
Game-based Abstraction and Controller Synthesis for Probabilistic Hybrid Systems

Ernst Moritz Hahn
Saarland University, Germany

Gethin Norman
University of Glasgow, UK

David Parker
University of Oxford, UK

Björn Wachter
University of Oxford, UK

Lijun Zhang
Technical University of Denmark

Abstract—We consider a class of hybrid systems that involve
random phenomena, in addition to discrete and continuous be-
haviour. Examples of such systems include wireless sensing and
control applications. We propose and compare two abstraction
techniques for this class of models, which yield lower and upper
bounds on the optimal probability of reaching a particular
class of states. We also demonstrate the applicability of these
abstraction techniques to the computation of long-run average
reward properties and the synthesis of controllers. The first of
the two abstractions yields more precise information, while the
second is easier to construct. For the latter, we demonstrate how
existing solvers for hybrid systems can be leveraged to perform
the computation.

I. INTRODUCTION

Formal analysis of modern applications involves many

characteristics, including real-time, stochastic and hybrid

dynamics. Often, probabilistic behaviour is abstracted away

during the verification of such systems, due to the additional

dimension of complexity. This level of abstraction restricts

the analysis to qualitative properties. For systems such as

wireless sensing and control applications, however, quantita-

tive and performance properties are desired, thus motivating

the study of probabilistic hybrid systems.

We consider a class of hybrid systems that involve random

phenomena, in addition to discrete and continuous behaviour.

We model these systems using probabilistic hybrid automata

(PHAs), which extend standard hybrid automata with discrete

probabilistic choices. In this paper, we tackle the problem of

verifying two types of quantitative properties of PHAs: the

minimum/maximum probability of reaching a target (e.g. “the

maximum probability of the boiler’s temperature exceeding

its safe limit”); and the minimum/maximum long-run average

reward (e.g. “the minimum average power consumption”).

We also consider the problem of synthesising controllers for

PHAs to achieve such optimum values.

The infinite-state nature of hybrid automata necessitates

the use of abstraction for their analysis. In [1], an abstraction

technique for PHAs was proposed that bounds the maximum

probability of reaching a target, by exploiting the construc-

tion of finite abstractions from the non-probabilistic setting.

The main drawback of this approach is the lack of knowledge

about how far away the computed upper bound is from the

real value. In this paper, we propose and compare two types

of abstraction for PHAs that allow us to give both lower and

upper bounds for such quantitative properties.

Our approach is based on the use of n-player stochastic

games, finite-state automata incorporating decisions made

by several distinct players and also random choices. Our

motivation for game-based models is twofold. Firstly, in order

to specify the problem of controller synthesis, we express

the semantics of a PHA as a (stochastic) 2-player game: one

player represents the controller and the other the environment

(as done, for example, in the context of hybrid automata

[2] or timed automata [3]). Secondly, we make use of the

game-based abstraction of [4], which builds abstractions of

Markov decision processes as stochastic games by adding an

additional player to represent the abstraction. This approach

has already been successfully applied to probabilistic timed

automata [5], a simple subclass of PHAs.

We first introduce a game-based abstraction approach for

PHAs. Representing the abstraction as a separate player in

the game results in a 3-player stochastic game. We reduce

this to a 2-player stochastic game and show that it provides

lower and upper bounds on quantitative properties of interest

(reachability probabilities and long-run average rewards). We

also discuss how such abstractions can be constructed and

how they can be refined to increase precision.

Next, we introduce a second type of abstraction, which we

refer to as an environment abstraction. This makes use of an

abstraction introduced in [6], [7]. The idea in this case is

to, as above, introduce a 3rd player to represent abstraction,

but then to make this new player collaborate with the player

representing the environment in the PHA. The result is an

abstraction that is easier to construct in practice and again

yields numerical bounds, but gives values that are less precise

than those from the game-based abstraction.

We also present techniques to synthesise controllers for

a PHA, based on an analysis of its abstraction. Finally,

we demonstrate how existing solvers for hybrid systems

(in this case, PHAVER [8]) can be employed to construct

environment abstractions, demonstrating this with results

from a small case study. A full version of this paper, with

proofs, is available as [9].

Related work. The probabilistic hybrid automata (PHA)

model that we use in this paper is closely related to the one

proposed by Sproston [10], who shows decidability of model

checking for the subclass of rectangular PHAs. We extend

the model to a game semantics in order to consider con-

troller synthesis. Recently, there has been renewed interest in

analysis techniques for PHAs. The closest to this paper is [1],

which applies the probabilistic simulation-based abstraction

of [11] to PHAs. We instead extend the abstractions of [4]

and [6], [7], which provide lower and upper bounds, and

we additionally consider long-run average properties and

controller synthesis. In [12], two approximation techniques

for classical hybrid automata (clock approximation and linear

phase-portrait approximation) are extended to the probabilis-

tic case. Fränzle et al. present a decision procedure [13], [14]

for a stochastic logic with applications to bounded model

checking of probabilistic hybrid systems.

As mentioned above, for probabilistic timed automata,

which are a simple subclass of PHAs, game-based abstraction

has already been applied successfully [5]. In [15] a (concur-

rent) 2-player game extension is presented, but abstractions

are not considered. There is also related work on non-

probabilistic models. UPPAAL TIGA [3], for example, per-

forms controller synthesis for safety/reachability objectives

on timed automata games.

II. PRELIMINARIES

We begin with some notation and background material

relating to stochastic games. A distribution over a set S

is a function µ : S→[0, 1] such that
∑

s∈S µ(s) = 1. We

only consider discrete distributions with finite support, that is

|{s ∈ S | µ(s)>0}| < ∞. The set of all distributions over S

is denoted ∆(S) and we use [s0 7→p0, . . . , sn 7→pn] to denote

the distribution that chooses s with probability
∑

si=s pi.

Definition 1. An n-player stochastic game (SG) is a tuple

G = (P ,S, 〈Sp〉p∈P , Init , Steps) where:

• P is a list of n players;

• S is a (possibly uncountable) non-empty set of states,

split into disjoint subsets Sp for each player p ∈ P ;

• Init ⊆ S is a set of initial states;

• Steps : S→2∆(S) is a probabilistic transition function.

We use turn-based stochastic games, in which each state

s is under the control of some player p (i.e. s∈Sp). Player

p selects a distribution µ∈Steps(s) and the successor state

is then determined randomly according to µ. A play of a

game G is a finite or infinite sequence s0
µ0

−→s1
µ1

−→s2
µ2

−→· · ·
such that µi∈Steps(si) and µi(si+1)>0 for i≥0. We denote

the set of infinite (finite) plays by Playsω (Plays∗) and the

last state of a finite path σ by last(σ). For S′⊆S, we let

PlaysS
′

∗
def
= {σ∈Plays∗ | last(σ)∈S

′}. A state s is reachable

if there exists a finite play starting in an initial state and

ending in s.

A strategy for a player p∈P is a mapping πp :
PlaysSp

∗ →∆(∆(S)) such that if πp(σ)(µ)>0, then µ ∈
Steps(last(σ)). We denote the set of all strategies for p

by Πp. A strategy πp∈Πp is deterministic (pure) if we

always have πp(σ)=[µ 7→1] for some µ∈∆(S), and mem-

oryless if πp(σ1)=πp(σ2) for all σ1,σ2 ∈ PlaysSp

∗ such

that last(σ1)=last(σ2). A strategy is simple if it is pure

and memoryless, and thus can be seen as a mapping π :
Sp→∆(S).

If P ′ ⊆ P and πp ∈ Πp for all p ∈ P ′, then the

joint strategy 〈πp〉p∈P ′ : Plays∪{Sp|p∈P ′}
∗ →∆(S) is such

that 〈πp〉p∈P ′(σ)=πp(σ) when last(σ) ∈ Sp. We denote

the set of complete strategies, i.e. strategies of the form

〈πp〉p∈P : PlaysS∗→∆(S), by Π.

A value function valG : Π→(S→R) for a game G
maps complete strategies to assignments of reals to states.

Assuming, for convenience, that P={1, . . . ,n} and given

objectives objp ∈ {inf, sup} for each p ∈ P , the optimal

value of the function valG in state s ∈ S is given by:

val
〈objp〉np=1

G (s)
def
= obj1π1∈Π1

. . . objnπn∈Πn
valG(〈πi〉

n
i=1)(s).

A complete strategy π on game G together with an initial

state induces a probability space over the set of infinite plays.

We can then define the stochastic processes Xπ
i and Y π

i

corresponding to the ith state and distribution of the play,

respectively, when following strategy π [16]. For a set of

target (“final”) states F ⊆ S, the reachability probability

valG,F : Π→(S→R) is given by:

valG,F (π)(s)
def
=P[∃i.Xπ

i ∈ F |Xπ
0 =s] .

Given a pair of cost and reward functions cost , rew :
(S×∆(S))→R≥0, the fractional long-run average value

valG,cost,rew , i.e. the average reward per cost in the long-

run, is given by:

valG,cost,rew (π)(s)
def
=E

[

lim
n→∞

∑n

i=0 rew(Xπ
i ,Y

π
i)

∑n

i=0 cost(X
π
i ,Y

π
i)

∣

∣

∣

∣

Xπ
0 =s

]

where, within the limit, we map undefined values to 0.

We can reduce n-player games to two or one player

games if we subsume players with the same objective, i.e.

either inf or sup, by building the union of their state sets

[17]. Furthermore, it is known [18] that the optimal values

for reachability objectives on these games exist and can

be obtained by a single simple strategy for all s ∈ S

(allowing us to replace inf and sup with min and max). If

not mentioned otherwise, we thus assume that all strategies

are simple. We can also swap the positions of inf and sup
in these formulae. Optimal reachability probabilities (and

corresponding strategies) can be computed efficiently using,

for example, value iteration [19].

To the best of our knowledge, there are currently no

algorithms to solve fractional long-run average objectives

for stochastic 2-player games. There are however approaches

[18] to solve the problem for games in which each step

has the same cost. Also, there exist algorithms [20], [21]

to compute fractional long-run average values for one-player

games, that is Markov decision processes. We are thus

confident that the problem can be solved by an extension

of existing methods.

III. PROBABILISTIC HYBRID AUTOMATA

In this section, we describe our high-level modelling

mechanism, probabilistic hybrid automata, and its semantics.

2

Definition 2. A probabilistic hybrid automaton (PHA) is a

tuple H = (M , k,m, 〈Postm〉m∈M ,C) where:

• M is a finite set of modes and k is the dimensionality

of the continuous variables;

• m ∈ M specifies an initial mode;

• Postm :Rk×R>0→2R
k

is a constraint for mode m;

• C is a finite set of probabilistic guarded commands of

the form g→(p1:u1+ · · ·+pn:un) where g ⊆ M×R
k

is a guard, pi>0 for 0≤i≤n,
∑n

i=1 pi=1 and ui :

M×R
k→2M×R

k

is an update such that ui(s)6=∅ for

s ∈ g and 1≤i≤n.

The discrete part of a PHA H is captured by its modes M

and the continuous part by a set of k real-valued variables.

The dynamics of H is represented by its flow constraints

〈Postm〉m∈M and set of commands C. The latter describes

discrete transitions, which are probabilistic. A probabilistic

guarded command c∈C comprises a guard g , which deter-

mines whether c can be performed in the current state, and

n probability-update pairs pi:ui, which induces a distribution

over the updates. Updates ui are nondeterministic, giving a

set of possible successors, dependent on the current state.

We assume that H has a single initial mode, but this

can easily be generalised to either a set or a distribution.

Notice also that components such as guards and updates

in the definition above are described as sets. In practice

(as in existing tools for non-probabilistic hybrid automata

such as PHAVER [8]), these will be described by finite

representations like polyhedra. Throughout the paper, we will

identify these representations with the sets they denote.

The flow constraint operators Postm : Rk×R>0→2R
k

are

similar to the notion of Henzinger [22] and describe the

possible evolution of the continuous variables. For current

mode m and variable values v, Postm(v, t) gives the values

of the continuous variables that may be reached by letting t

time units elapse. If Postm(v, t)=∅, then t units of time

flow is not possible, i.e. a command must be executed

before t time units pass. This operator is often described

by differential (in)equations together with a predicate over

legal states, but our method also allows for other description

methods. We impose the following requirements.

Assumption 1. The flow constraints Postm of a PHA must

satisfy, for any m ∈ M and v ∈ R
k:

• Postm(v, t)= ∪ {Postm(v′, t−t′) | v′ ∈ Postm(v, t′)}
for all t>t′>0;

• there exists t>0 such that Postm(v, t)=∅.

The first requirement is naturally fulfilled by the usual

notions of time-flow. It means that, if we wait first for time

t′ and then for t−t′, then we can reach the same states as if

we had waited for time t. The second point implies that time

cannot elapse indefinitely without a jump occurring. This is

not a severe restriction; any PHA in which the restriction

does not hold can easily be transformed into one where it

Init

Heat

1.6≤Ṫ≤2.4,
T≤10 ∧ t≤3

Cool

−1.4T≤Ṫ
≤−0.6T ,
T≥5

Check

−0.7T≤Ṫ≤−0.3T , t≤1
Safe

(T≥9)→1:(true)

(T≤6)→1:(t′=0)

true→1:(9≤T ′≤10
∧t′=0)

(t≥2)→1:(t′=0)

t≥0.5

0.3:(t′=0)

0.7:(true)

Figure 1. Thermostat example

t

T

0 0.25 0.5 0.75 1
2

3

4

5 t>1t≤1

Figure 2. PostCheck , for initial values t = 0, T = 5

does, while maintaining the properties considered here.

Example 1. Consider the example PHA shown in

Figure 1, which models a thermostat. There are five modes:

M={Init ,Cool ,Heat ,Check , Safe} where Init is the initial

mode. Modes Cool and Heat implement cooling and heating

functions. We assume that the thermostat is broken, which

can only be detected when in mode Check . In this case,

the failure is detected with probability 0.7 (whereby the

thermostat shuts down and enters the mode Safe), while with

probability 0.3 execution continues.

There are two continuous variables, t and T , where T

represents the temperature and t the time since entering

a mode (in each mode ṫ=1). Commands are described

on arrows in Figure 1. For instance, the only command

available in mode Check is g→(0.3:u1+0.7:u2), where

g={Check}×[0.5,∞)×R, u1((m, t,T))={(Heat , 0,T)}
and u2((m, t,T))={(Safe, t,T)}.

The flow constraint of each mode is described using differ-

ential equations. For instance, for the mode Check we have

PostCheck((t,T), t
′)={(t+t′,T ′) | fl(T , t

′)≤T ′≤fu(T , t
′)}

if t+t′≤1 where fl(T , t
′)= exp(−0.7t′+ ln(T)) and

fu(T , t
′)= exp(−0.3t′+ ln(T)) and equals ∅ otherwise.

For the initial value (0, 5), the behaviour is depicted in

Figure 2. The grey area denotes the set of points which can

be reached by a timed transition. The axis labelled with t

denotes both values of the time which has passed as well as

the variable t. The axis T denotes the temperature. Thus,

after time 0.25, T can be in a range of about 4.13 to 4.63.

�

We now define the semantics of PHA. In order to distin-

guish between the choices made by a controller of a hybrid

system and the nondeterministic behaviour of its environ-

ment, it is natural to a take a game-theoretic approach [2].

Here, we use 2-player stochastic games. To avoid time-

convergence, we fix a minimal time tmin ∈ R>0 which the

3

. . .

.

.

.

s=(Check , 0, 5)

(s, 0.13)

(s, 0.25) (s, c)

(Check , 0.25, 4.13) (Check , 0.25, 4.63). . .

(Heat , . . .) (Safe , . . .)

0.3
0.7

Figure 3. Fragment of the semantics for the PHA in Figure 1

controller may decide to let pass.

Definition 3. Let H=(M , k,m, 〈Postm〉m∈M ,C) be a PHA.

The semantics of H is given by the 2-player SG [[H]]=
(〈con , env〉,S, 〈Scon ,Senv 〉, {(m,0)}, Steps) where:

• con and env are players modelling the controller and

environment, respectively;

• Scon = M×R
k;

• Senv = (Scon×R≥tmin
) ∪ (Scon×C);

• the transition function Steps is given by:

– Steps(s)={[(s, t)7→1] | t≥tmin∧Postm(v, t)6=∅}∪
{[(s,c)7→1] | c=(g→· · ·) ∈ C ∧ s ∈ g} for

s=(m, v) ∈ Scon;

– Steps((s, t))={[(m, v′)7→1] | v′∈Postm(v, t)} for

(s, t) ∈ Senv where s=(m, v);
– Steps((s,c))=jump(s,c) for (s,c) ∈ Senv where

for command c=g→(p1:u1+ · · ·+pn:un) we have

[s1 7→p1, . . . , sn 7→pn] ∈ jump(s,c) if and only if

s ∈ g and si ∈ ui(s) for all 1≤i≤n.

States in the set Scon of [[H]] represent the possible

configurations (m, v) ∈ M×R
k of the PHA. We call R≥0∪C

the set of actions of the controller player. In the semantics

of a PHA, the controller player first chooses an action

(i.e. either an amount of time t to pass or a command c

to be taken), resulting in a transition to a state of Senv .

Then, the environment player chooses either the flow of

trajectories during the time t or the exact effect of command

c, respectively. We assume that every reachable state has at

least one possible successor.

The two players may have different goals. For instance,

given a set of “unsafe” states, the controller would try

to minimise the probability of reaching the set, while the

environment tries to maximise. In another scenario, given a

set of “good” systems states, the roles would be reversed.

Example 2. We depict part of the semantics for the PHA

of our running example in Figure 3. Here, rounded boxes

are controller states and rectangles are environment states.

Assume we are in mode Check with t=0 and T=5. The

controller can decide to wait for at most 1 time unit, or

execute the available command. If the controller waits for

0.25 time units, according to the Post operator, the new

value for t is fixed, but the environment can choose a value

for T between 4.13 and 4.63. If the controller decides to

execute the available command, there is only one choice for

the environment, resulting in a probabilistic choice between

the modes Heat and Safe . �

IV. GAME-BASED ABSTRACTION FOR PHAS

In this section, we define game-based abstraction tech-

niques for PHAs. To do so, we extend the approach of [5]

for abstracting probabilistic timed automata using the game-

based abstraction principles proposed originally in [4]. This

section focuses on probabilistic reachability properties. The

case for long-run average rewards is covered in Section VII.

We will fix a PHA H=(M , k,m, 〈Postm〉m∈M ,C), and

its semantics [[H]]=(〈con , env〉,S, 〈Scon ,Senv 〉, {(m,0)},
Steps). For simplicity, we consider the optimal probability

of reaching a target mode mF , and let F
def
= {mF }×R

k.

In the first part of this section, we describe how to define

and construct a game-based abstraction. In the latter part, we

discuss how to refine such abstractions to increase precision.

A. Abstract states and transitions

An abstract state of PHA H is a pair of the form

(m, ζ) ∈ M×2R
k

, representing a set of concrete states of H.

We say that a concrete state (m, v) ∈ M×R
k is contained

in an abstract state (m′, ζ′), written (m, v) ∈ (m′, ζ′), if

m=m′ and v ∈ ζ. We require two abstract predecessor

operations, which extend those for timed automata [23].

For a set A′={(mi, ζi)}ki=1 of abstract states and command

c=g→(p1:u1+· · ·+pn:un):

• tpre(A′)
def
=(m, {v′ | ∃t≥tmin. (Postm(v′, t)⊆ ∪k

i=1 ζi ∧
∀1≤i≤k. (Postm(v′, t)∩ζi 6=∅))}) is the time predeces-

sor of A′ when mi=m for all 1≤i≤k and is undefined

otherwise;

• dpre[m,c,ui](A′)
def
=(m, {v | (m, v) ∈ g ∧ ui(m, v) ⊆

∪A′ ∧ ∀z ∈ A′. (ui(m, v) ∩ z)6=∅}) is the discrete

predecessor of A′ with respect to predecessor mode m,

command c and update ui.

To build an abstraction of H, we assume that we have a

covering of its concrete states by abstract states.

Definition 4. An abstract state space of H is a

set A={z1, . . . , zq} where zi=(mi, ζi) ∈ M×2R
k

and

∪{ζ | (m, ζ) ∈ A}=R
k for all m ∈ M .

For presentational simplicity, we assume that the abstract

states cover the whole state space. In practice, most of the

unreachable states will not be included in the abstraction.

Notice that a concrete state (m, v) must be contained in at

least one abstract state, but can be contained in several. An

abstract mapping α chooses one such abstract state, formally,

it is a function α : S→A such that s ∈ α(s) for all s ∈ S.

Using a reasonable representation (e.g. [8]), each abstract

state can represent infinitely many concrete states with a

finite amount of memory.

Example 3. Consider again the thermostat example

of Figure 1. Assume that z1=(Init ,R2), z2=(Heat ,R2),

4

z3=(Cool ,R2), z4=(Safe,R2), z5=(Check , (−∞, 0.4]×R),
z6=(Check , [0.3, 0.9]×R) and z7=(Check , [0.8,∞)×R),
then A={z1, . . . , z7} forms an abstract state space. �

Next we introduce the concept of abstract transitions [5].

An abstract transition of H with respect to the abstract state

space A takes the form:

θ =
(

z, a, 〈(pi,Ai)〉
n
i=1

)

∈ A×(C∪{time})×([0, 1]×2A)+

where, if a=time, then n=1 and p1=1, while if a ∈ C, then

a is of the form g → (p1:u1+ · · ·+pn:un).

Intuitively, if a=time, then there exists a concrete state

s∈z for which it is possible for the controller to let time

elapse (greater or equal to tmin) in s such that the subsequent

environment’s choice is encoded by the set of abstract

states A1. On the other hand, if a=c, then there exists

s∈z such that, when the controller performs the command

c = g→(p1:u1+ · · ·+pn:un) in s and ui is chosen (with

probability pi), the environment’s choice is encoded by Ai.

Formally, we capture this idea with the notion of validity

for abstract transitions. More precisely, for abstract transition

θ=((m, ζ), a, 〈(pi,Ai)〉ni=1), we define the set of valid vari-

able assignments valid (θ) ⊆ R
k such that v ∈ valid (θ) if

and only if v ∈ ζ and the following conditions are satisfied:

• if a=time, then there exists t≥tmin and abstract map-

ping α : S→A such that A1={α((m, v′)) | v′ ∈
Postm(v, t)};

• if a=g→(p1:u1+ · · ·+pn:un), then (m, v) ∈ g and for

any 1≤i≤n we have Ai={αi(si) | si ∈ ui((m, v))} for

some abstract mapping αi : S→A.

We say that θ is valid if valid(θ) 6= ∅. Using the symbolic

predecessor operations given above, the set valid(θ) can be

computed as follows:

• valid (θ) = ζ ∩ ζ′ if a=time and tpre(A1)=(m, ζ′);
• valid (θ) = ζ ∩ (∩n

i=1ζi) if a=(g→p1:u1+ · · ·+pn:un)
and dpre[m,c,ui](Ai)=(m, ζi) for 1≤i≤n.

B. Constructing and analysing the abstraction

Next, we define the notion of abstract graphs for H.

Definition 5. An abstract graph (A,R) for H comprises an

abstract state space A and a set of valid abstract transitions

R ⊆ A×(C∪ {time})×([0, 1]×2A)+ such that, for any z ∈
A and s=(m, v) ∈ z:

• if t≥tmin and Postm(v, t)6=∅, then R contains an

abstract transition θ=(z, time, 〈(1,A1)〉) such that

A1={α((m, v′)) | v′ ∈ Postm(v, t)} for some abstract

mapping α : S→A;

• if c = g→(p1:u1+ · · ·+pn:un) ∈ C and s ∈ g, then R
contains an abstract transition θ=(z,c, 〈(pi,Ai)〉ni=1)
such that v ∈ valid (θ).

An abstract transition θ=(z, a, 〈(pi,Ai)〉ni=1) induces the

following probability distribution λθ over 2A and set of

probability distributions Λθ over A:

λθ
def
= [A1 7→p1, . . . ,An 7→pn]

Λθ
def
= { [z1 7→p1, . . . , zn 7→pn] | zi ∈ Ai for all 1≤i≤n }

We also extend the notion of validity for abstract transitions

to sets of abstract transitions with the same source. For

abstract state z ∈ A, we let R(z) denote the set of abstract

transitions in R with source z. Then, for a set of abstract

transitions Θ ⊆ R(z), we define:

valid(Θ)
def
= (∩θ∈Θ valid(θ)) \

(

∪θ∈R(z)\Θ valid(θ)
)

and say that Θ is valid if valid (Θ) is non-empty. It follows

that Θ is valid if and only if there exists a state s ∈ z such

that it is possible to perform a transition encoded by each

abstract transition θ ∈ Θ, but it is not possible to perform a

transition encoded by any other abstract transition of R(z).
Finally, we can define game-based abstraction for PHAs.

Definition 6. Let (A,R) be an abstract graph of

H. The game-based abstraction game(H) of H with

respect to (A,R) is the 3-player stochastic game

(〈abs , con, env〉,S, 〈Sabs ,Scon ,Senv 〉, Init , Steps) where:

• Sabs=A;

• Scon={Θ ⊆ R |Θ is valid};

• Senv=2A;

• Init = {z ∈ A | (m,0) ∈ z}
• Steps(z)={[Θ 7→1] |Θ⊆R(z) is valid} for z ∈ Sabs ;

• Steps(Θ)={λθ | θ ∈ Θ} for Θ ∈ Scon ;

• Steps(A′)={[z7→1] | z ∈ A′} for A′ ∈ Senv .

The basic idea is that the abstraction process is a game,

with an additional player (abs) representing the abstraction.

By allowing abs to either minimise or maximise the proba-

bility of reaching the target, we will obtain lower and upper

bounds, respectively, on the actual optimal probability. A

coarser abstraction will give a greater degree of control to

player abs , resulting in less precise bounds.

Intuitively, the three players (abs , con and env) take

consecutive turns, operating as follows. From an abstract state

z ∈ A, player abs chooses a concrete state1 from z. Next,

the controller (player con) picks one of the available actions.

The outcome of this is a (probabilistic) transition to a set of

abstract states. Finally, the environment (player env) chooses

which successor abstract state is actually taken.

Example 4. In Figure 4 we give a part of the game-based

abstraction for our running example. Circles denote states of

the abstraction player, rounded boxes are controller states and

rectangles are environment states. In z6, there are states in

which the command from mode Check is enabled, and those

where it is not; in both cases, time can also pass. When

the command is enabled, the abstract controller player can

1This is the intuition: in fact, abs chooses a set of abstract transitions Θ
that represents multiple concrete states that have an equivalent set of actions
available under the current abstraction.

5

z6

(z6, time, 〈(1, {z6}〉)
(z6, time, 〈(1, {z7}〉)

(z6, time, 〈(1, {z6})〉)
(z6, time, 〈(1, {z7})〉)
(z6,c, 〈(0.3, {z2}), (0.7, {z4})〉)

z2

{z2}

{z4}

.

. . .

0.3

0.7

Figure 4. Fragment of the game-based abstraction for the thermostat

choose to execute this command. Then, with probability 0.3,

the transition to the environment player state consisting of the

singleton set {z2} is taken. Because this set is a singleton,

the environment player may only choose to move to z2. �

Finally, we show that the SG game(H) yields lower and

upper bounds on reachability probabilities in the original

PHA H. Formally, this is captured by the following result.

Proposition 1. Let (A,R) be an abstract graph for H
and objc, obje ∈ {inf, sup}. If game(H) is the game-based

abstraction of H with respect to (A,R), and zF=(mF ,R
k)

is the target abstract state, then:

val
inf,objc,obje
game(H),{zF }(z)≤val

objc,obje
[[H]],F (s)≤val

sup,objc,obje
game(H),{zF }(z)

for all states s of [[H]] and z ∈ A such that s ∈ z.

Essentially, this states that, for any combination of objec-

tives objc, obje ∈ {inf, sup} for the controller and environ-

ment of the original PHA H, lower and upper bounds on the

corresponding optimal value for H are obtained from optimal

values of game(H). For both players, we can also derive a

concrete strategy which guarantees these bounds.

C. Refinement

Lastly in this section, we extend our game-based abstrac-

tion approach with refinement. As done in [5] for probabilis-

tic timed automata, this provides a means to automatically

generate abstractions, in the style of “counterexample-guided

abstraction refinement”. This works by taking an initially

coarse abstraction and iteratively refining until it is precise

enough to yield useful verification results. Crucial to this

approach are the lower/upper bounds from the game-based

abstraction, the difference between which which give a

quantitative measure of the abstraction’s precision.

Refinement is defined in terms of an abstract graph (A,R):
it splits one or more abstract states in A and then modifies

the abstract transitions of R accordingly. This process is

guided by the analysis of the corresponding stochastic game

abstraction, i.e. the bounds for the value of interest and the

abstraction player strategies that attain these bounds.

We now outline the refinement of a single abstract state

(m, ζ) for which the bounds differ and for which distinct

simple strategies of the abstraction player yield each bound.

Assuming the bounds differ in some state, then it follows

from the results of [4] that such an abstract state exists.

By construction, a simple strategy for the abstraction player

chooses, in abstract state (m, ζ), a valid set of abstract

1 ζlb := valid(Θlb)
2 ζub := valid(Θub)
3 Anew := {(m, ζlb), (m, ζub), (m, ζ\(ζlb∪ζub))} \ {∅}
4 Aref := (A \ {(m, ζ)}) ⊎ Anew

5 Rref := ∅
6 for θ = (z, a, 〈(p1,A1), . . . , (pn,An)〉) ∈ R
7 if (m, ζ) 6∈ {z} ∪ A1 ∪ · · · ∪ An then

8 Rref := Rref ∪ {θ}
9 else Θnew := {(z′, a, 〈A′

1, . . . ,A
′
n〉)} where

10 if z=(m, ζ) then z′ ∈ Anew

11 else z′=z

12 if (m, ζ) ∈ Ai then

13 A′
i=(Ai\(m, ζ)) ∪ A′ and A′(6=∅) ⊆ Aref

14 else A′
i = Ai

15 for θnew ∈ Θnew such that valid (θnew) 6= ∅
16 Rref := Rref ∪ {θnew}
17 return (Aref,Rref)

Figure 5. Algorithm Refine(A,R, (m, ζ), Θlb , Θub) to refine abstract
state (m, ζ) in abstract graph (A,R)

transitions from R((m, ζ)). Let Θlb , Θub ⊆ R((m, ζ)) be

distinct lower and upper bound respectively. Since the valid-

ity conditions for Θlb and Θub give precisely the variable

assignments in ζ for which the corresponding transitions of

[[H]] are possible, we split (m, ζ) into:

• (m, valid(Θlb));
• (m, valid(Θub));
• (m, ζ \ (valid(Θlb) ∪ valid(Θub))).

By construction, valid(Θlb) and valid(Θub) are both non-

empty. Furthermore, since Θlb 6= Θub , from the definition of

validity, we have valid(Θlb) ∩ valid (Θub) = ∅, and hence

the split of (m, ζ) produces a strict refinement of A.

Figure 5 presents the complete refinement algorithm. It

first refines A (lines 1–4) as described above. The set of

abstract transitions R is then updated (lines 5–16). The

result is a new abstract graph, for which the corresponding

stochastic game is a refined abstraction of the PHA, as shown

by the following proposition.

Proposition 2. Let (A,R) be an abstract graph for H.

If (Aref,Rref) is the result of applying algorithm Refine

(see Figure 5) to (A,R), then (Aref,Rref) is an abstract

graph for H. Furthermore, if game(H) and game(H)ref

are the game-based abstractions with respect to (A,R) and

(Aref,Rref) respectively and objc, obje ∈ {inf, sup}, then:

val
inf,objc,obje
game(H),{zF }((m, ζ)) ≤ val

inf,objc,obje
game(H)ref,{zF }

((m, ζref))

val
sup,objc,obje
game(H)ref,{zF }

((m, ζref)) ≤ val
sup,objc,obje
game(H),{zF }((m, ζ))

for all (m, ζ) ∈ A and (m, ζref) ∈ Aref such that ζref ⊆ ζ.

Elsewhere, for example in [5], refinement of game-based

abstractions is used in a refinement loop to automatically

construct suitable abstractions. For probabilistic timed au-

6

tomata [5], this loop is guaranteed to terminate thanks to the

existence of a finite underlying region graph. In the context

of hybrid systems, no such guarantee can be obtained. In

fact, model checking for much simpler subclasses, such as

(non-probabilistic) linear hybrid automata, is already known

to be undecidable [24].

Implementing game-based abstractions requires the con-

struction of abstract graphs and, in particular, the compu-

tation of valid sets through predecessor operations. Current

tools for the verification of non-probabilistic hybrid automata

can only compute approximations of these sets. This moti-

vates the weaker abstraction considered next.

V. ENVIRONMENT ABSTRACTION FOR PHAS

In this section, we define a second type of abstraction for

PHAs called environment abstraction, which is coarser than

the one introduced in Section IV but, as already mentioned,

is easier to implement on top of existing hybrid systems

solvers. As for the game-based abstraction, we fix a PHA

H=(M , k,m, 〈Postm〉m∈M ,C), abstract state space A of H
and target mode mF . We consider the optimal probability of

reaching the set of states F = {mF}×R
k.

The environment abstraction is also defined in terms of an

abstract graph (AG); see Definition 5. However, it is based

on a modified notion of validity and so, to differentiate

between the different types of abstract graphs, we will denote

this new class by environment AG and the one introduced

in Section IV by game AG. Formally, given a maximum

time duration tmax≥tmin, the modified version of validity is

defined as follows: transition θ=(z, a, 〈(pi,Ai)〉ni=1) is valid

if:

• a∈time and {α((m, v′)) | (m, v)∈z ∧ tmin≤t≤tmax ∧
v′∈Postm(v, t)} ⊆ A1 for some abstract mapping α :
S→A;

• a = g→(p1:u1+· · ·+pn:un) and for any 1≤i≤n there

exists s ∈ z ∩ g such that {α(si) | si ∈ ui(s)} ⊆ Ai for

some abstract mapping αi : S→A.

In the modified definition, for a timed abstract transition

(z, time, 〈(1,A1)〉) to be valid we require that all concrete

states outside z that can be reached by letting up to time

tmax pass in z are contained in an abstract state of A1.

This corresponds to the timed transitions often obtained from

hybrid automata tools which correspond to letting time pass

up to a certain limit (denoted by tmax here).

On the other hand, in the case of guarded commands,

the modified definition of validity is weakened such that we

consider each update independently. More precisely, we only

require that for each update ui, there exists a concrete state

s ∈ z ∩ g such that after ui is performed the environment’s

choice is encoded by Ai. Again this corresponds to transi-

tions obtained from hybrid automata tools where probabilistic

branching is not considered.

Below we define the environment abstraction. The intu-

ition behind this is that we again introduce a third player to

represent abstraction, but make it collaborate with the player

representing the environment. This results in a game with

just two players, one corresponding to the controller (con),

and one to the combined environment/abstraction (abs). The

abstraction (represented by player abs) works in similar

fashion to the abstraction introduced in [6], [7]. Like in that

approach, if an abstract state contains concrete states for

which a certain action a cannot be performed, we add extra

transitions to a special sink state ⊥. These special transitions

can be seen as disadvantageous for the controller.

Definition 7. Let (A,R) be an environment AG of

PHA H. The environment abstraction env(H) of H
with respect to (A,R) is the 2-player stochastic game

(〈con , abs〉,S, 〈Scon ,Sabs〉, Init , Steps) where:

• Scon=A ∪ {⊥};

• Sabs={(z, a) | z ∈ A ∧ ∃(z, a, 〈(pi,Ai)〉ni=1) ∈ R};

• Init = {z ∈ A | (m,0) ∈ z}
• Steps(z)={[(z, a)7→1] | (z, a)∈Sabs} for all z ∈ A;

• Steps(⊥)={[⊥7→1]};

• Steps(z, a)={λ |λ∈Λθ ∧ θ=(z, a, 〈(pi,Ai)〉ni=1)∈R} ∪
sink (z,a) for all (z, a) ∈ Sabs

and sink (z,a) equals {[⊥7→1]} if a=time and there exists

(m, v)∈z such that Postm(v, t)=∅ for all tmin≤t≤tmax or

a=g→(· · ·) and z\g 6=∅, and equals ∅ otherwise.

In the environment abstraction, the time duration is chosen

by the abstraction rather than the controller player. As the

controller can only choose whether to let time pass or to

execute a guarded command, the smaller tmax is, the less

choices there are for the opposing player. This means that

decreasing tmax increases the power of the controller player.

From Assumption 1, it follows that we can divide timed

transitions in which more than tmax time passes into several

timed transitions of time no longer than tmax. We can thus

simulate timed transitions longer than tmax by a chain of

time transitions.

The following proposition states that the environment

abstraction yields lower and upper bounds on reachability

objectives in the corresponding PHA.

Proposition 3. If (A,R) is an environment AG for H
and env(H) is the environment abstraction with respect to

(A,R), then for obj ∈ {inf, sup}:

valinf,inf
env(H),{zF ,⊥}(z) ≤ valinf,obj[[H]],F (s) ≤ valinf,sup

env(H),{zF ,⊥}(z),

valsup,inf
env(H),{zF }(z) ≤ valsup,obj[[H]],F (s) ≤ valsup,sup

env(H),{zF }(z)

for all states s of [[H]] and z ∈ A such that s ∈ z.

Notice that, in the case where the controller player tries

to minimise the reachability probability, we need to include

⊥ in the reachability set. Otherwise, the controller player

could choose an action which is invalid for some states of

an abstract state, but advantageous for the controller in the

remaining ones. In this case, the second player would either

7

z5 z5, time z6 z6, time

z6,c

z7 z7, time

z7,c

⊥

z2 z4

0.3
0.7 0.3

0.7

Figure 6. Fragment of the environment abstraction for the thermostat

have to choose an abstract transition which is advantageous

for the controller, or choose a transition to ⊥, which would

also be advantageous for the controller if it is not included

in the reachability set. For similar reasons, ⊥ is not included

in the case where the probability is being maximised.

Example 5. In Figure 6 we show a part of a possible

environment abstraction using the abstract state space of

Example 3. In z5, there is no concrete state which fulfils

the guard of the mode Check , but in all states it is possible

to let time pass. Thus, in (z5, time) there is only a transition

to z6 but not to the sink state. In z6, we can execute the

command c of Check , but not for all concrete states, as seen

from transitions of (z6,c). In all states of z7 it is possible to

execute the command, but there are some states in which a

time flow is no longer possible. �

VI. CONTROLLER SYNTHESIS

Next, we consider the problem of synthesising a controller

for a PHA that makes “optimal” decisions. That is, if the ob-

jective is to maximise (minimise) the reachability probability,

then the controller takes decisions such that this probability

is maximised (minimised) under all possible reactions of

the environment. The controller can base its decisions on

the current state of the PHA, including the values of the

continuous variables. In practice, such a controller would be

implemented with the aid of sensors and timers.

We will construct controllers from the strategies of the

player con in the abstraction of a PHA. The quality of

the controller of course depends on the precision of the

abstraction computed. Conversely, the complexity of the

implemented controller will increase when extracted from

a finer abstraction. Due to space limitations, we only discuss

how to use environment abstraction to synthesise controllers.

We begin by defining a relation between strategies in an

environment abstraction and in the concrete semantics.

Definition 8. Let H be a PHA with semantics

[[H]]=(〈con , env〉,S, 〈Scon ,Senv 〉, {(m,0)}, Steps) and

env(H)=(〈con , abs〉,Sabs, 〈Sabs
con ,S

abs
abs〉, Init

abs, Stepsabs)
an environment abstraction for H for some environment AG

(A,R) and maximum time bound tmax. For an abstract

controller πabs : Sabs
con→∆(Sabs

abs), we define a concretisation

π : Scon→∆(Senv) of πabs as follows. For s=(m, v) ∈ Scon ,

we choose an abstract state z ∈ Sabs
con with s ∈ z and if

πabs(z)=[(z, a)7→1], then

π(s)=

{

[(s, a)7→1] if a ∈ C

[(s, t)7→1] if a = time

where t=min{sup{t′ |Postm(v, t′)6=∅}, tmax}. However, if

there is no such abstract state z which yields a valid choice

in state s, we let π choose an arbitrary valid action in s.

Using Definition 8, we can implement a controller function

exec controlling the PHA: at first, the function checks in

which abstract state(s) the current configuration is contained.

Depending on the result, it either executes the guarded

command given by the abstract controller strategy or, if the

abstract controller chooses time, it waits as long as possible

but no longer than tmax. By executing exec in an infinite

loop, we can control the system such that it fulfils reachability

probability bounds that we can compute a priori.

These bounds are defined as follows. Consider an en-

vironment abstraction objective obje ∈ {inf, sup} for the

probability of reaching target set F . For an SG G and a

(simple) strategy πp for player p in G, let G[πp] denote the

modified SG in which choices in each state s ∈ Sp have been

resolved according to π(s). Then, letting Gπ = [[H]][π] and

Gabs
π = env(H)[πabs] we have:

valinf,inf
Gabs
π ,{zF ,⊥}

(z) ≤ val
inf,obje
Gπ,F

(s) ≤ valinf,sup
Gabs
π ,{zF ,⊥}

(z),

valsup,inf
Gabs
π ,{zF }

(z) ≤ val
sup,obje
Gπ,F

(s) ≤ valsup,sup
Gabs
π ,{zF }

(z).

The correctness of these bounds can be established in the

same manner as those for Proposition 3.

VII. ABSTRACTION FOR LONG-RUN AVERAGE VALUES

Now, we extend our method to obtain bounds for long-run

average properties. Rewards will be accumulated by execut-

ing commands or letting time elapse in system states, and

costs will correspond to the elapsed time. Formally, a reward

structure for a PHA H = (M , k,m, 〈Postm〉m∈M ,C) is a

tuple (RC, RT) where RC : C→R and RT : (M×R
k)×R≥0 →

R. The function RC assigns the reward RC(c) when the

command c ∈ C is executed, while RT assigns, when

starting in state (m, v) ∈ M×R
k, the reward RT((m, v), t)

if t time units elapse. We require that RT((m, v), t) =
RT((m, v), t′)+RT((m, v′), t−t′) for all (m, v) ∈ M×R

k,

t ∈ R≥0, 0≤t′≤t and v′ ∈ Postm(v, t′). This means that

we obtain the same reward if waiting for the same time,

independently of the number of timed steps. A more general

formulation of reward assignment is possible, but is omitted

for clarity of presentation.

The corresponding reward and cost functions on [[H]] are

such that for s=(m, v) ∈ M×R
k, c ∈ C and t ∈ R≥0:

• rew(s, [(s,c)7→1])
def
= RC(c);

• rew(s, [(s, t)7→1]
def
= RT(s, t);

• cost(s, [(s, t)7→1]
def
= t;

and otherwise the functions take value 0. As explained above,

the cost function cost measures the elapsed time.

8

To define our abstractions, we consider the modified PHA

H′=(M , k+2,m, 〈Post ′m〉m∈M ,C′) which adds two addi-

tional variables t, r ∈ R≥0 to track the time and reward ac-

cumulated since a jump step. Formally, for (m, v) ∈ M×R
k

and t, r, t ∈ R≥0, Post ′m((v, t, r), t) equals:

{(v′, t+t, r+RT((m, v), t)) | v′ ∈ Postm(v, t)}

and g ′→(p1:u
′
1+· · ·+pn:u

′
n) ∈ C

′ if and only if there

exists g→(p1:u1+· · ·+pn:un) ∈ C such that g ′=(g×R
2)

and u ′
i((m, v, t, r))=ui((m, v))×{(0, 0)} for all (m, v) ∈

M×R
k, t, r ∈ R≥0 and 0≤i≤n.

It is straightforward to integrate this change into a hybrid

systems solver in which continuous dynamics are described

by differential (in)equations and constraints on the states in

which time may pass. It suffices to add one variable with

constant derivative 1 for the time, and another variable de-

scribing RT. Because of the restrictions on the Post operator

from Assumption 1 and since we reset the two new variables

to zero each time a command is executed, these values will

stay below a certain limit. Thus, if a hybrid systems solver is

able to compute a good approximation for the original model,

it is likely to be able to do so for the modified version.

We next construct the corresponding reward and cost

functions for our abstraction methods. We suppose we have a

fixed abstract state space A. For obj∈{inf, sup} and z∈A, let

R
obj(z)

def
= obj{r | (s, t, r)∈z}, Tinf(z)

def
= sup{t | (s, t, r)∈z}

and T
sup(z)

def
= inf{t | (s, t, r)∈z}. Notice, since we divide by

the cost values (i.e. the elapsed time), we have swapped inf
and sup in the definition of Tobj. To compute these values we

need to examine the abstract states. For instance, in PHAVER

abstract states are given as a mode plus a conjunction of

linear constraints on the continuous variables. Thus, using

linear programming, such values for reward and time can

easily be found, even for non-linear dynamics.

We now assign reward structures to the abstract transi-

tions such that the abstraction overapproximates the concrete

semantics: if we have a minimising abstract player (environ-

ment player in the environment abstraction), the fractional

values we obtain will be lower than in the semantics, whereas

in the case of a maximising one they will be higher.

For the game based abstraction game(H′) we introduce

reward and cost functions rewobj and costobj for obj ∈
{inf, sup} such that, if Θ is valid set of abstract transitions

and θ =
(

z,c, 〈(pi,Ai)〉ni=1

)

∈ Θ, then:

• rewobj(Θ,λθ) = R
obj(z) + RC(c);

• costobj(Θ,λθ) = T
obj(z)

and the functions assign zero to all other state-transition pairs.

On the other hand, for the environment abstrac-

tion env(H′) we construct reward and cost functions

rewobjcon ,objabs and costobjcon ,objabs such that:

• rewobjcon ,objabs ((z,c)) = RC(c) + R
objabs (z);

• rew inf,objabs (⊥,µ) = ∞;

• rew sup,objabs (⊥,µ) = −∞;

• costobjcon ,objabs ((z,c)) = T
objabs (z);

• costobjcon ,objabs (⊥,µ) = 1

and zero is assigned to all other state-transition pairs. Notice

that, as in the case of reachability, we assign to ⊥ the value

which is the most disadvantageous for the controller player.

In the functions above, we postpone the assignment of

rewards and cost corresponding to timed passage to guarded

command transitions (jump-steps). The reason is that this

method can provide better reward bounds than would be

obtained by constructing bounds on the reward and time

accumulated over each transition separately.

Proposition 4. Let H be a PHA and game(H′) the game-

based abstraction of the modified PHA H′ for some game AG

(A,R). Using the reward and cost functions defined above

for [[H]] and game(H′), and omitting them from the subscripts

of val for clarity, for any z ∈ A and (s, t, r) ∈ z, we have:

val
inf,objc,obje
game(H′) (z) ≤ val

objc,obje
[[H]] (s) ≤ val

sup,objc,obje
game(H′) (z).

Furthermore, if env(H′) is the environment abstraction of H′

for some environment AG (A′,R′), then for the reward and

cost functions defined above (again omitting subscripts for

clarity) we have for any z′ ∈ A′ and (s′, t′, r′) ∈ z′:

valinf,inf
env(H′)(z

′) ≤ val
inf,obje
[[H]] (s′) ≤ valinf,sup

env(H′)(z
′),

valsup,inf
env(H′)(z

′) ≤ val
sup,obje
[[H]] (s′) ≤ valsup,sup

env(H′)(z
′) .

Using this result we can apply the controller synthesis

approach described in Section VII to long-run properties.

Example 6. The thermostat already uses t to record time

passage. We reason about the relative time spent in Check

by assigning reward 0 to all commands. In the environ-

ment abstraction, we let rew
inf,sup
env(H′)((m, z),µ)=T

sup(z) if

m=Check and 0 otherwise, and cost
inf,sup
env(H′)(z,µ)=T

inf(z).

In Example 5 we thus have rew
inf,sup
env(H′)((z6,c),µ)=0.9 and

cost
inf,sup
env(H′)((z6,c),µ)=0.3. �

VIII. EXPERIMENTS

We have implemented the environment abstraction in an

extension of our tool PROHVER [1]. To do so, we transform

a labelled transition system, obtained from a modified version

of PHAVER, into an SG that abstracts the PHA under consid-

eration. PROHVER then computes reachability probabilities

in this game using value iteration [19]. This also yields a

strategy for player con that can be used to synthesise a

controller as described in Section VI.

We return to the thermostat example and consider the

probability that a failure is detected (i.e. that Safe is entered)

within time bound B. To this end we measure the total time

that has elapsed and disable the transition to Check after

more than B units of time. Formally, we add a variable x,

initialised to 0 in Init , add flow constraint ẋ=1 to each mode

and change the guard of the command in mode Check to

(t≥0)∧(x≤B). We assume that the controller player tries

to maximise the probability to reach Safe . Concerning the

9

B
interval length 0.5 interval length 0.2

prob. build(s) #states prob. build(s) #states

1 [0.000, 0.000] 0 20 [0.000, 0.000] 0 79
4 [0.000, 0.700] 10 917 [0.000, 0.700] 44 3590
5 [0.000, 0.910] 14 1051 [0.700, 0.910] 54 4066

10 [0.910, 0.992] 81 4330 [0.910, 0.992] 413 16773
15 [0.973, 0.999] 50 3216 [0.992, 0.999] 2578 53289
20 [0.998, 1.000] 214 10676 [0.999, 1.000] 1435 41313
25 [0.999, 1.000] 160 8671 [1.000, 1.000] 928 32864

Table I
THERMOSTAT RESULTS

environment abstraction player, we consider both minimising

and maximising behaviour, in order to obtain upper and

lower bounds on the concrete reachability probability (see

Proposition 3).

Table I gives probability bounds and performance results

for different values of B. Thereby “interval length” (i)

denotes a parameter of PHAVER related to tmax by i>tmax.

The time (in seconds) needed to build the abstraction

is given in “build(s)” and the number of abstract states

in “#states”. Probability bounds obtained are given in row

“prob.”, rounded to 3 decimal places. We see that increas-

ing analysis precision gives tighter probability bounds but

requires more resources in general. Because of the way

PHAVER computes abstractions however, increase in mem-

ory and time usage is not monotonic, as we discuss in more

detail in an earlier paper [1].

IX. CONCLUSIONS

In this paper, we have presented novel abstraction tech-

niques for probabilistic hybrid automata based on the use

of n-player stochastic games. These yield lower and upper

bounds on optimal reachability probabilities and long-run

average rewards. Our game-based abstraction gives more

precise bounds but is harder to construct in practice; our

environment abstraction is simpler to build but coarser. For

the latter, we demonstrated an implementation built on top of

PHAVER. We also showed how it can be used to synthesise

controllers for PHAs. Future work includes implementation

of the game-based abstraction, initially on simpler subclasses

such as linear PHAs, and extending our approaches to parity-

based properties and stochastic stability.

Acknowledgements. The authors are supported in part by:

the DFG/NWO Bilateral Research Programme ROCKS; the

DFG, as part of SFB/TR 14 AVACS; the EC FP-7 programme

under grant agreement no. 214755 (QUASIMODO); the

ERC-funded project VERIWARE; the EPSRC-funded project

APEX (grant no. EP/G069158); and MT-LAB, a VKR Centre

of Excellence.

REFERENCES

[1] L. Zhang, Z. She, S. Ratschan, H. Hermanns, and E. M. Hahn,
“Safety verification for probabilistic hybrid systems,” in Proc.
CAV’10, ser. LNCS, vol. 6174. Springer, 2010.

[2] J. Lygeros, D. Godbole, and S. Sastry, “A game-theoretic
approach to hybrid system design,” in Proc. Hybrid Systems,
ser. LNCS, vol. 1066. Springer, 1995.

[3] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. Larsen,
and D. Lime, “UPPAAL-Tiga: Time for playing games!” in
Proc. CAV’07, ser. LNCS, vol. 4590. Springer, 2007.

[4] M. Kwiatkowska, G. Norman, and D. Parker, “Game-based
abstraction for Markov decision processes,” in Proc. QEST’06.
IEEE Press, 2006.

[5] ——, “Stochastic games for verification of probabilistic timed
automata,” in Proc. FORMATS’09, ser. LNCS, vol. 5813.
Springer, 2009.

[6] B. Wachter and L. Zhang, “Best Probabilistic Transformers,”
in Proc. VMCAI’10, ser. LNCS, vol. 5944. Springer, 2010.

[7] B. Wachter, “Refined probabilistic abstraction,” Ph.D. disser-
tation, Saarland University, 2010.

[8] G. Frehse, “PHAVer: Algorithmic verification of hybrid sys-
tems past HyTech,” in Proc. HSCC’05, ser. LNCS, vol. 3414.
Springer, 2005.

[9] E. M. Hahn, G. Norman, D. Parker, B. Wachter, and L. Zhang,
“Game-based abstraction and controller synthesis for proba-
bilistic hybrid systems,” SFB/TR 14 AVACS, AVACS Techni-
cal Report No. 74, 2011.

[10] J. Sproston, “Decidable model checking of probabilistic hy-
brid automata,” in Proc. FTRTFT’00, ser. LNCS, vol. 1926.
Springer, 2000.

[11] P. D’Argenio, B. Jeannet, H. Jensen, and K. Larsen, “Reach-
ability analysis of probabilistic systems by successive refine-
ments,” in Proc. PAPM/PROBMIV’01, ser. LNCS, vol. 2165.
Springer, 2001.

[12] J. Desharnais and J. Assouramou, “Analysis of non-linear
probabilistic hybrid systems,” in Proc. QAPL’11, 2011.

[13] M. Fränzle, H. Hermanns, and T. Teige, “Stochastic satisfia-
bility modulo theory: A novel technique for the analysis of
probabilistic hybrid systems,” in Proc. QAPL’08, 2008.

[14] M. Fränzle, T. Teige, and A. Eggers, “Engineering constraint
solvers for automatic analysis of probabilistic hybrid au-
tomata,” JLAP, vol. 79, no. 7, 2010.

[15] V. Forejt, M. Kwiatkowska, G. Norman, and A. Trivedi,
“Expected reachability-time games,” in Proc. FORMATS’10,
ser. LNCS, vol. 6246. Springer, 2010.

[16] M. Puterman, Markov Decision Processes: Discrete Stochastic
Dynamic Programming. John Wiley and Sons, 1994.

[17] M. Ummels, “Stochastic multiplayer games: Theory and algo-
rithms,” Ph.D. dissertation, RWTH Aachen, 2010.

[18] J. Filar and K. Vrieze, Competitive Markov Decision Pro-
cesses. Springer, 1996.

[19] A. Condon, “The Complexity of Stochastic Games,” Informa-
tion and Computation, vol. 96, no. 2, 1992.

[20] L. de Alfaro, “How to specify and verify the long-run average
behavior of probabilistic systems,” in Proc. LICS’98. IEEE
Press, 1998.

[21] C. von Essen and B. Jobstmann, “Synthesizing systems with
optimal average-case behavior for ratio objectives,” in Proc.
iWIGP’11, 2011.

[22] T. Henzinger, “The theory of hybrid automata,” in Proc.
LICS’96. IEEE Press, 1996.

[23] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, “Symbolic
model checking for real-time systems,” Inf. and Comp., vol.
111, no. 2, 1994.

[24] T. Henzinger, P. Kopke, A. Puri, and P. Varaiya, “What’s
decidable about hybrid automata?” Journal of Computer and
System Sciences, vol. 57, 1998.

10

	Introduction
	Preliminaries
	Probabilistic Hybrid Automata
	Game-based Abstraction for PHAs
	Abstract states and transitions
	Constructing and analysing the abstraction
	Refinement

	Environment Abstraction for PHAs
	Controller Synthesis
	Abstraction for Long-run Average Values
	Experiments
	Conclusions
	References

