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Abstract— On-demand ride-sharing is a promising way to
improve mobility efficiency and reliability. The quality of
passenger experience and the profit achieved by these platforms
are strongly affected by the vehicle dispatch policy. However,
existing ride-sharing research seldom considers travel time
uncertainty, which leads to inaccurate dispatch allocations.
This paper proposes a framework for dynamic vehicle dispatch
that leverages stochastic travel time models to improve the
performance of a fleet of shared vehicles. The novelty of this
work includes: (1) a stochastic on-demand ride-sharing scheme
to maximize the service rate (percentage of requests served) and
reliability (probability of on-time arrival); (2) a technique based
on approximate stochastic shortest path algorithms to compute
the reliability for a ride-sharing trip; (3) a method to maximize
the profit when a penalty for late arrivals is introduced. Based
on New York City taxi data, it is shown that by considering
travel time uncertainty, ride-sharing service achieves higher
service rate, reliability and profit.

I. INTRODUCTION

With the rapid development of e-hailing platforms, on-
demand ride-sharing services such as UberPool, Lyftline and
GrabShare are playing an important role in urban mobil-
ity. By simultaneously allocating multiple requests that are
travelling in similar directions to the same vehicle, ride-
sharing brings multiple benefits: passengers pay lower costs
by sharing the vehicle with others; and the service providers
can increase their profit by serving more requests with the
same number of vehicles.

When evaluating the feasibility and benefits of schedules
for ride-sharing trips, the most important consideration is
the timing of passengers, because travel delay is a more
constraining factor than others, e.g. spare capacity [1]. To
have accurate estimations of the benefit from on-demand
ride-sharing and get the best vehicle dispatch policy, the
following technical challenges need to be properly tackled:

1) Travel time uncertainty. Due to various stochastic fac-
tors, travel times on roads can exhibit considerable
variability in urban environments. Solutions based on
deterministic routing would deteriorate when deployed
in real-life scenarios.
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Fig. 1: An example with five requests r1, r2, r3, r4, r5 and
one vehicle v1. Triangles (4) and inverted triangles (5)
represent the origins and destinations, respectively. There are
three possible dispatch policies for v1 and they exhibit no
difference in service rate when travel time uncertainty is not
considered. When taking stochastic travel time into account,
it would be found that serving r2 and r3 is the best allocation
as it has the highest reliability in terms of arrival.

2) Reliability estimation. In reality, vehicles may not arrive
at their planned destinations on time. Passengers are
more concerned about the reliability of their trip than
its duration. Unreliable service would result in the loss
of passengers.

3) Profit estimation. The prices of trips are determined
immediately after their request and remain fixed, re-
gardless of the results of allocation and travel time.
But travel costs are related to actual travel routes and
penalties may be applied for late arrivals, so inaccurate
estimation of profit during dispatch may differ from the
profit-optimal solution.

Ride-sharing has been receiving increased attention from
the academic community. Existing work includes schedul-
ing and allocating vehicles to serve requests [2], [3], re-
positioning idle vehicles to high demand areas [4], [5] and
predicting future demands for long-term optimization [6],
[7]. However, most of the previous studies fail to consider the
uncertainty of travel time. They only compute assignments
and routes with the shortest expected time for the sake of
simplicity, and ignore the reliability of on-time arrival, which
of high value for passengers. Furthermore, request price
and platform profit, which are important references for the
platform, have also received little attention.

In this paper, we study the role of travel time uncer-
tainty in on-demand ride-sharing services and propose a



constrained optimization scheme, which considers stochastic
travel time information to increase the passengers’ on-time
arrival reliabilities and further incorporates the concept of
late arrival compensation to increase the platform’s profit.
The contributions of our work are summarized as follows:

1) Developing a method for reliability-aware vehicle dis-
patch, which takes travel time uncertainty into account
in both the allocation of requests to vehicles and the
vehicle routing.

2) Developing an algorithm to estimate the probability of
on-time arrival for a ride-sharing trip, which is then
incorporated into the main dispatch method to optimize
the reliability of service.

3) Developing a method to estimate the profit of a trip
and maximize the profit of the platform, including the
penalty costs due to late arrivals.

4) Conducting a case study to investigate the benefit of our
travel time uncertainty aware dispatchers and compare
them to the state-of-the-art deterministic approach.

II. RELATED WORK

A recent study for Manhattan shows that up to 80% of
taxi trips can be pairwise shared with very little increase
in travel time, which translates into a 40% reduction of the
taxi fleet [8]; this was later validated in multiple cities [9].
Inspired by the work of [8], a real-time algorithm for on-
demand vehicle dispatch and large ride-sharing fleet man-
agement is developed in [3], which allows more than two
passengers to share a vehicle. The efficiency of dispatch is
further improved by exploring more possible ride-sharing
combinations in limited computational time [10], taking
into account predictions of future demands [6], routing idle
vehicles to high demand areas [5], and considering the future
effects of request allocations [7]. However, none of these
approaches addresses the uncertainty of travel time.

There has been some work focusing on the vehicle routing
problem with stochastic travel times. But it is limited to
dispatching tens of vehicles, and cannot be applied to real-
time systems because the computation time is up to 5 hours
[11], [12]. More relevant to this paper is a stochastic ride-
sharing model presented in [13], where a generalized trip cost
is introduced and analysed for both driving-alone and ride-
sharing trips. However, more than two passengers sharing
a vehicle is not allowed and on-demand requests are not
supported as passengers need to announce their trip schedule
one day before. Our work differs from [13] by providing
high-capacity on-demand ride-sharing.

A similar approach to our work, which also considers
on-time arrival reliability in on-demand ride-sharing, is pre-
sented in [14]. They introduce a reliable path concept for
selecting a vehicle with the maximum reliability for each
request. However, the reliable path is computed from the
precomputed k-shortest paths, which may not be the optimal
one. Only pairwise sharing is allowed and the fleet size
considered is less than 200. In contrast, we allow the dispatch
of 3000 vehicles with a capacity of six. Moreover, we

optimize the provider’s profits considering the penalty costs
due to late arrivals.

Unlike most previous work that optimizes the number of
served requests, a dispatcher considering request price is
developed in [15] to maximize the platform’s profit. But it
does not take into account the penalty costs arising from
failures to arrive on time.

III. RELIABILITY-AWARE RIDE-SHARING

We start by formulating the problem we are tackling and
giving an overview of our proposed solution.

A. Definitions
Since journey requests appear throughout the day, the

vehicle dispatch method presented in this paper adopts
the industrial practice [16] where submitted requests are
periodically packed and allocated to suitable vehicles. The
dispatcher assigns requests at a time epoch ∆T , at which
it batches a set of n new requests R = {r1, . . . , rn}
and computes allocations. Each request is submitted by a
passenger and defined as a tuple 〈or, dr, tr〉, where or is
the origin (pick-up location), dr is the destination (drop-off
location) and tr is the time of submission. Requests that
can be served by a single vehicle through ride-sharing are
grouped as a trip Γ = {r1, . . . , rnΓ}.

The dispatcher considers a fleet of m vehicles V =
{v1, . . . , vm}, of which the capacity is κ. The state of
each vehicle is defined as a tuple 〈qv, sv〉, where qv is the
current position and sv is the planned schedule, comprising
a sequence of pick-up and drop-off tasks.

The dispatcher computes all feasible schedules zv =
{sv,Γ1

, sv,Γ2
, . . . } for each vehicle. A schedule sv,Γ =

{qv, . . . , o1, . . . , d1, . . . , o2, . . . , dnΓ
} is a sequence of vis-

iting positions for a vehicle v to pick up and drop off
passengers in a trip Γ. A detailed route travelling from qv to
dnΓ

is denoted by π. A portion of the route that travels from
qv to dr (r ∈ Γ) is denoted by π(r). There is more than one
possible route for a specific schedule, of which the optimal
one is denoted by π∗, i.e., the one serving the requests with
the highest reliability.

Following the assigned schedules, vehicles travel on a
predefined road network G = (I, E), where the travel times
for each edge follow a Gaussian distribution N(µe, σ

2
e) and

are independent of each other. It is shown in [17] that the
independent Gaussian assumption is very similar to real
world empirical data and holds well for stochastic planning.
We define two functions, τ(i1, i2) and %(i1, i2), to compute
the mean travel time and the travel distance of the minimum
expected time path from i1 to i2, respectively.

B. Problem Formulation
Taking travel time uncertainty into consideration, we opt

to optimize the service rate and the overall reliability at
each round. Using Rmiss to denote the set of requests that
cannot be served at the current dispatch epoch, we define the
objective of a dispatch policy as:

OReliab =
∑
v∈V

best prob(sv)−
∑

r∈Rmiss

pmiss (1)
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Fig. 2: Schematic overview of our proposed approach. (a) An example with three vehicles and three requests. The solid lines
presents the current planned routes for vehicles and the dashed lines presents the shortest paths for requests. (b) A schedule
pool that connects vehicles to servable ride-sharing trips. (c) Scored schedules with reliability information. (d) Allocation
of requests to vehicles that maximizes the sores, where requests 1 and 2 are served by vehicle 1 and request 3 is served by
vehicle 3. (e) Vehicles travelling on the stochastic optimal routes following the assigned schedules.

where best prob(sv) is the maximum expected mean prob-
ability of dropping off requests on-time for a schedule and
is affected by the routing policy (discussed in Section IV),
pmiss is a large cost for not serving a request.

Problem 1 (Reliability-aware dispatch): Given a set of
new requests R and a set of vehicles V for a dispatch epoch
∆T , the problem of reliability-aware dispatch is to assign
vehicles particular schedules to serve requests, so that the
objective (Eq. (1)) is maximized, subject to the following
constraints:
• Capacity constraint. For each vehicle, the number of

onboard passengers cannot be larger than its capacity.
• Delay constraint. For each request, its waiting time ωr

(the difference between when it is actually picked up
and when it is submitted) and total travel delay δr (the
difference between when it is actually dropped off and
when it is expected to arrive if travelling alone) must
be lower than two thresholds, Ω and Λ, respectively.

• Precedence constraint. For each request in a schedule
sv,Γ, its origin must be visited before its destination.

C. Method Overview

Fig. 2 illustrates the method to solve Problem 1. The
processes for schedule generation (b) and request allocation
(d) are inspired by [3]. The stochastic travel time information
is incorporated in schedule routing (c) and vehicle routing
(e). The reliability of a schedule is affected by the routing
plan and the term

∑
v∈V best prob(sv) in Eq. (1) is affected

by the allocation results, which cannot be omitted. Fig. 1
shows an example. The main steps of the method are:
• Computing feasible ride-sharing combinations for each

vehicle, along with schedules that satisfy the constraints
defined in Problem 1, using the method proposed in [3].

• Scoring the feasible schedules using travel time distri-
bution information.

• Allocating requests by solving an Integer Linear Pro-
gram (ILP) to select each vehicle a schedule.

• Routing vehicles to follow the assigned schedules with
optimal routes.

As stated in [3], given enough time, all possible ride-
sharing trips can be found and the ILP-based allocations are
optimal. However travel time distributions are not considered
when generating the schedule pool, which could cause some
potentially feasible trips to be mistakenly ignored [13]. In
practice, longer delay constraints can be set so that searching
for feasible ride-sharing combinations has a probabilistic
guarantee. For example, setting the total travel delay con-
straint as Λ

′
= Λ + 3σπ , where σπ is the largest standard

variance of any possible ride-sharing route, will mean that
less than 0.27% trips can be ignored.

IV. ON-TIME ARRIVAL PROBABILITY OPTIMIZATION

To maximize the reliability for a ride-sharing schedule,
we adopt the approximate stochastic shortest path query
algorithm of [18] and the multi-hop routing algorithm of [19]
to on-demand ride-sharing systems. The generalized method
consists of two procedures: preprocessing and online scoring.
It can compute the maximum probability of dropping off
requests on-time and return the corresponding optimal route
for a schedule.

A. Preprocessing

Estimating the reliability of a schedule relies on computing
the routes that maximize the probability of on-time arrival
for each request in the schedule. For a request r travelling
alone with a travel delay constraint Λ, we need to solve:

π∗ = argmax
π∈Π

τ(or, dr) + Λ− µπ
σπ

(2)

where Π is the set of all possible routes from or to od.
Eq (2) can be solved exactly by iteratively finding the

α-shortest path at most nO(logn) times, of which the edge
weight is defined as α·µe+σ2

e . There is a
√

1− ε2/(2 + ε2)-
approximation algorithm that runs in time polynomial in
1/ε, for any user-specified ε > 0. Generalized from [18],
the approximate solution can be found by enumerating α-
shortest paths for α ∈ {L, (1+ξ)L, (1+ξ)2L, . . . , U}, where
ξ = ε/2, L = 2 mine σ

2
e/dL > 2 mine σ

2
e/(maxr τ(or, dr)+



Algorithm 1 Find α Optimal Route

Input : a schedule sv,Γ and its pre-route πpre
Output: the mean probability of on-time arrival mean prob

and the α optimal route π∗α
1: mean prob← 0
2: π∗α ← ∅
3: for each α ∈ A do
4: π ← FindαShortestPath(sv,Γ, πpre)
5: prob← ComputeMeanProbability(Γ, π)
6: if prob > mean prob then
7: mean prob← prob
8: π∗α ← π

Algorithm 2 Schedule Reliability Estimation (SRE)

Input : a schedule sv,Γ and its pre-route πpre
Output: the maximum mean probability of on-time arrival

best prob and the optimal route π∗

1: Rs ← GetRequestsInSchedule(sv,Γ)
2: best prob← 0
3: π∗ ← ∅
4: while (r ← Rs.pop()) 6= ∅ do
5: n1, s

1
v,Γ, n2, s

2
v,Γ ← CutSchedule(dr, sv,Γ)

6: prob1, π1 ← FindαOptimalRoute(s1
v,Γ, πpre)

7: prob2, π2 ← SRE(s2
v,Γ, π1)

8: mean prob← (prob1 · n1 + prob2 · n2)/(n1 + n2)
9: if mean prob > best prob then

10: best prob← mean prob
11: π∗ ← π1 + π2

Λ) and U = 2
∑
e σ

2
e/(εdU ) 6 2 maxπ σ

2
π/(εmine µe). The

term maxπ σ
2
π is the largest variance of any possible ride-

sharing route.
Denoting the set of the approximation parameters α as A,

we precompute the shortest paths for all these values α ∈ A
and store them in look-up tables. Therefore, the reliable route
for a request can be found by checking the tables |A| times.

B. Online Scoring

The maximum probability of visiting a schedule’s last
position sv,Γ[−1] and the correspond route can be found by
enumerating α-shortest paths, as presented in [19]. Adopted
from that, an algorithm to find the α-optimal route for a
schedule is introduced in Algorithm 1. The pre-route πpre
is a predefined route from qv to sv,Γ[0], defaulted to ∅.
Function FindαShortestPath(sv,Γ) returns the α-shortest
path that visits a series of locations in the order set by
schedule sv,Γ. Function ComputeMeanProbability(Γ, π)
returns the mean probability of on-time arrival when requests
are served by a predefined route π, denoted by:

mean prob(sv,Γ) =
1

|Γ|
∑
r∈Γ

Φ(
τ(or, dr) + Λ− µπ(r)

σπ(r)
)

(3)
where Φ(·) is the cumulative distribution function of the
standard normal distribution.

Algorithm 1 tries to find the best α value that max-
imizes Eq. (3). However, the optimal route π∗ may be
a concatenation of the α-optimal paths for each request
with different α values, as the optimal substructure property
does not hold. We propose a recursive algorithm to explore
all possible combination of different α values for the re-
quests in a schedule, as shown in Algorithm 2. Function
GetRequestsInSchedule(sv,Γ) returns the set of requests
included in schedule sv,Γ. Function CutSchedule(dr, sv,Γ)
breaks the schedule into two sub-schedules based on the
drop-off position of r, the reliabilities and routes of which are
then computed by Algorithms 1 and 2, respectively. Given a
set of feasible schedules zv for a vehicle, which is generated
in step (b) as shown in Fig 2, they can be processed in
parallel on-the-fly by Algorithm 2 to find the optimal routes
truly maximizing mean prob(sv,Γ).

C. Reliable Allocating

At each round, the dispatcher considers the state of the
fleet V , a set of requests R, and a set of scored schedules
zv for each vehicle. The goal is to serve as many requests as
possible and dispatch the vehicles towards the most reliable
trips so that the overall probability of on-time arrival is
maximized. This is illustrated in Fig. 1(d) and formulated
as the following Integer Linear Program:

argmax
xv,s,εr

∑
v∈V

∑
s∈zv

xv,s · best prob(s)−
∑
r∈R

εr · pmiss

(4)

s.t.
∑
s∈zv

xv,s = 1, ∀v ∈ V (5)∑
v∈V

∑
s∈zv

xv,s ·Θs(r) + εr = 1, ∀r ∈ R (6)

where best prob(s) = argmaxπ mean prob(s).
A binary variable xv,s ∈ {0, 1} is introduced for each

schedule in every zv , where xv,s = 1 indicates that s is
assigned to v. A binary variable εr ∈ {0, 1} is introduced
for each request, where εr = 1 indicates that r is ignored. An
indicator function Θs(r) ∈ {0, 1} is introduced to indicate
whether r /∈ s or r ∈ s. Constraint (5) guarantees that a
vehicles is assigned exactly one schedule and constraint (6)
guarantees that no requests are double-assigned to two vehi-
cles. After allocating, each vehicle travels on the maximum-
reliability route π∗ to serve the requests.

V. PROFIT OPTIMIZATION

In practice, profit is one of the main concerns of a platform
and passengers may accept longer travel times if there is
compensation. In this section, we introduce the concepts of
request prices, travel costs and late arrival penalties to our
proposed scheme to optimize the profit of dispatch.

Maximizing the platform’s profit requires assigning high
profit schedules to the vehicles. The profit of a schedule
is equal to the price sum of included requests minus the
expenses of vehicle travel and the compensation due to late



arrivals, defined as:

profit(sv,Γ) =
∑
r∈Γ

[rev(r)− penalty(r)]− cost(sv,Γ) (7)

where rev(r) is the revenue of serving r, penalty(r) is the
compensation for dropping r off late, and cost(sv,Γ) is the
expense of the service. They are estimated as:

rev(r) = β · %(or, dr) (8)
penalty(r) = γ · (ES(r)− τ(or, dr)− Λ) (9)
cost(sv,Γ) = η · %(π) (10)

where β is the charge per unit distance, γ is the compensation
per unit time, η is the expense per unit distance, ES(r) =
E[tπ(r)|tπ(r) > (τ(or, dr) + Λ)] is the expected travel time
for r when violating the travel delay constraint, and %(π)
is the travel distance of route π. Using the formulation for
the expected shortfall of the Normal distribution in [20], the
term ES(r) can be computed as:

ES(r) = µπ(r) +
σπ(r) · ϕ(

τ(or,dr)+Λ−µπ(r)

σπ(r)
)

1− Φ(
τ(or,dr)+Λ−µπ(r)

σπ(r)
)

(11)

where ϕ(·) is the probability density function of the standard
normal distribution.

As rev(r) is normally an upfront fare and fixed regardless
the routing plan, and τ(or, dr) and Λ are not affected by the
routing plan, maximzing profit(sv,Γ) is equivalent to solve:

π∗ = argmin
π

∑
r∈Γ

γ · ES(r) + η · µπ (12)

Eq. (12) can be solved by enumerating the combinations
of α-shortest paths, α ∈ A, similar to Algorithm 2. Each
schedule s ∈ zv can find its optimal route that brings the
maximum profit and be scored with that profit by solving
Eq. (12). With these profit scored schedules, the objective
function of vehicle dispatch becomes:

argmax
xv,s,εr

∑
v∈V

∑
s∈zv

xv,s · best profit(s)−
∑
r∈R

εr · pmiss

(13)
s.t. constraints (5) and (6)

where best profit(s) = argmaxπ profit(s).
The objective (13) represents the sum of the expected

profit each vehicle would earn and the total number of served
requests, which aims to dispatch the vehicles towards the
maximum-profit trips.

VI. EXPERIMENTAL STUDY

In this section, the proposed methods are implemented and
evaluated using historical taxi request data from New York
City [21], and compared to the state-of-the-art deterministic
approach [3]. Since the implementation of [3] is unavailable,
we reimplement it and run it on the same machine to ensure
a fair comparison.

TABLE I: Parameter settings (defaults in bold).

Parameters Settings
Fleet Size |V | 1000, 2000, 3000

Max Waiting Time Ω (s) 180, 300, 420
Capacity κ 2, 4, 6, 8

Number of Requests |R| 400k, 600k, 800k

A. Simulation Details

The evaluations are conducted using request data from
the 11th, 18th and 25th of May 2016. These have similar
characteristics and are synthesized to three simulation sce-
narios of varying number of requests: 400k, 600k and 800k.
Simulations are run for the hour with peak demand (19:00-
20:00). A stochastic model of Manhattan is computed using
the method in [8]. The complete road network contains 4,091
nodes and 9,452 directed edges. The travel times for each
road segment for each hour of the day are computed using the
pickup/drop off times of taxi trips. These are then processed
to compute the daily mean and standard deviation for the
travel time for each road segment.

Table I summarizes the major experimental control vari-
ables. We set the maximum travel delay to be twice the
maximum wait time Λ = 2Ω. The charge, compensation and
expense parameters are set as β = $2/km, γ = $0.02/second
and η = $1/km. The dispatch epoch is set as ∆T = 30
seconds as in [3]. The results are the averages of ten
experiment runs.

B. Algorithm Comparison

We examine the effectiveness of the following algorithms:
• DVD (Deterministic Vehicle Dispatch): The method

presented in [3] that maximizes the service rate without
considering travel time uncertainty.

• RVD (Reliability-aware Vehicle Dispatch): The method
from Section IV that considers the probability of on-
time arrival for each request.

• PVD (Profit-aware vehicle Dispatch): The method from
Section V that optimizes the profit of the platform.

The metrics used in this paper include: the service rate,
the violation rate (percentage of late arrivals), the profit,
the request distance served (related to the revenue from
passengers), the vehicle distance travelled (related to the
expense of the platform) and the vehicle mean load (average
number of passengers in a vehicle).

C. Results

Fig. 3 shows the results of varying fleet sizes. The perfor-
mance of all the algorithms improves for larger fleet sizes.
A larger fleet brings more seats and allows the dispatcher to
allocate more mid-size ride-sharing trips to reduce detours
for passengers, which reduces the violation rate. By dispatch-
ing vehicles to less uncertain routes, RVP achieves lower
violation rates than DVD. It also has higher service rates
and more profits than DVD. RVD achieves a 0.77% lower
violation rate than DVD when there are only 1000 vehicles,
and with more flexibility brought in by 3000 vehicles, this
reduction is increased to 7.3%. To achieve this significant
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Fig. 3: A comparison of performance metrics for varying
fleet sizes (|R| = 400k, κ = 6,Ω = 300 s).

TABLE II: Performance metrics for different methods during
the hour with lowest number of requests. (|R| = 400k, |V | =
2000, κ = 6,Ω = 300 s)

Metrics DVD RVD PVD
Service Rate (%) 99.57 99.81 99.43

Violation Rate (%) 4.29 0.27 8.26
Profit ($) 7,671.04 7,085.13 9,262.84

Request Distance (km) 7,375.03 7,378.08 7,359.96
Vehicle Distance (km) 7,009.79 7,665.62 5,304.61

Vehicle Mean Load 1.21 1.03 1.62

reduction in the violation rate compared to DVD, RVD tends
to dispatch small-size ride-sharing trips and has a longer
vehicle distance travelled. To make more profit, PVD accepts
late arrivals and prefers allocating large-size ride-sharing
trips to save on vehicle travel expenses. Large fleet size
also increases the increase in profit brought in by PVD,
which makes 6.08% more profit than DVD when the fleet
size is 3000. The vehicle mean load of PVD is 2.62 when
there are 3000 vehicle, this high occupancy rate yields a
considerable saving in expense, as vehicle distance travelled
is much lower than other two algorithms. When the number
of vehicles is sufficiently large, both RVD and PVD can yield
more improvements in reliability and profit, respectively, at
the cost of profit and reliability, respectively. This is also
validated in the results of simulations during 4:00-5:00, when
the number of requests is only 6.85% of the peak hour. As
shown in Table II, the service rates of all algorithms are very
close to 100% due to a sufficient number of vehicles. RVD
achieves a close to zero violation rate, but has a 7.64% lower
profit than DVD. Similarly, PVD makes a 20.75% higher
profit than DVD, with a 3.97% higher violation rate.

Fig. 4 shows the results of varying values of the maximum
waiting time constraint. A longer travel delay constraint
allows more detours and increases the occupancy rate, thus
leading to higher service rates and more profits. The violation
rates do not significantly change, except that RVD yields
a 0.84% increase when the value of the maximum waiting
time constraint increases from 180 s to 300 s. As the
constraint increases from 180 s to 420 s, while the reduction
in violation rate yielded by RVD over DVD has a small
decrease from 2.9% to 2.3%, the increase in service rate
increases from 1.19% to 2.21%. PVD utilizes the increase
in detour tolerance and achieves higher improvements in both
the service rate (from 1.23% to 4.22%) and the profit (from
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Fig. 4: A comparison of performance metrics for varying val-
ues of maximum waiting time constraint (|R| = 400k, |V | =
2000, κ = 6).
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Fig. 5: A comparison of performance metrics for varying
vehicle capacities (|R| = 400k, |V | = 2000,Ω = 300 s).

3.43% to 6.01%).

Fig. 5 shows the results of varying vehicle capacities. All
algorithms achieve higher service rates and more profits with
higher capacity, as more seats allow more requests to share
their trips. The violation rate increases as capacity rises,
which may be due to detours caused by ride-sharing. The
performance differences among DVD, RVD and PVD are
not significantly affected by differences in vehicle capacity,
especially when it comes to high-capacity (κ ≥ 4) ride-
sharing, where the reductions in violation rates brought in by
RVD over DVD are around 2.30(± 0.05)% and the increases
in profit brought by PVD over DVD are around 4.89(±
0.05)%. PVD has a lower service rate than DVD when
capacity is 2, this is because the expense savings are low
due to low-capacity ride-sharing and some requests are not
profitable, so PVD chooses to ignore them.

Fig. 6 shows the results of varying instance scales. When
the number of requests increases, the fleet size is also
increased to examine the scalability of the algorithms. The
reductions in violation rates brought in by RVD over DVD
are 2.30%, 1.98% and 2.13%, respectively. The improve-
ments in profit produced by PVD over DVD are 4.87%,
5.69% and 6.40%, respectively. This indicates that a ride-
sharing service can benefit from taking into account the
stochastic travel time, regardless of the scale.

We further investigate the effect of the penalty value
considered by PVD, as shown in Table III. Although a larger
penalty for late arrivals results in a lower profit due to the
increase in compensation, it improves all other metrics. In
practice, passengers would prefer a low delay constraint, with
which PVD yields fewer improvements (as shown in Fig. 4).
A larger compensation could increase passengers’ tolerance
to delays and eventually increase the profit of the platform.
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Fig. 6: A comparison of performance metrics for varying
instance scales (κ = 6,Ω = 300 s).

TABLE III: Performance metrics for varying penalties for
PVD. (|R| = 400k, |V | = 2000, κ = 6,Ω = 300 s)

Metrics Penalty
0.02 0.06 0.10

Service Rate (%) 84.58 85.34 86.10
Violation Rate (%) 14.50 14.02 12.96

Profit (10ˆ3 $) 109.67 105.19 101.50
Relative Profit Difference
With Respect to DVD (%) 4.87 6.03 8.13

D. Discussion

Taking the uncertainty of travel time into consideration
significantly improves the performance of vehicle dispatch.
Both RVD and PVD achieve more gains over DVD for
larger fleet sizes and delay constraints, especially when the
number of vehicles is sufficient to handle almost all requests.
Also, the performances of RVD and PVD scale well across
different vehicle capacities and instance sizes. Although
our assumption that edge travel times follow independent
Gaussian distributions may limit the accuracy of our model,
experiments with different variances, {0.5, 1, 2} · σ2

e , showed
that the improvements yielded by RVD and PVD are stable,
suggesting that the proposed approach is robust to different
stochastic travel time models.

VII. CONCLUSION

In this paper, we have presented a travel time uncertainty
aware vehicle dispatch scheme for on-demand ride-sharing,
a method to allocate the most reliable trips and a method
to optimize the profit of vehicle dispatch. Numerical simu-
lations on Manhattan taxi datasets show that, by considering
stochastic travel times, the proposed methods improve upon
the state-of-the-art deterministic dispatcher in terms of the
reliability (up to 7.3% at peak hour), the profit (up to 8.13%
at peak hour) and the service rate (up to 4.22% at peak hour).
Typically, a 1% improvement is considered significant in an
industrial setting [22]. Future work will investigate the trade-
off between the reliability and the profit. We also plan to
incorporate demand prediction methods to further enhance
the performance of on-demand ride-sharing.

REFERENCES

[1] N. Agatz, A. Erera, M. Savelsbergh, and X. Wang, “Optimization for
dynamic ride-sharing: A review,” European Journal of Operational
Research, vol. 223, no. 2, pp. 295–303, 2012.

[2] Y. Tong, Y. Zeng, Z. Zhou, L. Chen, J. Ye, and K. Xu, “A unified
approach to route planning for shared mobility,” Proceedings of the
VLDB Endowment, vol. 11, no. 11, pp. 1633–1646, 2018.

[3] J. Alonso-Mora, S. Samaranayake, A. Wallar, E. Frazzoli, and D. Rus,
“On-demand high-capacity ride-sharing via dynamic trip-vehicle as-
signment,” Proceedings of the National Academy of Sciences, vol. 114,
no. 3, pp. 462–467, 2017.

[4] J. Wen, J. Zhao, and P. Jaillet, “Rebalancing shared mobility-on-
demand systems: A reinforcement learning approach,” in 2017 IEEE
20th International Conference on Intelligent Transportation Systems
(ITSC), pp. 220–225, Ieee, 2017.

[5] A. Wallar, M. Van Der Zee, J. Alonso-Mora, and D. Rus, “Vehicle
rebalancing for mobility-on-demand systems with ride-sharing,” in
2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 4539–4546, IEEE, 2018.

[6] J. Alonso-Mora, A. Wallar, and D. Rus, “Predictive routing for
autonomous mobility-on-demand systems with ride-sharing,” in 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 3583–3590, IEEE, 2017.

[7] S. Shah, M. Lowalekar, and P. Varakantham, “Neural approximate
dynamic programming for on-demand ride-pooling,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 507–
515, 2020.

[8] P. Santi, G. Resta, M. Szell, S. Sobolevsky, S. H. Strogatz, and
C. Ratti, “Quantifying the benefits of vehicle pooling with shareability
networks,” Proceedings of the National Academy of Sciences, vol. 111,
no. 37, pp. 13290–13294, 2014.

[9] R. Tachet, O. Sagarra, P. Santi, G. Resta, M. Szell, S. H. Strogatz,
and C. Ratti, “Scaling law of urban ride sharing,” Scientific reports,
vol. 7, no. 1, pp. 1–6, 2017.

[10] M. Lowalekar, P. Varakantham, and P. Jaillet, “Zac: A zone path
construction approach for effective real-time ridesharing,” in Pro-
ceedings of the International Conference on Automated Planning and
Scheduling, vol. 29, pp. 528–538, 2019.
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