
Dual-Processor Parallelisation of
Symbolic Probabilistic Model Checking

Marta Kwiatkowska, David Parker, Yi Zhang
({mzk,dxp,yxz}@cs.bham.ac.uk)

School of Computer Science, University of Birmingham,
Edgbaston, Birmingham, B15 2TT, UK

Rashid Mehmood
(Rashid.Mehmood@cl.cam.ac.uk)

Computer Laboratory, University of Cambridge,
Cambridge, CB3 0FD, UK

Abstract

In this paper, we describe the dual-processor paralleli-
sation of a symbolic (BDD-based) implementation of prob-
abilistic model checking. We use multi-terminal BDDs,
which allow a compact representation of large, structured
Markov chains. We show that they also provide a convenient
block decomposition of the Markov chain which we use to
implement a parallelised version of the Gauss-Seidel itera-
tive method. We provide experimental results on a range of
case studies to illustrate the effectiveness of the technique,
observing an average speed-up of 1.8 with two processors.
Furthermore, we present an optimisation for our method
based on preconditioning.

1 Introduction

Probabilistic model checking is an automated technique
for the formal verification of systems which exhibit stochas-
tic behaviour. Similarly to conventional non-probabilistic
model checking, this is based on the construction of a math-
ematical model of the system comprising the state space,
the set of all possible configurations which the system can
be in, and all of the transitions which can occur between
these states. In this case, the model also includes informa-
tion about the probability of each transition occurring at a
given time.

In this paper, we consider two types of probabilistic
models: discrete-time Markov chains (DTMCs), in which
each transition between states is a discrete time-step and
is selected according to a discrete probability distribution;
and continuous-time Markov chains (CTMCs), where the

(real-time) delay before moving from one state to another is
modelled by a negative exponential distribution. Properties
to be verified for these systems are expressed in temporal
logic: PCTL for DTMCs and CSL for CTMCs. This allows
specifications such as “the probability of shutdown occur-
ring within 24 hours is at most 0.01” or “in the long-run,
the probability that the system is stable is at least 0.75”.

As is typically the case with formal verification ap-
proaches, one of the main practical problems for proba-
bilistic model checking is the state space explosion prob-
lem: the tendency for models of real-life systems to grow
prohibitively large, and hence require excessive amounts of
memory and/or time to perform. One direction of research
which attempts to combat this is symbolic approaches,
which employ data structures based on binary decision di-
agrams (BDDs) to generate and manipulate compact rep-
resentations of extremely large models. In the context of
probabilistic model checking, multi-terminal BDDs (MTB-
DDs) are a commonly used variant. Another direction is the
use of parallel or distributed implementations, which split
the problems of storage and computation between several
computers or processors. In this paper, we embark on com-
bining the two approaches.

The problem of performing probabilistic model check-
ing for DTMCs and CTMCs comprises a number of tasks:
model construction, graph-based algorithms (e.g. determin-
ing the set of reachable states of a model), and numerical
computation. In our experience, the last of these is typically
the bottleneck, and it is on this that we therefore concen-
trate. Moreover, we focus here on the problem of solving
linear equation systems, which allows us to compute both
reachability probabilities (the probability of reaching a set
of states from another state) and steady-state probabilities



(the long-run behaviour of the system). This allows verifi-
cation of a wide range of properties of DTMCs and CTMCs.

In this paper, we present techniques to perform the so-
lution of linear equation systems with the Gauss-Seidel it-
erative method, using MTBDD data structures in a parallel
setting. Currently, we are focusing on small-scale paralleli-
sation using shared memory, i.e. we are aiming at desktop
machines equipped with dual or quad processors. In future,
we plan to extend this work to a more general parallelised
setting. We first discuss how using MTBDDs provides us
with a convenient decomposition of our models into blocks.
Next, we show how this allows an efficient symbolic imple-
mentation of Gauss-Seidel, and then how this can be paral-
lelised. Lastly, we present a preconditioning-based optimi-
sation of our approach.

The rest of this paper is organised as follows. In the
remainder of this section, we discuss related work. In
the subsequent sections, we give a high-level overview of
MTBDD-based approaches, describe the implementation
of the techniques outlined in the previous paragraph and
present experimental results to illustrate their effectiveness.

1.1 Related Work

Numerous approaches to the symbolic implementation
of probabilistic model checking and, more generally, the
analysis of stochastic models, can be found in the literature;
see [19] for a survey of this area. The main symbolic meth-
ods applicable to stochastic models are Kronecker methods,
matrix diagrams and MTBDD-based techniques. To date,
the emphasis has been primarily on sequential implemen-
tations. Buchholz et al. presents a parallel block Jacobi al-
gorithm using Kronecker symbolic methods for workstation
clusters [5]. Our paper is part of ongoing work to improve
the efficiency of these techniques through parallelisation. A
complementary direction of research, which will be used to
improve our work in future, is the development of out-of-
core implementations which use disk-based storage to over-
come the limitations of processor memory; see e.g. [13].

In the non-symbolic setting (i.e. using explicit data struc-
tures such as sparse matrices), many researchers work on
distributed and parallel methods for Markov chains. [6]
gives an overview of distributed non-symbolic approaches
for analysing CTMCs. In [18], the authors investigated
a parallel solution for CTMCs by combining Jacobi and
Gauss-Seidel iterative methods. In [4], the authors present
a parallel iterative solution for passage time densities in
semi-Markov models. Parallel implementations of Jacobi
and Conjugate Gradient Squared for solving Markov chains
are presented in [12]. Recently, Bell and Haverkort devel-
oped distributed out-of-core Jacobi and Conjugate Gradient
Squared algorithms for generalised stochastic Petri nets on
a cluster of dual-processor workstations [2]. In their paper,

they point out that as their parallel solution does not use
the second processor on each node efficiently, the overall
speedup of their algorithm is limited.

In numerical analysis literatures, there has been a sig-
nificant amount of work done on parallelisation of iterative
numerical solution techniques, including the Gauss-Seidel
method (see e.g. [3, 10, 23]). Generally, these approaches
work by detecting parts of the computation which can be
performed independently and assigning them to different
processors. This changes the updating order of Gauss-
Seidel, which can hinder the rate of convergence. In a
large-scale parallel environment, this cost can be amortised
by the speed-up from parallelism, but in the dual- or quad-
processor setting which we are aiming at this is difficult to
achieve. Our approach does not affect the updating order.

Another direction of research is the use of precondition-
ing, where the aim is to modify the linear equation sys-
tem being solved to improve its convergence (see [20] for a
recent survey). Traditional preconditioning techniques are
not suitable for an MTBDD-based implementation because
the modifications would destroy the high-level structure in
the matrix and introduce new distinct values, both of which
would have a detrimental effect on the compactness of the
representation. In this paper, we will introduce a simple
preconditioning technique, based on the MTBDD represen-
tation and the block decomposition it provides, which im-
proves the convergence rate in many cases.

2 Symbolic Representations and Block
Structure

Symbolic approaches to model checking are those which
use data structures based on BDDs to arrive at a compact
model representation. This is achieved by exploiting struc-
ture and regularity, obtained from the high-level description
of the model. In practice, symbolic representations of prob-
abilistic models are often orders of magnitude smaller than
explicit alternatives such as sparse matrices. In addition to
compactness of model representation, other advantages of
symbolic approaches include fast and efficient model con-
struction and combination with efficient BDD implementa-
tions of non-probabilistic model checking techniques, e.g.
computing the set of the reachable states of a model.

A variety of data structures have been proposed for this
purpose. Here, we use MTBDDs (multi-terminal binary
decision diagrams) [1, 9], which have already proved ex-
tremely successful for probabilistic model checking (see
e.g. [16]). In the following paragraphs we give a high-level
overview of MTBDDs and how we use them, covering only
the aspects which are relevant to this paper. For a more in-
depth discussion of the data structure and its application to
probabilistic model checking, see e.g. [15, 17, 22].

An MTBDD is a reduced binary tree which represents a

2



real-valued function over Boolean variables. The transition
probability matrix of a DTMC or the transition rate matrix
of a CTMC is essentially a function mapping pairs of states
to real numbers. Hence, by choosing an encoding of the set
of states into n Boolean variables, we can store this infor-
mation as an MTBDD over 2n variables. The nodes of the
MTBDD are grouped into horizontal levels. The top 2n lev-
els are labelled with Boolean variables, one level for each
variable. The bottom level is labelled with real values. To
determine the probability or rate associated with a pair of
states, we trace a path from the top to the bottom of the tree,
resolving the binary decision at each node according to the
value of the corresponding Boolean variable in the encod-
ings of the state pair. The value at the bottom of the tree
gives the result.

MTBDDs are a recursive data structure. While the top
(root) node of the tree represents the whole matrix being
stored, by descending two levels (corresponding to one pair
of Boolean variables), we reach nodes representing the 4
quadrants of the matrix. More generally, descending 2i lev-
els splits it into (2i)2 submatrices. Essentially, each node of
the MTBDD represents a submatrix of the overall matrix;
the lower the node in the tree, the smaller the submatrix.
For a given value of i, the nodes on this level provide a very
convenient partitioning of the whole matrix into blocks.

We observe that the compactness of the MTBDD data
structure derives from the fact that the tree is stored in re-
duced form, with identical subtrees being merged. This cor-
responds to identical submatrices being merged. Through
the use of heuristics, it is possible to derive an extremely
efficient encoding of the model, whereby many submatrices
are repeated and hence only stored once.

In fact, the matrix partitioning described above is some-
what more complicated. In practice, we are only interested
in the reachable states of the probabilistic model, i.e. those
from which there is a path from the initial state. The un-
reachable states, which often significantly outnumber the
reachable ones, can and, for efficiency reasons, should be
ignored. We set the corresponding rows and columns to
zero. Since the distribution of unreachable states is unpre-
dictable, the decomposition into submatrices in fact pro-
duces blocks of uneven size. Furthermore, transition ma-
trices are typically very sparse, with many entries equal to
zero, and hence many of the submatrices will be empty (all
zero). Note that it is essential to keep the unreachable states
in the overall MTBDD encoding; removing them would de-
stroy the regularity of the data structure and hence its com-
pactness.

While MTBDDs provide a compact representation, ac-
cess to the matrix elements, particularly if required row-by-
row or column-by-column is much slower than an explicit
storage scheme such as a sparse matrix. In this paper, we
adopt a compromise between the two approaches. We gen-

erate our matrix as an MTBDD, select a level of the tree,
and generate an explicit (sparse matrix) representation of
the corresponding matrix block for each node on that level,
essentially partitioning the whole matrix into a number of
blocks. Note that this is not equivalent to storing the whole
matrix explicitly because many matrix blocks are repeated
and we only store them once each. In addition, we store
explicit information about where the matrix blocks occur in
the overall matrix. In fact, this is just another matrix, storing
pointers to submatrices rather than the actual values.

Note that, although the resulting data structure is really
two layers of entirely explicit storage, we still refer to this
as a symbolic storage scheme since it relies on the structure
and regularity of the MTBDD from which it was derived to
remain a compact representation. Later in the paper, we will
present experimental results to illustrate that it is far more
compact than a single sparse matrix.

This data structure will be used in the remainder of the
paper. From this point on, however, the manner in which it
was created is not important: we need only know that we
have a compact representation of a large matrix which is di-
vided into blocks and that we have efficient (row-wise) ac-
cess both to the blocks themselves and the elements within
them. In the next section, we describe how this allows us to
parallelise a symbolic implementation of Gauss-Seidel.

3 Parallelising Gauss-Seidel

3.1 The Gauss-Seidel Method

We first describe a technique for implementing Gauss-
Seidel. In fact, this method is applicable to any storage
scheme but is designed to suit the scheme outlined in the
previous section. We consider the problem of solving a lin-
ear equation system Ax = b where A is an n × n matrix
and b is vector of length n. In the context of probabilistic
model checking, A will have been derived from the transi-
tion matrix representing the probabilistic model. We denote
the (i, j)th element of matrix A as Aij and the ith element
of vector b as bi.

Gauss-Seidel works by, at each iteration, computing a
new approximation to the solution vector x, using the ma-
trix A, the vector b and the values of x from the previous
iteration. The algorithm in Figure 1 performs the numeri-
cal computation for one iteration of Gauss-Seidel. Note that
we require only one copy of the solution vector x, which we
simply overwrite as we compute its new entries.

Assume now that we have a division of the matrix A into
N × N blocks. We denote the (p, q)th block of A as A(pq)

and, correspondingly, the pth block of vector b as b(p). The
(i, j)th element of submatrix A(pq) is A(pq)ij and the ith
element of subvector b(p) is b(p)i. The size of block A(pq)

is defined as np × nq , and hence the size of b(p) is np. We

3



1. for (0 ≤ i < n)
2. xi := (bi −

∑
0≤j<n,j 6=i Aij · xj)/Aii

Figure 1. A simple algorithm to perform an iteration of Gauss-Seidel.

1. for (0 ≤ p < N)
2. temp := b(p)

3. for each block A(pq) with q 6= p
4. temp := temp − A(pq)x(q)

5. for (0 ≤ i < np, i 6= j)
6. x(p)i := (tempi −

∑
0≤j<np

A(pp)ij · x(p)j)/A(pp)ii

Figure 2. A block-based reformulation of the algorithm for an iteration of Gauss-Seidel.

can now formulate the computation for a single iteration of
Gauss-Seidel as shown in Figure 2.

The pth phase of the outer loop computes updates to the
values of block x(p) of the solution vector. Note that we
still only store one copy of x but we use an additional vec-
tor temp of size max0≤p<N{np} to accumulate the multi-
plications of submatrices and subvectors. Observe also that
the iteration over matrix blocks in line 3 need only be over
non-empty blocks.

The appeal of this reformulation is that it requires iso-
lated access to individual matrix blocks. The pth phase of
an iteration (lines 2–6) uses only the pth row of blocks of
A, of which lines 3–4 iterate over the non-diagonal blocks
one by one, and lines 5–6 use the diagonal block A(pp).
In similar fashion, vector blocks are also accessed one at a
time.

It should now be clear how the algorithm above, while
potentially also suitable for any matrix representation, is
particularly appropriate for the symbolic storage scheme
outlined in the previous section, which provides fast (row-
wise) access both to each matrix block and to each element
of that block. The algorithm will now prove amenable to
parallelisation, as we will show in the next section. Fur-
thermore, we note that this is the first time that an efficient
Gauss-Seidel algorithm has been presented for an MTBDD-
based matrix representation since, in its conventional form,
it does not allow efficient access to individual rows.

3.2 Parallelisation

Our block-based reformulation of the Gauss-Seidel al-
gorithm also facilitates its parallelisation. Assume that we
have P processes, with IDs 0, ..., P − 1. The basic idea is
to distribute the outermost loop (over p) of Figure 2 among
the P processes. Process k will compute the new values for

the subvectors {x(k),x(k+P ), . . .}. The parallel algorithm
for process k is described in Figure 3.

During every round, each process k computes some sub-
vector x(p) using the pth row of matrix blocks, i.e. A(pq)

for q = 0, . . . , N − 1. For each matrix block, it requires the
corresponding vector block x(q) to perform a matrix-vector
multiplication. To ensure that the block-based algorithm re-
mains faithful to the original Gauss-Seidel algorithm, we
have to take special care with vector blocks which are be-
ing computed by other processes in the same round. More
specifically, we need up-to-date values of the vector-blocks
for the cases where q ≤ p. For q > p, this is not the case.
Furthermore, for q < p − k, the vector blocks have already
been updated in previous rounds. Hence, we can safely
start by dealing with these matrix blocks. For the remaining
blocks, i.e. those in the range p − k ≤ q < p, we need to
wait for the process which is computing that block (i.e. pro-
cess p− q) to finish computing it before we can use it. This
procedure can be observed by the replacement of lines 3–4
from Figure 2 with lines 3-7 in Figure 3. Finally, at the end
of the round, process k has to wait for the other processes
to finish before processing to the next round (see line 10 of
Figure 3). Note also that although the algorithm effectively
cycles through all N blocks in each row of blocks in the
matrix, in practice, many of these blocks will be empty (all
zero) and can be ignored.

3.3 Preconditioning

Next, we introduce an improvement to the algorithms
described above based on preconditioning. This method
works by modifying the order in which the subvectors of
the solution vector are updated in each iteration. It is in-
spired by traditional preconditioning methods for Gauss-
Seidel, most of which perform a kind of incomplete LU

4



1. for (p = {k, k + P, . . .})
2. temp := b(p)

3. for each block A(pq) with q < p − k or q > p
4. temp := temp − A(pq)x(q)

5. for each block A(pq) with p − k ≤ q < p
6. wait for process p − q
7. temp := temp − A(pq)x(q)

8. for (0 ≤ i < np, i 6= j)
9. x(p)i := (tempi −

∑
0≤j<np

A(pp)ij · x(p)j)/A(pp)ii

10. synchronise with other processes

Figure 3. Parallel algorithm for an iteration of Gauss-Seidel (process ID=k).

factorisation. A full LU decomposition would reduce the
number of iterations to one; an incomplete decomposition
can still provide a useful improvement in the convergence.
In the resulting U matrix of a full LU decomposition, the
number of non-zero elements in each row tends to decrease
from the top to the bottom of the matrix. In our precondi-
tioning method, we try to achieve the same result, but at the
level of matrix blocks.

We first define a Boolean N × N matrix B, represent-
ing the MTBDD block structure, i.e. Bpq is 1 if matrix
block A(pq) is non-empty and 0 otherwise. We then define
Bp =

∑
0≤q<N Bpq for any 0 ≤ p < N . In the block-

based Gauss-Seidel algorithm of the previous section, each
iteration updates the N subvectors of the solution vector
x in the order 0, 1, . . . , N − 1. To apply preconditioning,
we instead update them in the order i1, i2, ..., iN , where
Bi1 ≥ Bi2 ≥ ... ≥ BiN

. In the next section, we will show
how this approach can reduce the number of iterations re-
quired for convergence.

4 Experimental Results

We now present experimental results to evaluate the per-
formance of the parallelised Gauss-Seidel method from the
previous sections. We implemented our methods by inte-
grating them into the PRISM 2.0 model checker [14]. We
used a selection of case studies, including three CTMC
models (a flexible manufacturing system (FMS) [8], a
Kanban manufacturing system [7] and a workstation clus-
ter [11]) and a DTMC model (multiplexing of unreliable
NAND gates) [21].

For the CTMCs, we model checked CSL properties
which required computation of the steady-state proba-
bilities; for the DTMC, we verified a PCTL property
which required computation of reachability probabilities.
For each example, we can generate models of varying
size by changing one or more parameters. For more
information about the examples, their parameters and

the corresponding properties, see the PRISM web site
(www.cs.bham.ac.uk/˜dxp/prism).

First, we give some statistics to show the memory us-
age of the MTBDD-based storage scheme we use. As dis-
cussed earlier in the paper, by selecting different levels of
the MTBDD, we can create different decompositions of the
matrix into blocks, which will have varying memory con-
sumption. Figure 4 shows the variation in memory usage
for a selection of models. As expected, for levels either
very low or very high in the MTBDD, we get a much higher
memory usage. In the former case, we are having to store
very large submatrices explicitly; in the latter, we are cre-
ating very small submatrices, but the information about the
structure of the blocks is itself a very large matrix. In fact,
for each graph, the left-most point plotted is equivalent to
the creation of a fully explicit (sparse matrix) representa-
tion.

The magnitude of the drop in the middle section empha-
sises how compact our representation remains, compared to
the explicit version. It can also be seen that there is a wide
range of values in the middle of the graph for which we can
achieve such a reduction. For the results in the remainder
of this section, we manually selected a suitable level. In
future, we plan to investigate this area further and derive
appropriate heuristics.

Next, we show timing statistics for model checking us-
ing four separate implementations: sequential symbolic ver-
sions of the Jacobi and Gauss-Seidel methods, the first of
which was already available in PRISM 2.0, and the second
of which is now available with our new formulation; and
the parallelised version of Gauss-Seidel, with and without
preconditioning.

Our experiments were performed on an SMP PC with
two 2.0 GHz Intel Pentium 4 Xeon processors and 1 GB
of main memory running Linux. Parallelisation is imple-
mented with threads, using the pthread package. Storage in
memory of the matrix A and vector b describing the linear
equation system is shared between threads but since only

5



0 10 20 30 40 50 60
0

2

4

6

8

10

12
x 10

4

Level

M
em

or
y 

(K
B

)

FMS (6)
NAND (40,3)
Kanban (5)
Cluster (256)

Figure 4. Memory for matrix storage using different block decompositions.

Table 1. Total execution times (seconds) for each implementation.

Model States Sequential Sequential Parallel Parallel
Jacobi GS GS GS (pre.)

FMS (N=6) 537,768 128.3 110.6 55.1 49.7
FMS (N=7) 1,639,440 461.0 413.9 220.5 191.5
FMS (N=8) 4,459,455 1800.7 1294.7 724.3 620.4

Kanban (N=5) 2,546,432 346.5 268.8 149.0 127.1
Kanban (N=6) 11,261,376 2087.8 1688.0 945.7 828.6
Cluster (N=256) 2,373,652 1144.6 334.3 257.2 257.7

NAND (N=40,M=3) 1,004,821 103.6 178.2 88.8 88.9
NAND (N=40,M=5) 2,003,041 408.9 590.8 285.6 284.8
NAND (N=40,M=7) 3,001,261 913.5 1181.4 590.0 589.7
NAND (N=40,M=9) 3,999,481 1618.0 1978.7 999.9 998.7

read-access is required, no synchronisation is performed.
In fact, the same is true of the solution vector x since, al-
though it is both read and written by all threads, different
parts of the vector are accessed by different processors all
the time during the execution. The synchronisation referred
to in lines 6 and 10 of Figure 3 is implemented with the con-
dition variable mechanism provided in the pthread package.

Table 1 shows the actual (total) run-times for our im-
plementations. Figure 5 shows the speed-up of each ap-
proach, relative to the sequential Gauss-Seidel case. Our
first observation is that our new (sequential) implementa-
tion of Gauss-Seidel is generally faster than the old Jacobi

implementation. This is to be expected since it usually re-
quires less iterations to converge (in fact, for the NAND
example, the convergence rate is unchanged and the over-
head in computation means Gauss-Seidel is actually slightly
slower).

Secondly, we note that our parallelisation of the Gauss-
Seidel algorithm is effective: the average speed-up over
these ten benchmark examples is approximately 1.8. Fi-
nally, we see that in half of the cases the preconditioning
provides a further improvement. This is due to the reduc-
tion in iterations for convergence required. For the NAND
and workstation cluster examples, the convergence rate is

6



Figure 5. Speed-up in execution time for each implementation.

Table 2. Changes in convergence rate due to preconditioning.

Model Iterations
Original Precond.

FMS (N=6) 812 750
FMS (N=7) 966 879
FMS (N=8) 1,125 1,059

Kanban (N=5) 461 460
Kanban (N=6) 622 594
Cluster (N=256) 1002 1002

NAND (N=40,M=3) 480 480
NAND (N=40,M=5) 800 800
NAND (N=40,M=7) 1120 1120
NAND (N=40,M=9) 1440 1440

unchanged. This is because each row of blocks in the ma-
trix A has the same number of non-zero blocks and hence
our preconditioning technique has no effect. We give the
precise figures for the convergence of each example in Ta-
ble 2.

5 Conclusions and Future Work

In this paper, we have presented an MTBDD-based
method for the Gauss-Seidel algorithm and its paralleli-
sation, with a target platform of shared memory dual- or
quad-processor workstations. We implemented our tech-
nique in the probabilistic model checking tool PRISM and,
on a range of examples, illustrated an average speed-up of

1.8 using two processors. We were also able to optimise our
approach further with a simple notion of preconditioning.

Presently, grid systems are attracting a lot of attention.
Nodes of grid systems are usually clusters of PCs with dual-
processors, connected by a high-speed network. From an ar-
chitecture point of view, such systems exhibit properties of
both shared memory systems and message passing systems.
In future, we are planning to fully parallelise our approach
for use on grid systems, by investigating a combination of
the dual-processor approach in this paper with other parallel
technologies for the message passing model.

We would like also to investigate MTBDD-based pre-
conditioning methods. It is widely accepted that precondi-
tioning methods are essential for the efficiency of iterative

7



algorithms. MTBDD-based implementations of iterative
solution methods require preconditioning methods which
preserve the regularity of the data structure used for matrix
storage. We have demonstrated one such approach in this
paper. We plan to continue developing efficient techniques
to support preconditioning for symbolic implementations.

Acknowledgements

The work in this paper was supported in part by EPSRC
grants GR/S11107 and GR/S27252.

References

[1] I. Bahar, E. Frohm, C. Gaona, G. Hachtel, E.Macii,
A. Pardo, and F. Somenzi. Algebraic decision diagrams
and their applications. In Proc. International Conference
on Computer-Aided Design (ICCAD’93), pages 188–191,
1993.

[2] A. Bell and B. R. Haverkort. Serial and parallel out-of-core
solution of linear systems arising from generalised stochas-
tic petri nets. In Proceedings of High-Performance Comput-
ing Symposium (HPC), Advanced Simulation Technologies
Conference (ASTC 2001), Seattle, USA, pages 242–247. So-
ciety for Computer Simulation, Apr. 2001.

[3] D. Bertsekas and J. Tsitsiklis. Parallel and Distributed Com-
putation: Numerical Methods. Athena Scientific, 1997.

[4] J. Bradley, N. Dingle, W. Knottenbelt, and H. Wilson.
Hypergraph-based parallel computation of passage time
densities in large semi-markov models. In 4th Interna-
tional Meeting on the Numerical Solution of Markov Chains
(NSMC 2003), pages 99–120. Chicago, USA, Sept. 2003.

[5] P. Buchholz, M. Fischer, and P. Kemper. Distributed steady
state analysis using kronecker algebra. In Numerical Solu-
tions of Markov Chains (NSMC’99), pages 76–95. Prensas
Universitarias de Zaragoza, Sept. 1999.

[6] G. Ciardo. Distributed and structured analysis approaches to
study large and complex systems. In E. Brinksma, H. Her-
manns, and J.-P. Katoen, editors, Lectures on Formal Meth-
ods and Performance Analysis, volume 2090 of LNCS, pages
344–374. Springer-Verlag, Nov. 2001.

[7] G. Ciardo and M. Tilgner. On the use of Kronecker operators
for the solution of generalized stocastic Petri nets. ICASE
Report 96-35, Institute for Computer Applications in Sci-
ence and Engineering, 1996.

[8] G. Ciardo and K. Trivedi. A decomposition approach for
stochastic reward net models. Performance Evaluation,
18(1):37–59, 1993.

[9] E. Clarke, M. Fujita, P. McGeer, K. McMillan, J. Yang, and
X. Zhao. Multi-terminal binary decision diagrams: An ef-
ficient data structure for matrix representation. In Proc. In-
ternational Workshop on Logic Synthesis (IWLS’93), pages
1–15, 1993.

[10] G. H. Golub, J. M. Ortega, and G. Golub. Scientific Comput-
ing: An Introduction With Parallel Computing. Academic
Press, 1993.

[11] B. Haverkort, H. Hermanns, and J.-P. Katoen. On the use
of model checking techniques for dependability evaluation.
In Proc. 19th IEEE Symposium on Reliable Distributed Sys-
tems (SRDS’00), pages 228–237, Erlangen, Germany, Octo-
ber 2000.

[12] W. Knottenbelt. Parallel Performance Analysis of Large
Markov Models. PhD thesis, University of London, Imperial
College of Science, 1999.

[13] M. Kwiatkowska, R. Mehmood, G. Norman, and D. Parker.
A symbolic out-of-core solution method for Markov mod-
els. In Proc. Workshop on Parallel and Distributed Model
Checking (PDMC’02), volume 68.4 of Electronic Notes in
Theoretical Computer Science. Elsevier, 2002.

[14] M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Prob-
abilistic symbolic model checker. In T. Field, P. Harrison,
J. Bradley, and U. Harder, editors, Proc. 12th International
Conference on Modelling Techniques and Tools for Com-
puter Performance Evaluation (TOOLS’02), volume 2324
of LNCS, pages 200–204. Springer, 2002.

[15] M. Kwiatkowska, G. Norman, and D. Parker. Probabilis-
tic symbolic model checking with PRISM: A hybrid ap-
proach. International Journal on Software Tools for Tech-
nology Transfer (STTT), 2004. To appear.

[16] M. Kwiatkowska, G. Norman, and R. Segala. Automated
verification of a randomized distributed consensus protocol
using Cadence SMV and PRISM. In G. Berry, H. Comon,
and A. Finkel, editors, Proc. 13th International Conference
on Computer Aided Verification (CAV’01), volume 2102 of
LNCS, pages 194–206. Springer, 2001.

[17] R. Mehmood, D. Parker, and M. Kwiatkowska. An efficient
BDD-based implementation of Gauss-Seidel for CTMC
analysis. Technical Report CSR-03-13, School of Computer
Science, University of Birmingham, December 2003.

[18] V. Migalln, J. Penads, and D. B. Szyld. Experimen-
tal study of parallel iterative solutions of markov chains
with block partitions. In Numerical Solutions of Markov
Chains (NSMC’99), pages 96–110. Prensas Universitarias
de Zaragoza, Sept. 1999.

[19] A. Miner and D. Parker. Symbolic representations and anal-
ysis of large probabilistic systems. In C. Baier, B. Haverkort,
H. Hermanns, J.-P. Katoen, M. Siegle, and F. Vaandrager,
editors, Lecture Notes in Computer Science Tutorial Vol-
ume: Validation of Stochastic Systems. Springer, 2004. To
appear.

[20] H. Niki, K. Harada, M. Morimoto, and M. Sakakihara. The
survey of preconditioners used for accelerating the rate of
convergence in the Gauss-Seidel method. Journal of Com-
putational and Applied Mathematics, 164(1):587–600, Mar.
2004.

[21] G. Norman, D. Parker, M. Kwiatkowska, and S. Shukla.
Evaluating the reliability of defect-tolerant architectures for
nanotechnology with probabilistic model checking. In Proc.
International Conference on VLSI Design (VSLI’04), pages
907–914. IEEE Computer Society Press, 2004. To appear.

[22] D. Parker. Implementation of Symbolic Model Checking for
Probabilistic Systems. PhD thesis, University of Birming-
ham, 2002.

[23] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS,
Boston, 1996.

8


