
Stochastic Model Checking?

Marta Kwiatkowska, Gethin Norman, and David Parker

School of Computer Science, University of Birmingham
Edgbaston, Birmingham B15 2TT, United Kingdom

Abstract. This tutorial presents an overview of model checking for both
discrete and continuous-time Markov chains (DTMCs and CTMCs).
Model checking algorithms are given for verifying DTMCs and CTMCs
against specifications written in probabilistic extensions of temporal logic,
including quantitative properties with rewards. Example properties in-
clude the probability that a fault occurs and the expected number of
faults in a given time period. We also describe the practical applica-
tion of stochastic model checking with the probabilistic model checker
PRISM by outlining the main features supported by PRISM and three
real-world case studies: a probabilistic security protocol, dynamic power
management and a biological pathway.

1 Introduction

Probability is an important component in the design and analysis of software
and hardware systems. In distributed algorithms electronic coin tossing is used
as a symmetry breaker and as a means to derive efficient algorithms, for example
in randomised leader election [38,26], randomised consensus [3,18] and root con-
tention in IEEE 1394 FireWire [37,47]. Traditionally, probability has also been
used as a tool to analyse system performance, where typically queueing theory
is applied to obtain steady-state probabilities in order to arrive at estimates of
measures such as throughput and mean waiting time [30,61]. Probability is also
used to model unreliable or unpredictable behaviour, as in e.g. fault-tolerant
systems and multi-media protocols, where properties such as frame loss of 1 in
every 100 can be described probabilistically.

In this tutorial, we summarise the theory and practice of stochastic model
checking. There are a number of probabilistic models, of which we will consider
two in detail. The first, discrete-time Markov chains (DTMCs), admit probabilis-
tic choice, in the sense that one can specify the probability of making a transition
from one state to another. Second, we consider continuous-time Markov chains
(CTMCs), frequently used in performance analysis, which model continuous real
time and probabilistic choice: one can specify the rate of making a transition
from one state to another. Probabilistic choice, in this model, arises through race
conditions when two or more transitions in a state are enabled.

? Partly supported by EPSRC grants EP/D07956X and EP/D076625 and Microsoft
Research Cambridge contract MRL 2005-44.

2 Marta Kwiatkowska, Gethin Norman, and David Parker

Stochastic model checking is a method for calculating the likelihood of the
occurrence of certain events during the execution of a system. Conventional
model checkers input a description of a model, represented as a state transition
system, and a specification, typically a formula in some temporal logic, and
return ‘yes’ or ‘no’, indicating whether or not the model satisfies the specification.
In common with conventional model checking, stochastic model checking involves
reachability analysis of the underlying transition system, but, in addition, it must
entail the calculation of the actual likelihoods through appropriate numerical or
analytical methods.

The specification language is a probabilistic temporal logic, capable of ex-
pressing temporal relationships between events and likelihood of events and
usually obtained from standard temporal logics by replacing the standard path
quantifiers with a probabilistic quantifier. For example, we can express the prob-
ability of a fault occurring in a given time period during execution, rather than
whether it is possible for such a fault to occur. As a specification language for
DTMCs we use the temporal logic called Probabilistic Computation Tree Logic
(PTCL) [29], which is based on well-known branching-time Computation Tree
Logic (CTL) [20]. In the case of CTMCs, we employ the temporal logic Contin-
uous Stochastic Logic (CSL) developed originally by Aziz et al. [4,5] and since
extended by Baier et al. [10], also based on CTL.

Algorithms for stochastic model checking were originally introduced in [62,23,29,5,10],
derive from conventional model checking, numerical linear algebra and standard
techniques for Markov chains. We describe algorithms for PCTL and CSL and
for extensions of these logics to specify reward-based properties, giving suitable
examples. This is followed by a description of the PRISM model checker [36,53]
which implements these algorithms and the outcome of three case studies that
were performed with PRISM.

Outline. We first review a number of preliminary concepts in Section 2. Section 3
introduces DTMCs and PCTL model checking while Section 4 considers CTMCs
and CSL model checking. Section 5 gives an overview of the probabilistic model
checker PRISM and case studies that use stochastic model checking. Section 6
concludes the tutorial.

2 Preliminaries

In the following, we assume some familiarity with probability and measure the-
ory, see for example [16].

Definition 1. Let Ω be an arbitrary non-empty set and F a family of subsets
of Ω. We say that F is a field on Ω if:

1. the empty set ∅ is in F ;
2. whenever A is an element of F , then the complement Ω \A is in F ;
3. whenever A and B are elements of F , then A ∪B is in F .

Stochastic Model Checking 3

A field of subsets F is called a σ-algebra if it is field which is closed under
countable union: whenever Ai ∈ F for i ∈ N, then ∪i∈NAi is also in F .

The elements of a σ-algebra are called measurable sets, and (Ω,F) is called a
measurable space. A σ-algebra generated by a family of sets A, denoted σ(A), is
the smallest σ-algebra that contains A which exists by the following proposition.

Proposition 1. For any non-empty set Ω and A a family of subsets of Ω, there
exists a unique smallest σ-algebra containing A.

Definition 2. Let (Ω,F) be a measurable space. A function µ : F → [0, 1] is a
probability measure on (Ω,F) and (Ω,F , µ) a probability space, if µ satisfies
the following properties:

1. µ(Ω) = 1
2. µ(∪iAi) =

∑
i µ(Ai) for any countable disjoint sequence A1, A2, . . . of F .

The measure µ is also referred to as a probability distribution. The set Ω is called
the sample space, and the elements of F events.

In order to go from a notion of size defined on a family of subsets A to an
actual measure on the σ-algebra generated by A, we need an extension theorem.
The following [16] is a typical example.

Definition 3. A family F of subsets of Ω is called a semi-ring if

1. the empty set ∅ is in F ;
2. whenever A and B are elements of F , then A ∩B is also in F ;
3. if A ⊆ B are in F , then there are finitely many pairwise disjoint subsets

C1, . . . , Ck ∈ F such that B \A = ∪ki=1Ci.

This is not the form of the definition most commonly used in field because of
the strange last condition but it is precisely the property that holds for ‘hyper-
rectangles’ in Rn and, more importantly here, for the cylinder sets defined later
in this tutorial.

Theorem 1. If F is a semi-ring on X and µ : F → [0,∞] satisfies

1. µ(∅) = 0

2. µ(∪ki=1Ai) =
∑k
i=1 µ(Ai) for any finite disjoint sequence A1, . . . , Ak ∈ F

3. µ(∪iAi) 6
∑
i µ(Ai) for any countable sequence A1, A2, . . . ∈ F ,

then µ extends to a unique measure on the σ-algebra generated by F .

The proof of this theorem may be found in a standard text on probability and
measure, for example [16]. It is straightforward to check that the ‘measures’ we
define on cylinder sets later in the tutorial satisfy the hypotheses of the above
theorem. Hence, these can be extended to measures used for the interpretation
of the logics PCTL and CSL without ambiguity.

Definition 4. Let (Ω,F , µ) be a probability space. A function X : Ω → R>0 is
said to be a random variable.

4 Marta Kwiatkowska, Gethin Norman, and David Parker

0.01

1

0.98

0.01
1

1

{try}

{fail}

{succ}

s0 s1

s2

s3

Fig. 1. The four state DTMC D1

Given a random variable X : Ω → R and the probability space (Ω,F , µ) the
expectation or average value with respect to the measure µ is given by the
following integral:

E[X]
def
=

∫
ω∈Ω

X(ω) dµ .

3 Model Checking Discrete-time Markov Chains

In this section we give an overview of the probabilistic model checking of discrete-
time Markov chains (DTMCs). Let AP be a fixed, finite set of atomic proposi-
tions used to label states with properties of interest.

Definition 5. A (labelled) DTMC D is a tuple (S, s̄,P, L) where

– S is a finite set of states;
– s̄ ∈ S is the initial state;
– P : S×S → [0, 1] is the transition probability matrix where

∑
s′∈S P(s, s′) =

1 for all s ∈ S;
– L : S → 2AP is a labelling function which assigns to each state s ∈ S the

set L(s) of atomic propositions that are valid in the state.

Each element P(s, s′) of the transition probability matrix gives the probability
of making a transition from state s to state s′. Note that the probabilities on
transitions emanating from a single state must sum to one. Terminating states,
i.e. those from which the system cannot move to another state, can be modelled
by adding a self-loop (a single transition going back to the same state with
probability 1).

Example 1. Fig. 1 shows a simple example of a DTMC D1 = (S1, s̄1,P1, L1).
In our graphical notation, states are drawn as circles and transitions as arrows,
labelled with their associated probabilities. The initial state is indicated by an
additional incoming arrow. The DTMC D1 has four states: S1 = {s0, s1, s2, s3},
with initial state s̄ = s0. The transition probability matrix P1 is given by:

P1 =

0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

 .

Stochastic Model Checking 5

The atomic propositions used to label states are taken from the set AP =
{try , fail , succ}. Here, the DTMC models a simple process which tries to send
a message. After one time-step, it enters the state s1 from which, with proba-
bility 0.01 it waits another time-step, with probability 0.98 it successfully sends
the message, and with probability 0.01 it tries but fails to send the message. In
the latter case, the process restarts. The labelling function allows us to assign
meaningful names to states of the DTMC:

L1(s0) = ∅, L1(s1) = {try}, L1(s2) = {fail} and L1(s3) = {succ} .

3.1 Paths and Probability Measures

An execution of a DTMC D = (S, s̄,P, L) is represented by a path. Formally, a
path ω is a non-empty sequence of states s0s1s2 . . . where si ∈ S and P(si, si+1) >
0 for all i > 0. A path can be either finite or infinite. We denote by ω(i) the ith
state of a path ω, |ω| the length of ω (number of transitions) and for a finite path
ωfin , the last state by last(ωfin). We say that a finite path ωfin of length n is a
prefix of the infinite path ω if ωfin(i) = ω(i) for 0 6 i 6 n. The sets of all infinite

and finite paths of D starting in state s are denoted PathD(s) and PathDfin(s),
respectively. Unless stated explicitly, we always deal with infinite paths.

In order to reason about the probabilistic behaviour of the DTMC, we need
to determine the probability that certain paths are taken. This is achieved by
defining, for each state s ∈ S, a probability measure Prs over the set of infi-
nite paths PathD(s). Below, we give an outline of this construction. For further
details, see [41]. The probability measure is induced by the transition proba-
bility matrix P as follows. For any finite path ωfin ∈ PathDfin(s), we define the
probability Ps(ωfin):

Ps(ωfin)
def
=

{
1 if n = 0

P(ω(0), ω(1)) · · ·P(ω(n− 1), ω(n)) otherwise

where n = |ωfin |. Next, we define the cylinder set C(ωfin) ⊆ PathD(s) as:

C(ωfin)
def
= {ω ∈ PathD(s) |ωfin is a prefix of ω}

that is, the set of all infinite paths with prefix ωfin . Then, let ΣPathD(s) be

the smallest σ-algebra (see Section 2) on PathD(s) which contains all the sets
C(ωfin), where ωfin ranges over the finite paths PathDfin(s). As the set of cylinders

form a semi-ring over (PathD(s), ΣPathD(s)), we can apply Theorem 1 and define

Prs on (PathD(s), ΣPathD(s)) as the unique measure such that:

Prs(C(ωfin)) = Ps(ωfin) for all ωfin ∈ PathDfin(s) .

Note that, since C(s) = PathD(s) and Ps(s) = 1, it follows that Prs is a
probability measure. We can now quantify the probability that, starting from a
state s ∈ S, the DTMC D behaves in a specified fashion by identifying the set of
paths which satisfy this specification and, assuming that this set is measurable,
using the measure Prs.

6 Marta Kwiatkowska, Gethin Norman, and David Parker

Example 2. Consider again the DTMC D1 in Example 1 (see Fig. 1). There are
five distinct paths of length 3 starting in state s0. The probability measure of
the cylinder sets associated with each of these is:

Prs0(C(s0s1s1s1)) = 1.00 · 0.01 · 0.01 = 0.0001

Prs0(C(s0s1s1s2)) = 1.00 · 0.01 · 0.01 = 0.0001

Prs0(C(s0s1s1s3)) = 1.00 · 0.01 · 0.98 = 0.0098

Prs0(C(s0s1s2s0)) = 1.00 · 0.01 · 1.00 = 0.01

Prs0(C(s0s1s3s3)) = 1.00 · 0.98 · 1.00 = 0.98 .

3.2 Probabilistic Computation Tree Logic (PCTL)

Specifications for DTMC models can be written in PCTL (Probabilistic Com-
putation Tree Logic) [29], a probabilistic extension of the temporal logic CTL.
PCTL is essentially the same as the logic pCTL of [6].

Definition 6. The syntax of PCTL is as follows:

Φ ::= true
∣∣ a ∣∣ ¬Φ ∣∣ Φ ∧ Φ ∣∣ P∼p[φ]

φ ::= X Φ
∣∣ Φ U6k Φ

where a is an atomic proposition, ∼∈{<,6,>, >}, p ∈ [0, 1] and k ∈ N ∪ {∞}.
PCTL formulae are interpreted over the states of a DTMC. For the presentation
of the syntax, above, we distinguish between state formulae Φ and path formulae
φ, which are evaluated over states and paths, respectively. To specify a property
of a DTMC, we always use a state formula: path formulae only occur as the
parameter of the P∼p[·] operator. Intuitively, a state s of D satisfies P∼p[φ] if
the probability of taking a path from s satisfying φ is in the interval specified
by ∼p. For this, we use the probability measure Prs over (PathD(s), ΣPathD(s))
introduced in the previous section.

As path formulae we allow the X (‘next’) and U6k (‘bounded until’) operators
which are standard in temporal logic. The unbounded until is obtained by taking
k equal to ∞, i.e. Φ U Ψ = Φ U6∞ Ψ .

Intuitively, X Φ is true if Φ is satisfied in the next state and Φ U6k Ψ is true
if Ψ is satisfied within k time-steps and Φ is true up until that point.

For a state s and PCTL formula Φ, we write s |=Φ to indicate that s sat-
isfies Φ. Similarly, for a path ω satisfying path formula φ, we write ω |=φ. The
semantics of PCTL over DTMCs is defined as follows.

Definition 7. Let D = (S, s̄,P, L) be a labelled DTMC. For any state s ∈ S,
the satisfaction relation |= is defined inductively by:

s |= true for all s ∈ S
s |= a ⇔ a ∈ L(s)

s |=¬Φ ⇔ s 6|=Φ
s |=Φ ∧ Ψ ⇔ s |=Φ ∧ s |=Ψ

s |= P∼p[φ] ⇔ ProbD(s, φ) ∼ p

Stochastic Model Checking 7

where:
ProbD(s, φ)

def
= Prs{ω ∈ PathD(s) |ω |=φ}

and for any path ω ∈ PathD(s) :

ω |= X Φ ⇔ ω(1) |=Φ
ω |=φ U6k Ψ ⇔ ∃i ∈ N. (i6k ∧ ω(i) |=Ψ ∧ ∀j<i. (ω(j) |=Φ)) .

Note that, for any state s and path formula φ, the set {ω ∈ PathD(s) |ω |=φ} is
a measurable set of (PathD(s), ΣPathD(s)), see for example [62], and hence Prs is
well defined over this set. From the basic syntax of PCTL, given above, we can
derive a number of additional useful operators. Among these are the well known
logical equivalences:

false ≡ ¬true
Φ ∨ Ψ ≡ ¬(¬Φ ∧ ¬Ψ)

Φ→ Ψ ≡ ¬Φ ∨ Ψ .

We also allow path formulae to contain the 3 (‘diamond’ or ‘eventually’) oper-
ator, which is common in temporal logic. Intuitively, 3Φ means that Φ is even-
tually satisfied and its bounded variant 36kΦ means that Φ is satisfied within
k time units. These can be expressed in terms of the PCTL ‘until’ operator as
follows:

P∼p[3 Φ] ≡ P∼p[true U6∞ Φ]

P∼p[3
6k Φ] ≡ P∼p[true U6k Φ] .

Another common temporal logic operator is 2 (‘box’ or ‘always’). A path satisfies
2Φ when Φ is true in every state of the path. Similarly, the bounded variant
26kΦ means that Φ is true in the first k states of the path. In theory, one can
express 2 in terms of 3 as follows:

2Φ ≡ ¬3¬Φ
26kΦ ≡ ¬36k¬Φ .

However, the syntax of PCTL does not allow negation of path formulae. Ob-
serving, though, that for a state s and path formula Φ, ProbD(s,¬φ) = 1 −
ProbD(s, φ), we can show for example that:

P>p[2 Φ]⇔ ProbD(s,2 Φ) > p

⇔ 1− ProbD(s,3 ¬Φ) > p

⇔ ProbD(s,3 ¬Φ) 6 1− p
⇔ P61−p[3 ¬Φ] .

In fact, we have the following equivalences:

P∼p[2 Φ] ≡ P∼1−p[3 ¬Φ]

P∼p[2
6k Φ] ≡ P∼1−p[3

6k ¬Φ]

8 Marta Kwiatkowska, Gethin Norman, and David Parker

1 0.5

0.5

1

{tails}

{heads}
c0

c1

c2

Fig. 2. Example demonstrating difference between P>1[3Φ] and ∀3Φ

where < ≡>, 6 ≡>,> ≡6 and > ≡<.
The P∼p[·] operator of PCTL can be seen as the probabilistic analogue of the

path quantifiers of CTL. For example, the PCTL formula P∼p[3 Φ], which states
that the probability of reaching a Φ-state is ∼ p, is closely related to the CTL
formulae ∀3Φ and ∃3Φ (sometimes written AFΦ and EFΦ), which assert that
all paths or at least one path reach a Φ-state, respectively. In fact, we have the
following equivalence:

∃3Φ ≡ P>0[3 Φ]

as the probability is greater than zero if and only if there exists a finite path
leading to a Φ-state. Conversely, ∀3Φ and P>1[3 Φ] are not equivalent. For
example, consider the DTMC in Fig. 2 which models a process which repeatedly
tosses a fair coin until the result is ‘tails’. State c0 satisfies P>1[3 tails] since the
probability of reaching c2 is one. There is, though, an (infinite) path c0c1c0c1 . . .
which never reaches state c2. Hence, ∀3 tails is not satisfied in state c0.

Example 3. Below are some typical examples of PCTL formulae:

– P>0.4[X delivered] - the probability that a message has been delivered after
one time-step is at least 0.4;

– init → P60[3 error] - from any initial configuration, the probability that the
system reaches an error state is 0;

– P>0.9[¬down U served] - the probability the system does not go down until
after the request has been served is at least 0.9;

– P<0.1[¬done U610 fault] - the probability that a fault occurs before the pro-
tocol finishes and within 10 time-steps is strictly less than 0.1.

A perceived weakness of PCTL is that it is not possible to determine the actual
probability with which a certain path formula is satisfied, only whether or not
the probability meets a particular bound. In fact, this restriction is in place
purely to ensure that each PCTL formula evaluates to a Boolean. In practice,
this constraint can be relaxed: if the outermost operator of a PCTL formula is
P∼p , we can omit the bound ∼ p and simply compute the probability instead.
Since the algorithm for PCTL model checking proceeds by computing the actual
probability and then comparing it to the bound, no additional work is needed.
It is also often useful to study a range of such values by varying one or more
parameters, either of the model or of the property. Both these observations can
be seen in practice in Section 5.

Stochastic Model Checking 9

3.3 Model checking PCTL.

We now summarise a model checking algorithm for PCTL over DTMCs, which
was first presented in [22,29,23]. The inputs to the algorithm are a labelled
DTMC D = (S, s̄,P, L) and a PCTL formula Φ. The output is the set of states
Sat(Φ) = {s ∈ S | s |=Φ}, i.e. the set containing all the states of the model which
satisfy Φ. In a typical scenario, we may only be interested in whether the initial
state s̄ of the DTMC satisfies Φ. However, the algorithm works by checking
whether each state in S satisfies the formula.

The overall structure of the algorithm is identical to the model checking
algorithm for CTL [20], the non-probabilistic temporal logic on which PCTL is
based. We first construct the parse tree of the formula Φ. Each node of this tree
is labelled with a subformula of Φ, the root node is labelled with Φ itself and
leaves of the tree will be labelled with either true or an atomic proposition a.
Working upwards towards the root of the tree, we recursively compute the set
of states satisfying each subformula. By the end, we have determined whether
each state in the model satisfies Φ. The algorithm for PCTL formulae can be
summarised as follows:

Sat(true) = S
Sat(a) = {s | a ∈ L(s)}

Sat(¬Φ) = S\Sat(Φ)
Sat(Φ ∧ Ψ) = Sat(Φ) ∩ Sat(Ψ)

Sat(P∼p[φ]) = {s ∈ S |ProbD(s, φ)∼p} .

Model checking for the majority of these formulae is trivial to implement and
is, in fact, the same as for the non-probabilistic logic CTL. The exceptions are
formulae of the form P∼p[φ]. For these, we must calculate, for all states s of the

DTMC, the probability ProbD(s, φ) and then compare these values to the bound
in the formula. In the following sections, we describe how to compute these values
for the two cases: P∼p[X Φ] and P∼p[Φ U6k Ψ]. Because of the recursive nature
of the PCTL model checking algorithm, we can assume that the relevant sets,
Sat(Φ) or Sat(Φ) and Sat(Ψ), are already known.

P∼p[X Φ] formulae. In this case, we need to compute the probability ProbD(s, X Φ)
for each state s ∈ S. This requires the probabilities of the immediate transitions
from s:

ProbD(s, X Φ) =
∑

s′∈Sat(Φ)

P(s, s′) .

We determine the vector ProbD(X Φ) of probabilities for all states as follows.
Assuming that we have a state-indexed column vector Φ with

Φ(s) =

{
1 if s ∈ Sat(Φ)
0 otherwise,

then ProbD(X Φ) is computed using the single matrix-vector multiplication:

ProbD(X Φ) = P · Φ .

10 Marta Kwiatkowska, Gethin Norman, and David Parker

Example 4. Consider the PCTL formula P>0.9[X (¬try∨succ)] and the DTMCD1

from Fig. 1. Proceeding recursively from the innermost subformulae, we compute:

Sat(try) = {s1}
Sat(succ) = {s3}

Sat(¬succ) = S \ Sat(succ) = {s0, s1, s2}
Sat(try ∧ ¬succ) = Sat(try) ∩ Sat(¬succ) = {s1} ∩ {s0, s1, s2} = {s1}
Sat(¬try ∨ succ) = Sat(¬(try ∧ ¬succ)) = S \ Sat(try ∧ ¬succ) = {s0, s2, s3} .

This leaves the X operator, and from above we have ProbD(X ¬try∨succ) equals:

P1 · ¬try ∨ succ =

0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

 ·

1
0
1
1

 =

0

0.99
1
1

 ,

and hence Sat(P>0.9[X (¬ try ∨ succ)]) = {s1, s2, s3}.

P∼p[Φ U6k Ψ] formulae. For such formulae we need to determine the proba-

bilities ProbD(s, Φ U6k Ψ) for all states s where k ∈ N ∪ {∞}. We begin by
considering the case when k ∈ N.

Case when k ∈ N. This amounts to computing the solution of the following set
of equations. For s ∈ S and k ∈ N: ProbD(s, Φ U6k Ψ) equals

1 if s ∈ Sat(Ψ)
0 if k= 0 or s ∈ Sat(¬Φ∧¬Ψ)∑

s′∈S P(s, s′)·ProbD(s′, Φ U6k−1 Ψ) otherwise.
(1)

We now show how these probabilities can be expressed in terms of the transient
probabilities of a DTMC. We denote by πDs,k(s′) the transient probability in D
of being in state s′ after k steps when starting in s, that is:

πDs,k(s′) = Prs{ω ∈ PathD(s) | ω(k) = s′} ,

and require the following PCTL driven transformation of DTMCs.

Definition 8. For any DTMC D = (S, s̄,P, L) and PCTL formula Φ, let D[Φ] =
(S, s̄,P[Φ], L) where, if s 6|= Φ, then P[Φ](s, s′) = P(s, s′) for all s′ ∈ S, and if
s |= Φ, then P[Φ](s, s) = 1 and P[Φ](s, s′) = 0 for all s′ 6= s.

Using the transient probabilities and this transformation we can characterise the
probabilities ProbD(s, Φ U6k Ψ) as follows.

Proposition 2. For any DTMC D = (S, s̄,P, L), state s ∈ S, PCTL formulae
Φ and Ψ , and k ∈ N:

ProbD(s, Φ U6k Ψ) =
∑
s′|=Ψ

π
D[¬Φ∨Ψ]
s,k (s′) .

Stochastic Model Checking 11

Note that D[¬Φ ∨ Ψ] = D[¬(Φ ∧ Ψ)][Ψ], that is all states in Sat(¬(Φ ∧ Ψ)) and
Sat(Ψ) are made absorbing (the only transitions available in these states are
self-loops). States in Sat(¬(Φ∧ Ψ)) are made absorbing because, for any state s
in this set, ProbD(s, Φ U6k Ψ) is trivially 0 as neither Φ nor Ψ is satisfied in s,
since no path starting in s can possibly satisfy the path formula Φ U6k Ψ . On
the other hand, states in Sat(Ψ) are made absorbing because, for any state s in
this set, we have ProbD(s, Φ U6k Ψ) is trivially 1 since all paths leaving s clearly
satisfy Φ U6k Ψ .

Using Proposition 2, the vector of probabilities ProbD(Φ U6k Ψ) can then be
computed using the following matrix and vector multiplications:

ProbD(Φ U6k Ψ) = (P[¬Φ ∨ Ψ])k · Ψ .

This product is typically computed in an iterative fashion:

P[¬Φ ∨ Ψ] · (· · · (P[¬Φ ∨ Ψ] · Ψ) · · ·)

which requires k matrix-vector multiplications. An alternative is to precompute
the matrix power (P[¬Φ ∨ Ψ])k and then perform a single matrix-vector multi-
plication. In theory, this could be more efficient since the matrix power could be
computed by repeatedly squaring P[¬Φ ∨ Ψ], requiring approximately log2k, as
opposed to k, multiplications. In practice, however, the matrix P[¬Φ∨Ψ] is large
and sparse, and therefore employing such an approach can dramatically increase
the number of non-zero matrix elements, having serious implications for both
time and memory usage.

Example 5. Let us return to the DTMC D1 in Fig. 1 and consider the PCTL
formula P>0.98[362succ]. This is equivalent to the formula P>0.98[true U62 succ].
We have:

Sat(true) = {s0, s1, s2, s3} and Sat(succ) = {s3} .

The matrix P1[¬true ∨ succ], is identical to P1, and we have that:

ProbD1(Φ U60 Ψ) = succ = [0, 0, 0, 1]

ProbD1(Φ U61 Ψ) = P1[¬true ∨ succ] · ProbD1(Φ U60 Ψ) = [0, 0.98, 0, 1]

ProbD1(Φ U62 Ψ) = P1[¬true ∨ succ] · ProbD1(Φ U61 Ψ) = [0.98, 0.9898, 0, 1] .

Hence, Sat(P>0.98[362succ]) = {s1, s3}.

Case when k = ∞. Note that, instead of U6∞, we use the standard notation U

for unbounded until. The probabilities ProbD(s, Φ U Ψ) can be computed as the
least solution of the linear equation system:

ProbD(s, Φ U Ψ) =

1 if s ∈ Sat(Ψ)
0 if s ∈ Sat(¬Φ ∧ ¬Ψ)∑

s′∈S P(s, s′)·ProbD(s′, Φ U Ψ) otherwise.

12 Marta Kwiatkowska, Gethin Norman, and David Parker

Prob0(Sat(Φ),Sat(Ψ))

1. R := Sat(Ψ)
2. done := false
3. while (done = false)
4. R′ := R ∪ {s ∈ Sat(Φ) | ∃s′ ∈ R .P(s, s′)>0}
5. if (R′ = R) then done := true
6. R := R′

7. endwhile
8. return S\R

Prob1(Sat(Φ),Sat(Ψ),Sat(P60[Φ U Ψ]))

1. R := Sat(P60[Φ U Ψ])
2. done := false
3. while (done = false)
4. R′ := R ∪ {s ∈ (Sat(Φ)\Sat(Ψ)) | ∃s′ ∈ R .P(s, s′)>0}
5. if (R′ = R) then done := true
6. R := R′

7. endwhile
8. return S\R

Fig. 3. The Prob0 and Prob1 algorithm

To simplify the computation we transform this system of equations into one
with a unique solution. This is achieved by first finding all the states s for which
ProbD(s, Φ U Ψ) is exactly 0 or 1; more precisely, we compute the sets of states:

Sat(P60[Φ U Ψ]) = {s ∈ S |ProbD(s, Φ U Ψ)=0}
Sat(P>1[Φ U Ψ]) = {s ∈ S |ProbD(s, Φ U Ψ)=1} .

These sets can be determined with the algorithms Prob0 and Prob1 which are
described in Fig. 3:

Sat(P60[Φ U Ψ]) = Prob0(Sat(Φ),Sat(Ψ))

Sat(P>1[Φ U Ψ]) = Prob1(Sat(Φ),Sat(Ψ),Sat(P60[Φ U Ψ])) .

Prob0 computes all the states from which it is possible, with non-zero proba-
bility, to reach a state satisfying Ψ without leaving states satisfying Φ. It then
subtracts these from S to determine the states which have a zero probability.
Prob1 first determines the set of states for which the probability is less than
1 of reaching a state satisfying Ψ without leaving states satisfying Φ. These
are the states from which there is a non-zero probability of reaching a state
in Sat(P60[Φ U Ψ]), passing only through states satisfying Φ but not Ψ . It then
subtracts this set from S to produce Sat(P>1[Φ U Ψ]). Note that both algorithms
are based on the computation of a fixpoint operator, and hence require at most
|S| iterations.

Stochastic Model Checking 13

The probabilities ProbD(s, Φ U Ψ) can then be computed as the unique solu-
tion of the following linear equation system:

ProbD(s, Φ U Ψ) =

1 if s ∈ Sat(P>1[Φ U Ψ])
0 if s ∈ Sat(P60[Φ U Ψ])∑

s′∈S P(s, s′) · ProbD(s′, Φ U Ψ) otherwise.

Since the probabilities for the sets of states Sat(P>1[Φ U Ψ]) and Sat(P60[Φ U Ψ])
are known, i.e. 1 and 0 respectively, it is possible to solve the linear equation
system over only the set of states S? = S \ (Sat(P>1[Φ U Ψ])∪ Sat(P60[Φ U Ψ])):

ProbD(s, Φ U Ψ) =
∑
s′∈S?

P(s, s′) · ProbD(s, Φ U Ψ) +
∑

s′∈Sat(P>1[Φ UΨ])

P(s, s′)

reducing the number of unknowns from |S| to |S?|.
In either case, the linear equation system can be solved by any standard

approach. These include direct methods, such as Gaussian elimination and L/U
decomposition, or iterative methods, such as Jacobi and Gauss-Seidel. The algo-
rithms Prob0 and Prob1 form the first part of the calculation of ProbD(s, Φ U Ψ).
For this reason, we refer to them as precomputation algorithms. For qualitative
PCTL properties (i.e. where the bound p in the formula P∼p[Φ U Ψ] is either

0 or 1) or for cases where ProbD(s, Φ U Ψ) happens to be either 0 or 1 for all
states (i.e. Sat(P60[Φ U Ψ]) ∪ Sat(P>1[Φ U Ψ]) = S), it suffices to use these
precomputation algorithms alone. For quantitative properties with an arbitrary
bound p, numerical computation is also usually required. The precomputation
algorithms are still valuable in this case. Firstly, they can reduce the number of
states for which numerical computation is required. Secondly, they determine the
exact probability for the states in Sat(P60[Φ U Ψ]) and Sat(P>1[Φ U Ψ]), whereas
numerical computation typically computes an approximation and is subject to
round-off errors.

Finally we note that, if desired, the Prob1 algorithm can be omitted and
Sat(P>1[Φ U Ψ]) replaced by Sat(Ψ). The set Sat(P60[Φ U Ψ]), however, must be
computed to ensure that the linear equation system has a unique solution.

Example 6. Consider again the DTMC D1 in Fig. 1 and the PCTL formula
P>0.99[try U succ]. We have Sat(try) = {s1} and Sat(succ) = {s3}. Prob0
determines in two iterations that Sat(P60[try U succ]) = {s0, s2}. Prob1 deter-
mines that Sat(P>1[try U succ]) = {s3}. The resulting linear equation system
is:

ProbD1(s0, try U succ) = 0

ProbD1(s1, try U succ) = 0.01 · ProbD1(s1, try U succ) +

0.01 · ProbD1(s2, try U succ) +

0.98 · ProbD1(s3, try U succ)

ProbD1(s2, try U succ) = 0

ProbD1(s3, try U succ) = 1 .

14 Marta Kwiatkowska, Gethin Norman, and David Parker

This yields the solution ProbD(try U succ) = (0, 9899 , 0, 1) and we see that the
formula P>0.99[try U succ] is satisfied only in state s3.

3.4 Extending DTMCs and PCTL with Rewards

In this section we enhance DTMCs with reward (or cost) structures and extend
PCTL to allow for specifications over reward structures. For a DTMC D =
(S, s̄,P, L) a reward structure (ρ, ι) allows one to specify two distinct types of
rewards: state rewards, which are assigned to states by means of the reward
function ρ : S → R>0, and transition rewards, which are assigned to transitions
by means of the reward function ι : S × S → R>0. The state reward ρ(s) is the
reward acquired in state s per time-step, i.e. a reward of ρ(s) is incurred if the
DTMC is in state s for 1 time-step and the transition reward ι(s, s′) is acquired
each time a transition between states s and s′ occurs.

A reward structure can be used to represent additional information about
the system the DTMC represents, for example the power consumption, number
of packets sent or the number of lost requests. Note that state rewards are
sometimes called cumulative rewards while transition rewards are sometimes
referred to as instantaneous or impulse rewards.

Example 7. Returning to Example 1 which describes the DTMC D1 of Fig. 1,
consider the reward structure (ρD1 ,0), where ρD1(s) = 1 if s = s1 and equals 0
otherwise. This particular reward structure would be useful when we are inter-
ested in the number of time-steps spent in state s1 or the chance that one is in
state s1 after a certain number of time-steps.

The logic PCTL is extended to allow for the reward properties by means of the
following state formulae:

R∼r[C
6k]

∣∣ R∼r[I=k]
∣∣ R∼r[F Φ]

where ∼∈{<,6,>, >}, r ∈ R>0, k ∈ N and Φ is a PCTL state formula.
Intuitively, a state s satisfies R∼r[C

6k] if, from state s, the expected reward
cumulated after k time-steps satisfies ∼r; R∼r[I=k] is true if from state s the
expected state reward at time-step k meets the bound ∼r; and R∼r[F Φ] is true
if from state s the expected reward cumulated before a state satisfying Φ is
reached meets the bound ∼r.

Formally, given a DTMC D = (S, s̄,P, L), the semantics of these formulae is
defined as follows. For any s ∈ S, k ∈ N, r ∈ R>0 and PCTL formula Φ:

s |= R∼r[C
6k] ⇔ ExpD(s,XC6k) ∼ r

s |= R∼r[I
=k] ⇔ ExpD(s,XI=k) ∼ r

s |= R∼r[F Φ] ⇔ ExpD(s,XFΦ) ∼ r

where ExpD(s,X) denotes the expectation of the random variableX : PathD(s)→
R>0 with respect to the probability measure Prs, and for any path ω = s0s1s2 · · · ∈

Stochastic Model Checking 15

PathD(s):

XC6k(ω)
def
=

{
0 if k = 0∑k−1

i=0 ρ(si) + ι(si, si+1) otherwise

XI=k(ω)
def
= ρ(sk)

XFΦ(ω)
def
=

0 if s0 |=Φ
∞ if ∀i ∈ N. si 6|=Φ∑min{j|sj |=Φ}−1

i=0 ρ(si) + ι(si, si+1) otherwise.

Example 8. Below are some typical examples of reward based specifications using
these formulae:

– R65.5[C6100] - the expected power consumption within the first 100 time-
steps of operation is less than or equal to 5.5;

– R>4[I=10] - the expected number of messages still to be delivered after 10
time-steps have passed is at least 4;

– R>14[F done] - the expected number of correctly delivered messages is at
least 14.

We now consider the computation of the expected values for each of the random
variables introduced above.

The random variable XC6k . In this case the computation of the expected
values ExpD(s,XC6k) for all s ∈ S is based on the following set of equations:

ExpD(s,XC6k) =

{
0 if k = 0

ρ(s)+
∑
s′∈S P(s, s′)·

(
ι(s, s′)+ExpD(s′, XC6k−1)

)
otherwise.

More precisely, one can iteratively compute the vector of expected values by
means of the following matrix-vector operations:

ExpD(XC6k) =

{
0 if k = 0

ρ+ (P • ι)·1 + P·ExpD(XC6k−1) otherwise

with • denoting the Schur or entry-wise multiplication of matrices and 1 a vector
with all entries equal to 1.

Example 9. Let us return to the DTMC D1 of Example 1 (see Fig. 1) and reward
structure of Example 9. The PCTL formula R>1[C6k] in this case states that,
after k time steps, the expected number of time steps spent in state s1 is greater
than 1. Now from above:

ExpD(XC60) = [0, 0, 0, 0]

ExpD(XC61) = ρ+ (P • ι)·1 + P · ExpD(XC60)

= [0, 1, 0, 0] + P · [0, 0, 0, 0]

= [0, 1, 0, 0]

ExpD(XC62) = ρ+ (P • ι)·1 + P · ExpD(XC61)

= [0, 1, 0, 0] + P · [0, 1, 0, 0]

= [1, 1.01, 0, 0]

16 Marta Kwiatkowska, Gethin Norman, and David Parker

and hence Sat(R>1[C62]) = {s1}.

The random variable XI=k . In this case the expected value can be computed
iteratively through the following set of equations:

ExpD(s,XI=k) =

{
ρ(s) if k = 0∑

s′∈S P · ExpD(s,XI=k−1) otherwise.

Therefore, the vector ExpD(XI=k) can be computed by means of the following
matrix-vector operations:

ExpD(XI=k) =

{
ρ if k = 0

P · ExpD(XI=k−1) otherwise.

Example 10. Returning again to the DTMC D1 of Example 1 and reward struc-
ture of Example 9. In this case, the PCTL formula R>0[I=k] specifies that, at
time-step k, the expectation of being in state s1 is greater than 0. We have:

ExpD(XI=0) = [0, 1, 0, 0]

ExpD(XI=1) = P · ExpD(XI=0) = P · [0, 1, 0, 0] = [1, 0.01, 0, 0]

ExpD(XI=2) = P · ExpD(XI=1) = P · [1, 0.01, 0, 0] = [0.01, 0.0001, 1, 0] .

Hence, the states s0, s1 and s2 satisfy the formula R>0[I=2].

The random variable XFΦ. The expectations in this case are a solution of the
following system of linear equations:

ExpD(s,XFΦ) =

{
0 if s ∈ Sat(Φ)

ρ(s) +
∑
s′∈S P(s, s′)·

(
ι(s, s′)+ExpD(s′, XFΦ)

)
otherwise.

As above, to simplify the computation this system of equations is transformed
into one for which the expectations ExpD(s,XFΦ) are the unique solution. To
achieve this, we identify the sets of states for which ExpD(s,XFΦ) equals∞. This
set of states are simply the set of states for which the probability of reaching a Φ
state is less than 1, that is, the set Sat(P<1[3 Φ]). We compute this set using the
precomputation algorithms Prob1 and Prob0 described in the previous section
and the equivalence P<1[3 Φ] ≡ ¬P>1[3 Φ]. One can then compute ExpD(s,XFΦ)
as the unique solution of the following linear equation system:

ExpD(s,XFΦ) =
0 if s ∈ Sat(Φ)
∞ if s ∈ Sat(P<1[3 Φ])

ρ(s) +
∑
s′∈S P(s, s′)·

(
ι(s, s′)+ExpD(s′, XFΦ)

)
otherwise.

As for ‘until’ formulae, this can be solved using any standard direct or iterative
method.

Stochastic Model Checking 17

Example 11. Let us return to D1 of Example 1 and the reward structure in Ex-
ample 9. The PCTL formula, R<1[F succ], in this case, asserts that the expected
number of times state s1 is entered before reaching a state satisfying succ is less
than 1. Following the procedure outlined above, we compute:

Sat(succ) = {s3}
Sat(P<1[3 succ]) = Sat(¬P>1[3 succ])

= S \ Sat(P>1[3 succ])

= S \Prob1(S,Sat(succ),Sat(P60[3 succ]))

= S \Prob1(S,Sat(succ),Prob0(Sat(true),Sat(succ)))

= S \Prob1(S,Sat(succ),∅)

= S\{s0, s1, s2, s3} = ∅.

This leads to the linear equation system:

ExpD(s0, XFsucc) = 0+1.00·
(

0+ExpD(s1, XFsucc)
)

ExpD(s1, XFsucc) = 1+0.01·
(

0+ExpD(s1, XFsucc)
)
+0.01·

(
0+ExpD(s2, XFsucc)

)
ExpD(s2, XFsucc) = 0+1.00·

(
0+ExpD(s0, XFsucc)

)
ExpD(s3, XFsucc) = 0

which has the solution ExpD(XFsucc) =
(
100
98 ,

100
98 ,

100
98 , 0

)
, and hence it follows

that Sat(R<1[F succ]) = {s3}.

3.5 Complexity of PCTL Model Checking

The overall time complexity for model checking a PCTL formula Φ against a
DTMC D = (S, s̄,P, L) is linear in |Φ| and polynomial in |S|. The size |Φ| of
a formula Φ is, as defined in [29], equal to the number of logical connectives
and temporal operators in the formula plus the sum of the sizes of the temporal
operators. Because of the recursive nature of the algorithm, we perform model
checking for each of the |Φ| operators and each one is at worst polynomial in
|S|. The most expensive of these are the operators P∼p[Φ U Ψ] and R∼r[F Φ],
for which a system of linear equations of size at most |S| must be solved. This
can be done with Gaussian elimination, the complexity of which is cubic in the
size of the system. Strictly speaking, the complexity of model checking is also
linear in kmax, the maximum value of k found in formulae of type P∼p[Φ U6k Ψ],
R∼r[C

6k] or R∼r[I
=k]. In practice, k is usually much smaller than |S|.

4 Model Checking Continuous-Time Markov Chains

This section concerns model checking continuous-time Markov chains (CTMCs)
against the logic Continuous Stochastic Logic (CSL). While each transition be-
tween states in a DTMC corresponds to a discrete time-step, in a CTMC tran-
sitions occur in real time. As for the case of DTMCs, we suppose that we have
a fixed set of atomic propositions AP.

18 Marta Kwiatkowska, Gethin Norman, and David Parker

Definition 9. A (labelled) CTMC is a tuple C = (S, s̄,R, L) where:

– S is a finite set of states;
– s̄ ∈ S is the initial state;
– R : S × S → R>0 is the transition rate matrix;
– L : S → 2AP is a labelling function which assigns to each state s ∈ S the

set L(s) of atomic propositions that are valid in the state.

The transition rate matrix R assigns rates to each pair of states in the CTMC,
which are used as parameters of the exponential distribution. A transition can
only occur between states s and s′ if R(s, s′)>0 and, in this case, the probabil-
ity of this transition being triggered within t time-units equals 1 − e−R(s,s′)·t.
Typically, in a state s, there is more than one state s′ for which R(s, s′)>0. This
is known as a race condition. The first transition to be triggered determines the
next state of the CTMC. The time spent in state s, before any such transition
occurs, is exponentially distributed with rate E(s), where:

E(s)
def
=
∑
s′∈S

R(s, s′) .

E(s) is known as the exit rate of state s. A state s is called absorbing if E(s) = 0,
i.e. if it has no outgoing transitions. We can also determine the actual probability
of each state s′ being the next state to which a transition is made from state s,
independent of the time at which this occurs. This is defined by the following
DTMC.

Definition 10. The embedded DTMC of a CTMC C = (S, s̄,R, L) is the DTMC
emb(C) = (S, s̄,Pemb(C), L) where for s, s′ ∈ S:

Pemb(C)(s, s′) =

R(s,s′)
E(s) if E(s) 6= 0

1 if E(s) = 0 and s = s′

0 otherwise.

Using the above definitions, we can consider the behaviour of the CTMC in an
alternative way. It will remain in a state s for a delay which is exponentially
distributed with rate E(s) and then make a transition. The probability that this
transition is to state s′ is given by Pemb(C)(s, s′).

We also define the following matrix, which will be used when we perform
analysis of the CTMC.

Definition 11. The infinitesimal generator matrix for the CTMC C = (S, s̄,R, L)
is the matrix Q : S × S → R defined as:

Q(s, s′) =

{
R(s, s′) if s 6= s′

−
∑
s′′ 6=s R(s, s′′) otherwise.

Example 12. Fig. 4 shows a simple example of a CTMC C1 = (S1, s̄1,R1, L).
The graphical notation is as for DTMCs, except that transitions are now labelled

Stochastic Model Checking 19

33 3

{full}

s1 s2 s3s0

{empty} 3
2

3
2

3
2

Fig. 4. The four state CTMC C1

with rates rather than probabilities. The CTMC models a queue of jobs: there
are four states s0, s1, s2 and s3, where state si indicates that there are i jobs
in the queue. Initially, the queue is empty (s̄ = s0) and the maximum size is
3. Jobs arrive with rate 3

2 and are removed from the queue with rate 3. The

associated transition rate matrix R1, transition probability matrix P
emb(C1)
1 for

the embedded DTMC and infinitesimal generator matrix Q1 are as follows:

R1 =

0 3

2 0 0
3 0 3

2 0
0 3 0 3

2
0 0 3 0

 P
emb(C1)
1 =

0 1 0 0
2
3 0 1

3 0
0 2

3 0 1
3

0 0 1 0

 Q1 =

− 3

2
3
2 0 0

3 − 9
2

3
2 0

0 3 − 9
2

3
2

0 0 3 −3

 .

We have labelled the state s0, where the queue contains no jobs, with the atomic
proposition empty and the state s3, where it has the maximum number of jobs,
with full . These are also illustrated in Fig. 4.

4.1 Paths and Probability Measures

An infinite path of a CTMC C = (S, s̄,R, L) is a non-empty sequence s0t0s1s2 . . .
where R(si, si+1)>0 and ti ∈ R>0 for all i>0. A finite path is a sequence
s0t0s1t1sk−1tk−1sk such that sk is absorbing. The value ti represents the amount
of time spent in the state si. As with DTMCs, we denote by ω(i) the ith state of
a path ω, namely si. For an infinite path ω, we denote by time(ω, i) the amount
of time spent in state si, namely ti, and by ω@t the state occupied at time t,
i.e. ω(j) where j is the smallest index for which

∑j
i=0 ti > t. For a finite path

ω = s0t0s1s2 . . . tk−1sk, time(ω, i) is only defined for i 6 k: time(ω, j) = ti for

i < k and time(ω, k) = ∞. Furthermore, if t 6
∑k−1
i=1 ti, then ω@t is defined as

for infinite paths, and otherwise ω@t = sk.
We denote by PathC(s) the set of all (infinite and finite) paths of the CTMC

C starting in state s. The probability measure Prs over PathC(s), taken from
[10], can be defined as follows. If the states s0, . . . , sn ∈ S satisfy R(si, si+1) > 0
for all 0 6 i < n and I0, . . . , In−1 are non-empty intervals in R>0, then the
cylinder set C(s0, I0, . . . , In−1, sn) is defined to be the set containing all paths
ω ∈ PathC(s0) such that ω(i) = si for all i 6 n and time(ω, i) ∈ Ii for all i < n.

We then let ΣPathC(s) be the smallest σ-algebra on PathC(s) which contains
all the cylinder sets C(s0, I0, . . . , In−1, sn), where s0, . . . , sn ∈ S range over all
sequences of states with s0 = s and R(si, si+1) > 0 for 06i<n, and I0, . . . , In−1
range over all sequences of non-empty intervals in R>0. Using Theorem 1, we

20 Marta Kwiatkowska, Gethin Norman, and David Parker

can then define the probability measure Prs on ΣPathC(s) as the unique mea-
sure such that Prs(C(s)) = 1 and for any cylinder C(s, I, . . . , In−1, sn, I

′, s′),
Prs(C(s, I, . . . , In−1, sn, I

′, s′)) equals:

Prs(C(s, I, . . . , In−1, sn)) ·Pemb(C)(sn, s
′) ·
(
e−E(sn)·inf I′ − e−E(sn)·sup I′

)
.

Example 13. Consider the CTMC C1 from Fig. 4 and the sequence of states
and intervals s0, [0, 2], s1 (i.e. taking I0 = [0, 2] in the notation of the previous
paragraph). Using the probability measure Prs0 over (PathC1(s0), ΣPathC(s0)),
for the cylinder set C(s0, [0, 2], s1), we have:

Prs0(C(s0, [0, 2], s1)) = Prs0(C(s0)) ·Pemb(C1)
1 (s0, s1) · (e−E(s0)·0 − e−E(s0)·2)

= 1 · 1 · (e0 − e−3)

= 1− e−3 .

Intuitively, this means that the probability of leaving the initial state s0 and
passing to state s1 within the first 2 time units is 1− e−3 ≈ 0.950213.

4.2 Steady-State and Transient Behaviour

In addition to path probabilities, we consider two more traditional properties
of CTMCs: transient behaviour, which relates to the state of the model at a
particular time instant; and steady-state behaviour, which describes the state
of the CTMC in the long-run. For a CTMC C = (S, s̄,R, L), the transient
probability πCs,t(s

′) is defined as the probability, having started in state s, of
being in state s′ at time instant t. Using the definitions of the previous section:

πCs,t(s
′)

def
= Prs{ω ∈ PathC(s) |ω@t = s′} .

The steady-state probability πCs (s′), i.e. the probability of, having started in
state s, being in state s′ in the long-run, is defined as:

πCs (s′)
def
= lim

t→∞
πCs,t(s

′) .

The steady-state probability distribution, i.e. the values πCs (s′) for all s′ ∈ S,
can be used to infer the percentage of time, in the long-run, that the CTMC
spends in each state. For the class of CTMCs which we consider here, i.e. those
that are homogeneous and finite-state, the limit in the above definition always
exists [59]. Furthermore, for CTMCs which are irreducible (strongly connected),
that is, those for which there exists a finite path from each of its states to every
other state, the steady-state probabilities πCs (s′) are independent of the starting
state s.

We now outline a standard technique, called uniformisation (also known as
‘randomisation’ or ‘Jensen’s method’), for computing transient probabilities of
CTMCs as this will later be relied on in the model checking algorithms for
CTMCs.

Stochastic Model Checking 21

Uniformisation. For a CTMC C = (S, s̄,R, L), we denote by ΠCt the matrix
of all transient probabilities for time t, i.e. ΠCt (s, s′) = πCs,t(s

′). It can be shown

(see for example [59]) that ΠCt can be expressed as a matrix exponential, and
hence evaluated as a power series:

ΠCt = eQ·t =

∞∑
i=0

(Q · t)i

i!

where Q is the infinitesimal generator matrix of C (see Definition 11). Unfortu-
nately, this computation tends to be unstable. As an alternative, the probabilities
can be computed through the uniformised DTMC of C.

Definition 12. For any CTMC C = (S, s̄,R, L) with infinitesimal generator
matrix Q, the uniformised DTMC is given by unif (C) = (S, s̄,Punif(C), L) where
Punif(C) = I + Q/q and q > max{E(s) | s ∈ S}.

The uniformisation rate q is determined by the state with the shortest mean
residence time. All (exponential) delays in the CTMC C are normalised with
respect to q. That is, for each state s ∈ S with E(s) = q, one epoch in unif (C)
corresponds to a single exponentially distributed delay with rate q, after which
one of its successor states is selected probabilistically. As a result, no self-loop
is added to such states in the DTMC unif (C). If E(s)<q – this state has on
average a longer state residence time than 1

q – one epoch in unif (C) might not
be “long enough”. Hence, in the next epoch these states might be revisited and,

accordingly, are equipped with a self-loop with probability 1 − E(s)
q . Note the

difference between the embedded DTMC emb(C) and the uniformised DTMC
unif (C): whereas the epochs in C and emb(C) coincide and emb(C) can be con-
sidered as the time less variant of C, a single epoch in unif (C) corresponds to
a single exponentially distributed delay with rate q in C. Now, using the uni-
formised DTMC the matrix of transient probabilities can be expressed as:

ΠCt =

∞∑
i=0

γi,q·t ·
(
Punif(C)

)i
where γi,q·t = e−q·t · (q·t)i

i!
. (2)

In fact, this reformulation has a fairly intuitive explanation. Each step of the
uniformised DTMC corresponds to one exponentially distributed delay, with

parameter q, in the CTMC. The matrix power
(
Punif(C))i gives the probability

of jumping between each pair of states in the DTMC in i steps and γi,q·t is
the ith Poisson probability with parameter q·t, the probability of i such steps
occurring in time t, given the delay is exponentially distributed with rate q.

This approach has a number of important advantages. Firstly, unlike Q, the
matrix Punif(C) is stochastic, meaning that all entries are in the range [0, 1] and
all rows sum to one. Computations using Punif(C) are therefore more numerically
stable. In particular, Q contains both positive and negative values which can
cause severe round-off errors.

Secondly, the infinite sum is now easier to truncate. For example, the tech-
niques of Fox and Glynn [27], which allow efficient computation of the Poisson

22 Marta Kwiatkowska, Gethin Norman, and David Parker

probabilities γi,q·t, also produce an upper and lower bound (Lε, Rε), for some
desired precision ε, below and above which the probabilities are insignificant.
Hence, the sum can be computed only over this range.

Lastly, the computation can be carried out efficiently using matrix-vector
multiplications, rather than more costly matrix-matrix multiplications. Consider
the problem of computing πCs,t(s

′) for a fixed state s. These values can be obtained

by pre-multiplying the matrix ΠCt by the initial probability distribution, in this
case the vector πCs,0 where πCs,0(s′) is equal to 1 if s′ = s and 0 otherwise:

πCs,t = πCs,0 ·Π
C
t = πCs,0 ·

∞∑
i=0

γi,q·t ·
(
Punif(C)

)i
.

Rearranging, this can be expressed as a sum of vectors, rather than a sum of
matrix powers:

πCs,t =

∞∑
i=0

(
γi,q·t · πCs,0 ·

(
Punif(C)

)i)
where the vector required in each element of the summation is computed by a
single matrix-vector multiplication, using the vector from the previous iteration:

πCs,0 ·
(
Punif(C)

)i
=

(
πCs,0 ·

(
Punif(C)

)i−1)
·Punif(C) .

Hence, the total work required is Rε matrix-vector multiplications.

4.3 Continuous Stochastic Logic (CSL)

We write specifications of CTMCs using the logic CSL (Continuous Stochastic
Logic), an extension of the temporal logic CTL.

Definition 13. The syntax of CSL is as follows:

Φ ::= true
∣∣ a ∣∣ ¬Φ ∣∣ Φ ∧ Φ ∣∣ P∼p[φ]

∣∣ S∼p[Φ]

φ ::= X Φ
∣∣ Φ UI Φ

where a is an atomic proposition, ∼∈{<,6,>, >}, p ∈ [0, 1] and I is an interval
of R>0.

As for PCTL, P∼p[φ] indicates that the probability of the path formula φ being
satisfied from a given state meets the bound ∼p. Path formulae are the same
for CSL as for PCTL, except that the parameter of the ‘until’ operator is an
interval I of the non-negative reals, rather than simply an integer upper bound.
The path formula Φ UI Ψ holds if Ψ is satisfied at some time instant in the
interval I and Φ holds at all preceding time instants. To avoid confusion, we
will refer to this as the ‘time-bounded until’ operator. Similarly to PCTL, the
standard ‘unbounded until’ operator can be derived by considering the interval
I = [0,∞). The S operator describes the steady-state behaviour of the CTMC.

Stochastic Model Checking 23

The formula S∼p[Φ] asserts that the steady-state probability of being in a state
satisfying Φ meets the bound ∼p.

As with PCTL, we write s |=Φ to indicate that a CSL formula Φ is satisfied
in a state s and denote by Sat(Φ) the set {s ∈ S | s |=Φ}. Similarly, for a path
formula φ satisfied by path ω, we write ω |=φ. The semantics of CSL over CTMCs
is defined as follows.

Definition 14. Let C = (S, s̄,R, L) be a labelled CTMC. For any state s ∈ S
the relation s |=Φ is defined inductively by:

s |= true for all s ∈ S
s |= a ⇔ a ∈ L(s)

s |=¬Φ ⇔ s 6|=Φ
s |=Φ ∧ Ψ ⇔ s |=Φ ∧ s |=Ψ

s |= P∼p[φ] ⇔ ProbC(s, φ) ∼ p
s |= S∼p[Φ] ⇔

∑
s′ |=Φ π

C
s (s′) ∼ p

where:
ProbC(s, φ)

def
= Prs{ω ∈ PathC(s) |ω |=φ}

and for any path ω ∈ PathC(s):

ω |= X Φ ⇔ ω(1) is defined and ω(1) |=Φ
ω |=Φ UI Ψ ⇔ ∃t ∈ I. (ω@t |=Ψ ∧ ∀x ∈ [0, t). (ω@x |=Φ)) .

As discussed in [12], for any path formula Φ, the set {ω ∈ PathC(s) |ω |=φ} is a
measurable set of (PathC(s), ΣPathC(s)), and hence Prs is well defined over this

set. In addition the steady-state probabilities πCs (s′) always exists as C contains
finitely many states [59].

As with PCTL, we can easily derive CSL operators for false, ∨ and →.
Similarly, we can use the 3 and 2 temporal operators:

P∼p[3
IΦ] ≡ P∼p[true UI Φ]

P∼p[2
IΦ] ≡ P∼1−p[3

I¬Φ] .

It is also worth noting that, despite the fact that CSL does not explicitly include
operators to reason about transient probabilities, the following can be used to
reason about the probability of satisfying a formula Φ at time instant t:

P∼p[3
[t,t] Φ] .

Example 14. Below are some typical examples of CSL formulae:

– P>0.9[3[0,4.5] served] - the probability that a request is served within the first
4.5 seconds is greater than 0.9;

– P60.1[3[10,∞) error] - the probability that an error occurs after 10 seconds
of operation is at most 0.1;

– down → P>0.75[¬fail U[1,2] up] - when a shutdown occurs, the probability of
system recovery being completed in between 1 and 2 hours without further
failures occurring is greater than 0.75;

– S<0.01[insufficient routers] - in the long-run, the probability that an inade-
quate number of routers are operational is less than 0.01.

24 Marta Kwiatkowska, Gethin Norman, and David Parker

4.4 CSL Model Checking

In this section we consider a model checking algorithm for CSL over CTMCs.
CSL model checking was shown to be decidable (for rational time bounds) in [4]
and a model checking algorithm first presented in [12]. We use these techniques
plus the subsequent improvements made in [10,40].

The inputs to the algorithm are a labelled CTMC C = (S, s̄,R, L) and a
CSL formula Φ. The output is the set of states Sat(Φ) = {s ∈ S | s |=Φ}. As
for DTMCs and PCTL, we first construct the parse tree of the formula Φ and,
working upwards towards the root of the tree, we recursively compute the set
of states satisfying each subformula. By the end, we have determined whether
each state in the model satisfies Φ. The algorithm for CSL operators can be
summarised as follows:

Sat(true) = S
Sat(a) = {s | a ∈ L(s)}

Sat(¬Φ) = S\Sat(Φ)
Sat(Φ ∧ Ψ) = Sat(Φ) ∩ Sat(Ψ)

Sat(P∼p[φ]) = {s ∈ S |ProbC(s, φ)∼p}
Sat(S∼p[Φ]) = {s ∈ S |

∑
s′ |=Φ π

C
s (s′)∼p} .

Model checking for the majority of these operators is trivial to implement and
is, in fact, the same as for the non-probabilistic logic CTL. The exceptions are
the P∼p[·] and S∼p[·] operators which are considered below.

P∼p[X Φ] formulae. The CSL ‘next’ operator is defined as for the PCTL equiv-
alent. Furthermore, the definition does not relate to any of the real-time aspects
of CTMCs: it depends only on the probability of moving to the next immediate
state, and hence this operator can actually be model checked by using the PCTL
algorithms of Section 3 on the embedded DTMC emb(C) (see Definition 10).

Example 15. Consider the CTMC C1 in Fig. 4 and the CSL formula P>0.5[X full].
Working with the embedded DTMC emb(C1) and following the algorithm of
Section 3, we multiply the matrix Pemb(C1), given in Example 12, by the vec-
tor (0, 0, 0, 1), yielding the probabilities ProbC1(X full) = (0, 0, 13 , 0). Hence, the
formula is not true in any state of the CTMC.

P∼p[Φ UI Ψ] formulae. For this operator, we need to determine the probabilities

ProbC(s, Φ UI Ψ) for all states s where I is an arbitrary interval of the non-
negative real numbers. Noting that:

ProbC(s, Φ UI Ψ) = ProbC(s, Φ Ucl(I) Ψ)

where cl(I) is the closure of the interval I, and that:

ProbC(s, Φ U[0,∞) Ψ) = Probemb(C)(s, Φ U6∞ Ψ)

we are left with the following three cases for the interval I:

Stochastic Model Checking 25

– I = [0, t] for some t ∈ R>0;

– I = [t, t′] for some t, t′ ∈ R>0 such that t 6 t′;

– I = [t,∞) for some t ∈ R>0.

Following the method presented in [10], we will now show that the probabilities
ProbC(s, Φ UI Ψ) for these cases can be computed using variants of uniformisation
(see Section 4.2).

The case when I = [0, t]. Computing the probabilities in this case reduces
to determining the least solution of the following set of integral equations:
ProbC(s, Φ U[0,t] Ψ) equals 1 if s ∈ Sat(Ψ), 0 if s ∈ Sat(¬Φ ∧ ¬Ψ) and

ProbC(s, Φ U[0,t] Ψ) =

∫ t

0

∑
s′∈S

Pemb(C)(s, s′)·E(s)·e−E(s)·x·ProbC(s′, Φ U[0,t−x] Ψ) dx

otherwise. Here, E(s)·e−E(s)·x denotes the probability density of taking some
outgoing transition from s at time x. Note the resemblance with equations (1)
for the PCTL bounded until operator. Originally, [12] proposed to do this via
approximate solution of Volterra integral equation systems. Experiments in [34]
showed that this method was generally slow and, in [8], a simpler alternative
was presented which reduces the problem to transient analysis. This approach
is outlined below.

Definition 15. For any CTMC C = (S, s̄,R, L) and CSL formula Φ, let CTMC
C[Φ] = (S, s̄,R[Φ], L) with R[Φ](s, s′) = R(s, s′) if s 6|= Φ and 0 otherwise.

Note that, using Definition 8, we have that emb(C[Φ]) = emb(C)[Φ].

Proposition 3 ([8]). For a CTMC C = (S, s̄,R, L), CSL formulae Φ and Ψ
and positive real t ∈ R>0:

ProbC(s, Φ U[0,t] Ψ) =
∑
s′|=Ψ

π
C[¬Φ∨Ψ]
s,t (s′) .

Consider the CTMC C[¬Φ ∧ ¬Ψ][Ψ] = C[¬Φ ∨ Ψ]. Since a path in this CTMC
cannot exit a state satisfying Ψ once it reaches one, and will never be able to
reach a state satisfying Ψ if it enters one satisfying ¬Φ∧¬Ψ , the probability of the
path formula Φ U[0,t] Ψ being satisfied in CTMC C is equivalent to the transient
probability of being in a state satisfying Φ at time t in CTMC C[¬Φ ∨ Ψ].

As shown in [40], uniformisation can be adapted to compute the vector of
probabilities ProbC(Φ U[0,t] Ψ) without having to resort to computing the prob-
abilities for each state separately. More precisely, from Theorem 3:

ProbC(Φ U[0,t] Ψ) = Π
C[¬Φ∨Ψ]
t · Ψ

=

(∞∑
i=0

γi,q·t ·
(
Punif(C[¬Φ∨Ψ])

)i)
· Ψ by (2)

=

∞∑
i=0

(
γi,q·t ·

(
Punif(C[¬Φ∨Ψ])

)i
· Ψ
)

rearranging

26 Marta Kwiatkowska, Gethin Norman, and David Parker

Note that the inclusion of the vector Ψ within the brackets is vital since, like with
uniformisation, it allows explicit computation of matrix powers to be avoided.
Instead, each product is calculated as:(

Punif(C)
)0
· Ψ = Ψ and

(
Punif(C)

)i+1

· Ψ = Punif(C) ·
((

Punif(C)
)i
· Ψ
)
,

reusing the computation from the previous iteration. As explained in Section 4.2,
the infinite summation can be truncated using the techniques of Fox and Glynn
[27]. In fact the summation can be truncated even sooner if the vector con-
verges. As an additional optimisation, we can reuse the Prob0 algorithm, from
Fig. 3 in Section 3, to initially identify all states s for which the probability
ProbC(s, Φ U[0,t] Ψ) is 0.

Example 16. Consider the CTMC C1 in Fig. 4 and the CSL ‘time-bounded
until’ formula P>0.65[true U[0,7.5] full]. To compute the vector of probabilities
ProbC(true U[0,7.5] full), i.e. the probability from each state that a state satisfy-
ing atomic proposition full is reached within 7.5 time units, we follow the proce-
dure outlined above. First, observe that only state s3 satisfies full and no states
satisfy ¬true. Hence, the only difference in the modified CTMC C1[¬true∨ full]
is that state s3 made absorbing, i.e. the transition between states s3 and s2 is
removed. Using the uniformisation rate q = 4.5(= max06i63E(si)), the tran-
sition probability matrix for the uniformised DTMC of this modified CTMC
C1[¬true ∨ full] is given by:

Punif(C1[¬true∨full]) =

2
3

1
3 0 0

2
3 0 1

3 0
0 2

3 0 1
3

0 0 0 1

 .

Computing the summation of matrix-vector multiplications described above
yields the solution:

ProbC1(true U[0,7.5] full) ≈ (0.6405, 0.6753, 0.7763, 1)

and we conclude that the CSL property is satisfied in states s1, s2 and s3.

The case I = [t, t′]. For this case, we split the computation into two parts. As
shown in [8], we can consider separately the probabilities of: (a) staying in states
satisfying Φ up until time t; (b) reaching a state satisfying Ψ , while remaining
in states satisfying Φ, within time t′ − t. For the former, we use a similar idea
to that used in the case when I = [0, t], computing transient probabilities in a
CTMC for which states satisfying ¬Φ have been made absorbing. We have:

ProbC(s, Φ U[t,t
′] Ψ) =

∑
s′ |=Φ

π
C[¬Φ]
s,t (s′) · ProbC(s′, Φ U[0,t

′−t] Ψ)

= π
C[¬Φ]
s,t · ProbCΦ(Φ U[0,t

′−t] Ψ)

Stochastic Model Checking 27

where ProbCΦ(Φ U[0,t
′−t] Ψ) is a vector with:

ProbCΦ(s, Φ U[0,t
′−t] Ψ) =

{
ProbC(s, Φ U[0,t

′−t] Ψ) if s |=Φ
0 otherwise

which can be computed using the method described above. The overall com-
putation can be performed as a summation, in the style of uniformisation, to
determine the probability for all states at once:

ProbC(Φ U[t,t
′] Ψ) = Π

C[¬Φ]
t · ProbCΦ(Φ U[0,t

′−t] Ψ)

=

(∞∑
i=0

γi,q·t ·
(
Punif(C[¬Φ])

)i)
· ProbCΦ(Φ U[0,t

′−t] Ψ)

=

∞∑
i=0

(
γi,q·t ·

(
Punif(C[¬Φ])

)i
· ProbCΦ(Φ U[0,t

′−t] Ψ)

)
Again, this summation can be truncated and performed using only scalar and
matrix-vector multiplication.

The case I = [t,∞). This case is, in fact, almost identical to the previous one. We
again split the computation into two parts. Here, however, the second part is an
unbounded, rather than time-bounded, ‘until’ formula, and hence the embedded
DTMC can be used in this case. More precisely, we have:

ProbC(s, Φ U[t,∞) Ψ) = π
C[¬Φ]
s,t · ProbCΦ(Φ U Ψ) = π

C[¬Φ]
s,t · Prob

emb(C)
Φ (Φ U Ψ) .

Similarly to the above, this can be compute for all states:

ProbC(Φ U[t,∞) Ψ) =

∞∑
i=0

(
γi,q·t ·

(
Punif(C[¬Φ])

)i
· Prob

emb(C)
Φ (Φ U Ψ)

)
.

S∼p[Φ] formulae. A state s satisfies the formula S∼p[Φ] if
∑
s′ |=Φ π

C
s (s′) ∼ p.

Therefore, to model check the formula S∼p[Φ], we must compute the steady-state
probabilities πCs (s′) for all states s and s′. We first consider the simple case when
C is irreducible.

The case when C is irreducible. As described in Section 4.2, the steady-state
probabilities of C are independent of the starting state, and therefore we denote
by πC(s) and πC the steady-state probability of being in the state s and the vector
of all such probabilities, respectively. These probabilities can be computed as the
unique solution of the linear equation system:

πC ·Q = 0 and
∑
s∈Sπ

C(s) = 1 . (3)

This system can be solved by any standard approach, for example using direct
methods, such as Gaussian elimination, or iterative methods, such as Jacobi and

28 Marta Kwiatkowska, Gethin Norman, and David Parker

Gauss-Seidel. The satisfaction of the CSL formula, which in this case will be the
same for all states, can be determined by summing the steady-state probabilities
for all states satisfying Φ and comparing this result to the bound in the formula.
More precisely, for any state s ∈ S:

s |= S∼p[Φ] ⇔
∑
s′ |=Φπ

C(s′) ∼ p .

The case when C is reducible. In this case the procedure is more complex. First
graph analysis is carried out to determine the set bscc(C) of bottom strongly
connected components (BSCCs) of C, i.e. the set of strongly connect components
of C that, once entered, cannot be left any more. Each individual BSCC B ∈
bscc(C) can be treated as an irreducible CTMC, and hence the steady-state
probability distribution πB can be determined using the method described in
the previous case.

Next, we calculate the probability of reaching each BSCC B ∈ bscc(C) from

each state s of C. In fact, this is simply Probemb(C)(s,3 aB), where aB is an
atomic proposition true only in the states s′ ∈ B. Then, for states s, s′ ∈ S, the
steady-state probability πCs (s′) can be computed as:

πCs (s′) =

{
Probemb(C)(s,3 aB) · πB(s′) if s′ ∈ B for some B ∈ bscc(C)

0 otherwise.

Note that, since the steady-state probabilities πB(s′) are independent of s, the
total work required to compute πCs (s′) for all s, s′ ∈ S is the solution of two
linear equation systems for each BSCC in the CTMC: one to obtain the vector
of probabilities πB and another for the vector of probabilities Probemb(C)(3 aB).
Computation of the BSCCs in the CTMC requires an analysis of its underlying
graph structure and can be performed using classic algorithms based on depth-
first search [60].

Example 17. Consider the CTMC C1 in Fig. 4 and the CSL ‘steady-state’ for-
mula S<0.1[full]. From inspection, we see that the CTMC comprises a single
BSCC containing all 4 states. Hence, the steady-state probabilities are computed
by solving the linear equation system:

− 3
2 · π

C1(s0) + 3 · πC1(s1) = 0
3
2 · π

C1(s0)− 9
2 · π

C1(s1) + 3 · πC1(s2) = 0
3
2 · π

C1(s1)− 9
2 · π

C1(s2) + 3 · πC1(s3) = 0
3
2 · π

C1(s2)− 3 · πC1(s3) = 0

πC1(s0) + πC1(s1) + πC1(s2) + πC1(s3) = 1

which has the solution πC1 = (8
15 ,

4
15 ,

2
15 ,

1
15). State s3 is the only state satisfying

atomic proposition full , and thus the CSL formula is true in all states.

4.5 Extending CTMCs and CSL with Rewards

As for DTMCs, given a CTMC C = (S, s̄,R, L), we can enrich C with a reward
structure (ρ, ι). Recall that the state reward function ρ : S → R>0 defines this

Stochastic Model Checking 29

as the rate at which reward is acquired in a state and the transition reward
function ι : S × S → R>0 defines the reward acquired each time a transition
occurs. Note that, since we are now in the continuous time setting, a reward of
t · ρ(s) will be acquired if the CTMC remains in state s for t ∈ R>0 time units.

Example 18. Returning to the CTMC C1 of Example 12 (see Fig. 4), we consider
two different reward structures:

– (0, ιC1) where ιC1 assigns 1 to the transitions corresponding to a request
being served and 0 to all other transitions, that is:

ιC1 =

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

 .

Such a structure can be used for measures relating to the number of requests
served within a given time interval or in the long-run.

– (ρC1 ,0) where ρC1 associates with each state the number of requests that are
awaiting service:

ρC1 = (0, 1, 2, 3) .

This structure is used when one is interested in the queue size at any time
instant or in the long-run.

The construction of both the embedded DTMC emb(C) (see Definition 10) and
uniformised DTMC unif (C) (see Definition 12) can be extended to incorporate
the reward structure (ι, ρ). In both constructions the transition reward function

does not change, that is, ιemb(C) = ιunif(C) = ι. On the other hand, the con-
structed state reward function takes into account the expected time that the
CTMC remains in each state. More precisely, if q is the uniformisation rate used
in the construction of the uniformised DTMC, then for any s ∈ S:

ρemb(C)(s) = 1
E(s) · ρ(s) and ρunif(C)(s) = 1

q · ρ(s) .

We extend the syntax of logic CSL to allow for specifications relating to rewards
by introducing the following formulae:

R∼r[C
6t]

∣∣ R∼r[I=t] ∣∣ R∼r[F Φ]
∣∣ R∼r[S]

where ∼∈{<,6,>, >}, r, t ∈ R>0 and Φ is a CSL formula. Intuitively, a state s
satisfies R∼r[C

6t] if, from state s, the expected reward cumulated up until t time
units have elapsed satisfies ∼r; R∼r[I=t] is true if, from state s, the expected
state reward at time instant t meets the bound ∼r; R∼r[F Φ] is true if, from
state s, the expected reward cumulated before a state satisfying Φ is reached
meets the bound ∼r; and R∼r[S] is true if, from state s, the long-run average
expected reward satisfies ∼r.

30 Marta Kwiatkowska, Gethin Norman, and David Parker

Formally, given a CTMC D = (S, s̄,R, L), the semantics of these formulae is
defined as follows. For any s ∈ S, r, t ∈ R>0 and PCTL formula Φ:

s |= R∼r[C
6t] ⇔ ExpC(s,XC6t) ∼ r

s |= R∼r[I
=t] ⇔ ExpC(s,XI=t) ∼ r

s |= R∼r[F Φ] ⇔ ExpC(s,XFΦ) ∼ r
s |= R∼r[S] ⇔ limt→∞

1
t · ExpC(s,XC6t) ∼ r

where ExpC(s,X) denotes the expectation of the random variable X with respect
to the probability measure Prs and for any path ω = s0t0s1t1s2 · · · ∈ PathC(s):

XC6t(ω)
def
=

jt−1∑
i=0

(
ti · ρ(si) + ι(si, si+1)

)
+

(
t−

jt−1∑
i=0

ti

)
· ρ(sjt)

XI=t(ω)
def
= ρ(ω@t)

XFΦ(ω)
def
=

0 if ω(0) |=Φ
∞ if ∀i ∈ N. si 6|=Φ∑min{j|sj |=Φ}−1

i=0 ti · ρ(si) + ι(si, si+1) otherwise

and jt = min{j |
∑j
i=0 ti > t}.

Example 19. Below are some typical examples of reward based formulae:

– R>3.6[C64.5] - the expected number of requests served within the first 4.5
seconds of operations is greater than 3.6;

– R<2[I=6.7] - the expected size of the queue when 6.7 time units have elapsed
is less than 2;

– R<10[F full] - the expected number of requests served before the queue be-
comes full is less than 10;

– R>1.2[S] - the expected long-run queue size is at least 1.2.

We now consider the computation of the expected values of the different random
variables defined above.

The random variable XC6t . Based on the results in [43,44], we can use the
uniformised DTMC to compute the expectation of this random variable. More
precisely, we have have the following result.

Proposition 4 ([44]). For a CTMC C = (S, s̄,R, L), state s ∈ S and positive
real t ∈ R>0:

ExpC(s,XC6t) =

∞∑
i=0

γ̄i,q·t ·
(
Punif(C)

)i
· fq(ρ, ι)

where

γ̄i,q·t
def
=

∫ t

0

γi,q·u du =
1

q

∞∑
j=i+1

γj,q·t =
1

q

1−
i∑
j=i

γj,q·t

 ,

Stochastic Model Checking 31

π
unif(C)
s,i denotes the probability distribution in unif (C) after i steps when starting

in s, q is the uniformisation rate and

fq(ρ, ι) = ρ+ q ·
(
Punif(C) • ι

)
· 1

with • denoting the Schur or entry-wise multiplication of matrices and 1 a vector
with all entries equal to 1.

Similarly to computing the vector of probabilities ProbC(Φ U[0,t] Ψ), we can both
truncate the summation and use only scalar and matrix-vector multiplication in
the computation. In this case, to compute the coefficients γ̄i,q·t, we can employ
the method (based on Fox and Glynn [27]) given in [42].

Example 20. Returning to the CTMC C1 of Example 12 and the reward structure
(0, ρC1) of Example 18, the expected number of requests served after 5.5 time
units have elapsed is given by:

ExpC1(XC65.5) ≈ (7.0690, 8.0022, 8.8020, 9.3350)

and hence only state s3 satisfies R>9[C65.5].

The random variable XI=t . In this case, using the fact that:

ExpC(s,XI=t) =
∑
s′∈S

ρ(s′) · πCs,t(s′)

we can again use the uniformised DTMC unif (C) to compute the expectation.
More precisely, we can compute the vector ExpC(XI=t) through the following
sum over vectors of coefficients:

ExpC(XI=t) =

∞∑
i=0

γi,q·t ·
(
Punif(C)

)i
· ρ

which again can be truncated and computed using only scalar and matrix-vector
multiplications.

Example 21. Returning to the CTMC C1 in Example 12 and the reward structure
(ρC1 ,0) of Example 18, the expected size of the queue after 1 time unit has
elapsed is given by:

ExpC1(XI=1) ≈ (0.5929, 0.7352, 1.0140, 1.2875)

and hence all states satisfy the formula R<2[I=1].

The random variable XFΦ. To compute the expectations in this case, we use
the fact that:

ExpC(s,XFΦ) = Expemb(C)(s,XFΦ)

that is, we compute the expectations by constructing the embedded DTMC
emb(C) and employing the algorithms for verifying DTMCs against PCTL given
in Section 3.3.

32 Marta Kwiatkowska, Gethin Norman, and David Parker

Example 22. Consider the CTMC C1 of Example 12, the reward structure (0, ιC1)
of Example 18. The formula R<7[F full], in this case, states that the expected
number of requests served before the queue becomes full is less than 7. Now,
computing the expectations Expemb(C1)(s,XFfull) according to Section 3.4:

Sat(full) = {s3}
Sat(P<1[3 full]) = S \Prob1(S,Sat(full),Prob0(S,Sat(full)))

= S\{s0, s1, s2, s3} = ∅

leading to the linear equation system:

Expemb(C1)(s0, XFfull) = 1·Expemb(C1)(s1, XFfull)

Expemb(C1)(s1, XFfull) = 2
3 ·
(

1+Expemb(C1)(s0, XFfull)
)
+ 1

3Expemb(C1)(s2, XFfull)

Expemb(C1)(s2, XFfull) = 2
3 ·
(

1+Expemb(C1)(s1, XFfull)
)

Expemb(C1)(s3, XFfull) = 0 .

Solving this system of equations gives Expemb(C1)(XFfull) = (8, 8, 6, 0), and there-

fore, since ExpC1(s,XFfull) = Expemb(C1)(s,XFfull), only states s2 and s3 satisfy
the formula R67[F full].

The random variable XS. As in the case of the operator S∼p[·], we consider
the cases when C is irreducible and reducible separately.

The case when C is irreducible. If πC is the vector of the steady-state probabilities
(recall that when C is irreducible the steady-state probabilities are independent
of the starting state), we have:

ExpC(s,XS) = πC · ρ+ πC · (R • ι
)
· 1

with • again denoting the Schur or entry-wise multiplication of matrices and 1 a
vector with all entries equal to 1. Note that since the expectation is independent
of the starting state, we denote the expectation by ExpC(XS). The computation
in this case therefore requires the computation of the steady-state probabilities
of C, which reduces to solving the linear equation system given in (3).

The case when C is reducible. Similarly, to the approach for checking formulae
of the form S∼p[Φ], first, through graph analysis, we determine the set bscc(C)
of BSCCs of C. Next, treating each individual B ∈ bscc(C) as an irreducible
CTMC, we compute the expectations ExpBi(XS) and determine the vector of

probabilities Probemb(C)(3 aB) for each B ∈ bscc(C). Finally, for each state s ∈ S:

ExpC(s, S) =
∑

B∈bscc(C)

Probemb(C)(s,3 aB) · ExpB(S) .

Example 23. Returning once again to the CTMC C1 in Example 12, using the
steady-state probabilities computed earlier and the reward structure (0, ιC1) of

Stochastic Model Checking 33

Example 18, the long-run average expected number of requests served is given
by:

πC · 0 + πC · (R1 • ιC1
)
· 1 = (8

15 ,
4
15 ,

2
15 ,

1
15) ·

0 3
2 0 0

3 0 3
2 0

0 3 0 3
2

0 0 3 0

 •

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

 · 1

= (8
15 ,

4
15 ,

2
15 ,

1
15) ·

0 0 0 0
3 0 0 0
0 3 0 0
0 0 3 0

 · 1

= (8
15 ,

4
15 ,

2
15 ,

1
15) ·

0
3
3
3

 = 7
5

and thus no states satisfy the formula R>1.5[S] when the reward structure (0, ιC1)
is associated with the CTMC C1.

On the other hand, using the reward structure (ρC1 ,0) of Example 18, the
long-run average size of the queue is given by:

πC · c1 + πC · (R1 • 0
)
· 1 = (8

15 ,
4
15 ,

2
15 ,

1
15) ·

0
1
2
3

 = 11
15

and hence all states satisfy the formula R60.8[S] when the reward structure
(ρC1 ,0) is associated with the CTMC C1.

4.6 Complexity of CSL Model Checking

The overall time complexity for model checking a CSL formula Φ against a
CTMC C = (S, s̄,R, L) is linear in |Φ|, polynomial in |S| and linear in q·tmax,
where q = maxs∈S |Q(s, s)| and tmax is the maximum value found in the parame-
ter of a ‘time-bounded until’ operator. For formulae of the form P∼p[Φ U[0,∞) Ψ],
S∼p[Φ], R∼r[F Φ] and R∼r[S] a solution of a linear equation system of size |S| is
required. This can be done with Gaussian elimination, the complexity of which
is cubic in the size of the system. For formula of the form P∼p[Φ UI Ψ], R∼r[C

6t]
and R∼r[I

=t] we must perform at most two iterative summations, each step of
which requires a matrix-vector multiplication. This operation is quadratic in the
size of the matrix, i.e. |S|. The total number of iterations required is determined
by the upper bound supplied by the algorithm of Fox and Glynn [27], which for
large q·t is linear in q·t.

34 Marta Kwiatkowska, Gethin Norman, and David Parker

5 Stochastic Model Checking In Practice

In this section we first give a high-level overview of the functionality of the
stochastic model checker PRISM and then discuss three case studies employing
stochastic model checking and PRISM.

5.1 The Probabilistic Model Checker PRISM

PRISM [36,53] is a probabilistic model checker developed at the University of
Birmingham. It accepts probabilistic models described in its modelling language,
a simple, high-level state-based language. Three types of probabilistic models are
supported directly; these are discrete-time Markov chains (DTMCs), Markov de-
cision processes (MDPs), and continuous-time Markov chains (CTMCs). Markov
decision processes, not considered in this tutorial, extend DTMCs by allowing
non-deterministic behaviour that is needed, for example, to model asynchronous
parallel composition. For a detailed introduction to model checking of MDPs see,
for example, [56]. Additionally, probabilistic timed automata (PTAs) are par-
tially supported, with the subset of diagonal-free PTAs supported directly via
digital clocks [47]. Properties are specified using PCTL for DTMCs and MDPs,
and CSL for CTMCs. Probabilistic timed automata have a logic PTCTL, an
extension of TCTL, a subset of which is supported via a connection to the timed
automata model checking tool Kronos [24].

Tool Overview. PRISM first parses the model description and constructs an
internal representation of the probabilistic model, computing the reachable state
space of the model and discarding any unreachable states. This represents the
set of all feasible configurations which can arise in the modelled system. Next,
the specification is parsed and appropriate model checking algorithms are per-
formed on the model by induction over syntax. In some cases, such as for prop-
erties which include a probability bound, PRISM will simply report a true/false
outcome, indicating whether or not each property is satisfied by the current
model. More often, however, properties return quantitative results and PRISM
reports, for example, the actual probability of a certain event occurring in the
model. Furthermore, PRISM supports the notion of experiments, which is a way
of automating multiple instances of model checking. This allows the user to
easily obtain the outcome of one or more properties as functions of model and
property parameters. The resulting table of values can either be viewed directly,
exported for use in an external application such as a spreadsheet, or plotted as a
graph. For the latter, PRISM incorporates substantial graph-plotting function-
ality. This is often a very useful way of identifying interesting patterns or trends
in the behaviour of a system. The reader is invited to consult the ‘Case Studies’
section of the PRISM website [53] for many examples of this kind of analysis.

Fig. 5 shows a screenshot of the PRISM graphical user interface, illustrating
the results of a model checking experiment being plotted on a graph. The tool
also features a built-in text-editor for the PRISM language. Alternatively, all

Stochastic Model Checking 35

Fig. 5. A screenshot of the PRISM graphical user interface

model checking functionality is also available in a command-line version of the
tool. PRISM is a free, open source application. It presently operates on Linux,
Unix, Windows and Macintosh operating systems. Both binary and source code
versions can be downloaded from the website [53].

Implementation. One of the most notable features of PRISM is that it is a
symbolic model checker, meaning that its implementation uses data structures
based on binary decision diagrams (BDDs). These provide compact represen-
tations and efficient manipulation of large, structured probabilistic models by
exploiting regularity that is often present in those models because they are de-
scribed in a structured, high-level modelling language. More specifically, since
we need to store numerical values, PRISM uses multi-terminal binary decision
diagrams (MTBDDs) [21,7] and a number of variants [46,52,48] developed to
improve the efficiency of probabilistic analysis, which involve combinations of
symbolic data structures such as MTBDDs and conventional explicit storage
schemes such as sparse matrices and arrays. Since its release in 2001, the model
size capacity and tool efficiency has increased substantially (107 – 108 is feasible
for CTMCs and higher for other types of models). PRISM employs and builds
upon the Colorado University Decision Diagram package [58] by Fabio Somenzi
which implements BDD/MTBDD operations.

The underlying computation in PRISM involves a combination of:

– graph-theoretical algorithms, for reachability analysis, conventional temporal
logic model checking and qualitative probabilistic model checking;

– numerical computation, for quantitative probabilistic model checking, e.g.
solution of linear equation systems (for DTMCs and CTMCs) and linear
optimisation problems for (MDPs).

Graph-theoretical algorithms are comparable to the operation of a conventional,
non-probabilistic model checker and are always performed in PRISM using BDDs.

36 Marta Kwiatkowska, Gethin Norman, and David Parker

For numerical computation, PRISM uses iterative methods rather than direct
methods due to the size of the models that need to be handled. For solution of
linear equation systems, it supports a range of well-known techniques, includ-
ing the Jacobi, Gauss-Seidel and SOR (successive over-relaxation) methods. For
the linear optimisation problems which arise in the analysis of MDPs, PRISM
uses dynamic programming techniques, in particular, value iteration. Finally, for
transient analysis of CTMCs, PRISM incorporates another iterative numerical
method, uniformisation (see Section 4.4).

In fact, for numerical computation, the tool actually provides three distinct
numerical engines. The first is implemented purely in MTBDDs (and BDDs);
the second uses sparse matrices; and the third is a hybrid, using a combination
of the two. Performance (time and space) of the tool may vary depending on
the choice of the engine. Typically the sparse engine is quicker than its MTBDD
counterpart, but requires more memory. The hybrid engine aims to provide a
compromise, providing faster computation than pure MTBDDs but using less
memory than sparse matrices (see [46,52]).

The PRISM modelling language. The PRISM modelling language is a sim-
ple, state-based language based on the Reactive Modules formalism of Alur and
Henzinger [1]. In this section, we give a brief outline of the language. For a full
definition of the language and its semantics, see [45]. In addition a wide range of
examples can be found both in the ‘Case Studies’ section of the PRISM website
[53] and in the distribution of the tool itself.

The fundamental components of the PRISM language are modules and vari-
ables. Variables are typed (integers, reals and booleans are supported) and can
be local or global. A model is composed of modules which can interact with
each other. A module contains a number of local variables. The values of these
variables at any given time constitute the state of the module. The global state
of the whole model is determined by the local state of all modules, together with
the values of the global variables. The behaviour of each module is described by
a set of commands. A command takes the form:

[] g → λ1 : u1 + · · ·+ λn : un ;

The guard g is a predicate over all the variables in the model (including those
belonging to other modules). Each update ui describes a transition which the
module can make if the guard is true. A transition is specified by giving the new
values of the variables in the module, possibly as an expression formed from
other variables or constants. The expressions λi are used to assign probabilistic
information to the transitions.

In Fig. 6 we present the specification of the DTMC D1 (see Example 1 and
Fig. 1) and the CTMC C1 (see Example 12 and Fig. 4). For both these models
there is a single initial state, but PRISM allows the specification of a set of initial
states, see [45]. The labelling ‘serve’ of the second command in the specification
of C1 will be used below to specify a reward structure for this model.

Stochastic Model Checking 37

dtmc

module D1

x : [0..3] init 0;

[] x=0 → (x ′=1);
[] x=1 → 0.01 : (x ′=1)

+ 0.01 : (x ′=2)
+ 0.98 : (x ′=3);

[] x=2 → (x ′=0);
[] x=3 → (x ′=3);

endmodule

ctmc

module C1

y : [0..3] init 0;

[] y<3 → 1.5 : (y ′=y+1);
[serve] y>0 → 3 : (y ′=y−1);

endmodule

Fig. 6. The PRISM Language: Specification of D1 and C1

In general the probabilistic model corresponding to a PRISM language de-
scription is constructed as the parallel composition of its modules. In every state
of the model, there is a set of commands (belonging to any of the modules)
which are enabled, i.e. whose guards are satisfied in that state. The choice be-
tween which command is performed (i.e. the scheduling) depends on the model
type. For a DTMC, the choice is probabilistic, with each enabled command se-
lected with equal probability and for CTMCs it is modelled as a race condition.
PRISM also supports multi-way synchronisation in the style of process algebras.
For synchronisation to take effect, commands are labelled with actions that are
placed between the square brackets.

Reward Structures. PRISM includes support for the specification and anal-
ysis of properties based on reward (and cost) structures. Reward structures are
associated with models using the rewards “reward name” ... endrewards con-
struct and are specified using multiple reward items of the form:

g : r ; or [a] g : r ;

depending on whether a state or transition rewards are being specified, where g
is a predicate (over all the variables of the model), a is a action label appearing
in the commands of the model and r is a real-valued expression (containing any
variables, constants, etc. from the model). A single reward item can assign differ-
ent rewards to different states or transitions, depending on the values of model
variables in each one. Any states/transitions which do not satisfy the guard of a
reward item will have no reward assigned to them. For states/transitions which
satisfy multiple guards, the reward assigned is the sum of the rewards for all the
corresponding reward items.

For example, the two reward structures of the CTMC C1 given in Example 18
can be specified as:

38 Marta Kwiatkowska, Gethin Norman, and David Parker

rewards “reward1”
true : y;

endrewards

rewards “reward2”
[serve] true : 1;

endrewards

To further illustrate how reward structures are specified in PRISM consider
the reward structure given below, which assigns a state reward of 100 to states
satisfying x=1 or y=1 and 200 to states that satisfy both x=1 and y=1, and a
transition reward of 2 · x to transitions labelled by a from states satisfying x>0
and x<5.

rewards “reward name”
x=1 : 100;
y=1 : 100;
[a] x>0 & x<5 : 2 ∗ x ;

endrewards

Property specifications. Properties of PRISM models are expressed in PCTL
for DTMCs and CSL for CTMCs. The operators P∼p[·], S∼p[·] and R∼r[·] by
default include the probability bound ∼p or reward bound ∼r. However, in
PRISM, we can also directly specify properties which evaluate to a numerical
value by replacing the bounds in the P, S and R operators with =?, as illustrated
in the following PRISM specifications:

– P=? [! proc2 terminate U proc1 terminate] - the probability that process 1
terminates before process 2 completes;

– S=? [(queue size/max size)>0.75] - the long-run probability that the queue
is more than 75% full;

– R=? [C 6 24] - the expected power consumption during the first 24 hours
of operation;

– R=? [I = 100] - after 100 time units, the expected number of packets await-
ing delivery;

– R=? [F elected] - the expected number of steps required for the leader elec-
tion algorithm to complete;

– R=? [S] - the long-run expected queue-size.

Note that the meaning ascribed to these properties is, of course, dependent on
the definitions of the atomic propositions and reward structures.

By default, the result for properties of this kind is the probability for the
initial state of the model. It is also possible, however, to obtain the probability
for an arbitrary state or more generally either the minimum or maximum prob-
ability for a particular class of states, as demonstrated in the following PRISM
specifications:

– P=? [queue size65 U queue size<5 {queue size=5}] - the probability, from
the state where the queue contains 5 jobs, of the queue processing at least
one job before another arrives;

– P=? [!proc2 terminate U proc1 terminate {init}{min}] - the minimum prob-
ability, over all possible initial configurations, that process 1 terminates be-
fore process 2 does.

Stochastic Model Checking 39

5.2 Case Study 1: Probabilistic Contract Signing

This case study, taken from [51], concerns the probabilistic contract signing pro-
tocol of Even, Goldreich and Lempel [25]. The protocol is designed to allow two
parties, A and B, to exchange commitments to a contract. In an asynchronous
setting, it is difficult to perform this task in a way that is fair to both parties,
i.e. such that if B has obtained A’s commitment, then A will always be able to
obtain B’s. In the Even, Goldreich and Lempel (EGL) protocol, the parties A
and B each generate a set of pairs of secrets which are then revealed to the other
party in a probabilistic fashion. A is committed to the contract once B knows
both parts of one of A’s pairs of secrets (and vice versa).

PRISM was used to identify a weakness of the protocol [51,53], showing
that, by quitting the protocol early, one of the two parties (the one which did
not initiate the protocol) can be at an advantage by being in possession of a
complete pair of secrets while the other party knows no complete pairs. Various
modifications to the basic EGL protocol were proposed [51,53] and PRISM was
used to quantify the fairness of each.

The model is constructed as a DTMC and below we list the range of PCTL
properties relating to party A that have been studied with PRISM (the dual
properties for party B have also been studied). For each property we also state
any modification to the model or reward structure required and explain the
relevance of the property to the performance of the protocol.

– P=?[3 knowB ∧¬knowA] – the probability of reaching a state where A does
not know a pair while B does know a pair. This measure can be interpreted
as the “chance” that the protocol is unfair towards either party.

– R=?[F done] - the expected number of bits that A needs to know a pair once B
knows a pair. In this case the model of the protocol was modified by adding
a transition to the final state done as soon as B knows a pair and assigning
to this transition a reward equal to the number of bits that A requires to
know a pair. This property is a quantification of how unfair the protocol is
with respect to either party.

– R=?[F knowA] - once B knows a pair, the expected number of messages from
B that A needs to know a pair. The reward structure in this case associates a
reward of 1 to all transitions which correspond to B sending a message to A
from a state where B already knows a pair. This measure can be interpreted
as an indication of how much influence a corrupted party has on the fairness
of the protocol, since a corrupted party can try and delay these messages in
order to gain an advantage.

– R=?[F knowA] - once B knows a pair, the expected total number of messages
that need to be sent (by either party) before A knows a pair. In this case
we assign a reward of 1 to any transition which corresponds to either B
sending a message to A or A sending a message to B in a state where B
already knows a pair. This measure can be interpreted as representing the
“duration” of unfairness, that is, the time that one of the parties has an
advantage.

40 Marta Kwiatkowska, Gethin Norman, and David Parker

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

p
ro

b
a

b
ili

ty

n

EGL
EGL2
EGL3
EGL4

(a) P=?[3 knowB ∧ ¬knowA]

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

n

e
x
p

e
c
te

d
 b

it
s

EGL
EGL2
EGL3
EGL4

(b) R=?[F knowA]

2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

e
x
p

e
c
te

d
 m

e
s
s
a

g
e

s

n

EGL
EGL2
EGL3
EGL4

(c) R=?[F knowA]

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

n

e
x
p

e
c
te

d
 m

e
s
s
a

g
e

s
 (

to
ta

l) EGL
EGL2
EGL3
EGL4

(d) R=?[F knowA] (total messages)

Fig. 7. Model checking results for the EGL contract signing protocol

Fig. 7 shows plots of these values for both the basic protocol (EGL) and three
modifications (EGL2, EGL3 and EGL4). The solid lines and dashed lines repre-
sent the values for parties A and B, respectively (where process B initiated the
protocol). The data is computed for a range of values of n: the number of pairs
of secrets which each party generates.

The results show EGL4 is the ‘fairest’ protocol except for the ‘duration of
fairness measure’ (expected messages that need to be sent for a party to know a
pair once the other party knows a pair). For this measure, the value is larger for B
than for A and, in fact, as n increases, this measure increases for B but decreases
for A. In [51] a solution is proposed and analysed which merges sequences of bits
into a single message. For further details on this case study see [51] and the
PRISM website [53].

5.3 Case Study 2: Dynamic Power Management

Dynamic Power Management(DPM) is a technique for saving energy in devices
which can be turned on and off under operating system control. DPM has gained
considerable attention over the last few years, both in the research literature
and in the industrial setting, with schemes such as OnNow and ACPI becoming

Stochastic Model Checking 41

(SR)

Requester
Service

State Observations Commands

Power Manager (PM)

(SP)
Service Provider

Service Request Queue

(SRQ)

Fig. 8. The DPM System Model

sleep idle busy

sleep 0 1.6 -

idle 0.67 0 0

busy - 0 0

(a) Transition time

sleep idle busy

sleep 0 7 -

idle 0.067 0 0

busy - 0 0

(b) Energy consumed

sleep idle busy

av. power 0.13 0.95 2.15

av. service 0 0 0.008

(c) Power and service times

Fig. 9. Transition times, energy and power consumption and service times for the SP

prevalent. One of the main reasons for this interest is the continuing growth in
the use of mobile, hand-held and embedded devices, for which minimisation of
power consumption is a key issue.

DPM-enabled devices typically have several power states with different power
consumption rates. A DPM policy is used to decide when commands to transition
between these states should be issued, based on the current state of the system.
In this case study we consider only simple policies, so called N -policies, which
‘switch on’ when the queue of requests awaiting service is greater than or equal
to N , and ‘switch off’ when the queue becomes empty.

The basic structure of the DPM model can be seen in Fig. 8. The model
consists of: a Service Provider (SP), which represents the device under power
management control; a Service Requester (SR), which issues requests to the de-
vice; a Service Request Queue (SRQ), which stores requests that are not serviced
immediately; and the Power Manager (PM), which issues commands to the SP,
based on observations of the system and a stochastic DPM policy.

This case study is based on a CTMC model of a Fujitsu disk drive [54]. The
SP has three power states: sleep, idle and busy. In sleep the SP is inactive and
no requests can be served. In idle and busy the SP is active; the difference is
that idle corresponds to the case when the SP is not working on any requests
(the SRQ is empty) and busy it is actively working on requests (the SRQ is not
empty). Transitions between sleep and idle are controlled by the PM (that is,
by the DPM policy), while transitions between idle and busy are controlled by
the state of the SRQ. Fig. 9(a) shows the average times for transitions between
power states, Fig. 9(b) show the energy used for these transitions and Fig. 9(c)
the average power consumption and service times for each state. The SR models
the inter-arrival distribution of requests given by exponential distribution with
rate 100/72 and the SRQ models a service request queue which has a maximum

42 Marta Kwiatkowska, Gethin Norman, and David Parker

0 10 20 30
0

0.2

0.4

0.6

0.8

1

t

P
ro

b
a

b
ili

ty
 q

u
e

u
e

 ≥
 M

 b
y
 t

im
e

 t

M=10

M=12

M=14

M=16

M=18

M=20

(a) P=?[36t (q>10)] (N = 10)

0 10 20 30
0

0.05

0.1

0.15

0.2

0.25

t

P
ro

b
a

b
ili

ty
 5

 r
e

q
u

e
s
ts

 l
o

s
t

b
y
 t

im
e

 t

N=20

N=15

N=10

N=5

N=0

(b) P=?[36t (lost>5)]

0 10 20 30
0

20

40

60

80

100

120

t

E
x
p

e
c
te

d
 p

o
w

e
r

c
o

n
s
u

m
p

ti
o

n
 b

y
 t

im
e

 t

N=0

N=5

N=10

N=15

N=20

(c) R=?[C6t] (power consumed)

0 10 20 30
0

0.5

1

1.5

t

E
x
p

e
c
te

d
 l
o

s
t

re
q

u
e

s
ts

 b
y
 t

im
e

 t

N=0

N=5

N=10

N=15

N=20

(d) R=?[C6t] (lost requests)

0 10 20 30
0

5

10

15

t

E
x
p

e
c
te

d
 q

u
e

u
e

 s
iz

e
 a

t
ti
m

e
 t

N=20

N=15

N=10

N=5

N=0

(e) R=?[I=t]

0 5 10 15 20
10

−4

10
−2

10
0

10
2

N

L
o

n
g

 r
u

n
 r

e
w

a
rd

s

power

queue size

lost requests

(f) R=?[S]

Fig. 10. Range of results for the DPM case study obtained with PRISM

size of 20. Note that, if a request arrives from the SR and the queue is full (20
requests are already awaiting service), then they are presumed lost.

The three reward structures constructed for this case study which are out-
lined below.

1. The first reward structure, used to investigate the power consumption of
the system, is defined using the energy and power consumption of the SP
given in Fig. 9. More precisely, the state rewards equal the average power

Stochastic Model Checking 43

consumption of the SP in that state and the transition reward for transi-
tions in which the SP changes state is assigned the energy consumed by the
corresponding state change.

2. The second reward structure, used for analysing the size of the service request
queue, is obtained by setting the reward in each state to the size of the SRQ
in that state (there are no transition based rewards);

3. The third reward structure, used when calculating the number of lost re-
quests, assigns a reward of 1 to any transition representing the arrival of a
request in a state where the queue is full (there are no state rewards in this
case).

Below we list a range of CSL properties that have been studied for this case
study in PRISM.

– P=?[3
6t (q>M)] – the probability that the queue size becomes greater than

or equal to M by t;

– P=?[3
6t (lost>M)] – the probability that at least M requests get lost by t;

– R=?[C
6t] – the expected power consumption by t or the expected number

of lost customers by time t (depending on whether the first or third reward
structure is used);

– R=?[I
=t] – the expected queue size at t (using the second reward structure);

– R=?[S] – the long run average power consumption, long run average queue
size or long run average number of requests lost per unit time (depending
on which reward structure is used).

Fig. 10 presents a range of the results obtained with PRISM for this case study.
The results demonstrate, as expected, that increasingN decreases the power con-
sumption, while increasing both the queue size and the number of lost requests.
For further details about DPM see, for example, [14,55] and for probabilistic
model checking of DPM [50].

5.4 Case Study 3: Fibroblast Growth Factors

The final case study concerns a biological pathway for Fibroblast Growth Factors
taken from [32]. Fibroblast Growth Factors (FGF) are a family of proteins which
play a key role in the process of cell signalling in a variety of contexts, for
example wound healing. The model is a CTMC and it incorporates protein-
protein interactions (including competition for partners), phosphorylation and
dephosphorylation, protein complex relocation and protein complex degradation
(via ubiquitin-mediated proteolysis). Fig. 11 illustrates the different components
in the pathway and their possible bindings.

In [32] a base model, representing the full system, was developed. Subse-
quently, a series of ‘in silico genetics’ experiments on the model designed to
investigate the roles of the various components of the activated receptor com-
plex in controlling signalling dynamics. This involves deriving a series of modified
models of the pathway where certain components are omitted (Shp2, Src, Spry

44 Marta Kwiatkowska, Gethin Norman, and David Parker

Fig. 11. Diagram showing the different possible bindings in the pathway

or Plc), and is easily achieved in a PRISM model by just changing the initial
value of the component under study. Below, we present a selection of the various
CSL properties of the model that were analysed including, for properties relating
to rewards, an explanation of the corresponding reward structure.

– P=?[3
[t,t] agrb2] - the probability that Grb2 is bound to FRS2 at the time

instant t.
– R=?[C

6t] - the expected number of times that Grb2 binds to FRS2 by time
t. In this case, the only non-zero rewards are associated with transitions
involving Grb2 binding to FRS2 which have a reward 1.

– R=?[C
6t] – the expected time that Grb2 spends bound to FRS2 within the

first T time units. The reward structure for this property assigns a reward
of 1 to all states where Grb2 is bound to FRS2 and 0 to all other states and
transitions.

– S=?[agrb2] - the long-run probability that Grb2 is bound to FRS2.
– R=?[F (asrc∨aplc∨aspry)] - the expected number of times Grb2 binds to FRS2

before degradation or relocation occurs. As in the second property, transi-
tions involving Grb2 binding to FRS2 are assigned reward 1.

– R=?[F (asrc∨aplc∨aspry)] - the expected time Grb2 spends bound to FRS2
before degradation or relocation occurs As for the third property, all states
where Grb2 is bound to FRS2 have a reward of 1.

– P=?[¬(asrc∨aplc∨aspry) U[0,t] asrc] - the probability that degradation or relo-
cation occurs by by time t and Src is the cause.

– P=?[¬(asrc∨aplc∨aspry) U aplc] - the probability that Plc is the first cause of
degradation or relocation.

– R=?[F (asrc∨aplc∨aspry)] - the expected time until degradation or relocation
occurs in the pathway. For this property all states are assigned reward 1
(and all transitions are assigned reward 0).

Fig. 12 presents results relating to the transient properties, while Tables 1 and 2
consider long-run properties. Note that the results of Table 1 and Table 2 can be

Stochastic Model Checking 45

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

t (minutes)

P
ro

b
a

b
ili

ty
 t

h
e

 s
ig

n
a

l
p

re
s
e

n
t

a
t

ti
m

e
 t

full model/no PLC
no SHP2
no SRC
no SPRY

(a) P=?[true U[t,t] agrb2]

0 10 20 30 40 50 60
0

50

100

150

200

t (minutes)

E
x
p

e
c
te

d
 f

lu
c
tu

a
ti
o

n
s
 i
n

 t
h

e
 s

ig
n

a
l
b

y
 t

full model
no SHP2
no SRC
no SPRY
no PLC

(b) R=?[C6t]

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500

t (minutes)

E
x
p

e
c
te

d
 t

im
e

 t
h

e
 s

ig
n

a
l
is

 p
re

s
e

n
t

b
y
 t

full model/no PLC
no SHP2
no SRC
no SPRY

(c) R=?[C6t]

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t (minutes)

P
ro

b
a

b
ili

ty
 r

e
lo

c
a

ti
o

n
 (

S
rc

:F
R

S
2

)
b

y
 t

im
e

 t

full model
no SHP2
no SRC
no SPRY
no PLC

(d) P=?[¬(asrc∨aplc∨aspry) U[0,t] asrc]

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

t (minutes)

P
ro

b
a

b
ili

ty
 d

e
g

ra
d

a
ti
o

n
 (

P
lc

:F
G

F
R

)
b

y
 t

im
e

 t

full model
no SHP2
no SRC
no SPRY
no PLC

(e) P=?[¬(asrc∨aplc∨aspry) U[0,t] aplc]

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

t (minutes)

P
ro

b
a

b
ili

ty
 d

e
g

ra
d

a
ti
o

n
 (

S
p

ry
:C

b
l)
 b

y
 t

im
e

 t

full model
no SHP2
no SRC/no SPRY
no PLC

(f) P=?[¬(asrc∨aplc∨aspry) U[0,t] aspry]

Fig. 12. Transient numerical results

regarded as the values of Fig. 12(a)–(c) and Fig. 12(d)–(f) in “the limit”, i.e. as
t tends to infinity. For further details on the case study see [32] and the PRISM
website [53].

46 Marta Kwiatkowska, Gethin Norman, and David Parker

S=?[agrb2] R=?[F (asrc∨aplc∨aspry)]
bindings time (min)

full model 7.54e-7 43.1027 6.27042
no Shp2 3.29e-9 10.0510 7.78927
no Src 0.659460 283.233 39.6102
no Spry 4.6e-6 78.3314 10.8791
no Plc 0.0 51.5475 7.56241

Table 1. Long run and expected reachability properties for the signal

P=?[¬(asrc∨aplc∨aspry) U axxx] R=?[F (asrc∨aplc∨aspry)]
xxx = src xxx = plc xxx = spry (min)

full model 0.602356 0.229107 0.168536 14.0258
no Shp2 0.679102 0.176693 0.149742 10.5418
no Src - 1.0 0.0 60.3719
no Spry 0.724590 0.275410 - 16.8096
no Plc 0.756113 - 0.243887 17.5277

Table 2. Probability and expected time until degradation/relocation in the long run

6 Conclusions

In this tutorial we have presented an overview of stochastic model checking,
covering both the theory and practical aspects for two important types of prob-
abilistic models, discrete- and continuous-time Markov chains. Algorithms were
given for verifying these models against probabilistic temporal logics PCTL and
CSL and their extensions with the reward operator. The probabilistic model
checker PRISM, which implements these algorithms, was used to analyse three
real-world case studies also described here. However, there are many other as-
pects of stochastic model checking not covered in this tutorial and below we
attempt to give brief pointers to related and further work.

More expressive logics than PCTL have been proposed, including LTL and
PCTL* [6,15]. For the corresponding model checking algorithms see [62,22,6,15,13].
We also mention the alternative reward extension of PCTL given in [2]. With
regards to CTMCs, a number of extensions of CSL have been proposed in the
literature, along with associated model checking algorithms. For example, [35]
proposes an action based version of CSL; [31,9] introduce the logics CRL and
CSRL which added support for reward-based properties [42]; and [44] augment
CSL with random time-bounded until and random expected-time operators, re-
spectively.

This tutorial concentrated on stochastic model checking. Related topic in-
clude: probabilistic generalisations of bisimulation and simulation relations for
DTMCs [49,57] and for CTMCs [17,11]; and approximate methods for stochas-
tic model checking based on discrete event simulation [33,63]. Stochastic model
checkers SMART [19], E TMC2[34] and MRMC [39] have similarities with the
PRISM model checker described here. Finally, we mention a challenging direc-
tion of research is into the verification of models which allow more general prob-
ability distributions. While the restriction to exponential distributions imposed

Stochastic Model Checking 47

by CTMCs is important for the tractability of their model checking, it may prove
too simplistic for some modelling applications. See [28] for an introduction to
this area.

References

1. R. Alur and T. Henzinger. Reactive modules. Formal Methods in System Design,
15(1):7–48, 1999.

2. S. Andova, H. Hermanns, and J.-P. Katoen. Discrete-time rewards model-checked.
In K. Larsen and P. Niebert, editors, Proc. Formal Methods for Timed Systems
(FORMATS’03), volume 2791 of LNCS, pages 88–104. Springer, 2003.

3. J. Aspnes and M. Herlihy. Fast randomized consensus using shared memory. Jour-
nal of Algorithms, 15(1):441–460, 1990.

4. A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Verifying continuous time Markov
chains. In R. Alur and T. Henzinger, editors, Proc. 8th Int. Conf. Computer Aided
Verification (CAV’96), volume 1102 of LNCS, pages 269–276. Springer, 1996.

5. A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Model checking continuous time
Markov chains. ACM Transactions on Computational Logic, 1(1):162–170, 2000.

6. A. Aziz, V. Singhal, F. Balarin, R. Brayton, and A. Sangiovanni-Vincentelli. It
usually works: The temporal logic of stochastic systems. In P. Wolper, editor, Proc.
7th Int. Conf. Computer Aided Verification (CAV’95), volume 939 of LNCS, pages
155–165. Springer, 1995.

7. I. Bahar, E. Frohm, C. Gaona, G. Hachtel, E. Macii, A. Pardo, and F. Somenzi.
Algebraic decision diagrams and their applications. Formal Methods in System
Design, 10(2/3):171–206, 1997.

8. C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model checking
continuous-time Markov chains by transient analysis. In A. Emerson and A. Sistla,
editors, Proc. 12th Int. Conf. Computer Aided Verification (CAV’00), volume 1855
of LNCS, pages 358–372. Springer, 2000.

9. C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. On the logical charac-
terisation of performability properties. In U. Montanari, J. Rolim, and E. Welzl,
editors, Proc. 27th Int. Colloquium on Automata, Languages and Programming
(ICALP’00), volume 1853 of LNCS, pages 780–792. Springer, 2000.

10. C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model-checking algorithms
for continuous-time Markov chains. IEEE Transactions on Software Engineering,
29(6):524–541, 2003.

11. C. Baier, J. Katoen, H. Hermanns, and B. Haverkort. Simulation for continuous-
time Markov chains. In L. Brim, P. Jancar, M. Kretinzki, and A. Kucera, editors,
Proc. Concurrency Theory (CONCUR’02), volume 2421 of LNCS, pages 338–354.
Springer, 2002.

12. C. Baier, J.-P. Katoen, and H. Hermanns. Approximate symbolic model checking of
continuous-time Markov chains. In J. Baeten and S. Mauw, editors, Proc. 10th Int.
Conf. Concurrency Theory (CONCUR’99), volume 1664 of LNCS, pages 146–161.
Springer, 1999.

13. C. Baier and M. Kwiatkowska. Model checking for a probabilistic branching time
logic with fairness. Distributed Computing, 11(3):125–155, 1998.

14. L. Benini, A. Bogliolo, G. Paleologo, and G. D. Micheli. Policy optimization for
dynamic power management. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 8(3):299–316, 2000.

48 Marta Kwiatkowska, Gethin Norman, and David Parker

15. A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic
systems. In P. Thiagarajan, editor, Proc. 15th Conf. Foundations of Software
Technology and Theoretical Computer Science, volume 1026 of LNCS, pages 499–
513. Springer, 1995.

16. P. Billingsley. Probability and Measure. Wiley, 1995.
17. P. Buchholz. Exact and ordinary lumpability in finite Markov chains. Journal of

Applied Probability, 31:59–75, 1994.
18. L. Cheung. Randomized wait-free consensus using an atomicity assumption.

In Proc. 9th International Conference on Principles of Distributed Systems
(OPODIS’05), 2005.

19. G. Ciardo, R. Jones, A. Miner, and R. Siminiceanu. Logic and stochastic modeling
with smart. Performance Evaluation, 63(6):578–608, 2006.

20. E. Clarke, E. Emerson, and A. Sistla. Automatic verification of finite-state concur-
rent systems using temporal logics. ACM Transactions on Programming Languages
and Systems, 8(2):244–263, 1986.

21. E. Clarke, M. Fujita, P. McGeer, K. McMillan, J. Yang, and X. Zhao. Multi-
terminal binary decision diagrams: An efficient data structure for matrix represen-
tation. Formal Methods in System Design, 10((2/3):149–169, 1997.

22. C. Courcoubetis and M. Yannakakis. Verifying temporal properties of finite state
probabilistic programs. In Proc. 29th Annual Symposium on Foundations of Com-
puter Science (FOCS’88), pages 338–345. IEEE Computer Society Press, 1988.

23. C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification.
Journal of the ACM, 42(4):857–907, 1995.

24. C. Daws, M. Kwiatkowska, and G. Norman. Automatic verification of the IEEE
1394 root contention protocol with KRONOS and PRISM. Int. Journal on Software
Tools for Technology Transfer, 5(2–3):221–236, 2004.

25. S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts.
Communications of the ACM, 28(6):637–647, 1985.

26. W. Fokkink and J. Pang. Variations on itai-rodeh leader election for anony-
mous rings and their analysis in prism. Journal of Universal Computer Science,
12(8):981–1006, 2006.

27. B. Fox and P. Glynn. Computing Poisson probabilities. Communications of the
ACM, 31(4):440–445, 1988.

28. R. German. Performance Analysis of Communication Systems: Modeling with
Non-Markovian Stochastic Petri Nets. John Wiley and Sons, 2000.

29. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal
Aspects of Computing, 6(5):512–535, 1994.

30. B. Haverkort. Performance of Computer Communication Systems: A Model-Based
Approach. John Wiley & Sons, 1988.

31. B. Haverkort, L. Cloth, H. Hermanns, J.-P. Katoen, and C. Baier. Model checking
performability properties. In Proc. Int. Conf. Dependable Systems and Networks
(DSN’02). IEEE Computer Society Press, 2002.

32. J. Heath, M. Kwiatkowska, G. Norman, D. Parker, and O. Tymchyshyn. Proba-
bilistic model checking of complex biological pathways. In C. Priami, editor, Proc.
Computational Methods in Systems Biology (CMSB’06), volume 4210 of Lecture
Notes in Bioinformatics, pages 32–47. Springer, 2006.

33. T. Hérault, R. Lassaigne, F. Magniette, and S. Peyronnet. Approximate prob-
abilistic model checking. In B. Steffen and G. Levi, editors, Proc. Verification,
Model Checking and Abstract Interpretation (VMCAI’04), volume 2937 of LNCS,
pages 73–84. Springer, 2004.

Stochastic Model Checking 49

34. H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, and M. Siegle. A Markov chain
model checker. In S. Graf and M. Schwartzbach, editors, Proc. 6th Int. Conf.
Tools and Algorithms for the Construction and Analysis of Systems (TACAS’00),
volume 1785 of LNCS, pages 347–362. Springer, 2000.

35. H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, and M. Siegle. Towards model check-
ing stochastic process algebra. In W. Grieskamp and T. Santen, editors, Proc. Inte-
grated Formal Method (IFM 2000), volume 1945 of LNCS, pages 420–439. Springer,
2000.

36. A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM: A tool for auto-
matic verification of probabilistic systems. In H. Hermanns and J. Palsberg, editors,
Proc. 12th Int. Conf. Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’06), volume 3920 of LNCS, pages 441–444. Springer, 2006.

37. IEEE standard for a high performance serial bus. IEEE Computer Society, IEEE
Std 1394-1995.

38. A. Itai and M. Rodeh. Symmetry breaking in distributed networks. Information
and Computation, 88(1):60–87, 1990.

39. J.-P. Katoen, M. Khattri, and I. Zapreev. A Markov reward model checker. In Proc.
Second Int. Conf. Quantitative Evaluation of Systems (QEST 05), pages 243–244.
IEEE Computer Society Press, 2005.

40. J.-P. Katoen, M. Kwiatkowska, G. Norman, and D. Parker. Faster and symbolic
CTMC model checking. In L. de Alfaro and S. Gilmore, editors, Proc. 1st Joint
Int. Workshop on Process Algebra and Probabilistic Methods, Performance Model-
ing and Verification (PAPM/PROBMIV’01), volume 2165 of LNCS, pages 23–38.
Springer, 2001.

41. J. Kemeny, J. Snell, and A. Knapp. Denumerable Markov Chains. Springer, 2nd
edition, 1976.

42. M. Kwiatkowska, G. Norman, and A. Pacheco. Model checking CSL until formulae
with random time bounds. In H. Hermanns and R. Segala, editors, Proc. 2nd
Joint Int. Workshop on Process Algebra and Probabilistic Methods, Performance
Modeling and Verification (PAPM/PROBMIV’02), volume 2399 of LNCS, pages
152–168. Springer, 2002.

43. M. Kwiatkowska, G. Norman, and A. Pacheco. Model checking expected time and
expected reward formulae with random time bounds. In Proc. 2nd Euro-Japanese
Workshop on Stochastic Risk Modelling for Finance, Insurance, Production and
Reliability, 2002.

44. M. Kwiatkowska, G. Norman, and A. Pacheco. Model checking expected time and
expected reward formulae with random time bounds. Computers & Mathematics
with Applications, 51(2):305–316, 2006.

45. M. Kwiatkowska, G. Norman, and D. Parker. PRISM users’ guide. Available from
www.cs.bham.ac.uk/˜dxp/prism.

46. M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model check-
ing with PRISM: A hybrid approach. Int. Journal on Software Tools for Technology
Transfer, 6(2):128–142, 2004.

47. M. Kwiatkowska, G. Norman, D. Parker, and J. Sproston. Performance analysis
of probabilistic timed automata using digital clocks. Formal Methods in System
Design, 29:33–78, 2006.

48. M. Kwiatkowska, D. Parker, Y. Zhang, and R. Mehmood. Dual-processor paral-
lelisation of symbolic probabilistic model checking. In D. DeGroot and P. Harri-
son, editors, Proc. 12th Int. Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS’04), pages 123–130. IEEE
Computer Society Press, 2004.

50 Marta Kwiatkowska, Gethin Norman, and David Parker

49. K. Larsen and A. Skou. Bisimulation through probabilistic testing. Information
and Computation, 94:1–28, 1991.

50. G. Norman, D. Parker, M. Kwiatkowska, S. Shukla, and R. Gupta. Using proba-
bilistic model checking for dynamic power management. Formal Aspects of Com-
puting, 17(2):160–176, 2005.

51. G. Norman and V. Shmatikov. Analysis of probabilistic contract signing. Journal
of Computer Security, 14(6):561–589, 2006.

52. D. Parker. Implementation of Symbolic Model Checking for Probabilistic Systems.
PhD thesis, University of Birmingham, 2002.

53. PRISM web site. www.cs.bham.ac.uk/˜dxp/prism.
54. Q. Qiu, Q. Wu, and M. Pedram. Stochastic modeling of a power-managed system:

Construction and optimization. In Proc. Int. Symposium on Low Power Electronics
and Design, 1999.

55. Q. Qiu, Q. Wu, and M. Pedram. Stochastic modeling of a power-managed system:
construction and optimization. IEEE Transactions on Computer Aided Design,
20(10):1200–1217, 2001.

56. J. Rutten, M. Kwiatkowska, G. Norman, and D. Parker. Mathematical Techniques
for Analyzing Concurrent and Probabilistic Systems, P. Panangaden and F. van
Breugel (eds.), volume 23 of CRM Monograph Series. American Mathematical
Society, 2004.

57. R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes. In
B. Jonsson and J. Parrow, editors, Proc. 5th Int. Conf. Concurrency Theory (CON-
CUR’94), volume 836 of LNCS, pages 481–496. Springer, 1994.

58. F. Somenzi. CUDD: Colorado University decision diagram package. Public soft-
ware, Colorado Univeristy, Boulder, http://vlsi.colorado.edu/˜fabio/, 1997.

59. W. J. Stewart. Introduction to the Numerical Solution of Markov Chains. Prince-
ton, 1994.

60. R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 1:146–160, 1972.

61. K. Trivedi. Probability and Statistics with Reliability, Queuing, and Computer
Science Applications. John Wiley & Sons, 2001.

62. M. Vardi. Automatic verification of probabilistic concurrent finite state programs.
In Proc. 26th Annual Symposium on Foundations of Computer Science (FOCS’85),
pages 327–338. IEEE Computer Society Press, 1985.

63. H. Younes, M. Kwiatkowska, G. Norman, and D. Parker. Numerical vs. statisti-
cal probabilistic model checking. Int. Journal on Software Tools for Technology
Transfer, 8(3):216–228, 2006.

	Stochastic Model Checking

