our experimental results, described later in Section 7, show
that this can indeed be the case in practice.

Before proving Theorem 1, we give an example of its usage.

Example 4. We illustrate the application of rule (Asym-Safety) using the PAsMs andMd from
Example 1 (see Figure 1) and property Ψ

safe
G = [φG]≥0.98 from Example 2, lettingM1 =Ms and

M2 = Md. As an assumption, we use the probabilistic safety property Ψ
safe
A = [φA]≥0.8 from

Example 3, where φA means “warn occurs before shutdown”.
Checking the first premise of (Asym-Safety) amounts to verifying thatMs |= [φA]≥0.8, which

was illustrated previously in Example 3. To complete the verification, we need to check the
second premise, i.e. 〈Ψsafe

A 〉Md
part
〈Ψ

safe
G 〉, which reduces to a multi-objective model checking

problem onMd (notice that αA = {warn, shutdown} ⊆ αMd soMd[αA] = Md). More precisely,
from Proposition 4, we need to check that, for the product PA Md⊗A

err
φA
⊗Aerr

φG
, there is no ad-

versary under which the probability of reaching errA states is at most 1 − 0.8 = 0.2 and the
probability of reaching an errG state is strictly above 1−0.98 = 0.02.

8This rule is equivalent to the rule (Asym) we originally presented in [17]. In that work, the first premise and conclu-
sion quantify over partial adversaries, rather than all adversaries. However, as Proposition 1 shows, these are equivalent.

19

off

warn

shutdown

shutdown
t
0
a
0
q
0

t
1
a
1
q
0

0.1

0.9

t
2
a
1
q
0

t
2
a
2
q
0

off

t
3
a
2
q
0

t
3
a
2
q
1

fail

fail

Figure 4: The product PAMd⊗A
err
φA
⊗Aerr

φG
(see Example 4)

The product is shown in Figure 4, where we indicate states satisfying errA and errG by
shading in grey the accepting states a2 and q1 of the corresponding DFAs Aerr

φA
and Aerr

φG
. By

inspection, we see that no such adversary exists, so we can deduce that Ms‖Md |= [φG]≥0.98.
Consider, however, the adversary σ which, in the initial state, chooses warn with probability
0.8 and shutdown with probability 0.2. This reaches errA with probability 0.2 and errG with
probability 0.02. So, 〈Ψsafe

A 〉Md
part
〈Ψ

safe
G 〉 does not hold for any value of pG > 1−0.02 = 0.98.

We now prove Theorem 1. For this, and for the other results in this section, we require the
following lemma, adapted from [8].

Lemma 3. LetM1,M2 be PAs, σ an adversary (complete or partial) ofM1‖M2, α ⊆ αM1‖M2

and i=1, 2. If φi and φ′i are ω-regular properties over αi and α′i such that αi ⊆ αMi and α′i ⊆
αMi[α], then:

(a) Prσ
M1‖M2

(φi) = Pr
σ�Mi
Mi

(φi)

(b) Prσ
M1‖M2

(φ′i) = Pr
σ�Mi [α]

Mi[α] (φ′i) .

If ρ and ρ′i are reward structures over αi and α′i , then:

(c) ExpTotσ
M1‖M2

(ρi) = ExpTot
σ�Mi
Mi

(ρi)

(d) ExpTotσ
M1‖M2

(ρ′i) = ExpTot
σ�Mi [α]

Mi[α] (ρ′i).

If Ψi and Ψ′i are qmo-properties over αi and α′i , then:

(e) M1‖M2, σ |= Ψi ⇔ Mi, σ�Mi |= Ψi

(f) M1‖M2, σ |= Ψ′i ⇔ Mi[α], σ�Mi[α] |= Ψ′i .

Note that the projections onto Mi[α] in the above are well defined since the condition α ⊆
αM1‖M2 implies thatM1‖M2 =M1[α]‖M2 =M1‖M2[α].

Proof. Parts (a)-(d) are a simple extension of [8, Lemma 7.2.6, page 141]. Parts (e) and (f)
follow directly from parts (a)-(d). ut

Lemma 3 is fundamental to the proof rules that we present in this paper. It relates an adversary
σ of a composed PA M1‖M2 and the adversary σ�Mi that results when projecting σ onto one
of the component PAsMi. In essence, it says that, if a property (e.g. an ω-regular property φi)
refers only to actions that appear inMi (i.e., αi ⊆ αMi), then the probability of that property is
the same inM1‖M2 under σ, and inMi under σ�Mi .

20

Proof (of Theorem 1). LetM1 andM2 be PAs, Ψ
safe
A a conjunction of probabilistic safety prop-

erties and Ψ
safe
G is a single probabilistic safety property such that αA ⊆ αM1 , αG ⊆ αM2 ∪ αA,

M1 |= Ψ
safe
A and 〈Ψsafe

A 〉M2
part
〈Ψ

safe
G 〉. For any adversary σ of M1‖M2 by definition we have

M1, σ |= Ψ
safe
A , and hence since σ�M1 is a partial adversary ofM1, using Proposition 1 we have:

M1 |= Ψ
safe
A ⇒ M1, σ�M1 |= Ψ

safe
A

⇒ M1‖M2, σ |= Ψ
safe
A by Lemma 3(e) since αA ⊆ αM1

⇒ M2[αA], σ�M2[αA] |= Ψ
safe
A by Lemma 3(f) since αA ⊆ αM2[αA]

⇒ M2[αA], σ�M2[αA] |= Ψ
safe
G since 〈Ψsafe

A 〉M2
part
〈Ψ

safe
G 〉

⇒ M1‖M2, σ |= Ψ
safe
G by Lemma 3(f) since αG ⊆ αM2[αA]

Since σ was an arbitrary adversary ofM1‖M2, it follows thatM1 ‖M2 |= Ψ
safe
G , as required. ut

4.3. Assume-Guarantee Verification for Quantitative Properties

Next, we extend our assume-guarantee framework with a proof rule in which the properties to
be proved and the assumptions used to do so can comprise arbitrary quantitative predicates,
rather than just probabilistic safety properties. More precisely, we use a qmo-property ΨA for
an assumption and a single quantitative predicate ΨG = [ψG]∼G xG for the property to be proved.
Recall that quantitative predicates include probabilistic ω-regular properties (which subsume
both probabilistic safety properties and probabilistic LTL) and expected total reward properties.

To make this possible, we need an additional ingredient: fairness. Our proof rule provides
compositional verification of a multi-component systemM1‖M2 under (unconditional) fairness,
i.e. it guarantees that ΨG holds under any fair adversary of M1‖M2. The reason that fairness
enables this rule to work stems from the fact that the projection of a fair adversary ofM1‖M2
onto a component Mi is a complete adversary, as will become clear when we prove the rule
subsequently.

As in the previous section, we initially restrict our attention to an asymmetric assume-
guarantee proof rule. Formally, we state this as follows.

Theorem 2. LetM1,M2 be PAs, ΨA a qmo-property and ΨG = [ψG]∼G xG a single quantitative
predicate, such that αA ⊆ αM1 and αG ⊆ αA ∪ αM2 . Then the following proof rule holds:

M1 |=
fair ΨA

〈ΨA〉M2
fair
〈ΨG〉

M1 ‖M2 |=
fair ΨG

(Asym-Quant)

Theorem 2 provides the means to verify an ω-regular or reward property ΨG on a composed
systemM1‖M2. Like (Asym-Safety) in Theorem 1, we can do this without constructingM1‖M2
by decomposing into two-sub problems: one instance of normal verification (premise 1) and one
instance of multi-objective model checking (premise 2). Again, these two steps have the potential
to be significantly cheaper than verifying the combined systemM1‖M2.

The inclusion of fairness in the two premises of (Asym-Quant) is to permit recursive appli-
cations of the rule, in order to compositionally verify systems comprising more than two compo-
nents. IfM1 is just a single PA, the stronger (but easier) checkM1 |= ΨA suffices for premise 1.
Similarly, ifM2 is a single PA, we can check 〈ΨA〉M2

comp
〈ΨG〉 for premise 2.

21

choose

0.5

s
1

s
0

0.5

slow
s
2

fast

(a) PAMc

0.9

t
1

t
0

t
4t

3

0.1

fast

off

t
2

on off on

done
0.9

0.1

fast

slow slow

(b) PAMm

Figure 5: Two probabilistic automataMc andMm (see Example 5)

Example 5. We illustrate proof rule (Asym-Quant) from Theorem 2 using another pair of PAs,
Mm and Mc, shown in Figure 5, representing a machine and its controller, respectively. The
machine Mm executes 2 consecutive jobs, each in 1 of 2 ways: fast, which requires 1 second,
but fails with probability 0.1; or slow, which requires 3 seconds, and never fails. PAMc models
a specific controller for the machine, which instructs it which way to execute jobs, when com-
posed in parallel withMm. With probability 0.5, the controller sends an initial instruction slow.
Subsequently, it only sends the instruction fast.

Our aim is to verify that the expected total execution time for the controlled machine is at
most 19

6 . Since PAs do not explicitly model time, we achieve this by using a reward structure
ρtime={fast 7→1, slow7→3} to capture the passage of time and reward predicate ΨG = [ρtime]≤ 19

6
.

We apply rule (Asym-Quant), with M1=Mc and M2=Mm. Let φon be the ω-regular property
stating that action off never occurs (i.e. �¬off in LTL notation) and ρslow={slow7→1} be a re-
ward structure that counts the number of occurrences of action slow. We use the assumption
ΨA=[φon]≥1 ∧ [ρslow]≤ 1

2
, i.e. we assume the controller never issues an off instruction and that the

expected number of slow jobs requested is at most 0.5.
We first verify (separately) thatMc |= [φon]≥1 andMc |= [ρslow]≤ 1

2
, from which we conclude

that Mc |= ΨA. Next, we check the assume-guarantee triple 〈ΨA〉Mm
comp
〈ΨG〉. The triple is

checked by verifying that no (complete) adversary ofMm satisfies [φon]≥1∧ [ρslow]≤ 1
2
∧ [ρtime]> 19

6
,

which we see to be true from inspection. Thus, we can conclude thatMc‖Mm |=
fair [ρtime]≤ 19

6
.

Proof (of Theorem 2). SupposeM1 andM2 are PAs, ΨA is a qmo-property and ΨG = [ψG]∼G xG

is a single quantitative predicate, such that bothM1 |=
fair ΨA and 〈ΨA〉M2

fair
〈ΨG〉 hold. Consider

an arbitrary fair adversary σ ofM1‖M2. Now, from Lemma 2, we know that σ�M1 is a complete
adversary of M1. Furthermore, we have that M1, σ�M1 is also fair, and hence by definition of
|=fair :

M1 |=
fair ΨA ⇒ M1, σ�M1 |= ΨA

⇒ M1‖M2, σ |= ΨA by Lemma 3(e) since αA ⊆ αM1

⇒ M2[αA], σ�M2[αA] |= ΨA by Lemma 3(f) since αA ⊆ αM2[αA]

⇒ M2[αA], σ�M2[αA] |= ΨG since 〈ΨA〉M2
fair
〈ΨG〉

⇒ M1‖M2, σ |= ΨG by Lemma 3(f) since αG ⊆ αM2[αA].

Since σ was an arbitrary fair adversary ofM1‖M2, we haveM1‖M2 |=
fair ΨG, as required. ut

22

4.4. Extensions

Next, we discuss two ways in which the proof rules presented so far can be extended. Subse-
quently, in Section 5, we will present several additional rules.

Conjunctions of predicates. Firstly, we remark that it is straightforward to extend our approach
to verify properties that are conjunctions of predicates, rather than single predicates. For presen-
tational simplicity, we so far assumed (in Propositions 3 and 4, and Theorems 1 and 2) that the
qmo-property ΨG used on the right hand side of a triple 〈ΨA〉M

? 〈ΨG〉 comprised a single predi-
cate. However, checking a triple in which ΨG is a conjunction of k predicates can be decomposed
into k separate checks, i.e, k applications of Proposition 3 or Proposition 4.

Theorem 3. Let M be a PA and, for i=1, 2, let Ψ
safe
Ai

, Ψ
safe
Gi

, ΨAi and ΨGi be qmo-properties,
where those marked with the superscript “safe” comprise only probabilistic safety properties.
Then the following proof rules hold:

〈Ψ
safe
A1
〉M part 〈Ψ

safe
G1
〉

〈Ψ
safe
A2
〉M part 〈Ψ

safe
G2
〉

〈Ψ
safe
A∧
〉M part 〈Ψ

safe
G∧
〉

(Conj-Safety)

〈ΨA1〉M
fair 〈ΨG1〉

〈ΨA2〉M
fair 〈ΨG2〉

〈ΨA∧〉M
fair 〈ΨG∧〉

(Conj-Quant)

where Ψ
safe
A∧

= Ψ
safe
A1
∧ Ψ

safe
A2

, Ψ
safe
G∧

= Ψ
safe
G1
∧ Ψ

safe
G2

, ΨA∧ = ΨA1 ∧ ΨA2 and ΨG∧ = ΨG1 ∧ ΨG2 .

Proof. The result follows directly from the definition of assume-guarantee triples (see Defini-
tion 14). ut

Theorem 3 provides a way to check assume-guarantee triples containing arbitrary qmo-properties.
Furthermore, observe that Theorems 1 and 2 can easily be generalised to the case where the prop-
erty Ψ

safe
G or ΨG being proved on the system M1‖M2 comprises more than one predicate, thus

yielding proof rules for arbitrary qmo-properties.
Notice that, in Theorem 3, unlike the previous theorems, we omitted explicit statements about

the restrictions imposed on the alphabets of the PAs and properties. There, and from this point
on, we will implicitly assume that, if a rule contains an occurrence of the triple 〈ΨA〉M

? 〈ΨG〉,
then αG ⊆ αA∪αM; similarly, for a premise that checks ΨA againstM, we assume that αA ⊆ αM.

Multiple components. Secondly, we observe that, simply through repeated application of either
(Asym-Safety) or (Asym-Quant), we obtain proof rules for systems consisting of n components.

Theorem 4. LetM1, . . . ,Mn be PAs and Ψ
safe
A1
, . . . ,Ψ

safe
An−1

, Ψ
safe
G , ΨA1 , . . . ,ΨAn−1 and ΨG be qmo-

properties, where those marked with the superscript “safe” comprise only probabilistic safety
properties. Then the following proof rules hold:

M1 |= Ψ
safe
A1

〈Ψ
safe
A1
〉M2

part
〈Ψ

safe
A2
〉

· · ·

〈Ψ
safe
An−1
〉Mn

part
〈Ψ

safe
G 〉

M1 ‖ · · · ‖Mn |= Ψ
safe
G

(Asym-Safety-N)

M1 |=
fair ΨA1

〈ΨA1〉M2
fair
〈ΨA2〉

· · ·

〈ΨAn−1〉Mn
fair
〈ΨG〉

M1 ‖ · · · ‖Mn |=
fair ΨG

(Asym-Quant-N)

23

Proof. The result follows by iteratively applying rules (Asym-Safety) and (Conj-Safety) or
(Asym-Quant) and (Conj-Quant), respectively, to the parallel composition ofM1‖ · · · ‖Mi−1 and
Mi, for i = 2, . . . , n. ut

Elsewhere [20], we have already successfully applied rule (Asym-Safety-N), showing that it can
be significantly more efficient to use an N-way, rather than 2-way, decomposition for assume-
guarantee verification. It also worth noting at this point that the parallel composition operator ‖
for PAs is both associative and commutative, which allows for flexibility in the way that multi-
component rules are applied, and the way that several separate proof rules are combined.

5. Further Proof Rules

In this section, we consider three additional classes of assume-guarantee proof rules for compo-
sitional verification of probabilistic automata.

5.1. Circular Proof Rules

One potential limitation of the various proof rules considered so far is that they are all asym-
metric, i.e., they may analyse, for example, a component M2 using an assumption ΨA about
another component M1, but checking whether M1 satisfies ΨA cannot make any assumptions
aboutM2. Below, we give proof rules that we call circular, which do allow the use of additional
assumptions in this way.

Theorem 5. If M1 and M2 are PAs, Ψ
safe
A1

, Ψ
safe
A2

, Ψ
safe
G are qmo-properties comprising only

safety properties and ΨA1 , ΨA2 and ΨG are qmo-properties, then the following circular assume-
guarantee proof rules hold:

M2 |= Ψ
safe
A2

〈Ψ
safe
A2
〉M1

part
〈Ψ

safe
A1
〉

〈Ψ
safe
A1
〉M2

part
〈Ψ

safe
G 〉

M1 ‖M2 |= Ψ
safe
G

(Circ-Safety)

M2 |=
fair ΨA2

〈ΨA2〉M1
fair
〈ΨA1〉

〈ΨA1〉M2
fair
〈ΨG〉

M1 ‖M2 |=
fair ΨG

(Circ-Quant)

Proof. We give the proof of (Circ-Quant); the proof for (Circ-Safety) follows similarly using
Proposition 1 as opposed to Lemma 2 (see the proof of Theorem 1).

SupposeM1 andM2 are PAs, ΨA1 , ΨA2 and ΨG are qmo-properties, such thatM2 |=
fair ΨA2 ,

〈ΨA2〉M1
fair
〈ΨA1〉 and 〈ΨA1〉M2

fair
〈ΨG〉 hold. Now, consider an arbitrary fair adversary σ of

M1‖M2. Since M2 |=
fair ΨA2 , using Lemma 2, we have M2, σ�M2 |= ΨA2 and therefore, since

αA2 ⊆ αM2 and applying Lemma 3(e), we have:

M2, σ�M2ΨA2 ⇒ M1‖M2, σ |= ΨA2

⇒ M1[αA2], σ�M1[αA2] |= ΨA2 by Lemma 3(f) since αA2 ⊆ αM1[αA2]

⇒ M1[αA2], σ�M1[αA2] |= ΨA1 since 〈ΨA2〉M1
fair
〈ΨA1〉

⇒ M1‖M2, σ |= ΨA1 by Lemma 3(f) since αA2 ⊆ αM2

⇒ M2[αA1], σ�M2[αA1] |= ΨA1 by Lemma 3(f) since αA1 ⊆ αM2[αA1]

⇒ M2[αA1], σ�M2[αA1] |= ΨG since 〈ΨA1〉M2
fair
〈ΨG〉

⇒ M1‖M2, σ |= ΨG by Lemma 3(f) since αG ⊆ αM2[αA1].

24

Therefore, since σ was an arbitrary fair adversary ofM1‖M2, we haveM1‖M2 |=
fair ΨG as re-

quired. ut

5.2. Asynchronous Proof Rules

Our next class of rules is motivated by the fact that, often, part of a system comprises several
asynchronous components, that is, components with disjoint alphabets. In such cases, it can
be difficult to establish useful probability bounds on the combined system if the fact that the
components act independently is ignored. For example, consider the case of n independent coin
flips; in isolation, we have that the probability of each coin not returning a tail is 1/2. Ignoring
the independence of the coins, all we can say is that the probability of any of them not returning
a tail is at least 1/2. However, using their independence, we have that this probability is at least
1−1/2n. In the context of our assume-guarantee proof rules, we can reason about systems with
asynchronous components as follows.

Theorem 6. For i=1, 2, letMi be a PA, Ψ
safe
Ai

a qmo-property comprising only safety properties

and Ψ
safe
Gi

= [φsafe
Gi

]≥pGi
be a single probabilistic safety property. If (αM1 ∪ αA1)∩ (αM2 ∪ αA2) = ∅

(which implies that αM1 ∩ αM2 = ∅, i.e., the components are asynchronous), then the following
proof rule holds:

〈Ψ
safe
A1
〉M1

part
〈Ψ

safe
G1
〉

〈Ψ
safe
A2
〉M2

part
〈Ψ

safe
G2
〉

〈Ψ
safe
A 〉M1‖M2

part
〈Ψ

safe
G 〉

(Async-Safety)

where Ψ
safe
A = Ψ

safe
A1
∧ Ψ

safe
A2

and Ψ
safe
G = [φsafe

G1
∪ φ

safe
G2

]≥pG1 +pG2−pG1 ·pG2
. Note that the union of two

regular safety properties is also a regular safety property.

In addition, if ∼ ∈ {<,≤,≥, >} and, for i=1, 2, we have that ΨAi is a qmo-property and ΨGi =

[φGi]∼pGi
is a single probabilistic predicate such that (αM1 ∪ αA1) ∩ (αM2 ∪ αA2) = ∅, then the

following proof rule holds:

〈ΨA1〉M1
fair
〈ΨG1〉

〈ΨA2〉M2
fair
〈ΨG2〉

〈ΨA〉M1‖M2
fair
〈ΨG〉

(Async-Quant)

where ΨA = ΨA1 ∧ΨA2 and ΨG = [φG1 ∪ φG2]∼pG1 +pG2−pG1 ·pG2
. Note that ω-regular properties are

closed under union (and also intersection and complementation).

Proof. We consider the case of general quantitative predicates, i.e. rule (Async-Quant). The
case for safety properties follows similarly. Therefore, suppose for i=1, 2 thatMi is a PA, ΨAi is
a qmo-property and ΨGi = [φGi]∼pGi

is a single probabilistic predicate such that (αM1 ∪ αA1) ∩
(αM2 ∪ αA2) = ∅ and 〈ΨAi〉Mi

fair
〈ΨGi〉 for i=1, 2. In addition, let ΨA = ΨA1 ∧ ΨA2 and ΨG =

[φG1 ∪ φG2]∼pG1 +pG2−pG1 ·pG2
.

Now, to show 〈ΨA〉M1‖M2
fair
〈ΨG〉 holds, we consider any fair adversaryσ of (M1‖M2)[αA]

such that (M1‖M2)[αA], σ |= ΨA. Letting φ be the complement of an ω-regular property, it fol-
lows that:

Prσ(M1‖M2)[αA](φG1 ∪ φG2) = 1 − Prσ(M1‖M2)[αA](φG1
∩ φG2

) . (3)
25

Next, since αA = αA1 ∪αA2 and the parallel composition operator is commutative and associative,
using Definition 7 we have:

(M1‖M2)[αA] =
(
M1[αA1]

)
‖
(
M2[αA2]

)
.

Using this result and the fact that (αM1 ∪ αA1) ∩ (αM2 ∪ αA2) = ∅ and αGi ⊆ αMi ∪ αAi for i=1, 2,
we can derive the equality:

Prσ(M1‖M2)[αA](φG1
∩ φG2

) = Pr
σ�M1[αA1

]

M1[αA1] (φG1
) · Pr

σ�M2[αA2
]

M2[αA2] (φG2
)

=

(
1 − Pr

σ�M1[αA1
]

M1[αA1] (φG1)
)
·

(
1 − Pr

σ�M2[αA2
]

M2[αA2] (φG2)
)
. (4)

Since (M1‖M2)[αA], σ |= ΨA, by construction of ΨA, it follows that (M1‖M2)[αA], σ |= ΨAi for
i=1, 2, and hence using Lemma 3(f) we haveMi[αAi], σ�M1[αA1] |= ΨAi for i=1, 2. Combining this
with the hypothesis 〈ΨAi〉Mi

fair
〈ΨGi〉 for i=1, 2 and Lemma 2, it follows that:

Pr
σ�M1[αA1

]

M1[αA1] (φG1) ∼ pG1 and Pr
σ�M2[αA2

]

M2[αA2] (φG2) ∼ pG2

which, together with (4) and (3), yields the inequality:

Prσ(M1‖M2)[αA](φG1 ∪ φG2) ∼ 1 − (1−pG1) · (1−pG2) = pG1 + pG2 − pG1 ·pG2

demonstrating that (M1‖M2)[αA], σ |= ΨG. Therefore, since σ was an arbitrary fair adversary of
(M1‖M2)[αA] for which (M1‖M2)[αA], σ |= ΨA, we have 〈ΨA〉M1‖M2

fair
〈ΨG〉 as required. ut

We remark that the rules in Theorem 6 can be adapted to prove properties with multiple, not
single, predicates. This can be achieved as discussed in Section 4.4 for the earlier rules.

5.3. Decomposition of Reward-based Properties

The third class of proof rules that we present in this section concerns the verification of reward
properties. We show that, to prove properties of reward structures over a complete system, we can
divide the reward structure into sub-structures over the system’s components, prove properties
for each sub-structure and then combine the results to prove properties of the original reward
structure over the complete system.

First, for reward structures ρ1 : αρ1 → R>0 and ρ2 : αρ2 → R>0, we define the composition
ρ1+ρ2 : αρ1 ∪ αρ2 → R>0 such that, for any a ∈ αρ1 ∪ αρ2 :

(ρ1+ρ2)(a) =

ρ1(a)+ρ2(a) if a ∈ αρ1 ∩ αρ2

ρ1(a) if a ∈ αρ1 \ αρ2

ρ2(a) if a ∈ αρ2 \ αρ1 .

Using this definition we have the following result.

Theorem 7. If M1,M2 are PAs, ∼ ∈ {<,≤,≥, >} and, for i=1, 2, we have that ΨAi is a qmo-
property and ΨGi = [ρGi]∼rGi

is a single reward predicate, then the following proof rule holds:

〈ΨA1〉M1
fair
〈ΨG1〉

〈ΨA2〉M2
fair
〈ΨG2〉

〈ΨA〉M1‖M2
fair
〈ΨG〉

(Sum-Reward)

where ΨA = ΨA1 ∧ ΨA2 and ΨG = [ρG1 + ρG2]∼rG1 +rG2
.

26

Proof. Suppose M1 and M2 are PAs, ∼ ∈ {<,≤,≥, >} and, for i=1, 2, we have that ΨAi is a
qmo-property and ΨGi = [φGi]∼rGi

is a single reward predicate such that 〈ΨAi〉Mi
fair
〈ΨGi〉. In

addition, let ΨA = ΨA1 ∧ΨA2 and ΨG = [ρG1 + ρG2]∼rG1 +rG2
. Since αA = αA1 ∪αA2 and the parallel

composition operator is commutative and associative, using Definition 7 we have:

(M1‖M2)[αA] =
(
M1[αA1]

)
‖
(
M2[αA2]

)
. (5)

Now, to show that 〈ΨA〉M1‖M2
fair
〈ΨG〉, we consider any fair adversary σ of (M1‖M2)[αA]

such that (M1‖M2)[αA], σ |= ΨA. By Definition 9, we have:

ExpTotσ(M1‖M2)[αA](ρ1 + ρ2) =
∫
π
(ρ1 + ρ2)(π) dPrσ(M1‖M2)[αA]

=
∫
π
ρ1(π) dPrσ(M1‖M2)[αA] +

∫
π
ρ2(π) dPrσ(M1‖M2)[αA] rearranging

= ExpTotσ(M1‖M2)[αA](ρ1) + ExpTotσ(M1‖M2)[αA](ρ2) by Definition 9

= ExpTotσ
M1[αA1]‖M2[αA2](ρ1) + ExpTotσ

M1[αA1]‖M2[αA2](ρ2) by (5)

= ExpTot
σ�M1[αA1

]

M1[αA1] (ρ1) + ExpTot
σ�M2[αA2

]

M2[αA2] (ρ2) by Lemma 3(d). (6)

Since (M1‖M2)[αA], σ |= ΨA, from construction of ΨA we have (M1‖M2)[αA], σ |= ΨAi for i=1, 2.
Hence, using Lemma 3(d) and (5), it follows thatM1[αAi], σ�Mi[αAi] |= ΨAi for i=1, 2, which, to-
gether with the fact that 〈ΨAi〉Mi

fair
〈ΨGi〉 for i=1, 2, implies:

ExpTot
σ�M1[αA1

]

M1[αA1] (ρ1) ∼ rG1 and ExpTot
σ�M2[αA2

]

M2[αA2] (ρ2) ∼ rG2 (7)

Combining (6) and (7) we have:

ExpTotσ(M1‖M2)[αA](ρ) ∼ rG1 + rG2 ,

and hence (M1‖M2)[αA], σ |= ΨG. Since σ was an arbitrary fair adversary of (M1‖M2)[αA] for
which (M1‖M2)[αA], σ |= ΨA, it follows that 〈ΨA〉M1‖M2

fair
〈ΨG〉 as required. ut

Although the rule (Sum-Reward) is defined in terms of assume-guarantee triples, it also allows
us to prove the satisfaction of reward properties. In particular, assuming αρi ⊆ αMi for i=1, 2,
then as a special case of the rule we have:

M1 |=
fair [ρG1]∼rG1

M2 |=
fair [ρG2]∼rG2

M1‖M2 |=
fair [ρG1 + ρG2]∼rG1 +rG2

6. Numerical Assume-Guarantee Queries

Practical experience with probabilistic verification suggests that it is often more instructive to
analyse models using numerical, rather than Boolean, queries. For example, instead of checking
the correctness of a (lower-bounded) probabilistic predicate [φ]≥p against a PA M for some
bound p, it may be preferable to just directly compute the minimum probability Pr min

M
(φ) that

φ is satisfied. This is because Pr min
M

(φ) gives the maximum value of p for which [φ]≥p is true.
In similar fashion, we can compute the maximum probability Pr max

M
(φ) instead of checking an

27

upper-bounded predicate [φ]≤p and the minimum or maximum expected reward, ExpTot min
M

(ρ) or
ExpTot max

M
(ρ), instead of a predicate [ρ]∼r over reward structure ρ.

In this section, we discuss how to formulate such numerical queries in the context of assume-
guarantee reasoning. Consider, first, an assume-guarantee triple 〈ΨA〉M

? 〈ΨG〉 where ΨA =

[φA]≥pA and ΨG = [φG]≥pG are both lower-bounded probabilistic predicates. Recall, from Def-
inition 14, that this triple is said to be satisfied if, for any adversary (of class ?) of PA M[αA]
under which assumption ΨA is true, guarantee ΨG is also true. We can instead ask “what is the
minimum probability that φG holds, assuming that ΨA is true?”. This can be determined with a
numerical multi-objective query of the kind mentioned in Section 3.3:

Pr min
M[αA](φG � ΨA) = inf {Prσ

M[αA](φG) | σ ∈ Adv?
M[αA] ∧M[αA], σ |= ΨA }

which can be determined with essentially the same procedure that checks whether assume-
guarantee triple 〈ΨA〉M

? 〈ΨG〉 is true for a fixed pG (i.e., as described in Proposition 3).
We call expressions such as the one above numerical assume-guarantee queries. The exam-

ple above is equivalent to the maximum value of pG for which 〈ΨA〉M
? 〈ΨG〉 holds:

Pr min
M[αA](φG � ΨA) = inf {Prσ

M[αA](φG) | σ ∈ Adv?
M[αA] ∧M[αA], σ |= ΨA }

= sup { pG ∈ [0, 1] | ∀σ ∈ Adv?
M[αA] .M[αA], σ |= ΨA → Prσ

M[αA](φG)≥pG }

= sup { pG ∈ [0, 1] | 〈ΨA〉M
? 〈ΨG〉 } .

Optimal bounds. In the rest of this section, we will illustrate how to use numerical assume-
guarantee queries, such as the one above, in the context of our compositional proof rules. For
simplicity, we will focus on proof rule (Asym-Safety) (see Theorem 1) in which Ψ

safe
A = [φA]≥pA

and Ψ
safe
G = [φG]≥pG are single, lower-bounded probabilistic predicates. We can apply similar

ideas for our other proof rules. For clarity, in the remainder of this section, we will abbreviate
Ψ

safe
A and Ψ

safe
G to ΨA and ΨG, respectively.

Rule (Asym-Safety) allows us to verify that [φG]≥pG holds inM1‖M2 for some pG, i.e., it can
be used to establish lower bounds pG on the probability Pr min

M1‖M2
(φG). An appropriate numerical

interpretation of this rule would therefore be to instead determine the maximal lower bound pG,
say p]G, for which [φG]≥pG can be shown to hold using the (Asym-Safety) rule (assuming the use
of property φA in the assumption). This can be achieved as follows. First, we note that, from
Definition 14, it is clear that the highest value of pG for which 〈ΨA〉M2

?
〈ΨG〉 holds will be

obtained by using the maximum possible value of pA, which we will call p]A. For rule (Asym-
Safety) to be applicable, p]A is equal to Pr min

M1
(φA), since any higher value of pA will result in the

first premise failing to hold.
Now, to find p]G, we use a numerical assume-guarantee query that computes the maximum

value of pG for which 〈ΨA〉M2
?
〈ΨG〉 holds, assuming that the bound pA in ΨA is taken to

be p]A. Reasoning as above, this can be obtained through the multi-objective numerical query
Pr min
M2[αA](φG � [φA]

≥p]A
). In summary, we have a numerical interpretation of the rule (Asym-

Safety) which reduces to a two-step procedure, with one instance of (standard) model checking
and one of multi-objective model checking:

(i) p]A := Pr min
M1

(φA)

(ii) p]G := Pr min
M2[αA](φG � [φA]

≥p]A
)

28

Through similar reasoning, we can determine either maximal lower bounds, or minimal upper
bounds, for many of the other rules presented in this paper, where the property being proved is a
single quantitative predicate.

Example 6. We give an illustration of the above process by adapting the earlier Example 4,
which shows how to apply rule (Asym-Safety) to verify the probabilistic safety property [φG]≥0.98
on the parallel composition of the PAsMs andMd from Example 1 (see Figure 1). Again, we
letM1 =Ms andM2 =Md, and use an assumption based on regular safety property φA.

Firstly, we compute p]A := Pr min
Ms

(φA), which, as shown earlier in Example 3, gives p]A =

0.8. Secondly, we compute p]G := Pr min
Md[αA](φG � [φA]≥0.8), which, using Lemma 1, equals

1 − Pr max
M′

(♦errG � [♦errA]≤0.2) on the productM′ = Md⊗A
err
φA
⊗Aerr

φG
shown in Figure 4. This

gives p]G = 0.98, which shows that the lower bound of 0.98 on the probability Pr min
Ms‖Md

(φG)
shown in Example 4 is indeed the highest lower bound that we can obtain with assumption φA

using the (Asym-Safety) rule.

Parameterised queries. Above, we found the maximum lower bound on Pr min
M1‖M2

(φG) that can
be shown using an assumption of the form [φA]≥pA and rule (Asym-Safety). Let us now consider
the reverse problem, i.e., finding which values of pA suffice to guarantee thatM1‖M2 |= [φG]≥pG

for some fixed threshold pG. Let us further assume that component M1 is parameterised by a
variable x in such a way that varying x changes the probability ofM1 satisfying the property φA

used in the assumption. This may in turn affect the probability of φG holding onM1‖M2.
To give a simple illustration, consider the PAMs from the running example (see Figure 1(a)),

representing a sensor that may fail to send a warn message upon detection of a system failure.
Let parameter x be the probability that warn is not sent (x=0.2 in the running example). For
the assumption φA (“warn occurs before shutdown”), we then have Pr min

Ms
(φA) = 1−x. However,

varying x may simultaneously worsen some other performance measure or cost. For example,
it may only be possible to reduce the probability of a failure in the sensor by replacing it with a
more reliable, but more expensive, component.

In this case, it is natural to ask for the minimum value of pA, say p[A, such that we can
guaranteeM1‖M2 |= [φG]≥pG is true. This means determining the minimum value of pA such that
〈[φA]≥pA〉M2

?
〈[φG]≥pG 〉 holds. This can again be computed using a numerical multi-objective

query as p[A := Pr max
M2[αA](φA � [φG]<pG) since, by definition of numerical queries:

Pr max
M2[αA](φA � [φG]<pG) = sup {Prσ

M2[αA](φA) | σ ∈ Adv?
M2[αA] ∧ Prσ

M2[αA](φG)<pG }

= inf { pA ∈ [0, 1] | ∀σ ∈ Adv?
M2[αA] . Prσ

M2[αA](φG)<pG → Prσ
M2[αA](φA)<pA } rearranging

= inf { pA ∈ [0, 1] | ∀σ ∈ Adv?
M2[αA] . Prσ

M2[αA](φA)≥pA → Prσ
M2[αA](φG)≥pG } rearranging

= inf { pA ∈ [0, 1] | 〈[φA]≥pA〉M2
?
〈[φG]≥pG 〉 } by Definition 14.

Recall that, to check a standard (non-numerical) assume-guarantee triple (see Proposition 3), we
in fact determine whether it is false, by checking for the existence of an adversary σ ofM2[αA]
that satisfies the assumption [φA]≥pA but does not satisfy the guarantee [φG]≥pG . Analogously, the
numerical query given above computes p[A as the maximum probability of satisfying φA over all
adversaries σ ofM2[αA] for which [φG]≥pG is not true. We then know that, for any value of pA

that is strictly less than p[A, there is such an adversary σ. Hence, the assume-guarantee triple is
true for any pA ≥ p[A and p[A is the minimum value that we can use for pA.

29

Finally, having found p[A, we can choose a suitable value for the parameter x of PAM1 which
ensures that the assumption [φA]≥p[A

holds. It some cases, determining the possible values of x
might be straightforward (such as in the example below); in others, we might use, for example,
parametric probabilistic model checking techniques for PAs [37, 38].

Example 7. Let us return to the PAs from Example 6 but, as suggested in the text above, assume
that the probability of PA Ms (see Figure 1(a)) moving from state s0 to s1 upon taking action
detect is x, not 0.2. Thus, Pr min

Ms
(φA) = 1−x. Let us also assume that we wish to guarantee that

the full systemMs‖Md satisfies [φG]≥0.97 (note that this bound of 0.97 is lower than the bound
of 0.98 checked in Example 6). Proceeding as described above, we compute p[A := Pr max

Md[αA](φA �
[φG]<0.97) which yields a value of 0.7. This means that, to verify [φG]≥0.97 compositionally, it
suffices to use the assumption [φA]≥0.7 and, from above, this requires that x ≥ 0.3.

Pareto queries. We can take the idea of numerical assume-guarantee queries one step further by
using the class of Pareto queries [33], mentioned previously in Section 3.3. Earlier in this section,
we looked at two ways of investigating the values of pA and pG for which the assume-guarantee
triple 〈ΨA〉M

? 〈ΨG〉 holds: we considered the largest value of pG that we can guarantee for a
given pA and the smallest value of pA that is required to guarantee a fixed pG. More generally, it
is useful to examine the trade-off between these two values, by determining the set of all possible
values of pA, pG for which 〈ΨA〉M

? 〈ΨG〉 holds.
In fact, we are interested in maximising the value of pG (to give us as strong a guarantee as

possible) and minimising the value of pA (to permit the use of an assumption that is as weak
as possible). So, as explained below, we can study Pareto curves for these values. Intuitively,
these are sets of pairs (pA, pG) such that 〈ΨA〉M

? 〈ΨG〉 holds, but increasing pG any further
would necessitate also increasing pA to ensure that 〈ΨA〉M

? 〈ΨG〉 is still true and, conversely,
decreasing pA would require a lower value of pG.

In a similar fashion to the numerical query used to compute p[A in the section above, we
actually use a query that searches for adversaries that make the assume-guarantee triple false,
namely those for which [φA]≥pA is true but [φG]≥pG is not true. More precisely, we use a Pareto
query which maximises the probability Prσ

M2[αA](φA) and minimises the probability Prσ
M2[αA](φG).

The set of achievable points, which we denote Xa ⊆ [0, 1]2, contains all pairs (pA, pG) such that:

• there exists an adversary σ ofM2[αA] for which Prσ
M2[αA](φA)≥pA and Prσ

M2[αA](φG)≤pG

and the Pareto curve is the biggest set Xp ⊆ Xa such that, for each pair of values (pA, pG) ∈ Xp:

• there is no other (p′A, p′G) ∈ Xp such that either p′A≥pA and p′G<pG, or p′A>pA and p′G≤pG.

We can then determine from the Pareto curve Xp the values pA and pG for which the assume-
guarantee triple holds. More precisely, 〈[φA]≥pA〉M2

?
〈[φG]≥pG 〉 holds for (pA, pG) if and only if

there is some pair (p−A, p+
G) ∈ Xp such that pA ≥ p−A or pG ≤ p+

G.

Example 8. We return to the compositional verification problem studied in Examples 6 and 7,
and study the values of pA and pG for which 〈[φA]≥pA〉Md

?
〈[φG]≥pG 〉 holds. Following the pro-

cedure outlined above, we obtain the Pareto curve which maximises Prσ
Md[αA](φA) and minimises

Prσ
Md[αA](φG). This is shown in Figure 6. The set Xa of achievable points is shown shaded grey

and the black dashed line represents the Pareto curve Xp.
Thus, for each point (pA, pG) ∈ Xp, there is an adversary of Md[αA] for which pA =

Prσ
Md[αA](φA) and pG = Prσ

Md[αA](φG). For this simple example, we can find such adversaries
30

1 0.8 0.9

0.2

1
0.8

0

0.4
0.6

p
G

p
A

Figure 6: Pareto curve to show the trade-off between satisfying an assumption and a guarantee (see Example 8).

by inspection of the PAMd[αA]. Recall that, in this example, αA = {warn, shutdown} ⊆ αMd , so
Md[αA] is identical toMd, which can be seen in Figure 1(b). Consider the set of (randomised)
adversaries σy (for y ∈ [0, 1]) which, in state s0, choose action warn with probability y and action
shutdown with probability 1 − y. For adversary σy, this results in a probability of y for φA and
1 − 0.1·(1−y) = 0.9 + 0.1·y for φG. Varying y ∈ [0, 1] gives the Pareto curve.

From Figure 6, we can conclude that 〈[φA]≥pA〉Md
?
〈[φG]≥pG 〉 holds for any values of pA, pG

such that pG ≤ 0.9 + 0.1·pA. Notice that the Pareto curve allows us to determine values for the
numerical queries used in Examples 6 and 7 (without any further computation). For example, if
we know that pA ≤ 0.8 (as in Example 6), then the maximum value of pG for which we can show
[φG]≥pG to hold is 0.9 + 0.1·0.8 = 0.98 (see also the grey dotted line in Figure 6). Alternatively,
if we want pG = 0.97 (as in Example 7), then we must have pA ≥ (0.97 − 0.9)/0.1 = 0.7.

7. Implementation and Case Studies

We have implemented our compositional verification approach by extending the probabilistic
model checker PRISM [4]. Recall that, using the rules presented in Sections 4 and 5, verifica-
tion requires both (standard) model checking of ω-regular or reward-based properties and multi-
objective model checking. PRISM already provided support for verifying probabilistic automata
against the logic LTL and expected total reward properties. Furthermore, it can easily verify the
action-based safety or ω-regular properties used in this paper, by encoding the required deter-
ministic finite or Rabin automata directly in PRISM’s modelling language. For multi-objective
model checking, we extended PRISM with an implementation of the techniques in [14, 15]. This
requires the solution of Linear Programming (LP) problems, for which we use the ECLiPSe
Constraint Logic Programming system with the COIN-OR CBC solver, implementing a branch-
and-cut algorithm.

This section evaluates the performance and scalability of our techniques on two large case
studies: the randomised consensus algorithm of Aspnes & Herlihy [39]; and a model of the
Zeroconf protocol [29]. All models and properties are available online [40]. This includes the
automata that are needed to form the assumptions used in our compositional verification tech-
niques. Currently, all assumptions are constructed manually, based on user knowledge of the
models, their structure and the properties that are being checked. An important direction of
future work in this area is the automatic generation of such counterexamples. Some progress
has already been made on this topic, using algorithmic learning to generate probabilistic safety
properties to be used as assumptions [19, 20].

The next two sections describe in more detail how we verified the two case studies composi-
tionally; in the following section, we summarise the experimental results.

31

7.1. Aspnes & Herlihy’s Randomised Consensus Algorithm

The first case study we consider is the randomised consensus algorithm of Aspnes & Her-
lihy [39]. The algorithm allows N processes in a distributed network to reach a consensus and
employs, in each round, a shared coin protocol parameterised by a constant K and the number of
processes N. Each shared coin protocol is based on a random walk where the boundaries of the
walk are derived from the values of K and N.

The model of the algorithm used here is based on [41] and comprises one PA for each process
and one for the shared coin protocol used in each round. Although the number of rounds of the
protocol can be unbounded, the properties that we check here relate only to the behaviour within
a finite number of rounds R. The combined PA is:

(P1 ‖ P2 ‖ · · · ‖ PN) || (SCP1 ||| SCP2 ||| · · · ||| SCPR)

where Pi is the PA corresponding to process i, SCP j is the PA corresponding to the shared coin
protocol used in round j and we write ||| to denote parallel composition between PAs with disjoint
alphabets. Although each shared chain protocol SCP j does interact with the N processes, there
is no communication between the protocols themselves, i.e., the shared coin protocols for each
round are independent. This lets us use the asynchronous proof rules introduced in Section 5.2.

We analyse the following two properties:

(i) the minimum probability that the processes decide by round R;

(ii) the maximum expected number of steps required in the first R rounds.

We adopt the numerical approach described in Section 6, computing lower/upper bounds on these
values, rather than proving that they are above or below a given threshold.

Property (i) can be represented by a probabilistic safety property. We use the rule (Asym-
Safety), in conjunction with the rule (Async-Safety), to establish the required assumptions.
More precisely, compositional verification is achieved by:

• calculating the minimum probability that the coin protocols in earlier rounds return the
same coin value for all processes, and then combining these results using rule (Async-
Safety) to prove a probabilistic safety property satisfied by the (asynchronous) composi-
tion of the coin protocols;

• using this probabilistic safety property as the assumption for an application of the (Asym-
Safety) rule, yielding the final property of interest on the combined system, namely, the
minimum probability that agreement is reached by round R.

Compositional verification of property (ii) is performed by:

• splitting the reward structure for the property into several parts (one for the N processes
and one for each coin protocol) and then using rule (Async-Quant) to determine an upper
bound on the maximum total expected value for each one;

• combining these results, using the (Sum-Reward) rule, to compute an upper bound on the
maximum total reward.

32

7.2. The Zeroconf Protocol

The second case study is the Zeroconf protocol [42], for configuring IP addresses in a local
network. We use the model from [29], composed of two PAs: one representing a new host
joining the network and the second representing the environment, i.e. the existing network. The
model is parameterised by K, the number of messages (“probes”) that the new host sends before
using its chosen IP address. We consider the following four properties:

(i) the minimum probability that the new host employs a fresh IP address;

(ii) the minimum probability that the new host is configured by time T ;

(iii) the minimum probability that the protocol terminates;

(iv) the minimum and maximum expected time for the protocol to terminate.

Properties (i) and (ii) are probabilistic safety properties, which are verified compositionally by:

• applying the rule (Circ-Safety), where the first and second assumptions concern the new
host and environment, respectively, and the first assumption is a qualitative (probability 1)
safety property.

For properties (iii) and (iv), verification is performed by:

• applying the rule (Circ-Quant), where the first assumption is a either a qualitative safety
or qualitative liveness property, about the new host, and the second assumption is a proba-
bilistic ω-regular property, concerning the environment.

7.3. Experimental Results

In Tables 1 and 2, we summarise the experimental results for the randomised consensus and
Zeroconf case studies, respectively. Experiments were run on a 2.8GHz PC with 8GB RAM.
Any run exceeding a time-limit of 6 hours was disregarded. The tables show the time taken
for verification, performed both compositionally and non-compositionally. For the former, we
proceed as described as above, using PRISM to check each individual model checking problem.
For the latter, we also use PRISM, selecting its fastest available model checking engine. To
give an indication of the scale of the verification tasks performed, the tables also show, for the
non-compositional case, the size (number of states) of the PA for the composed system and,
for the compositional case, the size (number of variables) of the largest LP problem solved for
multi-objective model checking. Finally, the table includes the (numerical) results obtained from
verification. For probabilistic safety properties, we show the maximum probabilities of violating
the property, so the actual values are these subtracted from 1.

One the whole, compositional verification performs very well. For the randomised consensus
models (Table 1), on all but the smallest examples, it is faster than the non-compositional case,
often significantly so, and is able to scale up to larger models. In particular, this allows the veri-
fication of several models for which it is infeasible with conventional techniques (those marked
with “mem-out” in the table). For the Zeroconf example (Table 2), we again see improved times
for the compositional approach on the first property. For the other properties, the times for the
two approaches are closer, but non-compositional verification is slightly faster. Encouragingly,

33

Model (Property) Non-compositional Compositional
[parameters] States Time (s) Result LP size Time (s) Result

2 processes
(min.

probability
decide)
[R K]

3 2 5,158 0.6 0.108333 1,427 0.9 0.108333†

3 20 40,294 42.2 0.012500 1,427 3.9 0.012500†

4 2 20,886 1.4 0.011736 3,217 2.9 0.011736†

4 20 166,614 129.1 0.000156 3,217 4.4 0.000156†

5 2 83,798 2.9 0.001271 6,797 1.4 0.001271†

5 20 671,894 472.5 0.000002 6,797 5.9 0.000002†

3 processes
(min.

probability
decide)
[R K]

3 2 1,418,545 3,589.0 0.229092 49,113 23.5 0.229092†

3 12 16,674,145* time-out - 49,113 34.1 0.041643†

3 20 39,827,233* time-out - 49,113 66.9 0.024960†

4 2 150,487,585 20,372 0.052483 174,193 200.1 0.052483†

4 12 1,053,762,385* mem-out - 174,193 210.6 0.001734†

4 20 2,028,200,209* mem-out - 174,193 243.4 0.000623†

2 processes
(max. expected

steps)
[R K]

3 2 1,806 0.2 89.00 974 1.2 89.65
3 20 11,598 16.6 5,057 5,775 3.3 5,057
4 2 7,478 0.7 89.00 2,184 3.1 98.42
4 20 51,830 84.0 5,057 5,775 11.6 5,120
5 2 30,166 1.7 89.00 4,604 4.9 100.1
5 20 212,758 348.0 5,057 5,775 15.6 5,121

3 processes
(max. expected

steps)
[R K]

3 2 114,559 12.9 212.0 10,294 9.4 214.3
3 12 507,919 865.9 4,352 59,254 210.1 4,352
3 20 822,607* 3,396.0 11,552 98,422 650.2 11,552
4 2 3,669,649 406.5 212.0 82.9 118.9 260.3
4 12 29,797,249* mem-out - 116,658 475.1 4,533
4 20 65,629,249* mem-out - 116,658 1,231.9 11,840

* These models can be constructed, but not model checked, in PRISM.
† Results for probabilistic safety properties are shown as maximum probabilities of error so actual values are these subtracted from 1.

Table 1: Experimental results for the randomised consensus case study

the times for compositional verification tend to grow more slowly with model size. Since the
time required for this is usually dominated by the time to solve LP problems, we anticipate better
performance through enhancements to the underlying LP solver and optimisations for our imple-
mentation that will reduce LP problem sizes. In fact, LP solution represents the limiting factor
with respect to the sizes of models that our techniques can be applied to, so such improvements
will also help improve the scalability of compositional verification.

Lastly we also comment on the results obtained from assume-guarantee verification. As
mentioned earlier, we use the approach discussed in Section 6 to obtain numerical values for
each property of interest, representing a lower or upper bound on the actual value of the property.
We observe that the bounds obtained using our assume-guarantee approach are generally quite
precise. In fact, for several properties, the bounds are tight, matching the actual values exactly.

8. Conclusions

We have presented new techniques for compositional verification of probabilistic automata,
based on the assume-guarantee paradigm. Our techniques can be used to verify probabilistic
ω-regular properties (including the special case of probabilistic safety properties) and expected
total reward properties. The key novelty of our approach is the use of multi-objective model
checking, for which efficient techniques exist. We have presented a variety of assume-guarantee
proof rules and also discussed how to formulate and evaluate numerical verification queries in

34

Property Non-compositional Compositional
[parameters] States Time (s) Result LP size Time (s) Result

min.
probability

fresh
[K]

2 91,041 7.1 2.0e-5 4,216 3.1 3.1e-4†

4 313,541 21.1 7.3e-7 13,103 6.4 3.1e-4†

6 811,290 58.6 2.6e-8 24,928 16.0 2.5e-4†

8 1,892,952 141.5 9.5e-10 41,224 31.8 9.0e-6†

min.
probability

configured by T
[K T]

2 10 665,567 14.0 5.9e-5 38,759 20.0 2.1e-4†

2 14 1,061,771 21.3 2.0e-8 63,188 32.4 8.1e-8†

4 10 976,247 29.6 3.3e+0 47,577 34.3 3.3e-1†

4 14 2,288,771 49.6 7.0e-5 105,685 74.3 3.1e-4†

min.
probability
terminate

[K]

2 13,474 1.4 1.0 151,503 15.3 1.0
4 57,960 5.3 1.0 151,503 15.6 1.0
6 125,697 9.5 1.0 151,503 16.1 1.0
8 163,229 10.7 1.0 151,503 16.6 1.0

min.
expected time

[K]

2 13,474 1.0 9.419 151,503 14.9 8.90
4 57,960 3.5 13.49 151,503 15.1 16.90
6 125,697 7.4 17.49 151,503 15.2 12.90
8 163,229 10.6 21.49 151,503 15.5 20.90

max.
expected time

[K]

2 13,474 0.9 10.22 151,503 15.2 12.00
4 57,960 3.0 14.28 151,503 15.5 17.33
6 125,697 6.8 18.28 151,503 15.9 22.67
8 163,229 9.9 22.28 151,503 16.3 28.00

† Results for probabilistic safety properties are shown as maximum probabilities of error so actual values are these subtracted from 1.

Table 2: Experimental results for Zeroconf case study

a compositional manner. In contrast to existing work in this area, our techniques can be imple-
mented efficiently and we demonstrate successful results on several large case studies.

There are several interesting directions for future work. For the fragment of our framework
that uses probabilistic safety properties, algorithmic learning techniques have already been de-
veloped to automatically produce the assumptions required for compositional reasoning [19, 20].
This work adapts the L* algorithm for learning regular languages to the problem of synthesis-
ing assumptions expressed as probabilistic safety properties. It would be interesting to extend
these methods to the more general class of properties considered in this paper, perhaps using
techniques for learning of ω-automata [43, 44].

Another topic to investigate is that of completeness. Some assume-guarantee frameworks are
complete in the sense that, if a property of a composed system is true, then there must exist an
assumption that can be used to verify it compositionally. For example, this is trivially true for
frameworks in which assumptions are expressed in the same manner as the models themselves:
then, completeness can be shown by using the component itself as the assumption that represents
it. In our approach, the formalisms for components (probabilistic automata) and assumptions
(qmo-properties) are distinct, so this argument is not applicable. We would like to investigate for
which classes of models and properties our framework can be shown to be complete.

Finally, we would also like to consider assume-guarantee techniques for richer classes of
models such as probabilistic timed automata and continuous-time variants of probabilistic au-
tomata, such as interactive Markov chains [45] or Markov automata [46]. In order to adapt the
multi-objective model checking approach used in this paper, the first step will be to develop
efficient multi-objective techniques for timed properties of such models.

35

Acknowledgements

This work was part funded by ERC Advanced Grant VERIWARE, EPSRC grant EP/F001096/1
and European Commission FP7 projects CONNECT (IST 231167) and HIERATIC (316705).
The authors are also grateful to the anonymous referees for their helpful comments.

References

[1] A. Bianco, L. de Alfaro, Model checking of probabilistic and nondeterministic systems, in: P. Thiagarajan (Ed.),
Proc. 15th Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS’95),
volume 1026 of LNCS, Springer, 1995, pp. 499–513.

[2] C. Courcoubetis, M. Yannakakis, Markov decision processes and regular events, in: M. Paterson (Ed.), Proc. 17th
International Colloquium on Automata, Languages and Programming (ICALP’90), volume 443 of LNCS, Springer,
1990, pp. 336–349.

[3] L. de Alfaro, Formal Verification of Probabilistic Systems, Ph.D. thesis, Stanford University, 1997.
[4] M. Kwiatkowska, G. Norman, D. Parker, PRISM 4.0: Verification of probabilistic real-time systems, in:

G. Gopalakrishnan, S. Qadeer (Eds.), Proc. 23rd International Conference on Computer Aided Verification
(CAV’11), volume 6806 of LNCS, Springer, 2011, pp. 585–591.

[5] F. Ciesinski, C. Baier, Liquor: A tool for qualitative and quantitative linear time analysis of reactive systems, in:
Proc. 3rd International Conference on Quantitative Evaluation of Systems (QEST’06), IEEE CS Press, 2006, pp.
131–132.

[6] C. Jones, Tentative steps towards a development method for interfering programs, ACM Transactions on Program-
ming Languages and Systems 5 (1983) 596–619.

[7] C. Pasareanu, D. Giannakopoulou, M. Bobaru, J. Cobleigh, H. Barringer, Learning to divide and conquer: Applying
the L* algorithm to automate assume-guarantee reasoning, Formal Methods in System Design 32 (2008) 175–205.

[8] R. Segala, Modelling and Verification of Randomized Distributed Real Time Systems, Ph.D. thesis, Massachusetts
Institute of Technology, 1995.

[9] R. Segala, N. Lynch, Probabilistic simulations for probabilistic processes, Nordic Journal of Computing 2 (1995)
250–273.

[10] A. Pogosyants, R. Segala, N. Lynch, Verification of the randomized consensus algorithm of Aspnes and Herlihy:
A case study, Distributed Computing 13 (2000) 155–186.

[11] R. Segala, A compositional trace-based semantics for probabilistic automata, in: I. Lee, S. Smolka (Eds.), Proc.
6th International Conference on Concurrency Theory (CONCUR’95), volume 962 of LNCS, Springer, 1995, pp.
234–248.

[12] L. de Alfaro, T. Henzinger, R. Jhala, Compositional methods for probabilistic systems, in: K. Larsen, M. Nielsen
(Eds.), Proc. 12th International Conference on Concurrency Theory (CONCUR’01), volume 2154 of LNCS,
Springer, 2001, pp. 351–365.

[13] L. Cheung, N. Lynch, R. Segala, F. Vaandrager, Switched probabilistic I/O automata, in: Proc. 1st International
Colloquium on Theoretical Aspects of Computing (ICTAC’04), volume 3407 of LNCS, Springer, 2004, pp. 494–
510.

[14] K. Etessami, M. Kwiatkowska, M. Vardi, M. Yannakakis, Multi-objective model checking of Markov decision
processes, Logical Methods in Computer Science 4 (2008) 1–21.

[15] V. Forejt, M. Kwiatkowska, G. Norman, D. Parker, H. Qu, Quantitative multi-objective verification for probabilistic
systems, in: P. Abdulla, K. Leino (Eds.), Proc. 17th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’11), volume 6605 of LNCS, Springer, 2011, pp. 112–127.

[16] R. Alur, T. Henzinger, Reactive modules, in: Proc. 11th Annual IEEE Symposium on Logic in Computer Science
(LICS’96), IEEE Computer Society Press, 1996, pp. 207–218.

[17] M. Kwiatkowska, G. Norman, D. Parker, H. Qu, Assume-guarantee verification for probabilistic systems, in:
J. Esparza, R. Majumdar (Eds.), Proc. 16th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’10), volume 6105 of LNCS, Springer, 2010, pp. 23–37.

[18] K. Etessami, M. Kwiatkowska, M. Vardi, M. Yannakakis, Multi-objective model checking of Markov decision
processes, in: O. Grumberg, M. Huth (Eds.), Proc. 13th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’07), volume 4424 of LNCS, Springer, 2007, pp. 50–65.

[19] L. Feng, M. Kwiatkowska, D. Parker, Compositional verification of probabilistic systems using learning, in:
Proc. 7th International Conference on Quantitative Evaluation of SysTems (QEST’10), IEEE CS Press, 2010, pp.
133–142.

36

[20] L. Feng, M. Kwiatkowska, D. Parker, Automated learning of probabilistic assumptions for compositional reason-
ing, in: D. Giannakopoulou, F. Orejas (Eds.), Proc. 14th International Conference on Fundamental Approaches to
Software Engineering (FASE’11), volume 6603 of LNCS, Springer, 2011, pp. 2–17.

[21] A. Komuravelli, C. Pasareanu, E. Clarke, Assume-guarantee abstraction refinement for probabilistic systems, in:
P. Madhusudan, S. Seshia (Eds.), Proc. 24th International Conference on Computer Aided Verification (CAV’12),
volume 7358 of LNCS, Springer, 2012, pp. 310–326.

[22] J. A. Kumar, S. Vasudevan, Automatic compositional reasoning for probabilistic model checking of hardware
designs, in: Proc. 7th International Conference on Quantitative Evaluation of SysTems (QEST’10), IEEE CS
Press, 2010, pp. 143–152.

[23] B. Delahaye, B. Caillaud, A. Legay, Probabilistic contracts: A compositional reasoning methodology for the design
of stochastic systems, in: Proc. 10th International Conference on Application of Concurrency to System Design
(ACSD’10), IEEE CS Press, 2010, pp. 223–232.

[24] K. Chatterjee, L. de Alfaro, M. Faella, T. Henzinger, R. Majumdar, M. Stoelinga, Compositional quantitative
reasoning, in: Proc. 3rd International Conference on Quantitative Evaluation of Systems (QEST’06), IEEE CS
Press, 2006, pp. 179–188.

[25] A. David, K. G. Larsen, A. Legay, U. Nyman, A. Wasowski, ECDAR: An environment for compositional design
and analysis of real time systems, in: A. Bouajjani, W.-N. Chin (Eds.), Proc. 8th International Symposium on
Automated Technology for Verification and Analysis (ATVA’10), volume 6252 of LNCS, Springer, 2010, pp. 365–
370.

[26] J. Kemeny, J. Snell, A. Knapp, Denumerable Markov Chains, Springer-Verlag, 2nd edition, 1976.
[27] W. Thomas, Automata on infinite objects, in: J. van Leeuwen (Ed.), Handbook of Theoretical Computer Science,

volume B: Formal Models and Semantics, Elsevier, 1990, pp. 133–192.
[28] V. Forejt, M. Kwiatkowska, G. Norman, D. Parker, Automated verification techniques for probabilistic systems,

in: M. Bernardo, V. Issarny (Eds.), Formal Methods for Eternal Networked Software Systems (SFM’11), volume
6659 of LNCS, Springer, 2011, pp. 53–113.

[29] M. Kwiatkowska, G. Norman, D. Parker, J. Sproston, Performance analysis of probabilistic timed automata using
digital clocks, Formal Methods in System Design 29 (2006) 33–78.

[30] C. Courcoubetis, M. Yannakakis, Markov decision processes and regular events, IEEE Transactions on Automatic
Control 43 (1998) 1399–1418.

[31] M. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, John Wiley and Sons,
1994.

[32] C. Baier, J.-P. Katoen, Principles of Model Checking, MIT Press, 2008.
[33] V. Forejt, M. Kwiatkowska, D. Parker, Pareto curves for probabilistic model checking, in: S. Chakraborty,

M. Mukund (Eds.), Proc. 10th International Symposium on Automated Technology for Verification and Analy-
sis (ATVA’12), volume 7561 of LNCS, Springer, 2012, pp. 317–332.

[34] C. Baier, M. Kwiatkowska, Model checking for a probabilistic branching time logic with fairness, Distributed
Computing 11 (1998) 125–155.

[35] C. Baier, M. Größer, F. Ciesinski, Quantitative analysis under fairness constraints, in: Proc. 7th International
Symposium on Automated Technology for Verification and Analysis (ATVA’09), volume 5799 of LNCS, Springer,
2009, pp. 135–150.

[36] H. Hansen, M. Kwiatkowska, H. Qu, Partial order reduction for model checking Markov decision processes under
unconditional fairness, in: Proc. 8th International Conference on Quantitative Evaluation of SysTems (QEST’11),
IEEE CS Press, 2011, pp. 203–212.

[37] E. M. Hahn, H. Hermanns, L. Zhang, Probabilistic reachability for parametric Markov models, International
Journal on Software Tools for Technology Transfer (STTT) 13 (2011) 3–19.

[38] T. Chen, E. M. Hahn, T. Han, M. Kwiatkowska, H. Qu, L. Zhang, Model repair for Markov decision processes, in:
Proc. 7th International Symposium on Theoretical Aspects of Software Engineering (TASE’13), IEEE, 2013, pp.
85–92.

[39] J. Aspnes, M. Herlihy, Fast randomized consensus using shared memory, Journal of Algorithms 15 (1990) 441–
460.

[40] 2013. http://www.prismmodelchecker.org/files/ic-probag/.
[41] M. Kwiatkowska, G. Norman, R. Segala, Automated verification of a randomized distributed consensus protocol

using Cadence SMV and PRISM, in: G. Berry, H. Comon, A. Finkel (Eds.), Proc. 13th International Conference
on Computer Aided Verification (CAV’01), volume 2102 of LNCS, Springer, 2001, pp. 194–206.

[42] S. Cheshire, B. Adoba, E. Gutterman, Dynamic configuration of IPv4 link local addresses, 2005. Available from
http://www.ietf.org/rfc/rfc3927.txt.

[43] A. Farzan, Y.-F. Chen, E. Clarke, Y.-K. Tsay, B.-Y. Wang, Extending automated compositional verification to the
full class of omega-regular languages, in: Proc. 14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’08), volume 4963 of LNCS, Springer, 2008, pp. 2–17.

37

http://www.prismmodelchecker.org/files/ic-probag/

[44] S. Chaki, A. Gurfinkel, Automated assume-guarantee reasoning for omega-regular systems and specifications, in:
Proc. 2nd NASA Formal Methods Symposium (NFM’10), pp. 57–66.

[45] H. Hermanns, Interactive Markov Chains and the Quest for Quantified Quality, volume 2428 of LNCS, Springer
Verlag, 2002.

[46] C. Eisentraut, H. Hermanns, L. Zhang, On probabilistic automata in continuous time, in: Proc. 25th Annual IEEE
Symposium on Logic in Computer Science (LICS’10), IEEE Computer Society, 2010, pp. 342–351.

38

	Introduction
	Related Work
	Paper Structure

	Probabilistic Automata
	Probabilistic Automata (PAs)
	Parallel Composition of PAs

	Quantitative Verification of Probabilistic Automata
	Specifying Properties of PAs
	Model Checking for PAs
	Multi-objective Model Checking for PAs
	Model Checking PAs under Partial Adversaries
	Model Checking PAs under Fairness

	Assume-Guarantee Verification for Probabilistic Automata
	Assume-Guarantee Triples
	Assume-Guarantee Verification for Safety Properties
	Assume-Guarantee Verification for Quantitative Properties
	Extensions

	Further Proof Rules
	Circular Proof Rules
	Asynchronous Proof Rules
	Decomposition of Reward-based Properties

	Numerical Assume-Guarantee Queries
	Implementation and Case Studies
	Aspnes & Herlihy's Randomised Consensus Algorithm
	The Zeroconf Protocol
	Experimental Results

	Conclusions

