
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Probabilistic Symbolic Model Checking with PRISM: A
Hybrid Approach?

Marta Kwiatkowska, Gethin Norman, David Parker

School of Computer Science, University of Birmingham,
Birmingham, B15 2TT, United Kingdom
e-mail: {mzk,gxn,dxp}@cs.bham.ac.uk

The date of receipt and acceptance will be inserted by the editor

Abstract. In this paper we present efficient symbolic
techniques for probabilistic model checking. These have
been implemented in PRISM, a tool for the analysis of
probabilistic models such as discrete-time Markov chains,
continuous-time Markov chains and Markov decision pro-
cesses using specifications in the probabilistic tempo-
ral logics PCTL and CSL. Motivated by the success of
model checkers such as SMV, which use BDDs (binary
decision diagrams), we have developed an implementa-
tion of PCTL and CSL model checking based on MTB-
DDs (multi-terminal BDDs) and BDDs. Existing work
in this direction has been hindered by the generally poor
performance of MTBDD-based numerical computation,
which is often substantially slower than explicit meth-
ods using sparse matrices. The focus of this paper is a
novel hybrid technique which combines aspects of sym-
bolic and explicit approaches to overcome these perfor-
mance problems. For typical examples, we achieve a dra-
matic improvement over the purely symbolic approach.
In addition, thanks to the compact model representation
using MTBDDs, we can verify systems an order of mag-
nitude larger than with sparse matrices, whilst almost
matching or even beating them for speed.

1 Introduction

In the design and analysis of software and hardware
systems it is often desirable or even necessary to in-
clude probabilistic aspects of a system’s behaviour. Ex-
amples include representing unreliable or unpredictable
behaviour in fault-tolerant systems; deriving efficient al-
gorithms by using electronic coin flipping in decision

? Supported in part by EPSRC grants GR/M04617, GR/N22960
and GR/S11107 and MathFIT studentship for David Parker.

making; and modelling the arrivals and departures of
calls in a wireless cell.

Probabilistic model checking refers to a range of tech-
niques for calculating the likelihood of the occurrence of
certain events during the execution of systems which ex-
hibit such behaviour. One first constructs a model of the
system, defining the set of possible states that it can be
in and the likelihood that transitions will occur between
these states. Desirable or required properties of the sys-
tem such as “shutdown occurs with probability 0.01 or
less” and “the video frame will be delivered within 5ms
with probability 0.97 or greater” can be expressed in
probabilistic temporal logics. These specifications can
then be automatically verified by a probabilistic model
checker.

Motivated by the success of symbolic model checkers,
such as SMV [55] which use BDDs (binary decision dia-
grams) [15], we have developed a symbolic probabilistic
model checker, PRISM [51,1]. In the non-probabilistic
setting, model checking involves manipulation of state
transition systems and sets of states, both of which can
be represented naturally as BDDs, often very compactly
[18]. In the probabilistic case, since real-valued matrices
and vectors are required, BDDs alone are insufficient,
and hence we also use MTBDDs (multi-terminal binary
decision diagrams) [23,5], a natural extension of BDDs
for representing real-valued functions.

The use of MTBDDs for the analysis of probabilis-
tic models has been studied extensively in the litera-
ture [35,36,63,7,6,43,9,52,31,26,46,53] and it has been
demonstrated that it is feasible to construct and com-
pute the reachable state space of extremely large, struc-
tured, probabilistic models in this way. In these cases,
it is often also possible to verify qualitative properties,
where model checking reduces to reachability-based anal-
ysis. For example, in [31], systems with over 1030 states
have been verified.

2 Marta Kwiatkowska et al.: Probabilistic Symbolic Model Checking with PRISM: A Hybrid Approach

Model checking quantitative properties, on the other
hand, involves numerical computation. In some cases,
such as in [53], MTBDDs have been very successful,
being applied to systems with over 1010 states. Often,
however, it turns out that such computation is slow or
infeasible. By way of comparison, the equivalent numer-
ical computation routines implemented explicitly using
sparse matrices are often orders of magnitude faster.

Here, we present a novel hybrid approach which uses
an extension of the MTBDD data structure and borrows
ideas from explicit techniques to overcome these perfor-
mance problems. We include experimental data which
demonstrates that, using this hybrid approach, we can
achieve speeds which are orders of magnitude faster than
MTBDDs. It is possible to, in general, almost match the
speed of sparse matrices and, in some cases, outperform
them, whilst maintaining considerable space savings.

The outline of this paper is as follows. Section 2
gives an overview of probabilistic model checking, in-
troducing the probabilistic models and temporal logics
we consider. In Section 3, we describe our tool, PRISM,
which implements the model checking of these models
and logics. We then move on to discuss the tool’s im-
plementation. Section 4 introduces the MTBDD data
structure and explains how it can be used to represent
and analyse probabilistic models. We identify a number
of performance problems in this implementation and, in
Section 5, describe how we overcome these limitations.
In Section 6, we present experimental results to judge
the performance of our technique and in Section 7, we
discuss how it relates to existing work. Section 8 con-
cludes the paper.

2 Probabilistic Model Checking

In this section we briefly summarise the models and
temporal logics that our implementation of probabilis-
tic model checking supports. The simplest probabilistic
model is the discrete-time Markov chain (DTMC), de-
fined by a set of states S and a transition probability
matrix P : S × S → [0, 1], where P(s, s′) is the proba-
bility of making a transition from one state s to another
state s′. The probabilities from state s must sum up to
1, i.e.

∑
s′ P(s, s′) = 1.

Markov decision processes (MDPs) extend DTMCs
by allowing both probabilistic and nondeterministic be-
haviour. More formally, in any state there is a nondeter-
ministic choice between a number of discrete probability
distributions over states. Nondeterminism enables the
modelling of asynchronous parallel composition of prob-
abilistic systems. It also permits under-specification of
certain aspects of a system.

A continuous-time Markov chain (CTMC), on the
other hand, is defined by a set of states S and a tran-
sition rate matrix R : S × S → IR≥0, where R(s, s′) is
the rate of making a transition from state s to s′. The

interpretation is that the probability of moving from s
to s′ within t time units (for positive, real-valued t) is
1− e−R(s,s′)·t.

As specification formalisms, we use probabilistic ex-
tensions of the temporal logic CTL. In particular, we use
PCTL [37,12,10] in the context of DTMCs and MDPs
and CSL [4,9] in the context of CTMCs.

PCTL allows us to express properties of the form
“under any scheduling of processes, the probability that
event A occurs is at least p (at most p)”. By way of
illustration, we consider the asynchronous randomised
leader election protocol of Itai and Rodeh [45] which
gives rise to an MDP. In this algorithm, the processors of
an asynchronous ring make random choices based on coin
tosses in an attempt to elect a leader. We use the atomic
proposition leader to label states in which a leader has
been elected. Examples of properties we would wish to
verify can be expressed in PCTL as follows:

– P≥1[♦ leader] - “under any scheduling, a leader is
eventually elected with probability 1”.

– P≤0.5[♦≤k leader] - “under any scheduling, the prob-
ability of electing a leader within k discrete time-
steps is at most 0.5”.

In [27,28], an extension of PCTL, called pTL, is intro-
duced which additionally allows the specification of ex-
pected time and average time properties. Returning to
the leader election protocol given above, an example of
such a property is:

– D≤10[leader] - “under any scheduling, the expected
number of steps until leader election is at most 10”.

The logic CSL includes the means to express both tran-
sient and steady-state performance measures of CTMCs.
Transient properties describe the system at a fixed, real-
valued time-instant t, whereas steady-state properties
refer to the behaviour of a system in the “long run”. For
example, consider a queueing system where the atomic
proposition full labels states where the queue is full. CSL
then allows us to express properties such as:

– P≤0.01[♦≤t full] - “the probability that the queue be-
comes full within t time units is at most 0.01”

– S≥0.98[¬full] - “in the long run, the probability that
the queue is not full is at least 0.98”.

Model checking algorithms for PCTL have been intro-
duced in [37,12] and extended in [10,6] to include fair-
ness. The case for pTL is dealt with in [27,29,30]. An
algorithm for CSL was first proposed in [9] and has since
been improved in [8,46]. The model checking algorithms
for all logics reduce to a combination of reachability-
based computation and numerical calculation. The for-
mer may be used, for example, to determine states which
satisfy a temporal logic formula with probability exactly
0 or 1. The latter is needed where exact probabilities
must be determined. Here, the computation required
varies. For DTMCs, this usually entails solution of a

Marta Kwiatkowska et al.: Probabilistic Symbolic Model Checking with PRISM: A Hybrid Approach 3

CTMC
formulas
PCTL

formulas
DTMC

Results
(states, probabilities)

specification
PropertiesModel

Model
parser

MDP

description

parser

PRISM kernel

PCTL
model checker model checker

CSL

Properties

engine
Hybrid

engine
Sparse matrix

engine

CSL

MTBDD

PRISM

Fig. 1. PRISM system architecture

linear equation system, whereas for MDPs a linear op-
timisation problem must be solved. For CTMCs, either
solution of a linear equation system or an iterative tech-
nique known as uniformisation is performed. Since the
size of the problem to be solved is often large, direct
methods, such as Gaussian elimination (for linear equa-
tion systems) or Simplex (for linear optimisation prob-
lems), are usually impractical. Instead, we opt to use
iterative methods which approximate the solution up to
some specified accuracy.

3 PRISM

PRISM [51,1] is a model checking tool developed at the
University of Birmingham which supports verification of
the models and logics described in the previous section.
The tool takes as input a description of a probabilistic
system written in the PRISM language, a variant of the
Reactive Modules formalism of Alur and Henzinger [2].
It first constructs the model from this description (ei-
ther a DTMC, an MDP or a CTMC), computes the set
of reachable states, and identifies any deadlock states.
PRISM accepts specifications in either the logic PCTL
or CSL depending on the model type. It then performs
model checking to determine which states of the model
satisfy each specification. Figure 1 illustrates the struc-
ture of the tool and Figure 2 shows a screen-shot of
the graphical user interface. A text-based, command line
version is also available.

The underlying data structures in PRISM are BDDs
and MTBDDs. For numerical computation, however, the

Fig. 2. The PRISM graphical user interface

tool provides three distinct engines which can be used
interchangeably. The first is a pure MTBDD-based im-
plementation, as described in Section 4; the second is a
conventional explicit version using sparse matrices, im-
plemented for comparison purposes; the third uses the
hybrid approach presented in this paper.

PRISM is written in a combination of Java and C++
and uses CUDD [60], a publicly available BDD/MTBDD
library developed at the University of Colorado at Boul-
der. The high-level parts of the tool, such as the user
interface and parsers, are written in Java. The low-level
libraries are written in C++. The tool and its source
code are available for download from the PRISM web
site [1]. Further information about the tool and a large
number of case studies to which it has been applied are
also available here.

4 An MTBDD Implementation

This section describes how probabilistic model checking
can be implemented using MTBDDs. We begin by in-
troducing the data structure, then explain how it can be
used to produce a compact representation for probabilis-
tic models, and finally show how techniques to analyse
these models can be implemented. We also summarise
the performance of these symbolic techniques.

4.1 Introduction to MTBDDs

An MTBDD M is a rooted, directed acyclic graph associ-
ated with a set of ordered, Boolean variables x1 < · · · <
xn. It represents a function fM(x1, . . . , xn) : IBn → IR
over these variables. The graph contains two types of
nodes: non-terminal and terminal . A non-terminal node
m is labelled by a variable var(m) ∈ {x1, . . . , xn} and

4 Marta Kwiatkowska et al.: Probabilistic Symbolic Model Checking with PRISM: A Hybrid Approach

has two children, then(m) and else(m). A terminal node
m is labelled by a real number val(m).

We impose the Boolean variable ordering < onto the
graph by requiring that a child m′ of a non-terminal
node m is either terminal or is non-terminal and satis-
fies var(m) < var(m′). The value of fM(x1, . . . , xn), the
function which the MTBDD represents, is determined by
traversing M from the root node, and at each subsequent
node m taking the edge to then(m) or else(m) if var(m)
is 1 or 0 respectively. Note that a BDD is merely an
MTBDD with the restriction that the labels on terminal
nodes can only be 1 or 0.

MTBDDs are efficient because they are stored in re-
duced form. If nodes m and m′ are identical (that is
var(m) = var(m′), then(m) = then(m′) and else(m) =
else(m′) for non-terminals or val(m) = val(m′) for ter-
minals), then only one copy is stored. Furthermore, if
a node m is redundant , i.e. satisfies then(m) = else(m),
it is removed and any incoming edges are redirected to
its unique child. These reductions mean that MTBDD
representations of functions which exhibit regularity or
redundancy can be extremely compact. There is, how-
ever, another important advantage. With these two rules
in place, MTBDDs can be shown to be canonical , mean-
ing that for a given variable ordering, there is a one-to-
one correspondence between MTBDDs and the functions
which they represent. One important implication of this
is that it is very efficient to compare two MTBDDs for
equality. This is useful, for example, when implementing
a cache of previously performed MTBDD operations.

Another important characteristic of MTBDDs, from
a practical point of view, is that their size (number of
nodes) is heavily dependent on the ordering of their
Boolean variables. Although in the worst case the size
of an MTBDD representation is exponential and the
problem of deriving the optimal ordering for a given
MTBDD is an NP-hard problem [62,13], through ap-
plication of heuristics, MTBDDs can provide extremely
compact storage for structured, real-valued functions.

4.2 MTBDD Representation of Probabilistic Models

From their inception in [23,5], MTBDDs have been used
to encode real-valued vectors and matrices. An MTBDD
v over variables (x1, . . . , xn) represents a function fv :
IBn → IR. Observe that a real vector v of length 2n

is simply a mapping from {1, . . . , 2n} to the reals IR.
Hence, if we decide upon an encoding of {1, . . . , 2n} in
terms of {x1, . . . , xn} (for example the standard binary
encoding), then an MTBDD v can represent v.

In a similar fashion, we can consider a square matrix
M of size 2n by 2n to be a mapping from {1, . . . , 2n} ×
{1, . . . , 2n} to IR. Taking Boolean variables {x1, . . . , xn}
to range over row indices and {y1, . . . , yn} to range over
column indices, we can represent M by an MTBDD
over {x1, . . . , xn, y1, . . . , yn}. DTMCs and CTMCs are

x1

y2

x2

y1

R

752

x1 y1 x2 y2 fR Entry of R

0 0 0 0 2 (0, 0) = 2
0 0 0 1 5 (0, 1) = 5
0 0 1 0 2 (1, 0) = 2
0 0 1 1 5 (1, 1) = 5
0 1 1 1 7 (1, 3) = 7
1 0 1 1 7 (3, 1) = 7

Fig. 3. An MTBDD R and the function it represents

0

5

7

2

1

2 3

7

2 5

R =

2 5 − 0
2 5 − 7
− − − −
0 7 − 0

Fig. 4. A CTMC and its rate matrix R

described by such matrices, and hence are also straight-
forward to represent as MTBDDs.

Figure 3 gives an example of an MTBDD R over four
Boolean variables, x1, y1, x2 and y2. In our notation,
non-terminal nodes are drawn as circles and terminal
nodes as squares. Non-terminal nodes are grouped into
levels according to their variable labelling, which is dis-
played at the left-hand end of each level. The downward
then and else edges from each node are drawn as solid
and dashed lines respectively. For clarity, we omit the
zero terminal node and any edges which lead directly to
it. Figure 3 also includes a table showing the function
fR which the MTBDD R represents. Consider, for exam-
ple, the valuation (x1, y1, x2, y2) = (0, 1, 1, 1). Tracing
the appropriate path through the MTBDD, we can see
that the resulting value is 7.

In fact, the MTBDD R in Figure 3 represents the
transition rate matrix R of a CTMC. This matrix and
the associated CTMC are shown in Figure 4. Note that
the CTMC includes one state which is unreachable. This
will be important when we reuse the example later in the
paper. The corresponding row and column of R are filled
with zeros, but to emphasise that these are unreachable,
the entries are marked as ‘−’ rather than ‘0’.

The right-most column of the table in Figure 3 il-
lustrates exactly how R corresponds to R. As described
above, we use variables x1 and x2 to encode row indices
and y1 and y2 to encode column indices. In both cases,
we use the standard binary representation of integers.
By way of example, for entry (1, 3) of R, the row index
1 is encoded as (x1, x2) = (0, 1) and the column index 3
is encoded as (y1, y2) = (1, 1). Tracing a path down the

Marta Kwiatkowska et al.: Probabilistic Symbolic Model Checking with PRISM: A Hybrid Approach 5

MTBDD using these values leads to the terminal node
7 which is the value of the entry.

Observe that, in R, the variables for rows and columns
are ordered alternately. This is a common variable or-
dering heuristic for minimising the size of the MTBDD
representation of a transition matrix. Note also that the
MTBDD is an inherently recursive data structure: each
node of the data structure is itself an MTBDD. In terms
of matrices, this means that each node of an MTBDD
represents a submatrix of the overall matrix being rep-
resented. Intuitively, this is how MTBDDs can provide a
compact representation: in cases where submatrices are
repeated, this can be exploited by the reduced nature of
the data structure.

The process for the representation of MDPs is more
complex since the nondeterminism must also be encoded.
However, if the maximum number of nondeterministic
choices in any state is bounded by 2k for some integer
k, we can view the MDP as a function from {1, . . . , 2n}×
{1, . . . , 2k}×{1, . . . , 2n} to IR. By adding k extra Boolean
variables to encode this third index, we can represent the
MDP as an MTBDD. In this way, an MTBDD can be
considered to be represented by a set of matrices.

In order to produce compact MTBDD representa-
tions of probabilistic models, it is important to consider
how they are encoded. This issue was first addressed
by Hermanns et al. in [43], which presents a number of
heuristics for this purpose. The most important conclu-
sion is that it is essential to exploit structure and regu-
larity in the model, typically that derived from its high-
level description. For example, if the formalism used de-
scribes the model in a compositional fashion, it is advis-
able to first encode individual components of the model
as MTBDDs and then combine them in a structured
fashion. In practice, this can be accomplished by per-
forming a direct translation from the high-level descrip-
tion of the model into an MTBDD.

Examples of this for queueing network and process al-
gebra descriptions can be found in [43,48,42]. The trans-
lation of the PRISM language, used to describe models
in our tool, is considered in [31,57]. Heuristics have also
been developed to select efficient variable orderings in
these cases [43,42,57]. In practice, these techniques have
been used to construct and represent extremely large
probabilistic models, e.g. [43,53,54]. We include some
experimental data in Section 6 which illustrates this. Of-
ten, a direct translation from a high-level formalism also
results in the construction process being relatively fast.
It should be noted, though, that it also often introduces
unreachable states. These must be determined through
reachability analysis (via a simple BDD fixpoint calcu-
lation) and then removed.

4.3 Probabilistic Model Checking with MTBDDs

Once a model’s MTBDD representation has been con-
structed, it can be analysed, for example using PCTL

or CSL model checking. This analysis can be carried out
symbolically, using MTBDDs. As described in Section 2,
the process usually comprises two types of computa-
tion: graph-based analysis using reachability techniques
and numerical calculation. The former can be performed
with BDDs and is at the heart of non-probabilistic sym-
bolic model checking which has been proven to be very
successful [18,55]. The latter can be implemented with
MTBDDs, as we will now see.

Fortunately, all the numerical problems we need to
solve can be implemented as iterative methods. For so-
lution of a linear equation system, standard techniques
such as the Jacobi and Gauss-Seidel methods are avail-
able. For the linear optimisation problems required for
PCTL model checking of MDPs, iterative methods based
on dynamic programming can be used. Other techniques
needed for transient analysis of CTMCs and the compu-
tation of expected costs or rewards can also be performed
through iterative methods.

The typical structure of an iterative solution method
is as follows. A solution vector, containing an approxi-
mation to the values being computed, is repeatedly up-
dated until it us judged to have converged. An example
of a check for convergence is to note when the max-
imum difference between vector elements of successive
iterations falls below some threshold. At each iteration,
the operations performed to compute the updated vec-
tor use both the vector from the previous iteration and
the matrix representing the probabilistic model. In the
majority of cases, the bulk of this work reduces to per-
forming a matrix-vector multiplication. As seen above,
MTBDDs can easily represent both matrices and vec-
tors. Furthermore, efficient algorithms to perform matrix
multiplications using the MTBDD data structure have
been developed [24,5,23]. This constitutes the basis for
a wide range of MTBDD implementations of numerical
iterative methods [35,36,63,7,6,43,31,46,53].

Although we have already dismissed the use of di-
rect methods because they do not scale well to large
problems, it is interesting to note that they are poorly
suited to symbolic implementation anyway. MTBDD-
based versions of Gaussian elimination and Simplex have
been presented in [5] and [52], respectively, and found to
perform badly. The reason for this is that they rely on
modifying the model representation through operations
on individual rows, columns or elements. This is not only
slow, but leads to a loss in regularity and a subsequent
explosion in MTBDD size.

The results of the implementation of probabilistic
model checking with MTBDDs can be summarised as
follows. Firstly, there is a clear distinction between the
two different types of computations required for the pro-
cess. Those based on reachability, which are sufficient
for model checking qualitative properties, can be imple-
mented efficiently with BDDs, as shown for example in
[31]. On the other hand, numerical computation, which is
required for checking of quantitative properties, is more

6 Marta Kwiatkowska et al.: Probabilistic Symbolic Model Checking with PRISM: A Hybrid Approach

unpredictable. This is the problem we focus on in this
paper.

There have been instances where MTBDD-based nu-
merical computation proves to be extremely efficient. For
example, [53] presents results for the analysis of the coin
protocol from Aspnes and Herlihy’s randomised consen-
sus algorithm [3]. This includes model checking of MDPs
with more than 1010 states. In [54], an analysis of the
IEEE 1394 FireWire root contention protocol involved
MDPs with more than 170 million states. In both cases,
it would be impossible even to construct and store an ex-
plicit representation of the models, given the same hard-
ware constraints.

In general though, the symbolic implementation of
numerical iterative methods is far from efficient. The
problem is that, despite a compact MTBDD represen-
tation of the model, the MTBDD representation of the
solution vector tends to grow extremely large. This is due
to a lack of regularity in the vector as the computation
progresses and is worsened by an accompanying increase
in the number of distinct values it contains. These results
have been observed in e.g. [35,36,31,46]. By contrast, in
explicit implementations, such as those based on sparse
matrices, solution vectors are stored in arrays. These re-
main a fixed size and it is quick and easy to access and
modify their contents. Hence, sparse matrix based tech-
niques are usually much faster than their symbolic coun-
terparts. However, since the probabilistic model is also
stored explicitly, application to large examples is often
limited by memory constraints.

5 A Hybrid Approach

We now present a method to overcome the inefficiencies
with MTBDDs outlined in the previous section. The ap-
proach taken here is to a use a hybrid of the two tech-
niques: symbolic and explicit. We store the transition
matrix in an MTBDD but use a full array for the iter-
ation vector. We will consider the problem of perform-
ing a matrix-vector multiplication using these two con-
trasting data structures. As seen previously, this is then
sufficient to allow us to implement a range of numeri-
cal computation techniques, as required for probabilistic
model checking. In particular, this is directly applica-
ble to PCTL model checking of DTMCs and CSL model
checking of CTMCs, provided that linear equation sys-
tems are solved using the Jacobi or JOR (Jacobi with
over-relaxation) methods. In fact, the techniques can
also be extended to MDP-based model checking [57].

5.1 The Basic Algorithm

In the remainder of this section, we will describe how
a matrix-vector multiplication can be carried out when
the matrix is stored in an MTBDD and the vector in an

array. Essentially, we will emulate the operations that
would be carried out in an explicit approach, e.g. using a
sparse matrix data structure. The overall process reduces
to the extraction of all the entries of the matrix, each of
which is needed exactly once to compute the multiplica-
tion. The key difference in our approach is that we need
to extract them from an MTBDD rather than a sparse
matrix. Crucially, we note that, for matrix-vector multi-
plication, the order in which the entries are extracted is
not important. This means that we can can proceed via
a recursive traversal of the MTBDD: it does not matter
that the entries will be in an essentially random order,
rather than row-by-row (or column-by-column) as with
a sparse matrix.

A single matrix entry comprises three pieces of in-
formation: its row index, column index and value. A re-
cursive traversal of an MTBDD essentially enumerates
every possible path from the root node of the data struc-
ture to a terminal node. Each of these paths corresponds
to a matrix entry. The value of this entry is equal to the
labelling of the terminal node at the end of the path. The
row and column index can be determined as follows. Let
us assume that the matrix indices were encoded using
the standard binary representation of integers. Since we
know the path that was taken, i.e. whether the then or
else edge was taken at each step, we can deduce the
binary representation of the indices and hence convert
them to decimal.

In terms of the recursive traversal algorithm, this is
achieved by maintaining a running total for both the
row and column indices. At each recursive call, if the
then edge is taken from the current node m, the appro-
priate power of 2 is added to the corresponding index:
the row index if var(m) is an xi variable and the col-
umn index if var(m) is a yi variable. Alternatively, we
can view this as a truly recursive problem. Each call to
the algorithm computes the local entries for the subma-
trix which that node represents. The actual indices are
computed correctly by adding the appropriate offsets at
each level. This offset will be a power of 2 corresponding
to the size of the submatrices at the level of recursion
below.

5.2 Offset-Labelled MTBDDs

Unfortunately there is a drawback to using the sim-
ple algorithm outlined in the previous section. Recall
from Section 4.2 that generating an efficient, structured
MTBDD representation of a probabilistic model typi-
cally results in the inclusion of a number of unreachable
states in the encoding. Performing matrix-vector multi-
plication as just described on such an MTBDD would
require the vector array to store entries for all states,
including those that are unreachable. The number of un-
reachable states is potentially very large, in some cases
orders of magnitude larger than the reachable portion.

Marta Kwiatkowska et al.: Probabilistic Symbolic Model Checking with PRISM: A Hybrid Approach 7

This puts unacceptable limits on the size of problem
which we can handle.

The solution we adopt is to compute the row and col-
umn index in terms of reachable states only. This can be
integrated into our existing recursive MTBDD traver-
sal algorithm described above. As before, we will keep
track of the indices during traversal by adding offsets at
each node. Here, though, the offset will be equal to the
number of rows or columns in the next level of recur-
sion’s submatrix which correspond to reachable states,
rather than the total number (a power of 2) as before.
To facilitate this process, we a use a modified version of
the MTBDD data structure, which we call offset-labelled
MTBDDs.

An offset-labelled MTBDD is essentially an MTBDD
but with two important differences. Firstly, each node
of the data structure is labelled with an integer offset.
These will be the values added to the row and column in-
dices during traversal. Secondly, we modify the reduction
rules that are applied to the data structure. Recall from
Section 4.1 that there are two types of reduction: merg-
ing of identical nodes and removal of redundant nodes.
In an offset-labelled MTBDD, the second type of reduc-
tion is not performed. In the context of BDDs, of which
MTBDDs are an extension, this variant is known as a
quasi-reduced BDD. The reason we do this is that, dur-
ing the computation of indices, offsets may need to be
added at any level of the MTBDD. Since the offsets are
stored on the nodes, we need nodes to be present at ev-
ery level. The exception to this rule is that we do allow
edges to skip levels if they lead directly to the zero ter-
minal node. This is because we are only ever interested
in extracting the non-zero entries of the matrix.

We also relax the constraints on the first type of re-
duction (merging of identical nodes), making it optional.
In most cases, this reduction will still be used in order to
minimise the size of the data structure. There are some
cases, though, as we will see, where it is important not
to do this. Removing instances of this type of reduction
means that the data structure is no longer canonical.
Fortunately, for our usage of offset-labelled MTBDDs,
this is not a problem. Usually, the reason for maintain-
ing canonicity is for the efficient implementation of look-
ups in a cache of previously performed operations. This
is crucial for efficient manipulation of MTBDDs. Here
though, we will never actually need to manipulate the
data structure: we will construct an instance of it (from
an existing MTBDD), use it for numerical computations
(via traversals which do not involve manipulating the
graph), and then discard it.

Figure 5 gives the recursive algorithm for traversal of
an offset-labelled MTBDD. At the top-level, this would
be called as follows:

TraverseRec(root, 0, 0)

where root is the root node of the MTBDD. The base
cases are when the current MTBDD node m is a termi-

TraverseRec(m, row , col)

if (m is the zero terminal node) then return

elseif (m is a non-zero terminal node) then

found matrix element (row , col) = val(m)
elseif (m is a row node) then

TraverseRec(else(m), row , col)
TraverseRec(then(m), row + offset(m), col)

elseif (m is a column node) then

TraverseRec(else(m), row , col)
TraverseRec(then(m), row , col + offset(m))

endif

Fig. 5. Offset-labelled MTBDD traversal algorithm

nal node. If m is the zero terminal, there are no more
non-zero entries in this portion of the matrix. If m is a
non-zero terminal, a matrix entry has been identified.
The variables row and col are used to keep track of row
and column indices. The offset label on each node m,
used to compute these indices, is denoted offset(m). The
row and column index of an entry are computed (inde-
pendently) by summing the offsets on xi and yi labelled
nodes, respectively, from which the then edge was taken.

To illustrate the whole process more clearly, we now
present a simple example. Figure 6 shows the offset-
labelled MTBDD representing the CTMC from Figure 4.
The table to its right explains how the information is
encoded. Each row corresponds to a single matrix en-
try (i.e. a transition of the CTMC). These are given in
the order that they would be extracted by the recursive
traversal algorithm. The first five columns describe the
path taken through the MTBDD. The next four columns
give the node offsets along this path. The last column
gives the resulting matrix entry. For example, the path
0111, i.e. where (x1, y1, x2, y2) = (0, 1, 1, 1), leads to the
7 terminal node. Since the then edge was taken at the x2

level but not the x1 level, the row index is equal to the
offset on the x2 node, 1. For the y1 and y2 levels, the then
edge was taken in both cases. Hence, the column index
is the sum of the two offsets, 2+0 = 2. The matrix entry
is therefore (1, 2) = 7. Note how in the previous case, in
Figure 3, this entry was computed as (1, 3). Here, the
unreachable state has been taken into account.

A closer comparison of the offset-labelled MTBDD
in Figure 6 and the MTBDD in Figure 3 highlights the
other differences between the two data structures. Note
the extra x2 node on the left hand side in Figure 6.
This is because we do not allow skipped levels in offset-
labelled MTBDDs. Secondly, observe that the bottom
two nodes of the two paths to the 7 terminal node in Fig-
ure 6 are identical, except for the offset-labelling. Hence,
in the original MTBDD, these nodes were merged to-
gether. This is why we are less stringent about the first
reduction rule.

The explanation is that some nodes in an MTBDD
can be reached along several different paths. These shared
nodes correspond to repeated sub-matrices in the overall

8 Marta Kwiatkowska et al.: Probabilistic Symbolic Model Checking with PRISM: A Hybrid Approach

x1

y
1

y2

x2

R’

752

101

011

22

2
Path Offsets Entry of R

x1 y1 x2 y2 fR′ x1 y1 x2 y2

0 0 0 0 2 - - - - (0, 0) = 2
0 0 0 1 5 - - - 1 (0, 1) = 5
0 0 1 0 2 - - 1 - (1, 0) = 2
0 0 1 1 5 - - 1 1 (1, 1) = 5
0 1 1 1 7 - 2 1 0 (1, 2) = 7
1 0 1 1 7 2 - 0 1 (2, 1) = 7

Fig. 6. The offset-labelled MTBDD representing the CTMC in Figure 4

matrix. Consider the matrix in Figure 4 and its MTBDD
representation in Figure 3. The bottom-left and top-right
quadrants of the matrix are identical (since rows and
columns of unreachable states are filled with zeros). This
is reflected by the fact that the x2 node in the MTBDD
has two incoming edges. The two identical sub-matrices
do not, however, share the same pattern of reachable
states. This means that there is a clash as to which off-
set should label the node. In Figure 6, this has been re-
solved by duplicating the node, labelling each copy with
a different offset.

Finally, we briefly describe how offset-labelled MTB-
DDs are constructed. A more detailed presentation of the
process, including full algorithms, can be found in [57].
An offset-labelled MTBDD is only needed for the numer-
ical solution phase of model checking. It is constructed
from an existing MTBDD before this phase begins. The
first step is to remove instances of skipped levels in the
original MTBDD. This is done simply by traversing the
data structure, comparing the variables on consecutive
pairs of nodes and inserting additional nodes where re-
quired. Secondly, we traverse the new MTBDD and add
offset labels onto the nodes. These offsets are computed
beforehand using a BDD representation of the reachable
state space. During the labelling process, possible clashes
of label are checked for and, where necessary, additional
nodes with the correct offset are inserted. In Section 6,
we include empirical results giving the time required for
the construction process and the amount of additional
memory usage which it incurs.

5.3 Optimising the Hybrid Approach

We can optimise the method described in the previous
section considerably via a form of caching . MTBDDs ex-
ploit structure and regularity in the probabilistic model
being analysed, often resulting in a significant space sav-
ing. This is achieved by merging identical nodes, repre-
senting identical sub-matrices. During a single traver-
sal of the data structure, however, each of these shared
nodes will be visited several times (as many times as
the sub-matrix occurs in the overall matrix) and the en-

tries of the sub-matrix will be extracted separately every
time. Furthermore, a typical instance of numerical com-
putation will comprise many iterations, each of which re-
quires one such traversal. Hence, by storing and reusing
the results of the traversal process, we can achieve a sig-
nificant speed-up in traversal time.

Rather than store these results in a cache, which
would need to be searched through frequently, we simply
attach the information directly to MTBDD nodes. We
select some subset of the nodes, build explicit (sparse
matrix) representations of their associated sub-matrices
and attach them to the MTBDD. When these nodes are
reached during each traversal, the entries of their asso-
ciated submatrices can be extracted extremely quickly.

There is an obvious trade-off here between the addi-
tional space required to store the data and the resulting
improvement in speed. The space required and time im-
provement both depend on how many nodes (and which
ones) we attach matrices to. A simple yet effective policy
is to select a single layer of the MTBDD and compute
matrices for all nodes on this level.

In Figure 7, we demonstrate this technique on the
running example, replacing all nodes on the x2 level
with the matrices they represent. The table illustrates
how the recursive traversal process now functions. At
the bottom of the recursion, small, explicit submatrices
are obtained. The local entries of these matrices are con-
verted to global entries of the overall matrix by adding
row and column index offsets as before.

In general, selecting a higher level of the MTBDD
for which to compute submatrices means that entries
of the whole matrix can be extracted in less time but
that more memory is required for storage. Our approach
is to precompute, for each level, the amount of storage
that would be required and then select the highest level
possible for which some given memory threshold is not
exceeded. In this work, we take this threshold to be 1024
KB. In practice, we find that this optimisation technique
produces a marked improvement in traversal speed. In
Section 6, we give experimental results to illustrate this.

Marta Kwiatkowska et al.: Probabilistic Symbolic Model Checking with PRISM: A Hybrid Approach 9

y
1

x1

2 5
2 5

0
7

0 7

2

2 2

R’’ Path Offsets Local Global
x1 y1 x1 y1 entry entry

0 0 - - (0, 0) = 2 (0, 0) = 2
(0, 1) = 5 (0, 1) = 5
(1, 0) = 2 (1, 0) = 2
(1, 1) = 5 (1, 1) = 5

0 1 - 2 (1, 0) = 7 (1, 2) = 7

1 0 2 - (0, 1) = 7 (2, 1) = 7

Fig. 7. The modified MTBDD labelled with explicit sub-matrices

5.4 Additional Extensions

More detailed information about the techniques given in
this paper can be found in [57]. In addition, two exten-
sions of the basic algorithms described here are included.
Firstly, the process is extended to cover model checking
of MDPs. In the sections above, we have focused on the
problem of extracting entries from a real-valued matrix.
This is directly applicable to the numerical computa-
tion required for model checking of DTMCs and CTMCs,
which are represented by such matrices. Computations
on MDPs are complicated by the inclusion of nondeter-
minism. However, as explained in Section 4.2, an MDP
can actually be considered as a set of matrices. Each iter-
ation of the numerical solution required for model check-
ing can then be performed using several matrix-vector
multiplications, as opposed to just one for DTMCs and
CTMCs.

Secondly, [57] addresses an important limitation of
our approach: that the algorithms we have given can only
be used for iterative methods based on matrix-vector
multiplication. For some tasks, such as transient anal-
ysis of CTMCs and PCTL model checking of MDPs,
this is not restrictive. In cases where solution of a linear
equation system is required, though, iterative numerical
methods such as Gauss-Seidel, which generally converge
faster, can not be used. This is because such methods re-
quire access to individual rows or columns of the matrix.
Our approach of recursively traversing the MTBDD in
a single pass does not allow this kind of access. One way
this situation can be improved is to use a block-based
variant of Gauss-Seidel which also provides an improve-
ment in convergence speed, but which is amenable to im-
plementation with MTBDDs. Intuitively, this is because
blocks of a matrix which is represented by an MTBDD
are easy to access, unlike individual rows or columns.

6 Results

In this section, we present experimental results to com-
pare the performance of the three implementations dis-
cussed in this paper: the purely MTBDD-based approach
described in Section 4; an equivalent explicit implemen-
tation using sparse matrices; and the hybrid approach
described in Section 5. All three are available in the

PRISM model checker. We also made use of a proto-
type extension of PRISM which is being developed for
the analysis of expected-time properties. All experiments
were run on a 450MHz workstation with 1GB of main
memory.

We focus on the problem of iterative numerical com-
putation, as required for quantitative probabilistic model
checking. The results are for three case studies: a CTMC
model of a Kanban manufacturing system [22]; a DTMC
model of a randomised self-stabilising algorithm due to
Herman [39]; and an MDP model of the coin protocol
from Aspnes and Herlihy’s randomised consensus algo-
rithm [3]. In each case, we construct models of differ-
ent sizes by varying a parameter N . This equates to the
maximum number of jobs in the Kanban system, and the
number of processes in the other two examples. Table 1
shows, for each of the above examples, the model size in
terms of number of states and number of transitions as
the parameter N varies.

Table 2 gives the memory requirements for storing
these models, using four different implementations: MTB-
DDs, sparse matrices and the hybrid approach, with and
without the optimisation described in Section 5.3. An
MTBDD requires 20 bytes for each node of the data
structure. A sparse matrix requires 4a+12b bytes where
a is the number of states and b is the number of tran-
sitions. For an MDP, extra memory is required to store
information about nondeterministic choices. See [57] for
more details. Note that entries with an asterisk in the
sparse matrix column were not actually generated be-
cause of physical memory limitations. In our implemen-
tation, an offset-labelled MTBDD can also be stored us-
ing 20 bytes per node. This is because certain informa-
tion normally present in MTBDDs can be omitted since
the data structure is never modified. In the optimised
case, we require an extra 4 bytes per node to store point-
ers to the explicit submatrices. Furthermore, memory for
the matrices themselves is needed. As described earlier,
this is capped at 1024 KB.

It is easy to see that, by exploiting the structure in
these examples, MTBDDs can result in a colossal saving
in memory. Furthermore, the memory overhead associ-
ated with our hybrid approach remains relatively low.
This is despite the fact that we potentially add more
nodes to the data structure and store some of the sub-
matrices explicitly.

10 Marta Kwiatkowska et al.: Probabilistic Symbolic Model Checking with PRISM: A Hybrid Approach

Model N States Transitions

3 58,400 446,400
Kanban 4 454,475 3,979,850
system 5 2,546,432 24,460,016

(CTMC) 6 11,261,376 115,708,992
7 41,644,800 450,455,040

13 8,192 1,594,324
Herman’s 15 32,768 14,348,908

self- 17 131,072 129,140,164
stabilisation 19 524,288 1,162,261,468

(DTMC) 21 2,097,152 10,460,353,204
23 8,388,608 125,524,238,436

Coin 4 43,136 201,056
protocol 6 2,376,448 16,607,040
(MDP) 8 114,757,632 1,069,599,744

10 5,179,854,848 60,364,590,080

Table 1. Model statistics

Model N Matrix storage (KB)
MTBDD Sparse Hybrid Hybrid (optimised)

3 48.3 5,459 58.0 866
Kanban 4 95.7 48,414 115 858
system 5 123 296,588 148 671

(CTMC) 6 154 1,399,955* 185 944
7 186 5,441,445* 223 1,033

13 11.7 18,715 19.9 493
Herman’s 15 15.8 168,279 27.2 658

self- 17 20.6 1,513,873* 35.6 825
stabilisation 19 25.9 13,622,300* 45.2 992

(DTMC) 21 31.9 122,590,456* 55.9 456
23 34.6 1,471,019,937* 63.3 577

Coin 4 32.7 1,651 97.0 695
protocol 6 84.2 93,948 348 933
(MDP) 8 168 4,236,739* 902 1,276

10 291 37,011,024* 1,922 2,387

* Not actually constructed due to memory limitations

Table 2. Memory requirements

Model N Construction time (sec.) Average time per iteration (sec.)
Hybrid Hybrid (optimised) MTBDD Sparse Hybrid Hybrid (optimised)

3 0.01 0.03 45.5 0.04 0.33 0.04
Kanban 4 0.01 0.10 - 0.44 4.32 0.48
system 5 0.02 0.21 - 2.85 24.41 3.09

(CTMC) 6 0.04 0.49 - - 113 15.6
7 0.06 0.88 - - 437 61.9

13 0.01 0.03 2.02 0.15 0.25 0.09
Herman’s 15 0.01 0.05 13.2 1.40 2.22 0.80

self- 17 0.05 0.10 78.1 - 20.6 7.26
stabilisation 19 0.18 0.33 803 - 187 66.2

(DTMC) 21 0.71 3.27 - - 1,644 525
23 2.68 35.1 - - 20,751 7,161

Coin 4 0.05 0.08 0.17 0.03 0.07 0.04
protocol 6 1.10 1.16 1.01 1.04 5.58 3.02
(MDP) 8 - - 3.17 - - -

10 - - 8.38 - - -

Table 3. Timing statistics

Marta Kwiatkowska et al.: Probabilistic Symbolic Model Checking with PRISM: A Hybrid Approach 11

In Table 3, we present timing statistics for model
checking on the same three case studies. For the Kan-
ban system, we model check a quantitative CSL property
which requires computation of steady-state probabilities.
This is done via the solution of a linear equation sys-
tem using the JOR (Jacobi with over-relaxation) itera-
tive method. For the self-stabilisation protocol, we verify
an expected-time property, computing the solution iter-
atively. For the coin protocol, we verify a quantitative
PCTL property which requires solution of a linear opti-
misation problem. In each case the times presented in the
table are the average time per iteration of the numerical
method. We also give the time required for construction
of the offset-labelled MTBDD for the hybrid approach,
with and without optimisation.

The relative performances of the four implementa-
tions can be summarised as follows. Concentrating first
on the DTMC and CTMC examples, we see that our hy-
brid approach represents a significant improvement over
the conventional MTBDD-based approach. We note also
that applying the optimisation described in Section 5.3
makes our approach far more efficient. In comparison to
the explicit approach using sparse matrices, we find that
we can in one case almost match and in another case
beat the time per iteration using our approach. More im-
portantly, thanks to the memory savings afforded by the
MTBDD-based model representation we can also handle
models an order of magnitude larger.

For the coin protocol model, it is the pure MTBDD
approach which is most effective, successfully coping with
state spaces of 5 billion states. For the other three im-
plementations, storing even the solution vector is impos-
sible here. In this case, both the model and vectors to
be stored exhibit a large amount of structure which can
be exploited. This is helped by the fact that the model,
like many taken from randomised distributed algorithms,
contains only a small number of distinct probabilities.

Finally, we note that the time required to construct
offset-labelled MTBDDs is small in all cases, and is neg-
ligible in comparison to the overall solution process. For
details of further case studies to which these techniques
have been applied, see the PRISM web site [1].

7 Related Work

We are aware of three other probabilistic model check-
ers: ProbVerus [38], a prototype tool which supports
model checking of DTMCs using a subset of PCTL;
E T MC2 [41], which allows verification of CTMCs and
DTMCs against CSL and PCTL specifications, respec-
tively; and RAPTURE [26], which uses abstraction and
refinement to perform model checking for a subset of
PCTL over MDPs. Similarly to the tool PRISM, both
ProbVerus and RAPTURE use MTBDDs. E T MC2, on
the other hand, is an explicit implementation based on
sparse matrices. The APNN-Toolbox [11], a Petri net

based tool which supports analysis of CTMCs, has re-
cently added support for CSL model checking. There are
also a wide range of other CTMC-based tools available
which, despite not offering probabilistic model check-
ing explicitly, typically perform steady-state and tran-
sient analysis of CTMCs, the numerical computation
for which is very similar. These include GreatSPN [19],
MARCA [61], Möbius [25], the PEPA workbench [34],
SMART [20], TIPP-tool [40] and UltraSAN [59].

Of the implementations described above, SMART
and the APNN-Toolbox are of particular interest be-
cause, like PRISM, they incorporate sophisticated data
structures designed to exploit large, structured models.
Both tools include support for Kronecker representa-
tions, the basic idea of which is that the transition ma-
trix of a CTMC is defined as a Kronecker (tensor) al-
gebraic expression of smaller matrices, corresponding to
sub-components of the model. Like MTBDD-based ap-
proaches, the goal is to derive a compact representation
of large models by exploiting high-level structure and
regularity. Methods have been developed which allow nu-
merical solution of a CTMC to be performed directly on
its Kronecker representation (see for example [58,16]).
This process has close similarities to the techniques de-
scribed in this paper in that a compact, symbolic repre-
sentation of the CTMC is used alongside explicit (array-
based) storage of the solution vector.

Furthermore, SMART uses a variety of BDD-based
data structures. Most relevant to this paper are ma-
trix diagrams [21,56], a data structure developed as an
efficient implementation of the Kronecker techniques.
There are several further similarities between this ap-
proach and ours. Firstly, it uses decision diagrams, i.e.
reduced directed acyclic graphs, like BDDs and MTB-
DDs. In the case of matrix diagrams, the nodes of these
graphs are the small matrices which make up the model’s
Kronecker representation. In fact, SMART uses a com-
bination of matrix diagrams, to represent and manipu-
late CTMC transition rate matrices, and MDDs (multi-
valued decision diagrams), to generate and store the
CTMC’s reachable state space. This is analogous with
the way we use MTBDDs and BDDs, respectively. Fur-
thermore, matrix diagrams and MDDs are labelled with
offsets which are used to compute row and column off-
sets. These serve the same purpose as the values added to
offset-labelled MTBDDs. Finally, the implementations
of both MTBDD and matrix diagram based numerical
computation require consideration of a number of factors
common to the majority of BDD-based data structures.
These include the encoding of the model’s state space
into variables, the ordering chosen for these variables,
and the use of caches to minimise duplicated operations.

There are also important differences between the ma-
trix diagram approach, used in SMART, and the offset-
labelled MTBDD approach, described in this paper and
implemented in PRISM. Below, we outline these differ-
ences and consider the effect that they have on the time

12 Marta Kwiatkowska et al.: Probabilistic Symbolic Model Checking with PRISM: A Hybrid Approach

Model N States Average time/iter (sec.) Matrix storage (KB)
Hybrid MDs Sparse Hybrid MDs Sparse

2 4,600 0.0004 0.0004 0.0002 39.5 1.2 348
Kanban 3 58,400 0.01 0.007 0.005 58.0 2.6 5,459
system 4 454,475 0.08 0.07 0.05 115 4.9 48,414

(CTMC) 5 2,546,432 0.46 0.45 0.32 148 8.3 296,588
6 11,261,376 2.28 2.00 - 185 12.9 -

10 15,360 0.002 0.002 0.001 22.2 1.4 1,110
Cyclic 12 73,728 0.01 0.01 0.007 30.8 1.7 6,192
server 14 344,064 0.04 0.08 0.04 40.9 2.0 32,928
polling 15 737,280 0.10 0.16 0.08 46.5 2.2 74,880
system 16 1,572,864 0.24 0.35 0.19 52.3 2.3 168,960

(CTMC) 17 3,342,336 0.52 0.79 - 59.0 2.5 -
18 7,077,888 1.16 1.66 - 65.5 2.6 -

Table 4. Comparison of offset-labelled MTBDDs, matrix diagrams and sparse matrices

and space efficiency of the two techniques. In this re-
spect, we are chiefly interested in two main aspects of
the implementation: the amount of memory taken up by
the data structure and the speed with which information
can be extracted from it for numerical solution.

The most obvious difference is that matrix diagrams
are based on the Kronecker representation. This means
that to extract a single matrix entry from a matrix dia-
gram, it is necessary not only to trace a path through the
data structure (like with offset-labelled MTBDDs), but
also to perform a number of numerical operations (mul-
tiplications and possibly additions). In practice, when
all matrix entries are extracted at once, a reduction in
the number of operations performed is possible, in the
same way that all matrix entries are extracted from an
offset-labelled MTBDD via a single traversal of the data
structure, as opposed to tracing a separate path for each
matrix entry. The advantage of the Kronecker approach,
however, is that it will often result in a more compact
representation. In particular, in cases where the matrix
contains many distinct values, MTBDDs will generally
be more expensive by comparison, since this results in a
larger number of terminal nodes, reducing the capacity
for sharing between nodes, and hence increasing the size
of the data structure.

Another important factor to consider is the encoding
of row and column indices. For MTBDDs, the encoding
is into Boolean variables; while for matrix diagrams, it is
into integer-valued variables. This makes the implemen-
tation of MTBDDs simpler and reduces the storage re-
quired for each node. However, the number of levels in a
matrix diagram (i.e. its height) will generally be smaller.
Of course, this makes traversing the data structure dur-
ing numerical solution faster. Integer-valued variables
may also result in a more intuitive encoding of a model
in terms of its high-level description.

All in all, a comparison of the relative merits of the
two structures is fairly complex and it is likely that
each approach will fare better in some circumstances. In
Table 4, we present some preliminary, empirical results

which compare the two. We performed computation of
the steady-state probabilities for two CTMC case stud-
ies: the Kanban manufacturing system, as used earlier
in the paper, and the cyclic server polling system of [44].
We used the JOR and Jacobi methods, respectively, and
ran experiments on a 2GHz PC with 512KB of main
memory. Equivalent computations were performed for
offset-labelled MTBDDs (“Hybrid”), matrix diagrams
(“MDs”) and sparse matrices (“Sparse”). For matrix di-
agrams, we used SMART (version 1.1); for the other
two approaches, we used PRISM (version 1.3.1). For all
three implementations, the table gives the average time
per iteration of numerical computation and the memory
required to store the CTMC transition rate matrix.

The statistics in Table 4 back up our discussion of
the various points above. Considering first memory us-
age, we see that matrix diagrams do indeed provide a
more compact representation than offset-labelled MTB-
DDs on these examples. However, both are negligible
compared to the storage requirements of a sparse matrix.
In addition, as we will discuss shortly, they are insignif-
icant with respect to the amount of memory needed to
store the solution vector. In terms of speed for numer-
ical solution, we observe that offset-labelled MTBDDs
and matrix diagrams are essentially comparable, each
outperforming the other on one of the examples. Both
approaches are slightly slower than sparse, but are still
competitive in this respect.

Another issue to bear in mind which is not included
in the above discussion or experimental results is the
choice of numerical solution method. For solution of lin-
ear equation systems, it is often preferable to use the
Gauss Seidel method, rather than the Jacobi method,
since it generally converges faster and can be imple-
mented with a single solution vector. An efficient imple-
mentation of Gauss Seidel has been developed for matrix
diagrams. A version for offset-labelled MTBDDs, while
certainly possible in principle, has yet to be realised in
practice. See [57] for an alternative, where offset-labelled
MTBDDs are applied to a block-based variant of Gauss-

Marta Kwiatkowska et al.: Probabilistic Symbolic Model Checking with PRISM: A Hybrid Approach 13

Seidel. Note also that, for several numerical solution
problems, including transient analysis of CTMCs and
PCTL model checking of MDPs, this issue does not arise.

We conclude our discussion of related work by ob-
serving that there is one vital issue which unites offset-
labelled MTBDDs, matrix diagrams and other imple-
mentations of the Kronecker approach, namely the stor-
age of solution vectors. While all these techniques typ-
ically achieve compact matrix representation, they also
require explicit storage of at least one vector of size pro-
portional to the number of states in the model being
analysed. This constitutes the limiting factor in terms
of the size of model which can be handled.

Removal of this bottleneck remains an important chal-
lenge for the development of these techniques. Attempts
to harness any regularity in the solution vectors by stor-
ing them symbolically, either with MTBDDs or PDGs
(Probabilistic Decision Graphs) [14,17], have generally
failed to resolve the problem. An alternative direction
which we are investigating [49,50] is the development
of parallel or distributed techniques, where storage and
workload is split across several computers or processors,
and out-of-core techniques, where some data structures
are stored on disk instead of in main memory.

8 Conclusion

In this paper, we have presented a novel approach to the
symbolic implementation of probabilistic model checking
for three types of models (DTMCs, MDPs and CTMCs)
and two probabilistic logics (PCTL and CSL). In par-
ticular, we have focused on the problem of numerical
computation. Our techniques overcome the limitations
of existing MTBDD implementations by using explicit
storage for solution vectors. This has increased the range
of models to which MTBDD-based model checking can
be applied and significantly improved the speed of the
implementation. We also find that we can come close to,
and in some cases beat, explicit sparse matrix based ap-
proaches in terms of solution speed. Furthermore, thanks
to the compact model storage provided by MTBDDs, we
can handle models an order of magnitude larger.

Our techniques have been implemented in the prob-
abilistic model checker PRISM [51]. The tool, its source
code and information for a range of case studies to which
it has been applied can be found on the PRISM web site
[1]. More detailed information about the techniques pre-
sented in this paper can be found in [57].

The development of PRISM is an ongoing project.
Research directions to improve its implementation in-
clude, as described in the previous chapter, development
of parallel, distributed or out-of-core implementations
and investigation into more in-depth comparisons be-
tween our techniques and Kronecker-based implementa-
tions such as matrix diagrams. It would also be inter-
esting to compare the effectiveness of our symbolic ap-

proach with that of alternative ideas for handling large
probabilistic models, such as using disk-based storage
[32,47] or “on-the-fly” techniques [33].

References

1. PRISM web site. www.cs.bham.ac.uk/˜dxp/prism.

2. R. Alur and T. Henzinger. Reactive modules. In Proc.
11th Annual IEEE Symposium on Logic in Computer
Science (LICS’96), pages 207–218. IEEE Computer So-
ciety Press, July 1996.

3. J. Aspnes and M. Herlihy. Fast randomized consensus
using shared memory. Journal of Algorithms, 15(1):441–
460, 1990.

4. A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Ver-
ifying continuous time Markov chains. In R. Alur and
T. Henzinger, editors, Proc. 8th International Confer-
ence on Computer Aided Verification (CAV’96), volume
1102 of LNCS, pages 269–276. Springer, 1996.

5. I. Bahar, E. Frohm, C. Gaona, G. Hachtel, E.Macii,
A. Pardo, and F. Somenzi. Algebraic decision diagrams
and their applications. In Proc. International Conference
on Computer-Aided Design (ICCAD’93), pages 188–191,
1993. Also available in Formal Methods in System De-
sign, 10(2/3):171–206, 1997.

6. C. Baier. On algorithmic verification methods for prob-
abilistic systems. Habilitation thesis, Fakultät für Math-
ematik & Informatik, Universität Mannheim, 1998.

7. C. Baier, E. Clarke, V. Hartonas-Garmhausen,
M. Kwiatkowska, and M. Ryan. Symbolic model
checking for probabilistic processes. In P. Degano,
R. Gorrieri, and A. Marchetti-Spaccamela, editors,
Proc. 24th International Colloquium on Automata,
Languages and Programming (ICALP’97), volume 1256
of LNCS, pages 430–440. Springer, 1997.

8. C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen.
Model checking continuous-time Markov chains by tran-
sient analysis. In A. Emerson and A. Sistla, editors, Proc.
12th International Conference on Computer Aided Veri-
fication (CAV’00), volume 1855 of LNCS, pages 358–372.
Springer, 2000.

9. C. Baier, J.-P. Katoen, and H. Hermanns. Approximate
symbolic model checking of continuous-time Markov
chains. In J. Baeten and S. Mauw, editors, Proc.
10th International Conference on Concurrency Theory
(CONCUR’99), volume 1664 of LNCS, pages 146–161.
Springer, 1999.

10. C. Baier and M. Kwiatkowska. Model checking for a
probabilistic branching time logic with fairness. Dis-
tributed Computing, 11(3):125–155, 1998.

11. F. Bause, P. Buchholz, and P. Kemper. A toolbox
for functional and quantitative analysis of DEDS. In
R. Puigjaner, N. Savino, and B. Serra, editors, Proc.
Computer Performance Evaluation (TOOLS’98), volume
1469 of LNCS, pages 356–359. Springer, 1998.

12. A. Bianco and L. de Alfaro. Model checking of probabilis-
tic and nondeterministic systems. In P. Thiagarajan, ed-
itor, Proc. 15th Conference on Foundations of Software
Technology and Theoretical Computer Science, volume
1026 of LNCS, pages 499–513. Springer, 1995.

14 Marta Kwiatkowska et al.: Probabilistic Symbolic Model Checking with PRISM: A Hybrid Approach

13. B. Bollig and I. Wegner. Improving the variable order-
ing of OBDDs is NP-complete. IEEE Transactions on
Computers, 45(9):993–1006, 1996.

14. M. Bozga and O. Maler. On the representation of prob-
abilities over structured domains. In N. Halbwachs and
D. Peled, editors, Proc. 11th International Conference on
Computer Aided Verification (CAV’99), volume 1633 of
LNCS, pages 261–273. Springer, 1999.

15. R. Bryant. Graph-based algorithms for Boolean func-
tion manipulation. IEEE Transactions on Computers,
C-35(8):677–691, 1986.

16. P. Buchholz, G. Ciardo, S. Donatelli, and P. Kemper.
Complexity of Kronecker operations on sparse matri-
ces with applications to the solution of Markov models.
ICASE Report 97-66, Institute for Computer Applica-
tions in Science and Engineering, 1997.

17. P. Buchholz and P. Kemper. Compact representations
of probability distributions in the analysis of superposed
GSPNs. In R. German and B. Haverkort, editors, Proc.
9th International Workshop on Petri Nets and Perfor-
mance Models (PNPM’01), pages 81–90. IEEE Com-
puter Society Press, 2001.

18. J. Burch, E. Clarke, K. McMillan, D. Dill, and J. Hwang.
Symbolic model checking: 1020 states and beyond. In
Proc. 5th Annual IEEE Symposium on Logic in Com-
puter Science (LICS’90), pages 428–439. IEEE Com-
puter Society Press, 1990.

19. G. Chiola. GreatSPN 1.5 software architecture. Com-
puter Performance Evaluation, pages 121–136, 1992.

20. G. Ciardo and A. Miner. SMART: Simulation and
Markovian analyser for reliability and timing. In Proc.
2nd International Computer Performance and Depend-
ability Symposium (IPDS’96), page 60. IEEE Computer
Society Press, 1996.

21. G. Ciardo and A. Miner. A data structure for the effi-
cient Kronecker solution of GSPNs. In P. Buchholz and
M. Silva, editors, Proc. 8th International Workshop on
Petri Nets and Performance Models (PNPM’99), pages
22–31. IEEE Computer Society Press, 1999.

22. G. Ciardo and M. Tilgner. On the use of Kronecker oper-
ators for the solution of generalized stocastic Petri nets.
ICASE Report 96-35, Institute for Computer Applica-
tions in Science and Engineering, 1996.

23. E. Clarke, M. Fujita, P. McGeer, K. McMillan, J. Yang,
and X. Zhao. Multi-terminal binary decision diagrams:
An efficient data structure for matrix representation.
In Proc. International Workshop on Logic Synthesis
(IWLS’93), pages 1–15, 1993. Also available in Formal
Methods in System Design, 10(2/3):149–169, 1997.

24. E. Clarke, K. McMillan, X. Zhao, M. Fujita, and J. Yang.
Spectral transforms for large Boolean functions with ap-
plications to technology mapping. In Proc. 30th Design
Automation Conference (DAC’93), pages 54–60. ACM
Press, 1993. Also available in Formal Methods in System
Design, 10(2/3):137–148, 1997.

25. D. Daly, D. Deavours, J. Doyle, P. Webster, and
W. Sanders. Möbius: An extensible tool for perfor-
mance and dependability modeling. In B. Haverkort,
H. Bohnenkamp, and C. Smith, editors, Proc. 11th Inter-
national Conference on Modelling Techniques and Tools
for Computer Performance Evaluation (TOOLS’00), vol-
ume 1786 of LNCS, pages 332–336. Springer, 2000.

26. P. D’Argenio, B. Jeannet, H. Jensen, and K. Larsen.
Reachability analysis of probabilistic systems by succes-
sive refinements. In L. de Alfaro and S. Gilmore, editors,
Proc. 1st Joint International Workshop on Process Al-
gebra and Probabilistic Methods, Performance Modeling
and Verification (PAPM/PROBMIV’01), volume 2165 of
LNCS, pages 39–56. Springer, 2001.

27. L. de Alfaro. Formal Verification of Probabilistic Sys-
tems. PhD thesis, Stanford University, 1997.

28. L. de Alfaro. Temporal logics for the specification of
performance and reliability. In R. Reischuk and M. Mor-
van, editors, Proc. Symposium on Theoretical Aspects of
Computer Science (STACS’97), volume 1200 of LNCS,
pages 165–176. Springer, 1997.

29. L. de Alfaro. How to specify and verify the long-run
average behavior of probabilistic systems. In Proc. 13th
Annual IEEE Symposium on Logic in Computer Science
(LICS’98), pages 454–465, 1998.

30. L. de Alfaro. Computing minimum and maximum reach-
ability times in probabilistic systems. In J. Baeten and
S. Mauw, editors, Proc. 10th International Conference
on Concurrency Theory (CONCUR’99), volume 1664 of
LNCS, pages 66–81. Springer, 1999.

31. L. de Alfaro, M. Kwiatkowska, G. Norman, D. Parker,
and R. Segala. Symbolic model checking of concur-
rent probabilistic processes using MTBDDs and the Kro-
necker representation. In S. Graf and M. Schwartzbach,
editors, Proc. 6th International Conference on Tools and
Algorithms for the Construction and Analysis of Sys-
tems (TACAS’00), volume 1785 of LNCS, pages 395–410.
Springer, 2000.

32. D. Deavours and W. Sanders. An efficient disk-based
tool for solving very large Markov models. In R. Marie,
B. Plateau, M. Calzarossa, and G. Rubino, editors, Proc.
9th International Conference on Modelling Techniques
and Tools (TOOLS’97), volume 1245 of LNCS, pages 58–
71. Springer, 1997.

33. D. Deavours and W. Sanders. “On-the-fly” solution tech-
niques for stochastic Petri nets and extensions. IEEE
Transactions on Software Engineering, 24(10):889–902,
1998.

34. S. Gilmore and J. Hillston. The PEPA workbench: A
tool to support a process algebra-based approach to per-
formance modelling. In G. Haring and G. Kotsis, edi-
tors, Proceedings of the 7th International Conference on
Modelling Techniques and Tools for Computer Perfor-
mance Evaluation), volume 794 of LNCS, pages 353–368.
Springer, 1994.

35. G. Hachtel, E. Macii, A. Pardo, and F. Somenzi. Prob-
abilistic analysis of large finite state machines. In Proc.
31st Design Automation Conference (DAC’94), pages
270–275. ACM Press, 1994.

36. G. Hachtel, E. Macii, A. Pardo, and F. Somenzi. Marko-
vian analysis of large finite state machines. IEEE Trans-
actions on CAD, 15(12):1479–1493, 1996.

37. H. Hansson and B. Jonsson. A logic for reasoning about
time and probability. Formal Aspects of Computing,
6(5):512–535, 1994.

38. V. Hartonas-Garmhausen, S. Campos, and E. Clarke.
ProbVerus: Probabilistic symbolic model checking. In
J.-P. Katoen, editor, Proc. 5th International AMAST
Workshop on Real-Time and Probabilistic Systems

Marta Kwiatkowska et al.: Probabilistic Symbolic Model Checking with PRISM: A Hybrid Approach 15

(ARTS’99), volume 1601 of LNCS, pages 96–110.
Springer, 1999.

39. T. Herman. Probabilistic self-stabilization. Information
Processing Letters, 35(2):63–67, 1990.

40. H. Hermanns, U. Herzog, U. Klehmet, V. Mertsiotakis,
and M. Siegle. Compositional performance modelling
with the TIPPtool. Performance Evaluation, 39(1-4):5–
35, January 2000.

41. H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, and
M. Siegle. A Markov chain model checker. In S. Graf
and M. Schwartzbach, editors, Proc. 6th International
Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS’00), volume 1785
of LNCS, pages 347–362. Springer, 2000.

42. H. Hermanns, M. Kwiatkowska, G. Norman, D. Parker,
and M. Siegle. On the use of MTBDDs for performability
analysis and verification of stochastic systems. Journal
of Logic and Algebraic Programming: Special Issue on
Probabilistic Techniques for the Design and Analysis of
Systems, 56(1-2):23–67, 2003.

43. H. Hermanns, J. Meyer-Kayser, and M. Siegle. Multi
terminal binary decision diagrams to represent and anal-
yse continuous time Markov chains. In B. Plateau,
W. Stewart, and M. Silva, editors, Proc. 3rd Inter-
national Workshop on Numerical Solution of Markov
Chains (NSMC’99), pages 188–207. Prensas Universi-
tarias de Zaragoza, 1999.

44. O. Ibe and K. Trivedi. Stochastic Petri net models of
polling systems. IEEE Journal on Selected Areas in
Communications, 8(9):1649–1657, 1990.

45. A. Itai and M. Rodeh. Symmetry breaking in distributed
networks. Information and Computation, 88(1), 1990.

46. J.-P. Katoen, M. Kwiatkowska, G. Norman, and
D. Parker. Faster and symbolic CTMC model check-
ing. In L. de Alfaro and S. Gilmore, editors, Proc. 1st
Joint International Workshop on Process Algebra and
Probabilistic Methods, Performance Modeling and Ver-
ification (PAPM/PROBMIV’01), volume 2165 of LNCS,
pages 23–38. Springer, 2001.

47. W. Knottenbelt and P. Harrison. Distributed disk-
based solution techniques for large Markov models. In
B. Plateau, W. Stewart, and M. Silva, editors, Proc.
3rd International Workshop on Numerical Solution of
Markov Chains (NSMC’99), pages 58–75. Prensas Uni-
versitarias de Zaragoza, 1999.

48. M. Kuntz and M. Siegle. Deriving symbolic represen-
tations from stochastic process algebras. In H. Her-
manns and R. Segala, editors, Proc. 2nd Joint In-
ternational Workshop on Process Algebra and Proba-
bilistic Methods, Performance Modeling and Verification
(PAPM/PROBMIV’02), volume 2399 of LNCS, pages
188–206. Springer, 2002.

49. M. Kwiatkowska and R. Mehmood. Out-of-core solution
of large linear systems of equations arising from stochas-
tic modelling. In H. Hermanns and R. Segala, editors,
Proc. 2nd Joint International Workshop on Process Al-
gebra and Probabilistic Methods, Performance Modeling
and Verification (PAPM/PROBMIV’02), volume 2399 of
LNCS, pages 135–151. Springer, 2002.

50. M. Kwiatkowska, R. Mehmood, G. Norman, and
D. Parker. A symbolic out-of-core solution method for
Markov models. In Proc. Workshop on Parallel and

Distributed Model Checking (PDMC’02), volume 68.4 of
Electronic Notes in Theoretical Computer Science. Else-
vier, 2002.

51. M. Kwiatkowska, G. Norman, and D. Parker. PRISM:
Probabilistic symbolic model checker. In T. Field,
P. Harrison, J. Bradley, and U. Harder, editors,
Proc. 12th International Conference on Modelling Tech-
niques and Tools for Computer Performance Evalua-
tion (TOOLS’02), volume 2324 of LNCS, pages 200–204.
Springer, 2002.

52. M. Kwiatkowska, G. Norman, D. Parker, and R. Segala.
Symbolic model checking of concurrent probabilistic sys-
tems using MTBDDs and Simplex. Technical Report
CSR-99-1, School of Computer Science, University of
Birmingham, 1999.

53. M. Kwiatkowska, G. Norman, and R. Segala. Au-
tomated verification of a randomized distributed con-
sensus protocol using Cadence SMV and PRISM. In
G. Berry, H. Comon, and A. Finkel, editors, Proc. 13th
International Conference on Computer Aided Verifica-
tion (CAV’01), volume 2102 of LNCS, pages 194–206.
Springer, 2001.

54. M. Kwiatkowska, G. Norman, and J. Sproston. Proba-
bilistic model checking of deadline properties in the IEEE
1394 FireWire root contention protocol. Special Issue of
Formal Aspects of Computing, 14:295–318, 2003.

55. K. McMillan. Symbolic Model Checking. Kluwer Aca-
demic Publishers, 1993.

56. A. Miner. Data Structures for the Analysis of Large
Structured Markov Chains. PhD thesis, Department of
Computer Science, College of William & Mary, Virginia,
2000.

57. D. Parker. Implementation of Symbolic Model Check-
ing for Probabilistic Systems. PhD thesis, University of
Birmingham, 2002.

58. B. Plateau. On the stochastic structure of parallelism
and synchronisation models for distributed algorithms.
In Proc. 1985 ACM SIGMETRICS Conference on Mea-
surement and Modeling of Computer Systems, volume
13(2) of Performance Evaluation Review, pages 147–153,
1985.

59. W. Sanders, W. Obal, M. Qureshi, and F. Widjanarko.
The UltraSAN modeling environment. Performance
Evaluation, 24(1):89–115, 1995.

60. F. Somenzi. CUDD: Colorado University decision di-
agram package. Public software, Colorado Univeristy,
Boulder, http://vlsi.colorado.edu/˜fabio/, 1997.

61. W. Stewart. MARCA: Markov chain analyser, a software
package for Markov modelling. In Proc. NSMC’91, 1991.

62. S. Tani, K. Hamaguchi, and S. Yajima. The complex-
ity of the optimal variable ordering problems of shared
binary decision diagrams. In K. Ng, P. Raghavan,
N. Balasubramanian, and F. Chin, editors, Proc. 4th
International Symposium on Algorithms and Computa-
tion (ISAAC’93), volume 762 of LNCS, pages 389–398.
Springer, 1993.

63. A. Xie and A. Beerel. Symbolic techniques for perfor-
mance analysis of timed circuits based on average time
separation of events. In Proc. 3rd International Sym-
posium on Advanced Research in Asynchronous Circuits
and Systems (ASYNC’97), pages 64–75. IEEE Computer
Society Press, 1997.

	Introduction
	Probabilistic Model Checking
	PRISM
	An MTBDD Implementation
	A Hybrid Approach
	Results
	Related Work
	Conclusion

