
Optimal and Dynamic Planning for
Markov Decision Processes with Co-Safe LTL Specifications

Bruno Lacerda, David Parker and Nick Hawes

Abstract— We present a method to specify tasks and synthe-
sise cost-optimal policies for Markov decision processes using
co-safe linear temporal logic. Our approach incorporates a
dynamic task handling procedure which allows for the addition
of new tasks during execution and provides the ability to re-
plan an optimal policy on-the-fly. This new policy minimises the
cost to satisfy the conjunction of the current tasks and the new
one, taking into account how much of the current tasks has
already been executed. We illustrate our approach by applying
it to motion planning for a mobile service robot.

I. INTRODUCTION

Markov decision processes (MDPs) are a widely used
model for planning under uncertainty, for example to synthe-
sise optimal control policies for robots. In recent years, there
has been growing interest in the use of linear temporal logic
(LTL) as a task specification language for robot systems,
in such domains as optimal control [2], [10], [12], reactive
mission planning [4], [13] or multi-robot coordination [7].
LTL is a desirable specification language in the robotics
domain for several reasons. First, it provides a powerful and
intuitive way of unambiguously specifying a variety of robot
tasks. Second, algorithms and tools are available to synthe-
sise correct-by-construction controllers directly from a model
of the system and an LTL specification. Thus, LTL provides
a means to bridge the gap between a designer’s specification
for a robot’s behaviour and an implementation of a controller
that generates behaviour to meet that specification.

Algorithms for controller synthesis from LTL mostly orig-
inate from the field of formal verification, where techniques
such as model checking and reactive synthesis have received
considerable attention. In the context of robotics, where the
systems are often modelled stochastically (e.g. using MDPs),
techniques from probabilistic model checking can be adapted.
In this work, we build upon these methods and develop
them in an extension of the well-known probabilistic model
checking tool PRISM [6].

Probabilistic model checking provides temporal logics to
reason not just about the probability that some LTL-specified
task is achieved, but also a variety of other quantitative
measures using cost (or reward) functions. These might rep-
resent, for example, execution time or energy consumption.
In this paper, we are interested in generating policies that
minimise the expected accumulated cost to achieve one or
more tasks. More precisely, these tasks will be ones that can
be completed in a finite period of time, and are specified

B. Lacerda, D. Parker and N. Hawes are with the School of Computer
Science, University of Birmingham, United Kingdom. {b.lacerda,
d.a.parker, n.a.hawes}@cs.bham.ac.uk

in the co-safe fragment of LTL. Tasks are thus not simply
about reaching a given target state, but can be temporally
extended goals that require, for example, a set of states to
be visited in a given order. An example of such a task is a
mail delivery robot that needs to distribute mail to different
rooms in a building, and minimise the time spent in delivery
so it can be available to do other tasks as soon as possible.

We show that finding policies which minimise the ex-
pected cost to satisfy co-safe LTL formulas in a given MDP
model can be reduced to finding policies that minimise the
cost to reach a set of states in an MDP composed from the
original model and a finite state automaton that represents the
LTL formula. We then consider the scenario where multiple
LTL-specified tasks are issued dynamically, and show how to
re-plan a cost-optimal policy on-the-fly. We implement our
methods in the PRISM tool and illustrate their applicability
to the mobile robotics domain by using them to perform
optimal motion planning for a mobile robot.

Related work. The work in [2], [10] tackles the problem of
maximising the probability of satisfying a given LTL formula
while minimising the long-term average cost between two
states that satisfy a given “optimising” atomic proposition
pre-defined by the designer. The main difference to our
work is that the aim is to find the policy that reaches the
steady-state of the system that minimises an infinite horizon
cost function, while our work is more related to transient
analysis, where we tackle the problem of finding the policy
that minimises the accumulated cost on a finite horizon. This
finite horizon minimisation allows us to define our notion
of optimal policy in a more straightforward way. In terms
of application, the work in [2], [10] is especially suited
for the execution of static and persistent tasks that do not
have an exact notion of being “completed”, e.g., patrolling
a building “forever”. In our case, however, there is a well-
defined notion of a completed task. This enables us to use
a more dynamic task allocation procedure, along with on-
the-fly replanning, for minimising the mixing of different
incoming tasks, defined by the user at different times. The
work in [12] also deals with cost optimisation, modelling
the system as a weighted transition graph, thus not taking
uncertainty into account. In [11], an incremental approach for
policy generation that maximises the probability of satisfying
a co-safe LTL specification is presented. The incremental
element in this approach is related to the addition of new
independent agents that have an impact on the ability of the
robot to fulfil the specification. Furthermore, the work does
not take into account the cost of executing an action.

II. PRELIMINARIES

A. Notation

We start by clarifying some notation used throughout
the paper. Let X be a set. We define: (i) 2X as the set
containing all subsets of X; (ii) X∗ as the set containing all
the finite sequences of elements of X; and (iii) Xω as the set
containing all the infinite sequences of elements of X . Let
ρ = ρ0 . . . ρn ∈ X∗ and σ = σ0σ1 . . . ∈ Xω . We define the
concatenation of ρ and σ as ρ ·σ = ρ0 . . . ρnσ0σ1 . . . ∈ Xω .

B. Markov Decision Processes

We will model systems using Markov decision processes
(MDPs) with atomic propositions labelling the states and
costs associated with state-action pairs. An MDP is a tuple
M = 〈S, s,A, δM, AP, Lab, c〉, where: (i) S is a finite set
of states; (ii) s ∈ S is the initial state; (iii) A is a finite set
of actions; (iv) δM : S × A × S → [0, 1] is a probabilistic
transition function, where

∑
s′∈S δM(s, a, s′) ∈ {0, 1} for

all s ∈ S, a ∈ A; (v) AP is a set of atomic propositions; (vi)
Lab : S → 2AP is a labelling function, such that p ∈ Lab(s)
if and only if the atomic proposition p is true in state s; and
(vii) c : S × A → R≥0 is a cost function, associating each
state-action pair with a non-negative value.

To simplify notation, we define the enabled actions in s
as A(s) = {a ∈ A | δM(s, a, s′) > 0 for some s′ ∈ S}. An
MDP model represents the possible evolutions of the state of
a system: in each state s, any of the enabled actions a ∈ A(s)
can be selected and the probability of evolving to a successor
state s′ is then δM(s, a, s′). An infinite path through an MDP
is a sequence σ = s0

a0→ s1
a1→ ... where δM(si, ai, si+1) > 0

for all i ∈ N. A finite path ρ = s0
a0→ s1

a1→ ...
an−1→ sn is

a prefix of an infinite path ending in a state. We denote by
FPathM and IPathM, respectively, the set of all finite and
infinite paths of M starting from state s.

The choice of action to take at each step of the execution
of an MDPM is made by a policy (sometimes also referred
to as a strategy or scheduler), which can base its decision on
the history of M up to the current state. Formally, a policy
is a function π : FPathM → A such that, for any finite path
σ ending in state sn, π(σ) ∈ A(sn). Important classes of
policy include those that are memoryless (which only base
their choice on the current state) and finite-memory (which
need to track only a finite set of “modes”).

Given an MDP M and a policy π for it, we can define
a probability measure PrπM over the set of infinite paths
IPathM, which allows us to determine the probability with
which certain events occur under policy π. We can also use
expected values Eπ

M(·), for example of a cost function over
paths. A useful example is the following problem.

Problem 1: Let M be an MDP and p ∈ AP an atomic
proposition. Generate a policy πminM (c, F p) for M that
minimises the expected value of the accumulated cost to
reach a state s ∈ S such that p ∈ Lab(s). More
formally, let us consider the accumulated cost function

cumul(c, F p) : IPathM → R≥0 ∪ {∞} defined as:

cumul(c, F p)(s0
a0→ s1

a1→ ...) ={ ∞ if p 6∈ Lab(sj)∀j ∈ N∑kp−1
j=0 c(sj , aj) otherwise,

where kp = min{k ∈ N | p ∈ Lab(sk)}. The expected ac-
cumulated cost to reach a p-labelled state under a policy π
is the expected value EπM(cumul(c, F p)). Thus, our aim is
to generate a policy πminM (c, F p) such that:

πminM (c, F p) = arg minπ E
π
M(cumul(c, F p)).

Problem 1 can be solved using standard MDP algorithms
such as value or policy iteration [9], after first performing
a graph analysis of the model to identify states for which
the cost is infinite [3]. These techniques are supported by
the PRISM tool, on which we base our implementation. In
Section III, we will generalise this approach to consider
the expected accumulated cost of satisfying co-safe LTL
formulas, rather than simple reachability properties.

C. Linear Temporal Logic

Linear temporal logic (LTL) is an extension of propo-
sitional logic which allows us to reason about infinite se-
quences of states. It was developed as a means for formal
reasoning about concurrent systems [8], and provides a
convenient and powerful way to formally specify a variety of
qualitative properties of a system. We define LTL formulas
ϕ over propositions AP using the following grammar:

ϕ ::= true | p | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕ Uϕ, where p ∈ AP

The X operator is read “next”, meaning that the formula it
precedes will be true in the next state. The U operator is read
“until”, meaning that its second argument will eventually
become true in some state, and the first argument will be
continuously true until this point. See, for example, [8] for
the formal semantics of the logic. Other useful LTL operators
can be derived from the ones above. A common example
is the “eventually” operator Fϕ, which requires that ϕ is
satisfied in some future state: Fϕ ≡ true Uϕ.

D. Co-safe LTL

We now introduce the class of LTL formulas that we will
use to specify tasks. We are interested in minimising the
expected accumulated cost to achieve some task. However,
this is not well defined if the task is an arbitrary LTL formula
since, in general, the accumulated cost may diverge. Thus, we
will restrict ourselves to LTL formulas that can be “satisfied”
in a finite horizon. This is a well-defined class, called co-
safe formulas. These are formulas for which the satisfying
infinite sequences always have a finite good prefix. Given an
LTL formula ϕ and w = w0w1... ∈ (2AP)

ω such that w � ϕ,
we say w has a good prefix if there exists n ∈ N for which
the truncated finite sequence w|n = w0w1...wn is such that
w|n·w′ � ϕ for any infinite sequence w′ ∈ (2AP)

ω . We also
define the length of the shortest good prefix of w for ϕ:

kwϕ = min{k ∈ N | w0w1...wk is a good prefix for ϕ}

We say that the LTL formula ϕ is co-safe if all the infinite
sequences π such that π � ϕ have a good prefix. It is
known [5] that an LTL formula which is in positive normal
form (i.e., where negation is only applied directly to atomic
propositions) and which only uses the temporal operators X,
U and F is co-safe. We will keep our formulas within this
syntactic restriction.

We will be translating co-safe LTL to deterministic finite
automata (DFAs). A DFA is a tuple A = 〈Q, q,QF ,Σ, δA〉,
where: (i) Q is a finite set of states; (ii) q ∈ Q is the initial
state; (iii) QF ⊆ Q is the set of accepting states; (iv) Σ is
a finite alphabet; and (v) δA : Q × Σ → Q is a (partial)
deterministic transition function.

We extend the transition function, in standard fashion, by
inductively defining δ+A : Q×Σ∗ → Q such that δ+A(q, ε) = q
and δ+A(q, w.α) = δA(δ+A(q, w), α) for w ∈ Σ∗ and α ∈ Σ.
The language accepted by A is then defined as:

L(A) = {w ∈ Σ∗ | δ+A(q, w) ∈ QF }

It is known [5] that, for any co-safe LTL formula ϕ written
over AP , we can build a DFA Aϕ = 〈Q, q,QF , 2AP , δAϕ

〉
that accepts exactly the good prefixes for ϕ. Furthermore,
given that a good prefix can be “completed” in any way and
will still satisfy ϕ, an accepting state qF ∈ QF is such that
δAϕ(qF , α) = qF for all α ∈ 2AP .

III. PLANNING FOR MDPS WITH CO-SAFE LTL

We now show how to generate policies that minimise
the accumulated cost to satisfy a co-safe LTL formula, by
extending the simpler case of the expected cost to reach a
target (see, e.g., [3]). The problem can be posed as follows.

Problem 2: Let M be an MDP and ϕ a co-safe LTL
formula over AP . Generate a policy πminM (c, ϕ) for M
minimising the expected value of the accumulated cost to
generate a path s0

a0→ ...
ak−1→ sk ∈ FPathM that is a good

prefix for ϕ. More formally, consider the accumulated cost
function cumul(c, ϕ) : IPathM → R≥0 ∪ {∞} defined as:

cumul(c, ϕ)(s0
a0→ s1

a1→ ...) ={
∞ if Lab(s0)Lab(s1)... 6� ϕ∑kLab(s0)Lab(s1)...

ϕ

j=0 c(sj , aj) otherwise.

The expected value of cumul(c, ϕ) for MDPM under policy
π is EπM(cumul(c, ϕ)), and our aim is to generate a policy
πminM (c, ϕ) such that:

πminM (c, ϕ) = arg minπ E
π
M(cumul(c, ϕ))

To find such a policy, we reduce the problem to one
on an MDP-DFA product. More precisely, given an MDP
M=〈S, s,A, δM, AP, Lab, c〉, co-safe LTL formula ϕ and a
corresponding DFA Aϕ=〈Q, q,QF , 2AP , δAϕ

〉 the product
of M and Aϕ, denoted M ⊗ Aϕ, is given by the MDP
M⊗Aϕ = 〈S ×Q, (s, qϕ), A, δMϕ

, AP, Labϕ, cϕ〉, where:
• qϕ = δAϕ(q, Lab(s))

• δMϕ((s, q), a, (s′, q′)) = δM(s, a, s′) if
q′ = δAϕ(q, Lab(s′)), and 0 otherwise;

• Labϕ((s, q)) = Lab(s) ∪ {accϕ} if q ∈ QF ,
and Lab(s) otherwise;

• cϕ((s, q), a) = c(s, a).
For clarity, we will also denote this product MDP byMϕ,

i.e., Mϕ = M ⊗ Aϕ. Intuitively, the MDP Mϕ behaves
exactly like the original MDP M, but is augmented with
information about the satisfaction of ϕ. Once a path of
Mϕ reaches an accepting state (i.e. one labelled with the
new atomic proposition accϕ), it satisfies the formula ϕ.
Furthermore, as stated before, since we assume that ϕ is
a co-safe LTL formula, all subsequent states along such a
path will also be accepting.

It is known [1] that the product MDP Mϕ preserves the
probabilities of paths from M. Since we also copy the cost
function c of M directly to Mϕ, the following holds:

EminM (c, ϕ) = EminMϕ
(cϕ, F accϕ)

Thus, to solve Problem 2, it suffices to find a policy that
minimises the expected cost to reach such an accepting state
in the product MDP, which reduces to solving Problem 1
for Mϕ. As a final step, we need to convert an optimal
policy obtained forMϕ to one for the original MDPM. As
described before, finding a policy that minimises the cost of
reaching a state labelled with accϕ inMϕ can be done with
standard MDP techniques such as value or policy iteration.
In fact, the result of this is a memoryless policy, which takes
the form π : S × Q → A (since the state space of Mϕ is
S×Q). Using this policy andMϕ, we can construct a finite-
memory policy ofM for Problem 2. Intuitively, the elements
q of states (s, q) in the product MDP represent “modes”
of the finite-memory policy, which keep track of the path
executed by the MDP so far, and π(s, q) gives the action
to take in state s for mode q. Precise details of a similar
policy construction (for probabilistic safety properties) can
be found in [3].

We have extended the PRISM software to generate these
policies, and will be using it in our implementation.

IV. DYNAMIC REPLANNING DURING EXECUTION

In this section, we tackle the problem of new tasks arriving
during the execution of a policy. When a new task arrives, we
want to create a new policy that minimises the expected value
of the accumulated cost of satisfying both task(s) already
being executed and the new task. This policy should also
take into account the extent to which the current tasks have
been executed so far. The generation and execution of such
policies is implemented by Algorithms 1 and 2.

Given a new LTL task ϕ, Algorithm 1 creates a new
product MDP, which is then used to synthesise a policy
that takes ϕ into account. This new MDP is based on the
product composition presented in the previous section. In
order to keep track of when each task ϕi has been completed,
we have an atomic proposition accϕi in the product MDP.
Furthermore, in order to be able to minimise the expected
accumulated cost to satisfy the conjunction of all tasks, we
add a new atomic proposition goal to states in the MDP

Algorithm 1 DYN REPLAN({ϕ1, ..., ϕn},Mϕ1∧...∧ϕn , ϕ)

Input: Current task list {ϕ1, ..., ϕn}, current product MDP
Mϕ1∧...∧ϕn , new task ϕ.

Output: New product MDP Mϕ1∧...∧ϕn∧ϕ, optimal policy
πminM (c, ϕ1 ∧ ... ∧ ϕn ∧ ϕ)

1: Mϕ1∧...∧ϕn∧ϕ ←Mϕ1∧...∧ϕn
⊗ Aϕ

(let Mϕ1∧...∧ϕn∧ϕ=〈S′, s′, A, δM′ , AP ′, Lab′, c′〉)
2: for all s ∈ S′ do
3: if

(⋃
i=1,...,n{accϕi}

)
∪ {accϕ} ⊆ Lab′(s) then

4: Lab′(s)← Lab′(s) ∪ {goal}
5: end if
6: end for
7: return (Mϕ1∧...∧ϕn∧ϕ, π

min
Mϕ1∧...∧ϕn∧ϕ

(c′, F goal))

that are labelled as accepting states for all the tasks that are
currently being executed.

The states of a product MDP constructed for multiple
tasks ϕ1, . . . , ϕn are of the form (s, q1, . . . , qn), where s
is the state of the system being controlled (e.g. a robot)
and each qi is a state in the DFA Aϕi , which can be
seen as representing the extent to which task ϕi has been
completed. The initial state of the current product MDP thus
tells us the current status of each task. When we construct
a new product MDP after the arrival of a new task, we
generate the reachable fragment of this MDP, using the
current initial state as a starting point. This means that the we
can replan dynamically, whilst preserving the current status
of all existing tasks.

We also note that, since tasks are specified as co-safe
LTL formulas, we are guaranteed that, once an accepting
state for a given task is reached, all states reachable from
that one are also accepting for the task. Thus, when we call
Algorithm 1, tasks that have been completed since the last
new task arrived are automatically deleted from the product
MDP. This occurs because we only construct the reachable
fragment of the MDP from the current state.

Algorithm 2 is in charge of executing the policies and
replanning when new tasks are specified. It starts with the
MDP model of the system and an initial task ϕinit , and
creates a product MDP and a policy for this input. It then
enters a while loop (line 3), until all tasks are satisfied. It
starts by executing the action given by the current optimal
policy (line 4). While an action is being executed, new tasks
can be given to the system. If this happens, replanning is
needed. Thus, we delete the goal labels from all states, and
call Algorithm 1 for the current product MDP and the new
LTL task (lines 6 – 11).

After an action is executed, we check the new state of the
system and evolve the state of the product MDP accordingly.
In order to keep track of the status of execution of the current
task, we change the initial state of the product MDP to the
state that was reached (line 14). Then, we check if any task
was completed in the new state. If so, we delete it from
the list of current tasks and delete the atomic proposition
that represents its accepting states from the product MDP

Algorithm 2 DYN EXECUTE(M, ϕinit)
Input: Initial MDP M, initial task ϕinit

1: (Mcur , πcur)← DYN REPLAN(∅,M, ϕinit)
(let Mcur=〈Scur , scur , A, δMcur

, APcur , Labcur , ccur 〉)
2: tasks ← {ϕinit}
3: while goal 6∈ Labcur (scur) do
4: execute policy action πcur (scur)
5: while πcur (scur) is being executed do
6: if new task ϕ arrives then
7: for all s ∈ Scur do
8: Labcur (s) = Labcur (s) \ {goal}
9: end for

10: (Mcur , πcur)← DYN REPLAN(tasks,Mcur , ϕ)
11: tasks ← tasks ∪ {ϕ}
12: end if
13: end while
14: update scur to next state reached in Mcur after

executing πcur (scur)
15: for all ϕ ∈ tasks do
16: if accϕ ∈ Labcur(scur) then
17: tasks ← tasks \ {ϕ}
18: AP ← AP \ {accϕ}
19: for all s ∈ Scur do
20: Labcur (s) = Labcur (s) \ {accϕ}
21: end for
22: end if
23: end for
24: end while

(lines 15 – 24). Note that, as we stated before, we do not
need to trim the states of the MDP because the next time
Algorithm 1 is called, we will create a product MDP in
which information related to the completed co-safe task will
automatically disappear from the resulting structure.

Finally, we remark that we are assuming the LTL spec-
ifications are not conflicting, i.e., that their conjunction is
satisfiable in the MDP model. Checking this can be easily
done – if no policy can be generated, then the new task
conflicts with one of the current tasks – but we chose not to
explicitly add this to our description due to lack of space.

V. APPLICATION TO MOTION PLANNING

In this section, we describe an implementation of our ap-
proach to a motion planning scenario for a mobile robot. This
application example was implemented on a MetraLabs Scitos
A5 robot running on a public area of the School of Computer
Science building of the University of Birmingham. In Fig. 1,
we show a photograph of the robot in its environment, along
with the map and navigation graph used.

In the navigation graph, each node corresponds to a
different position of the robot in the environment, and edges
represent navigation actions between nodes. The continuous
navigation between nodes was provided by the ROS nav-
igation stack1. We created an MDP model for this graph,

1http://wiki.ros.org/navigation

http://wiki.ros.org/navigation

Fig. 1. The robot in its environment, and the map and navigation graph used in the application example. Blue (bi-directional) edges represent possible
navigation actions between states.

where each state is labelled by an atomic proposition vi,
which corresponds to the navigation node that the state is
representing. We also take into account possible failures in
navigation. In this example, we consider that a failure occurs
when the robot fails to reach the target node of the navigation
action, for example due to an obstacle, and ends in a different
node. We model these failures by adding uncertainty to the
outcome of executing actions from some states. For example,
action goto11 from state v13 has probability 0.85 of ending
in state v11, 0.1 of ending in state v12 and 0.05 of finishing
in state v14. In order to define a cost function for the MDP,
we used the Euclidean distance between nodes.

For the execution of the policies obtained from our
approach, we used the Markov Decision Making library2

for ROS. In Fig. 2, we depict different moments in the
execution of our algorithms for 3 co-safe LTL tasks specified
dynamically during execution. The robot starts in node v0
with the task “visit v3 and v18, in any order”, i.e., F v3∧F v18.
Algorithm 1 creates a finite-memory policy for this task and
the robot executes it, navigating towards v3 first, as depicted
in Fig. 2(a). Note that we have an optimal action defined for
each state, thus the choice of first node to be visited depends
on the current state of the robot. This means that even if there
are action failures, there is no need for replanning. When the
robot reaches v3, the “mode” of the policy changes, and the
optimal actions for each state are now directed towards node
v18, as seen in Fig. 2(b). Recall that the “mode” changes are
due to a change of one of the DFA state components in the
evolution of the MDP-DFA product.

While the robot is executing action goto11 from state v9,
we add a new task: “visit v9 and afterwards visit v14”, i.e.,
F(v9 ∧ F v14)3. The dynamic replanning is executed, and a
new policy is generated. This policy takes into account that
we still need to visit v18, but also incorporates the fact that
v9 needs to be visited. Since the robot is closer to v9, it turns
back to visit it. This is seen in Fig. 2(c). After v9 is visited,
the policy changes “mode” again, now taking into account

2https://github.com/larsys/markov_decision_making
3One could also make sure that v14 cannot be visited before state v9 by

changing the specification to (¬v14 U v9) ∧ F v14.

the fact that v14 needs to be visited after v9, and that v18 is
still to be visited. The shortest path at this moment is moving
towards node v14, so the robot moves towards it (Fig. 2(d)).

When the robot reaches v14, we add a new task: “visit
v0, avoiding v8”, i.e., ¬v8 U v0. In practical terms, such
specifications, where given nodes are to be avoided, can be
used when it is known that a given area of the environment
is not safe, for example due to the presence of a crowd. If
this information is known beforehand it can be added to the
specification in order to prevent navigation problems that
might occur. With this new specification, a new policy is
computed. Node v0 becomes a node to be visited, and node
v8 a node to be avoided. However, given that the current
position of the robot is closer to v18, the policy drives the
robot towards it, as seen in Fig. 2(e).

Finally, when the robot reaches v18 the policy changes
“mode”, and starts driving the robot towards v0. However,
when trying to execute action goto11 from v13, an obstacle
makes the robot’s continuous navigation end on v12 instead.
Given that the optimal action from v12 is goto10, the robot
switches from its initial most expected trajectory (through
v11) to a new one, which is the optimal given the navigation
failure. After that, given that v8 is a forbidden node, the
policy makes the robot turn and avoid it, finally getting to
v0 and finishing execution, as all the LTL tasks have been
completed (Fig. 2(f)).

In Table I, we show, for the addition of each task described
above, the number of states and transitions of the current
product MDP, along with the computation time of the new
optimal policy4. We see that, for this small example, the
computation times are negligible. Furthermore, keeping track
of the current state of execution and only taking into account
the reachable fragment from the current state of the product
MDP when replanning keeps the size of the structures from
increasing greatly. To illustrate this fact, we also show the
size and computation time for the case where the initial task
is the conjunction of all 3 tasks used in the example.

4This includes building the DFA, building the product MDP, and finding
the optimal policy. All computations were performed on an Intel R© CoreTM

i7 quad-core CPU at 2.20GHz and 8GB of RAM.

https://github.com/larsys/markov_decision_making

Fig. 2. Depiction of the different policies at different moments of execution. States in blue are the current state of the robot at each time, states in green
need to be visited to fulfil the global LTL task, and states in red need to be avoided. The continuous trajectory taken by the robot is depicted in red, while
the optimal action for each state in each given moment (given by the policy obtained by running Algorithms 1 and 2) is represented by arrows between
states. Arrows in orange represent failures while performing that action.

TABLE I
MDP SIZES AND COMPUTATION TIMES FOR ADDITION OF TASKS.

Task added |S| |δM| Time (s)
– 20 56 –

ϕ1 = F v3 ∧ F v18 75 215 0.05
ϕ2 = F(v9 ∧ F v14) 110 314 0.06

ϕ3 = ¬v8 U v0 110 316 0.06
ϕ1 ∧ ϕ2 ∧ ϕ3 394 1160 0.29

VI. CONCLUSIONS

We have presented an approach to generate cost-optimal
policies for MDPs, with goals given as co-safe LTL formulas.
We also presented a dynamic execution and replanning
procedure, where new co-safe LTL tasks can be given to the
system during execution. This methodology was illustrated
by an example where optimal motion plans for a mobile
robot were generated. As illustrated, the presented approach
inherently tackles the uncertainty associated with action
execution by robot systems, and provides the user with
a flexible way of specifying tasks. Future work includes
defining a more refined MDP model for navigation, and
developing an algorithm to learn both the transition failure
probabilities and the expected times between nodes from
real data gathered by the robot. We will also integrate this
approach with a scheduler with notion of real time, so that a
user can allocate navigation tasks to different times of day.
We then plan to create an interface where users can schedule
tasks for a mobile robot which is in continuous execution in a
human populated environment. Regarding policy generation,
we also plan to extend its capabilities by, for example, adding
reactivity to sensor readings, investigating the use of other
classes of LTL, and exploring the possibility of using multi-
objective specifications for MDPs.

VII. ACKNOWLEDGEMENTS

The authors would like to thank João Messias for his
help with the Markov Decision Making library. The research
leading to these results has received funding from the Eu-
ropean Union Seventh Framework Programme (FP7/2007-
2013) under grant agreement No 600623, STRANDS, and
the EPSRC grant EP/K014293/1.

REFERENCES

[1] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press,
2008.

[2] X. C. Ding, S. L. Smith, C. Belta, and D. Rus. Optimal control
of Markov decision processes with linear temporal logic constraints.
IEEE Transactions on Automatic Control, 59(5):1244–1257, 2014.

[3] V. Forejt, M. Kwiatkowska, G. Norman, and D. Parker. Automated
verification techniques for probabilistic systems. In Formal Methods
for Eternal Networked Software Systems (SFM’11), volume 6659 of
LNCS, pages 53–113. Springer, 2011.

[4] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Temporal logic-
based reactive mission and motion planning. IEEE Transactions on
Robotics, 25(6):1370–1381, 2009.

[5] O. Kupferman and M. Vardi. Model checking of safety properties.
Formal Methods in System Design, 19(3):291–314, 2001.

[6] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification
of probabilistic real-time systems. In Computer Aided Verification
(CAV’11), volume 6806 of LNCS, pages 585–591. Springer, 2011.

[7] B. Lacerda and P. U. Lima. Designing Petri net supervisors from LTL
specifications. In Proc. of Robotics: Science and Systems VII, 2011.

[8] A. Pnueli. The temporal semantics of concurrent programs. Theoret-
ical Computer Science, 13:45–60, 1981.

[9] M. Puterman. Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. John Wiley and Sons, 1994.

[10] M. Svoreňová, I. Černá, and C. Belta. Optimal control of MDPs with
temporal logic constraints. In Proc. of CDC’13: 52nd IEEE Conf. on
Decision and Control, 2013.

[11] A. Ulusoy, T. Wongpiromsarn, and C. Belta. Incremental control
synthesis in probabilistic environments with temporal logic constraints.
In Proc. of CDC’12: IEEE Conf. on Decision and Control, 2012.

[12] E. M. Wolff, U. Topcu, and R. M. Murray. Optimal control with
weighted average costs and temporal logic specifications. In Proc. of
Robotics: Science and Systems VIII, 2012.

[13] E. M. Wolff, U. Topcu, and R. M. Murray. Efficient reactive controller
synthesis for a fragment of linear temporal logic. In Proc. of ICRA
’13: IEEE Int. Conf. on Robotics and Automation, 2013.

	Introduction
	Preliminaries
	Notation
	Markov Decision Processes
	Linear Temporal Logic
	Co-safe LTL

	Planning for MDPs with Co-safe LTL
	Dynamic Replanning During Execution
	Application to Motion Planning
	Conclusions
	Acknowledgements
	References

