
Incremental Runtime Verification
of Probabilistic Systems

Vojtěch Forejt1, Marta Kwiatkowska1, David Parker2,
Hongyang Qu1, and Mateusz Ujma1

1 Department of Computer Science, University of Oxford, Oxford, UK
2 School of Computer Science, University of Birmingham, Birmingham, UK

Abstract. Probabilistic verification techniques have been proposed for
runtime analysis of adaptive software systems, with the verification re-
sults being used to steer the system so that it satisfies certain Quality-
of-Service requirements. Since systems evolve over time, and verification
results are required promptly, efficiency is an essential issue. To address
this, we present incremental verification techniques, which exploit the
results of previous analyses. We target systems modelled as Markov de-
cision processes, developing incremental methods for constructing mod-
els from high-level system descriptions and for numerical solution using
policy iteration based on strongly connected components. A prototype
implementation, based on the PRISM model checker, demonstrates per-
formance improvements on a range of case studies.

1 Introduction

Probabilistic systems are prevalent in our daily life: physical devices may fail,
communication media are lossy and protocols use randomisation. Formally ver-
ifying that such systems behave correctly and reliably requires quantitative ap-
proaches, such as probabilistic model checking, which can assure, e.g., “the web
service successfully delivers a response within 5ms with probability at least 0.99”.

It has recently been proposed to use these techniques for runtime verification
of adaptive systems [2], where quantitative verification is used to steer a system
such that it satisfies formally specified Quality-of-Service (QoS) requirements.
The framework of [2] comprises a computer system exhibiting probabilistic be-
haviour, a monitoring module that observes its behaviour and a reconfiguration
component, which issues it instructions. Requirements to be fulfilled are verified
against a high-level model of its behaviour, which is parameterised using data
from the monitoring module. The results of verification are then forwarded to
the reconfiguration module, which directs the system accordingly.

As a real world example of the applicability of these techniques (which we
will return to later), consider a network containing a dynamic set of devices in
which joining devices establish a local IP address using the Zeroconf protocol. A
suitable QoS requirement for the network would be to minimise the probability of
nodes choosing conflicting IP addresses. Parameters influencing this probability

2 Forejt, Kwiatkowska, Parker, Qu and Ujma

include the number of hosts in the network and the number of probes (query
messages) that are broadcast before claiming a given IP address.

In this paper, our aim is to optimise the performance of runtime verification
for probabilistic systems. Since the systems being verified change dynamically
and the results of verification are needed promptly to steer the system, efficiency
is essential. We consider incremental verification techniques, which exploit the
results of previous analyses following a small change to the system being verified.

We target systems modelled as Markov decision processes (MDPs), a widely
used model for systems exhibiting both probabilistic and nondeterministic be-
haviour. We present incremental techniques for the two main phases of proba-
bilistic verification: model construction, which exhaustively constructs an MDP
from a high-level model description, and quantitative verification, which applies
numerical techniques to determine the correctness of a system requirement, for-
mally specified in temporal logic. For the former, we propose a technique that
infers all states that have to be visited in the incremental step. For the lat-
ter, we use policy iteration, optimised using a decomposition of the system into
strongly connected components, and performed incrementally by re-using poli-
cies between verification runs. We have implemented our techniques in a pro-
totype extension of the PRISM model checker [6], and illustrate the benefits of
our approach on a set of benchmark models.

An extended version of this paper with additional details is available as [5].

Related work. Various techniques have been developed that use model checking
at runtime; see [1] for a discussion and further references. There is also increasing
interest in incremental model checking techniques. Of particular relevance here
are those for probabilistic systems. Wongpiromsarn et al. [8] studied incremental
model construction for increasing numbers of system components. In contrast,
we focus on changes within a fixed set of components. Filieri et al. [4] presented
efficient incremental verification for the simpler model of discrete-time Markov
chains using parametric techniques, but their method is subject to an exponential
blow up when applied to MDPs and does not handle structural model changes.
Kwiatkowska et al. [7] proposed incremental methods for MDPs based on a
decomposition into strongly connected components. We consider model changes
at the modelling language description level, which [7] does not, and also permit
changes in model structure, rather than just transition probabilities.

2 Incremental Model Construction

We first consider incremental techniques for model construction. In this paper,
we work with systems specified in the PRISM modelling language, a textual
formalism based on guarded commands. Our incremental techniques are designed
to operate after relatively small runtime changes to the structure of the MDP.
At the level of the modelling language description, we assume that these changes
are made by altering parameters: constants from the model description whose
value is not determined until runtime. We only consider changes in parameters
that occur in guards of commands, which is a common scenario in practice.

Incremental Runtime Verification of Probabilistic Systems 3

4: const int N; // number of abstract hosts
5: const int K; // number of probes to send

· · ·
20: module host0

· · ·
26: // send probe
27: [send] l=2 & x=2 & probes<K → (x ′=0) & (probes′=probes + 1);
28: // sent K probes and waited 2 seconds
29: [] l=2 & x=2 & probes=K → (l′=3) & (probes′=0) & (coll′=0) & (x ′=0);

· · ·
33: endmodule

Fig. 1. Fragments of a PRISM model of the Zeroconf protocol.

For simplicity, we do not consider parameters that affect transition probabilities
values. Such changes could be handled using the techniques described in [7].

We work with an explicit-state implementation. Building an MDP from a
PRISM model requires a systematic state-space exploration, the most costly
parts of which are the evaluation of all commands in each state, and subsequent
creation of new states found. The basic idea of our incremental method is to infer
the subset of states needing to be rebuilt, reducing the number of commands to
be re-evaluated. Full details of the algorithm are in [5]; here we give an informal
description using an example.

Figure 1 shows a fragment of a PRISM model for the previously mentioned
Zeroconf protocol example. We assume that parameter N is fixed and K varies.
We consider a scenario where we have already built a model M1 for K=k1 and
need to construct a new model M2 for K=k2. We start by identifying guards
that contain K: we find them in lines 27 and 29; for convenience, call them g1, g2
(in the example, these commands have probability 1, but this is not a limitation
of our approach). In each guard, there is a variable compared to the parameter
K, in this case probes in both guards. The key observation is that, to build
model M2, we do not need to re-evaluate commands in all states: it is sufficient
to examine states from M1 that satisfied g1, g2 for K=k1 but no longer do for
K=k2, and states that now satisfy g1, g2 for K=k2. To find such states, we need
to compute bounds on the values of probes for K=k1 and K=k2.

For the majority of PRISM models (whose guards involve just linear arith-
metic), we can accomplish this using an SMT solver. In fact, for many common
classes of expressions (such as this example) we can extract the bounds directly.
In our example, for K=k1, we obtain probes ∈ [0, k1) for g1 and probes ∈ [k1, k1]
for g2. For K=k2, we get probes ∈ [0, k2) for g1 and probes ∈ [k2, k2] for g2. Tak-
ing the intersection identifies states in M1 that satisfy g1 for both K=k1 and
K=k2, giving probes ∈ [0, k1) ∩ [0, k2). The union, i.e. probes ∈ [0, k1) ∪ [0, k2),
gives all states of M1 that may satisfy g1. The states that need to be re-evaluated
in the context of g1 are then found by performing a state space exploration from
states with variable probes ∈ ([0, k1)∪[0, k2))\([0, k1)∩[0, k2)). The same process
is subsequently repeated for guard g2. The efficiency of performing these steps
can be improved considerably by keeping the state space of M1 sorted, with
respect to variable probes, and using binary search when looking for the states
satisfying a given bound. Finally, we remove from model M2 any states that are
no longer reachable from its initial state using standard reachability algorithms.

4 Forejt, Kwiatkowska, Parker, Qu and Ujma

3 Incremental Quantitative Verification

Next, we consider incremental techniques for quantitative verification of MDPs,
the key part of which is the numerical computation of either the minimum or
maximum probability of reaching a set of target states, over all possible ad-
versaries of the MDP (an adversary represents one way of resolving all nonde-
terminism in the model). Common methods for computing these probabilities
are value iteration, which is an approximate iterative numerical solution method,
and policy iteration, which analyses a sequence of adversaries with increasing/de-
creasing probabilities.

Previous incremental verification techniques for MDPs [7] were based on
the use of value iteration, applied to a decomposition of the the model into
its strongly connected components (SCCs) [3]. These methods are not directly
applicable to the scenarios we consider in this paper since, unlike [7], we permit
structural changes to be made to the MDP. Instead, we propose an SCC-based
version of policy iteration. Like [7], we first decompose the MDP into its SCCs
and determine their topological ordering; next, we solve each SCC separately,
working through them backwards according to the topological ordering. Here,
however, we use policy iteration to compute the probabilities for each SCC.

For incremental verification, the key benefit from using policy iteration comes
when we select the initial adversary used to start the computation. For this,
rather than taking the usual approach of selecting an arbitrary adversary, we
adapt the optimal adversary from the previous run of verification. Let M1 be
the previous MDP and M2 be the new one. An adversary for an MDP resolves
the nondeterminism in each of its states. To construct the initial adversary for
solving M2, we identify all the states that are present in both M1 and M2, and
which have the same nondeterministic choices in both models; we then re-use
the choices made by the old adversary for M1 in the one for M2.

4 Experiments

We implemented our techniques in an extension of PRISM [6], using its explicit-
state model checking engine, and evaluated them on 4 existing benchmarks:
zeroconf, mer, consensus and firewire. Details of these examples and additional
results are in [5]. We ran a series of verification instances, varying a particular
model parameter. Table 1 shows the parameter ranges, the sizes of the resulting
models, and the total time required to perform model construction and verifi-
cation for all models, in both a non-incremental and incremental fashion. The
overhead on memory usage is negligible for both algorithms, and thus omitted.

For incremental model construction, we obtained speed-ups in all cases, up
to a 10-fold improvement for the mer example. The key factor for performance is
the number of states added between each verification run. For incremental veri-
fication due to space restrictions we do not show results for original algorithms,
which we outperform for each case study. Incremental policy iteration is quicker
than SCC-based policy iteration in some, but not all, cases. The best results are
those for the zeroconf example, with a 2-fold speedup. The performance of this
phase is mostly influenced by the structure of the state space.

Incremental Runtime Verification of Probabilistic Systems 5

Model Time (s)

Name
[parameters]

Parameter
values

States [103]
Original
model
constr.

Incremental
model
constr.

SCC-based
policy

iteration

Incremental
policy

iteration

zeroconf
[N,K]

10,1-5 32-496 15.9 12.3 10.6 8.5
10,10-20 3002-5812 859.7 320.2 1859.1 1329.2
60000,1-5 32-496 16.2 11.6 49.7 50.9

60000,10-20 3002-5812 853.9 313.7 9333.9 4218.4

mer
[N]

1-100 8-592 429.5 44.3 70.5 65.5
200-300 1183-1774 2352.4 192.5 400.6 369.7
400-500 2364-2955 4375.7 358.3 695.9 683.3

consensus
[N,K]

2,1-40 1-5 0.8 0.4 33.6 23.2
2,80-120 10-15 2.3 0.9 1235.8 900.1
4,1-20 12-20 15.5 4.8 1029.1 666.5

firewire
[deadline]

1000-1050 369-398 62.3 10.3 38.5 37.7
2000-2050 970-1000 160.5 25.7 99.7 97
3000-3050 1571-1601 265.7 42.4 174 181.6

Table 1. Performance comparison for incremental techniques.

5 Conclusions

We have described ongoing work to develop incremental verification techniques
for Markov decision processes, aimed at improving the efficiency of runtime meth-
ods for systems with probabilistic behaviour. Future directions include evaluat-
ing presented techniques on a deployed adaptive system and improving system
reconfiguration using policies obtained from model checking.

Acknowledgements. The authors are part supported by ERC Advanced Grant
VERIWARE, EU FP7 project CONNECT and EPSRC project EP/F001096/1.

References

1. Calinescu, R.: When the requirements for adaptation and high integrity meet. In:
Proc. 8th Workshop on Assurances for Self-Adaptive systems. pp. 1–4 (2011)

2. Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R., Tamburrelli, G.: Dy-
namic QoS management and optimisation in service-based systems. IEEE Transac-
tions on Software Engineering 37(3), 387–409 (2011)

3. Ciesinski, F., Baier, C., Größer, M., Klein, J.: Reduction techniques for model check-
ing Markov decision processes. In: Proc. QEST’08. pp. 45–54. IEEE (2008)

4. Filieri, A., Ghezzi, C., Tamburrelli, G.: Run-time efficient probabilistic model check-
ing. In: Proc. ICSE’11. pp. 341–350. ACM, New York, NY, USA (2011)

5. Forejt, V., Kwiatkowska, M., Parker, D., Qu, H., Ujma, M.: Incremental runtime
verification of probabilistic systems. Tech. Rep. RR-12-05, Department of Computer
Science, University of Oxford (2012)

6. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: Proc. CAV’11. LNCS, vol. 6806, pp. 585–591. Springer (2011)

7. Kwiatkowska, M., Parker, D., Qu, H.: Incremental quantitative verification for
Markov decision processes. In: Proc. DSN-PDS’11. pp. 359–370. IEEE (2011)

8. Wongpiromsarn, T., Ulusoy, A., Belta, C., Frazzoli, E., Rus, D.: Incremental tem-
poral logic synthesis of control policies for robots interacting with dynamic agents.
In: Proc. IROS’12 (2012), to appear

	Incremental Runtime Verification of Probabilistic Systems
	Introduction
	Incremental Model Construction
	Incremental Quantitative Verification
	Experiments
	Conclusions

