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Abstract

Modelling and verification of systems such as communication, network and security protocols, which exhibit
both probabilistic and non-deterministic behaviour, typically use Markov Decision Processes (MDPs). For
large, complex systems, abstraction techniques are essential. This paper builds on a promising approach
for abstraction of MDPs based on stochastic two-player games which provides distinct lower and upper
bounds for minimum and maximum probabilistic reachability properties. Existing implementations work
at the model level, limiting their scalability. In this paper, we develop language-level abstraction techniques
that build game-based abstractions of MDPs directly from high-level descriptions in the PRISM modelling
language, using predicate abstraction and SMT solvers. For efficiency, we develop a compositional framework
for abstraction. We have applied our techniques to a range of case studies, successfully verifying models
larger than was possible with existing implementations. We are also able to demonstrate the benefits of
adopting a compositional approach.

Keywords: Automatic verification, probabilistic model checking, predicate abstraction, Markov models.

1 Introduction

Verification of systems that exhibit both non-deterministic and probabilistic be-
haviour has proved to be very useful in domains such as communication and net-
work protocols, security protocols, and randomised distributed algorithms. Markov
Decision Processes (MDPs) are a natural model for such systems and several tools,
such as PRISM [13] and LiQuor [4], implement efficient solution methods for these
models. As in the field of non-probabilistic model checking, however, the state space
explosion problem tends to limit the scalability of these approaches and techniques
to counter this are an important area of research.

Of particular current interest are the development of abstraction techniques for
the verification of MDPs [6,8,18,22]. In this paper, we use the abstraction ap-
proach of [18], which is based on stochastic two-player games. The key idea is
to separate the non-determinism that is introduced by the abstraction from the
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non-determinism present in the original MDP. This results in abstract models that
provide distinct upper and lower bounds on minimum and maximum reachability
probabilities. This is in contrast to alternative abstraction methods [6], where only
an upper bound on the maximum probability and a lower bound on the minimum
probability can be extracted. Besides being a more informative abstraction, these
bounds also provide a measure of the quality of the abstraction. This information
is potentially very useful when considering refinement.

A limitation of the existing implementation in [18] is that abstractions are per-
formed at the model level, i.e. the full concrete model (MDP) is constructed and
then reduced to the corresponding stochastic game. In this paper, we develop tech-
niques to construct the abstraction directly from a high-level description of the
MDP (in this case the modelling language of PRISM) using predicate abstraction
[12,1,5], which has been very successful in the non-probabilistic setting.

Predicate abstraction for PRISM models was recently considered in [22], but
using the abstraction technique of [6] which represents abstractions as MDPs. Ap-
plying predicate abstraction to the approach of [18] provides the additional benefits
of the game-based approach but proves to be more involved. This is because the
game-based abstraction preserves additional information which is non-trivial to ex-
tract from language-level descriptions of PRISM models.

We present a compositional variant of game-based abstraction of MDPs, explain
how to apply it at the level of the PRISM modelling language, and describe an
implementation of these techniques using SMT solvers and ‘on-the-fly’ abstraction.
We illustrate its applicability on several examples, successfully analysing models
larger than is possible with the implementation of [18] and improving performance
on others. We also analyse the benefits of employing a compositional approach.

The remainder of this paper is structured as follows. Section 2 provides back-
ground material, including the PRISM modelling language and its semantics. In
Section 3 we present a compositional variant of the game-based abstraction method
of [18]. In Section 4, we give a game-based variant of PRISM called A–PRISM
and describe a predicate abstraction procedure for PRISM models that results in
A–PRISM models. Sections 5 and 6 describe our implementation and present exper-
imental results from several case studies. We conclude with a discussion of related
work and ideas for future development.

Proofs can be found in the technical report version of this paper [16].

2 Background

We assume a set of typed variables V . A valuation of V is a function s mapping each
variable in V to a value in its domain. We let val(V ) denote the set of all valuations
of V and, for any s ∈ val(V ) and V ′ ⊆ V , let sdV ′ denote the restriction of s to the
domain V ′. Furthermore, if s1 ∈ val(V1), s2 ∈ val(V2) and V1 ∩V2 = ∅, we let s1 ‖ s2

denote the valuation of V1 ∪ V2 where (s1 ‖ s2)dV1= s1 and (s1 ‖ s2)dV2= s2. We will
often refer to valuations as states. We also assume a finite set Act of actions and
an additional ‘silent’ action τ 6∈ Act .

A probability distribution over a finite set S is a function µ : S → [0, 1] such that∑
s∈S µ(s) = 1. Let Dist(S) denote the set of all distributions over S. For any s ∈ S,
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let ηs denote the point distribution at s. If µ1 ∈ Dist(val(V1)), µ2 ∈ Dist(val(V2))
and V1 ∩ V2 = ∅, let µ1 ‖µ2 denote the distribution over val(V1 ∪ V2) such that
(µ1 ‖µ2)(s) = µ1(sdV1) · µ2(sdV2) for all s ∈ val(V1 ∪ V2).

Definition 2.1 Let V, V ′ be sets of variables such that V ′ ⊆ V. A transition from
V to V ′‘ is a tuple 〈s, step〉 where s ∈ val(V ) and step ⊆ (Act ∪{τ})×Dist(val(V ′)).

A transition 〈s, step〉 consists of a source state s and non-deterministic choice step
between pairs comprising an action and a distribution over target states. We now
define (standard CSP-style) parallel composition of transitions.

Definition 2.2 Suppose V1, V2 ⊆ V are disjoint sets of variables, 〈s, stepi〉 is a
transition from V to Vi for i ∈ {1, 2} and A ⊆ Act . Let 〈s, step1〉 |[A]| 〈s, step2〉
denote the transition 〈s, step〉 from V to V1 ∪ V2 where 〈a, µ〉 ∈ step if and only if
one of the following conditions holds:

1. a 6∈ A and µ = µ1 ‖ η(sdV2
) for some 〈a, µ1〉 ∈ step1;

2. a 6∈ A and µ = η(sdV1
) ‖µ2 for some 〈a, µ2〉 ∈ step2;

3. a ∈ A and µ = µ1 ‖µ2 for some 〈a, µ1〉 ∈ step1 and 〈a, µ2〉 ∈ step2.

2.1 Controlled Markov Decision Processes

The techniques introduced in this paper are for Markov Decision Processes (MDPs).
However, in order to adopt a compositional approach, we use a variant called Con-
trolled Markov Decision Processes which represent components of an MDP. These
are similar to the probabilistic modules of [7].

Definition 2.3 A Controlled Markov Decision Process (CMDP) is a tuple C =
〈V, V ctrl, V ext,Act , sinit,Steps 〉 where:

• V is a finite set of typed variables;
• V ctrl and V ext partition V into controlled and external variables;
• Act is a finite set of actions;
• sinit ∈ val(V ctrl) is the initial valuation;
• Steps : val(V ) → P((Act ∪ {τ})× Dist(val(V ctrl))) is the transition function.

A CMDP specifies the initial values of its controlled variables and how these vari-
ables are updated. These updates depend on the values of both its controlled
variables and the external variables, which are assumed to be under the control
of other components in the system. Given a valuation of all variables s ∈ val(V)
the set of action-distribution pairs Steps (s) represents a non-deterministic choice
between several behaviours. If the 〈a, µ〉 is chosen, then the CMDP performs ac-
tion a and then probabilistically selects a new valuation of its controlled variables
according to µ. The transition function can equivalently be defined as the set
{〈s,Steps (s)〉 | s ∈ val(V )} of transitions from V to V ctrl.

We now describe the parallel composition of CMDPs. Note that CMDPs can
only be combined in parallel when they agree on the total set of variables and
their control variables are disjoint. We call such CMDPs composable. Let Ci =
〈V, V ctrl

i , V ext
i ,Act i, s

init
i ,Steps i〉 for i ∈ {1, 2}.
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Definition 2.4 The parallel composition of two composable CMDPs C1 and C2 is
the CMDP C1 |[A]| C2 = 〈V, V ctrl, V ext,Act , sinit,Steps 〉 where:

• V ctrl = V ctrl
1 ∪ V ctrl

2 ;
• V ext = (V ext

1 ∪ V ext
2 ) \ (V ctrl

1 ∪ V ctrl
2 );

• Act = Act 1 ∪Act 2;
• sinit = sinit

1 ‖ sinit
2 ;

• if s ∈ val(V ), then 〈s,Steps (s)〉 = 〈s,Steps 1(s)〉 |[A]| 〈s,Steps 2(s)〉.

We can also define action renaming and action hiding operations for CMDPs, but
for brevity we will omit these from the presentation in this paper.

Example 2.5 Consider the CMDP Cwalk where V ctrl={val}, V ext={close}, val has
domain {0, . . . , 4} with initial value 2 and close has the type Boolean. For any val-
uation (v, c) ∈ val({val , close}), StepsCwalk

(v, c) = {〈τ, 1
2 · ηv−1 + 1

2 · ηv+1〉, 〈read , ηv〉}
if v ∈ {1, 2, 3} and equals {〈read , ηv〉} otherwise. The CMDP models a random
walk that can, at any time, do a read action. Let Cwalk be composed with the
CMDP Cobs in which V ctrl={close}, V ext={val}, close has initial value false, and,
for (v, c) ∈ val({val , close}), StepsCobs

(v, c) = {〈read , ηclose〉} if v 6=2 and equals
{〈read , η¬close〉} otherwise. This models a CMDP which performs action read , and
updates close depending on whether val is close to the ends of the walk or not.
Graphical representations of these CMDPs are given in Figure 1(a).

Note that a CMDP for which V ext = ∅ (for example the parallel composition of
CMDPs whose controlled variables partition V) is simply an MDP. For an MDP, we
are typically interested in quantitative aspects such as probabilistic reachability. An
adversary of an MDP is a particular resolution of the non-determinism. Given an
MDP, a valuation s ∈ val(V ), a set of valuations F ⊆ val(V ) and an adversary A we
use pAs (F ) to denote the probability of reaching F from s under adversary A, defined
in the usual way [17]. We use p−s (F ) = infA pAs (F ) and p+

s (F ) = supA pAs (F ) to
denote the extremal probabilities of reaching F from s [2].

2.2 PRISM Models

We now describe the modelling language used by the PRISM [13] to describe MDPs.
This language is based on guarded commands extended with probabilistic choices.

Definition 2.6 A PRISM model is a tuple P = 〈var(P), sys, {M1, . . . ,Mm}〉 con-
sisting of a finite set of (Boolean or integer) variables var(P), a system definition
sys and a finite set modules {M1, . . . ,Mm}. The system definition sys is a process
algebraic expression containing each of the m modules exactly once. Each module
M consists of:

• a finite set of local variables var(M) ⊆ var(P) such that:
- var(M) are disjoint from the local variables of all other modules;
- each variable var ∈ var(M) has the initial value init(var);
- init(M) ∈ val(var(M)) denotes the initial values of var(M);

• a finite set of commands com(M) where each command cmd ∈ com(M) includes:
- a guard guard(cmd) which is a Boolean function over val(var(P));
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(a) CMDPs.

module walk

val : [0..4] init 2;

[] (0<val<4) → 0.5 : (val ′=val−1) + 0.5 : (val ′=val+1);
[read ] true → 1.0 : true;

endmodule

module obs

close : bool init false;

[read ] (val 6=2) → 1.0 : (close′=true);
[read ] (val=2) → 1.0 : (close′=false);

endmodule

system walk |[read ]| obs endsystem

(b) PRISM syntax.

Fig. 1. Simple example: a random walk and observer process (see Examples 2.5 and 2.8).

- an action act(cmd);
- a finite set of updates updates(cmd) = {〈λ1, u1〉, . . . , 〈λn, un〉} such that λi ∈

(0, 1],
∑n

i=1 λi = 1 and ui is a function from val(var(P)) to val(var(M)).

For each command cmd of a module M and valuation s of var(P), supposing
updates(cmd) = {〈λ1, u1〉, . . . , 〈λn, un〉}, let dist(cmd , s) denote the distribution over
val(var(M)) such that dist(cmd , s)(s′) =

∑
ui(s)=s′ λi for all s′ ∈ val(var(M)). In-

tuitively, dist(cmd , s)(s′) is the probability that performing cmd in s updates the
module’s local variables to s′.

Definition 2.7 The semantics of a module M of a PRISM model P is given by the
CMDP [[M ]] = 〈V, V ctrl, V ext,Act , sinit,Steps 〉 where:

• V = var(P), V ctrl = var(M) and V ext = var(P) \ var(M);
• Act = {act(cmd) | cmd ∈ com(M)} \ {τ};
• sinit = init(M);
• if s ∈ val(var(P)), then 〈a, µ〉 ∈ Steps (s) if and only if there exists cmd ∈ com(M)

such that guard(cmd)(s) holds and 〈act(cmd), dist(cmd , s)〉 = 〈a, µ〉.

The semantics [[P]] of a PRISM model P is defined according to its system definition
sys, using the semantics [[M ]] of each individual module M , given above, and parallel
composition of CMDPs (see Definition 2.4). We assume that var(P) is the disjoint
union ∪m

i=1var(Mi), and hence, for the parallel composition of all modules in a
PRISM model, the set V ext is empty. In other words, the semantics of a PRISM
model is given by an MDP.

Example 2.8 Figure 1(b) presents a PRISM model of the CMDP in Example 2.5.

3 Abstraction of CMDPs

In this section we introduce abstractions of CMDPs, using the stochastic two-player
game approach of [18] and predicates. A predicate ϕ is over variables V if all
valuations of V uniquely determine the truth value of ϕ and we write ϕ(s) to denote
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the value of ϕ for a valuation s of V . Given a set of predicates Φ, let bool(Φ) be
the set of Boolean variables indexed by the predicates in Φ, i.e. the set {bϕ |ϕ ∈ Φ}.
Furthermore, for abstraction of a particular CMDP using Φ, we will require that
every predicate is either over only controlled variables or only external variables of
this component. This partitions the predicates into Φctrl and Φext.

3.1 Abstract Controlled Markov Decision Processes

In order to present a compositional variant of game-based MDP abstraction, we
introduce Abstract Controlled Markov Decision Processes (ACMDPs) which are a
variant of the class of stochastic two-player games used in [18].

Definition 3.1 An Abstract Controlled Markov Decision Process (ACMDP) is a
tuple A = 〈V , V ctrl, V ext,Act , sinit,Steps 〉 where:

• V is a set of typed variables;
• V ctrl and V ext partition V into controlled and external variables;
• Act is a finite set of actions;
• sinit ∈ val(V ctrl) is the initial valuation;
• Steps : val(V ) → P(P((Act ∪ {τ})× Dist(val(V ctrl)))) is the transition function.

The crucial difference between CMDPs and ACMDPs is that the transition function
now returns sets of sets of action-distribution pairs. This means ACMDPs capture
two levels of non-determinism: the choice of a set of action-distribution pairs, and
then the choice of an element in this set. This two-level non-determinism is equiv-
alent to that of the stochastic two-player games used in [18], where first player 1
makes a choice, then player 2 does, followed by a probabilistic choice.

We now describe the parallel composition of ACMDPs. As for CMDPs, ACMDPs
can only be combined when they agree on the total set of variables and their
control variables are disjoint. We call such ACMDPs composable. Let Ai =
〈V , V ctrl

i , V ext
i ,Act i, sinit

i ,Steps i〉 for i ∈ {1, 2}.

Definition 3.2 The parallel composition of two composable ACMDPs A1 and A2

is the ACMDP A1 |[A]| A2 = 〈V , V ctrl, V ext,Act , sinit,Steps 〉 where

• V ctrl = V ctrl
1 ∪ V ctrl

2 ;
• V ext = (V ext

1 ∪ V ext
2 ) \ (V ctrl

1 ∪ V ctrl
2 );

• Act = Act 1 ∪Act 2;
• sinit = sinit

1 ‖ sinit
2 ;

• if s ∈ val(V ), then step ∈ Steps (s) if and only if 〈s, step〉 = 〈s, step1〉 |[A]| 〈s, step2〉
for some step1 ∈ Steps 1(s) and step2 ∈ Steps 2(s).

Like the relation between CMDPs and MDPs, an ACMDP for which V ext = ∅ is
equivalent to a stochastic two-player game from [18]. A player 1 strategy in such an
ACMDP is a particular resolution of the first non-deterministic choice of transitions
in the ACMDP, whereas a player 2 strategy resolves the second non-deterministic
choice. Given a valuation s ∈ val(V ), a set of valuations F ⊆ val(V ) and strategy
pair σ1, σ2, we use pσ1,σ2

s (F ) to denote the probability of reaching F from s under
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the strategies σ1, σ2. Like for MDPs, we define extremal values as:

p−−s (F ) = inf
σ1

inf
σ2

pσ1,σ2
s (F ) p+−

s (F ) = sup
σ1

inf
σ2

pσ1,σ2
s (F )

p−+
s (F ) = inf

σ1

sup
σ2

pσ1,σ2
s (F ) p++

s (F ) = sup
σ1

sup
σ2

pσ1,σ2
s (F )

3.2 Predicate Abstraction for CMDPs

In this section we introduce a compositional and predicate-based extension of the
abstraction procedure described in [18]. Like in non-probabilistic predicate abstrac-
tion [1], we will represent an abstract state using Boolean variables bool(Φ) indexed
by a set of predicates Φ. We will denote abstractions with respect to Φ by α( · ,Φ),
which we now define for states, distributions, transitions and then CMDPs.

Definition 3.3 Given a set of variables V and predicates Φ over V , the abstractions
of a valuation s ∈ val(V ) and distribution µ ∈ Dist(val(V )) with respect to Φ are
defined as follows:

• α(s,Φ) is the valuation of bool(Φ) where α(s,Φ)(bϕ)=ϕ(s) for all ϕ ∈ Φ;
• α(µ,Φ) is the distribution over val(bool(Φ)) where α(µ,Φ)(s) =

∑
α(s,Φ)=s µ(s)

for all s ∈ val(bool(Φ)).

Definition 3.4 Given a set of variables V, subset V ′ ⊆ V and sets of predi-
cates Φ and Φ′ ⊆ Φ over V and V ′, the abstraction of a transition 〈s, step〉 from
V to V ′ with respect to Φ, denoted α(〈s, step〉,Φ), is given by the transition
〈α(s,Φ), {〈a, α(µ,Φ′)〉 | 〈a, µ〉 ∈ step}〉 from bool(Φ) to bool(Φ′).

We now define an abstraction function over CMDPs. For the remainder of Section 3,
we fix a CMDP C = 〈V, V ctrl, V ext,Act , sinit,Steps 〉 and set of predicates Φ over V .

Definition 3.5 The abstraction of CMDP C with respect to the predicates Φ is
the ACMDP α(C,Φ) = 〈V , V ctrl, V ext,Act , sinit,Steps 〉 where:

• V = bool(Φ);
• V ctrl = bool(Φctrl);
• V ext = bool(Φext);
• sinit = α(sinit,Φctrl);
• if s ∈ val(V ), then step ∈ Steps (s) if and only if there exists s ∈ val(V ) such that

α(〈s,Steps (s)〉,Φ) = 〈s, step〉.

Example 3.6 Consider the CMDP Cwalk of Example 2.5 and set of predicates
Φ = {(val=0), (val=4), (close)}. Applying Definition 3.5, we obtain the ACMDP
depicted in Figure 2(a) with V ctrl = {bval=0, bval=4} and V ext = {bclose}. The states
of the ACMDP are shown as rectangles and the initial state as a double rectangle.
The first non-deterministic choice is represented by the circles within a state, and
the second non-deterministic choice by outgoing distributions from a circle. Since
the external variables have no influence, they are omitted.

It is straightforward to show that applying Definition 3.5 to a CMDP for which
V ext = ∅ yields an ACMDP (with V ext = ∅) equivalent to the stochastic two-player
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game derived from the abstraction procedure described in [18]. Therefore the results
of [18] carry over to this setting; in particular, by analysing the ACMDP α(C,Φ) we
can obtain upper and lower bounds for both minimum and maximum reachability
probabilities of the CMDP C. More formally, for all concrete valuations s ∈ val(V)
and abstract reachability objectives F ⊆ val(V ) we have:

p−−α(s,Φ)(F ) ≤ p−s ({s′ | α(s′,Φ) ∈ F}) ≤ p+−
α(s,Φ)(F )

p−+
α(s,Φ)(F ) ≤ p+

s ({s′ | α(s′,Φ) ∈ F}) ≤ p++
α(s,Φ)(F )

3.3 Compositional Abstraction of CMDPs

The abstraction of Definition 3.5 can be applied to any CMDP but, as the following
example demonstrates, parallel composition and abstraction do not commute.

Example 3.7 Consider again Example 2.5 (Figure 1(a)) and set of predicates Φ =
{(val=0), (val=4), (close)}. For the abstract valuation s = (¬bval=0,¬bval=4, bclose)
from Definition 3.5 it follows that {〈τ, η(¬bval=0,¬bval=4)〉, 〈read , η(¬bval=0,¬bval=4)〉} and
{〈read , ηbclose 〉} are in Steps α(Cobs ,Φ)(s). Therefore, by Definition 3.2, it follows that
{〈τ, ηs〉, 〈read , ηs〉} is in Steps α(Cwalk ,Φ) |[read ]|α(Cobs ,Φ)(s). However, no valuation (v, c)
abstracts to s and induces this transition in α(Cwalk |[read ]| Cobs ,Φ). More precisely,
if the τ transition abstracts to a self-loop, then v=2, and if the read transition sets
close to true, then v 6=2.

As this example illustrates, a compositional abstraction may introduce spurious
transitions, resulting in an over-approximation of the non-compositional abstraction
and thus less precise lower and upper bounds for probabilistic reachability. Although
such abstractions may still lead to useful results, we now introduce the notion of
abstraction preserving CMDPs, for which compositional abstraction is precise (i.e.
equivalent to the non-compositional abstraction).

Definition 3.8 The CMDP C is called abstraction preserving with respect to the
predicates Φ if for any s, s′ ∈ val(V ) such that sdV ctrl= s′dV ctrl and α(s,Φext) =
α(s′,Φext), then α(〈s,Steps (s)〉,Φ) = α(〈s′,Steps (s′)〉,Φ).

Intuitively, this states that any valuations which agree on control variables and
satisfy the same external predicates yield the same abstract transitions. As the fol-
lowing two results show, this property is both preserved under parallel composition
and ensures a precise abstraction under parallel composition.

Proposition 3.9 Let C1 and C2 be composable CMDPs and A be a set of actions.
If C1 and C2 are abstraction preserving with respect to the predicates Φ, then their
composition C1 |[A]| C2 is also abstraction preserving with respect to Φ.

Proposition 3.10 Let C1 and C2 be composable CMDPs and A be a set of actions.
If C1 and C2 are abstraction preserving with respect to the predicates Φ, then:

α(C1,Φ) |[A]|α(C2,Φ) = α(C1 |[A]| C2,Φ) .

From Proposition 3.9 and Proposition 3.10, we can infer that a compositional ab-
straction is precise if each individual component is abstraction preserving.
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Example 3.11 Consider the CMDP Cobs from Example 2.5 and set of predicates
Φ = {(val=0), (val=4), (close)}. This CMDP is not abstraction preserving with
respect to Φ. For example, the valuations s = (2, true) and s′ = (3, true) agree
on the value of close and α(s,Φext) = α(s′,Φext) = (¬bval=0 ,¬bval=4 ). However,
α(〈s,Steps Cobs

(s)〉,Φ) = 〈α(s,Φ), {〈read , η¬bclose 〉}〉 while α(〈s′,Steps Cobs
(s′)〉,Φ) =

〈α(s′,Φ), {〈read , ηbclose 〉}〉. If we extend Φ with the predicate (val=2), then Cobs is
abstraction preserving.

4 Abstraction of PRISM Models

Suppose we wish to abstract a PRISM model. One possibility is to (compositionally
or non-compositionally) apply the abstraction method of Section 3 to its CMDP
semantics. In either case, the disadvantage of such a method is that the concrete
CMDPs have to be constructed, limiting the applicability of the approach. In this
section we define a language-level abstraction method to remedy the situation.

4.1 A–PRISM Models

For our language-level abstraction, we introduce the A–PRISM language, an exten-
sion of the PRISM language with an additional element of choice.

Definition 4.1 An A–PRISM model is a tuple A = 〈var(A), sys, {M1, . . . ,Mm}〉.
The only difference between this and a PRISM model is the definition of the com-
mands com(M) for each module M . Each command cmd ∈ com(M) includes:

• a guard guard(cmd) which is a Boolean function over val(var(A));
• a finite set of choices choices(cmd) where each chc ∈ choices(cmd) consists of an

action act(chc) and a finite set of updates updates(chc) = {〈λ1, u1〉, . . . , 〈λn, un〉}
such that λi ∈ (0, 1],

∑n
i=1 λi = 1 and ui is a function from var(A) to var(M).

For a choice chc of a command and valuation s ∈ val(var(A)), supposing updates(chc) =
{〈λ1, u1〉, . . . , 〈λn, un〉}, let dist(chc, s) denote the distribution over var(M) such that
dist(chc, s)(s′) =

∑
ui(s)=s′ λi for all s′ ∈ val(var(M)).

Definition 4.2 The semantics of a module M of A–PRISM model A is given by
the ACMDP [[[M ]]] = 〈V , V ctrl, V ext,Act , sinit,Steps 〉, where:

• V = var(A), V ctrl = var(M) and V ext = var(A) \ var(M);
• Act = {act(chc) | cmd ∈ com(M), chc ∈ choices(cmd)} \ {τ};
• sinit = init(M);
• if s ∈ val(var(A)), then step ∈ Steps (s) if and only if there exists a command

cmd ∈ com(M) such that step = {〈act(chc), dist(chc, s)〉 | chc ∈ choices(cmd)}
and guard(cmd)(s) holds.

The semantics [[[A]]] of an A–PRISM model A is defined according to its system
definition sys, using the semantics [[[M ]]] of each individual module M , given above,
and parallel composition of ACMDPs (see Definition 3.2).

The ‘first’ non-deterministic choices of [[[M ]]] are caused by overlaps between the
guards of commands, whereas the ‘second’ non-deterministic choices are induced by

9
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¬bval=0

¬bval=4
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τ 0.5

τ

0.5

0.5
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¬bval=4 1.0

1.0
read

1.0
read

1.0
read

1.0
τ

1.0
read

bval=4

bval=0

(a) ACMDP.

module walk

b val0 : bool init false;
b val4 : bool init false;

(!b val0&!b val4 ) [read ] → 1.0 : true;
[] → 1.0 : true;

(!b val0&!b val4 ) [read ] → 1.0 : true;
[] → 0.5 : (b val0 ′=true) + 0.5 : true;

(!b val0&!b val4 ) [read ] → 1.0 : true;
[] → 0.5 : true + 0.5 : (b val4 ′=true);

(b val0&!b val4 ) [read ] → 1.0 : true;
(!b val0&b val4 ) [read ] → 1.0 : true;

endmodule

(b) A–PRISM syntax.

Fig. 2. Abstraction of the random walk component of Figure 1 (see Example 3.6).

the choices within commands.

Example 4.3 Figure 2 shows an A–PRISM module and its ACMDP semantics.

4.2 Language-level Abstraction of PRISM Models

In this section we introduce a language-level abstraction method for PRISM. We
assume a fixed PRISM model P = 〈var(P), sys, {M1, . . . ,Mm}〉 and a set of predi-
cates Φ which is partitioned into subsets ΦM1 , . . . ,ΦMm over the local variables of
the modules M1, . . . ,Mm. The abstraction of P is defined as the A–PRISM model:

β(P,Φ) = 〈bool(Φ), β(sys), {β(M1,Φ), . . . , β(Mm,Φ)}〉

where the system definition β(sys) is a syntactic copy of sys and each module M is
replaced by the language-level abstraction β(M,Φ), defined below.

Definition 4.4 The language-level abstraction of a module M of P is the A–
PRISM module β(M,Φ) where:

• the local variables var(β(M,Φ)) are bool(ΦM );
• the initial value init(bϕ) equals ϕ(init(M)) for all bϕ ∈ bool(ΦM );
• the set of commands com(β(M,Φ)) equals {cmds | s ∈ val(var(P))} where

- guard(cmds) =
∧

ϕ∈Φ (bϕ = ϕ(s)),
- choices(cmds) = {cmd | cmd ∈ com(M), guard(cmd)(s)} with
– act(cmd) = act(cmd)
– if updates(cmd) = {〈λ1, u1〉, . . . , 〈λn, un〉} and u is the constant function that

returns α(u(s),ΦM ), then updates(cmd) = {〈
∑

uj=ui
λj , ui〉 | 1 ≤ i ≤ n}.

The results below illustrate that using the language-level method we obtain the
same abstraction as with the model-level abstraction of Section 3.2.

Proposition 4.5 If M is a module of P, then [[[β(M,Φ)]]] = α([[M ]],Φ).

Combining this with the results of the previous sections we have the following.

Theorem 4.6 If [[M ]] is abstract preserving with respect to Φ for each module M

of P, then [[[β(P,Φ)]]] = α([[P]],Φ).

10
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[[[β(M1) ‖ . . . ‖ β(Mm)]]]
Section 4.1

[[[β(M1)]]] ‖ . . . ‖ [[[β(Mm)]]]
Proposition 4.5

α([[M1]]) ‖ . . . ‖ α([[Mm]])
Proposition 3.9 and Proposition 3.10

ACMDP

A–PRISM

Semantics

β(M1) ‖ . . . ‖ β(Mm)

A–PRISMLanguage-level

Abstraction (β)

Model-level

α([[M1]] ‖ . . . ‖ [[Mm]])
Abstraction (α)

[[M1]] ‖ . . . ‖ [[Mm]]

[[M1 ‖ . . . ‖ Mm]]
Section 2.2

CMDP

PRISM

M1 ‖ . . . ‖ Mm

Semantics

PRISM

Fig. 3. Relation between model-level and language-level abstraction functions.

Figure 4.2 presents an overview of the correspondence between the model-level (α)
and language-level (β) abstractions.

The remaining question is how to check abstraction preservation at the language
level. We now outline a simple check which guarantees this. It is always possible to
rewrite a single PRISM command into commands with disjoint guards such that the
updates only contain local variables. Now, if we have a PRISM module containing
only commands of this form, then to check its semantics is abstraction preserving
it is sufficient to show that if s, s′ ∈ val(var(P)) such that sdvar(M)= s′dvar(M) and
α(s,Φ) = α(s′,Φ), then guard(cmd)(s) = guard(cmd)(s′) for all commands cmd .

5 Implementation

We have built prototype tools both for our language-level abstraction (translation
from PRISM to A–PRISM) and model checking A–PRISM models. The model
checker is a relatively simple extension of PRISM’s MTBDD model checking engine
for MDPs. In the remainder of this section we will discuss the abstraction tool.

5.1 Abstraction with SMT Solvers

The key step in the translation of a (concrete) PRISM model to an (abstract)
A–PRISM model is the construction of abstract commands, as described in Defini-
tion 4.4. For this, the implementation uses ALL-SAT procedures over the theories
of integer arithmetic and fixed-size bit-vectors through the SMT solver Yices [10].
This is based on the principles described in [5,20] for predicate abstraction of non-
probabilistic systems.

In Definition 4.4 each abstract command is induced by a concrete valuation and
the concrete commands enabled for this valuation. However, considering each con-
crete valuation individually is clearly inefficient. Our implementation therefore em-
ploys an approach which detects multiple valuations inducing identical commands.
The basic idea is to instead enumerate what we call overlaps, which are combinations
of commands that can be simultaneously enabled.

Formally, an overlap of module M from a PRISM model P is a set of commands
O ⊆ com(M) for which there exists s ∈ val(var(P)) such that cmd ∈ O if and
only if guard(cmd)(s). Given a module M , we first find all overlaps of M with

11
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an ALL-SAT procedure 2 . Then, for a given overlap O, we find the corresponding
abstract commands, again with an ALL-SAT procedure. To optimise this approach,
we remove unnecessary predicates both from the guards and updates of abstract
commands. For example, we do not include any predicates in an abstract update if
the corresponding concrete updates do not influence their values.

5.2 ‘On-the-Fly’ Abstraction

During prototyping, our implementation would often find a large number of over-
laps, making the ALL-SAT procedures infeasible. However, further investigation
revealed that the majority of these overlaps were induced by unreachable concrete
valuations. Therefore, the prototype was extended with an ‘on-the-fly’ abstraction
method to overcome this problem. Like in explicit-state model checking, this is
achieved by keeping a stack of reachable abstract valuations of bool(ΦM ). Initially,
this stack only contains the element α(sinit,ΦM ). The method takes individual ab-
stract valuations off the stack, constructs the abstract commands for this valuation
and adds any new abstract valuations that are the target of this command to the
stack. Note that, since the tool now constructs abstract commands for each abstract
state s separately, only commands that are enabled for some valuation s such that
α(s,ΦM ) = s need be considered when searching for overlaps of these commands.

Although this ‘on-the-fly’ abstraction method does perform reachability over
abstract states, it is important to stress that, unlike [18], it does not require the
construction of the reachable concrete state space or take into account whether
concrete states are reachable.

6 Experimental Results

We have tested the performance of our implementation on three case studies: 3

• An extension of the sliding window protocol of [21] where channels lose messages
probabilistically instead of non-deterministically and a notion of timeout is in-
cluded. We fix the window size of the sender (2) and receiver (1), buffer size of
the channels (2) and sequence numbers (modulo 4) while varying the number of
data frames (D) in the source. We analyse ‘the maximum probability of sending
D data frames without a timeout ’ using an abstraction that removes the values
of the data frames. In the compositional approach, we abstract the sender and
data channel separately from the receiver and acknowledgement channel.

• IPv4 Zeroconf protocol [3], as described in [18], parameterised by the number of
configured hosts (N) and with 64 IP addresses. We encode the abstraction of [18]
into predicates and consider ‘the minimum probability that the host eventually
secures an IP address’. In the compositional approach, the configuring host is
abstracted separately from the channel and configured hosts.

• Israeli and Jalfon’s self-stabilisation protocol [15] for a ring with N processes. We
encode the abstraction of [9] into predicates and analyse ‘the minimum probability

2 The algorithm to check if a PRISM module is abstraction preserving can be implemented similarly.
3 Files for the case studies are available from http://www.prismmodelchecker.org/files/qapl08/.
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Concrete Model Abstract Models

Non-compositional Compositional

Num. Num. Check Abstr. Num. Abstr. Num. Num. Check

comm. states time time Comm. time Comm. states time

S
li
d
in

g
W

in
d
o
w

(D
) 8 19 189,952 30.2 96.7 540 220 3,260 742 0.21

10 19 987,136 153 126 706 336 4,870 964 0.43

12 19 – – 155 872 473 6,545 1,186 0.69

14 19 – – 200 1,038 630 8,225 1,408 1.23

16 19 – – 237 1,204 819 9,905 1,630 1.68

18 19 – – 285 1,370 962 11,585 1,852 2.47

20 19 – – 334 1,536 1,201 13,265 2,074 3.45

Z
e
ro

c
o
n
f
(N

) 4 89 50,377 206 1,110 2,349 106 362 1,325 104

5 109 113,217 355 1,480 2,523 183 396 1,421 134

6 129 282,185 678 2,480 2,695 262 431 1,517 161

7 149 426,529 952 3,630 2,762 434 444 1,549 175

8 169 838,905 1,400 6,370 2,804 785 453 1,581 209

Is
ra

e
li

&
J
a
lf
o
n

(N
) 8 8 255 0.01 13.4 28 n/a n/a 22 <0.01

10 10 1,023 0.03 95.2 68 n/a n/a 42 <0.01

12 12 4,095 0.08 727 168 n/a n/a 77 <0.01

14 14 16,383 0.22 4,210 415 n/a n/a 135 <0.01

16 16 65,535 0.75 28,000 1,025 n/a n/a 231 <0.01

18 18 262,143 2.27 136,000 2,505 n/a n/a 385 <0.01

20 20 1,048,575 8.51 1,090,000 6,056 n/a n/a 627 0.02

Fig. 4. Experimental results of compositional and non-compositional language-level abstraction.

that the ring eventually stabilises’. Since each predicate refers to variables from
all components of the system, this model cannot be abstracted compositionally.

Figure 4 presents a summary of the performance for each case study. For the full
concrete model, we give the number of states, the number of PRISM commands and
the time required to perform model checking in PRISM (to ensure a fair comparison,
we use PRISM’s MTBDD engine). For the abstract model, we show the number of
states, the time to perform model checking with our prototype and, for each of the
two abstraction approaches (non-compositional and compositional), the number of
A–PRISM commands and the time required for abstraction. All times are in seconds
and experiments were run on an AMD Athlon 4600+ with 2GB RAM.

Figure 5 gives quantitative results obtained from the models: lower and upper
bounds from the abstract model and, where possible, exact answers from the con-
crete model. This, together with Figure 4, confirms that the game-based abstraction
works well, in all cases providing tight lower and upper bounds from relatively small
abstract models.

A key observation from the results is that we successfully managed to analyse
models (for the sliding window protocol) larger than is possible with the model-level
implementation of game-based abstraction from [18]. Furthermore, for the larger
Zeroconf models, building and checking the abstraction is more efficient than check-
ing the full model. In all cases, the use of ‘on-the-fly’ abstraction is essential to make
the abstraction process feasible. This is because the number of potential overlaps,
if reachability is not considered, is prohibitively large. The worst performance is
observed for the Israeli & Jalfon’s protocol. For this model, the generation of ab-
stract commands described in Section 5.1 needs to consider every concrete state in
the model (the worst possible scenario), resulting in a large number of calls to the
SMT solver and thus a very slow abstraction time.
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Fig. 5. Quantitative results obtained using language-level game-based abstraction.

As regards a comparison of the compositional and non-compositional approaches
to abstraction, we observe varied results. For Zeroconf models, the compositional
abstraction significantly outperforms the non-compositional one, both in terms of
abstraction time and A–PRISM model size, but for the sliding window protocol
the reverse is true. In fact, this is due to the general suitability of the models to
a compositional analysis. For the sliding window protocol, each component makes
no assumptions about the content (and ordering) of incoming messages and thus,
when considered in isolation, its (concrete or abstract) state space is much larger.
This makes the compositional approach perform poorly. What is very encouraging,
however, is that for models which can be decomposed without such a blow-up (such
as Zeroconf) our composition approach can exploit this and performs much better.

7 Related Work

Practical approaches for abstracting MDPs are presented in [6,18], the former us-
ing MDPs themselves as abstract models and the latter using stochastic two-player
games. In [6] the tool RAPTURE is presented which performs successive abstrac-
tions and refinements for checking bounds on reachability probabilities. In [18], a
prototype implementation is used to construct abstract models from the correspond-
ing MDPs and partition of the state space and compute upper and lower bounds
on reachability probabilities.

Predicate abstraction techniques [12] are prevalent in non-probabilistic verifica-
tion. In the probabilistic case, the only other work we are aware of is [22] which
introduces the PASS tool for language-level abstraction of PRISM models using the
abstract approach of [6]. Like to our approach, PASS employs an SMT solver in
the abstraction procedure. A key difference, however, is our use of stochastic two-
player games rather than MDPs. While this will in general provide a more useful
abstraction, it is also more difficult to apply to predicate abstraction. In [22] each
command of a PRISM module can be abstracted separately. Here, as described
in Section 5, we must consider overlaps between commands in order to distinguish
between the two types of non-determinism. To improve efficiency, we also adopt a
compositional approach to abstraction and use ‘on-the-fly’ techniques.

Also relevant is the ‘magnifying-lens abstraction’ (MLA) approach of [8], which
computes lower and upper bounds for PCTL formulae on MDPs. This is done by
partitioning the state space into regions and analysing each region separately. It is
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still necessary to build the full MDP, however. Finally, approaches have also been
proposed for abstracting discrete-time Markov chains [11,14], using interval-based
extensions of Markov chains, but no implementations or results were presented.

8 Conclusions

We have introduced a method to obtain stochastic two-player game abstractions of
MDPs, directly from high-level model descriptions in the PRISM language. Our
approach is based on a compositional reformulation of the abstraction techniques
from [18] and the use of predicate abstraction. Although a compositional abstraction
is potentially an over-approximation (compared to the non-compositional version),
we provide conditions which guarantee a precise abstraction. We have developed
an implementation of our techniques based on the SMT solver Yices and present
experimental results from a range of case studies, illustrating how our work can
generate game-based abstractions for larger models than was previously possible.
We also highlight the benefits of adopting a compositional approach.

In the future, we hope to improve the performance of our tool chain using
symbolic decision procedures [19]. We also plan to integrate this with ongoing work
to develop an abstraction-refinement loop for MDP verification. Finally, we also
intend to extend the current method to imperative programming languages.
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