Probabilistic Model Checking and Strategy Synthesis for Robot Navigation

Dave Parker

University of Birmingham

(joint work with Bruno Lacerda, Nick Hawes)

AIMS CDT, Oxford, May 2015

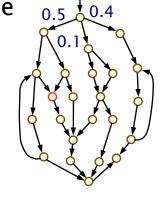
Overview

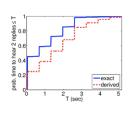
- Probabilistic model checking
 - verification vs. strategy synthesis
 - Markov decision processes (MDPs)
- Application: Robot navigation
 - probabilistic model checking + MDPs + LTL
- Strategy synthesis techniques
 - multi-objective probabilistic model checking
 - partially satisfiable task specifications
 - uncertainty + stochastic games
 - permissive controller synthesis

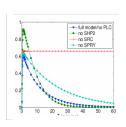
Quantitative verification

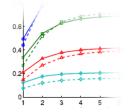
- Formal verification + quantitative aspects
- Probability
 - component failures, lossy communication, unreliable sensors/actuators, randomisation in algorithms/protocols
- Time: delays, time-outs, failure rates, ...
- Costs & rewards
 - energy consumption, resource usage, ...
- Not just about correctness...
 - reliability, timeliness, performance, efficiency, ...
 - "the probability of an airbag failing to deploy within 0.02 seconds of being triggered is at most 0.001"
 - "the expected energy consumption of the sensor is..."

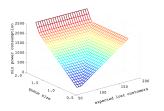
- Construction and analysis of probabilistic models
 - state-transition systems labelled with probabilities
 (e.g. Markov chains, Markov decision processes)
 - from a description in a high-level modelling language
- Properties expressed in temporal logic, e.g. PCTL:
 - trigger $\rightarrow P_{\geq 0.999}$ [$F^{\leq 20}$ deploy]
 - "the probability of the airbag deploying within 20ms of being triggered is at at least 0.999"
 - properties checked against models using exhaustive search and numerical computation

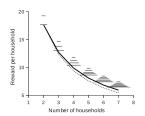






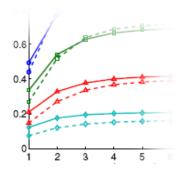




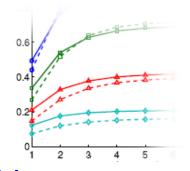


- Many types of probabilistic models supported
- Wide range of quantitative properties, expressible in temporal logic (probabilities, timing, costs, rewards, ...)
- Often focus on numerical results (probabilities etc.)
 - analyse trends, look for system flaws, anomalies
 - P_{≤0.1} [F fail] "the probability of a failure occurring is at most 0.1"

 P_{=?} [F fail] – "what is the probability of a failure occurring?"



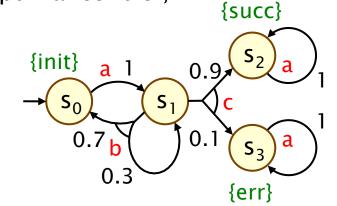
- Many types of probabilistic models supported
- Wide range of quantitative properties, expressible in temporal logic (probabilities, timing, costs, rewards, ...)
- Often focus on numerical results (probabilities etc.)
 - analyse trends, look for system flaws, anomalies
- Provides "exact" numerical results/guarantees
 - compared to, for example, simulation/heuristics
 - combines numerical & exhaustive analysis



- Fully automated, tools available, widely applicable
 - network/communication protocols, security, biology, robotics & planning, power management, ...
- Key challenge: scalability

Markov decision processes (MDPs)

- Markov decision processes (MDPs)
 - also widely used also in: AI, planning, optimal control, ...
- A strategy (or "policy" or "adversary")
 - resolves choices in an MDP based on its history so far



- Used to model:
 - control: decisions made by a controller or scheduler
 - adversarial behaviour of the environment
 - concurrency/scheduling: interleavings of parallel components
- Classes of strategies:
 - memory: memoryless, finite-memory, or infinite-memory
 - randomisation: deterministic or randomised

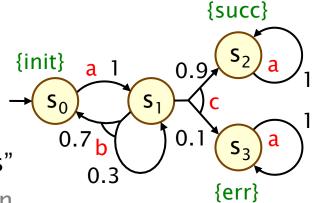
Verification vs. Strategy synthesis

1. Verification

- quantify over all possible strategies (i.e. best/worst-case)
- $P_{≤0.1}$ [F err] : "the probability of an error occurring is ≤ 0.1 for all strategies"
- applications: randomised communication
 protocols, randomised distributed algorithms, security, ...

2. Strategy synthesis

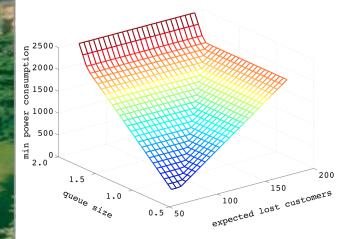
- generation of "correct-by-construction" controllers
- $P_{\leq 0.1}$ [F err] : "does there exist a strategy for which the probability of an error occurring is ≤ 0.1?"
- applications: robotics, power management, security, ...
- Two dual problems; same underlying computation:
 - compute optimal (minimum or maximum) values



Applications

Examples of PRISM-based strategy synthesis

Synthesis of dynamic power management controllers [TACAS'11]

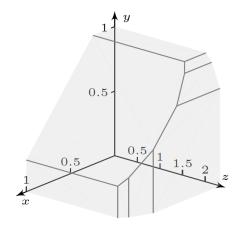


Minimise disk drive energy consumption, subject to constraints on:

- (i) expected job queue size;
- (ii) expected number of lost jobs

Motion planning for a service robot using LTL [IROS'14]

Team formation strategy synthesis [CLIMA'11, ATVA'12]

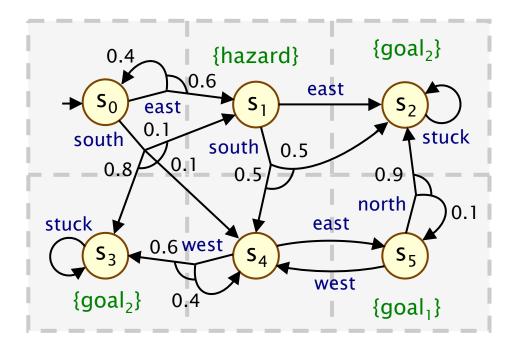


Pareto curve:

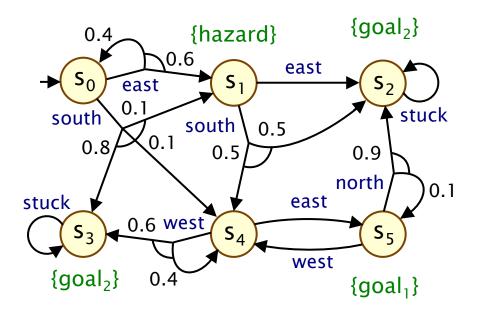
x="probability of
completing task 1";
y="probability of
completing task 2";
z="expected size of
successful team"

Example

- Example MDP
 - robot moving through terrain divided in to 3×2 grid



Example - Reachability



```
Verify: P_{\leq 0.6} [ F goal<sub>1</sub> ]

or

Synthesise for: P_{\geq 0.4} [ F goal<sub>1</sub> ]

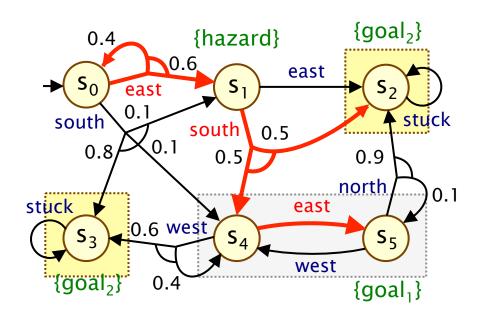
\Downarrow

Compute: P_{max=?} [ F goal<sub>1</sub> ]
```

Optimal strategies: memoryless and deterministic

Computation: graph analysis + numerical soln. (linear programming, value iteration, policy iteration)

Example – Reachability



Optimal strategy:

```
s_0: east
s_1: south
S_2: -
S_3: -
s<sub>4</sub>: east
S_5: -
```

```
Verify: P<sub><0.6</sub> [ F goal<sub>1</sub> ]
      or
Synthesise for: P_{\geq 0.4} [ F goal<sub>1</sub> ]
Compute: P_{\text{max}=?}[F \text{ goal}_1] = 0.5
```

Optimal strategies: memoryless and deterministic

Computation:

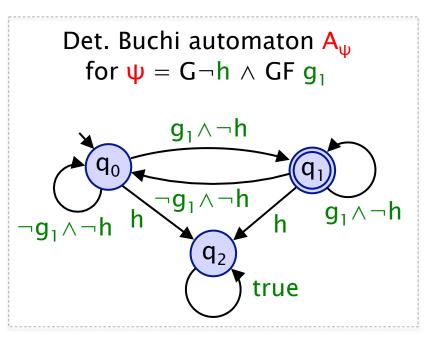
graph analysis + numerical soln. (linear programming, value iteration, policy iteration)

Linear temporal logic (LTL)

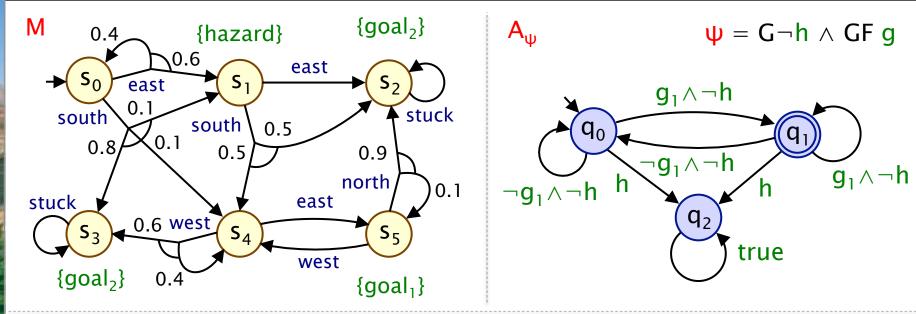
- Probabilistic LTL (multiple temporal operators)
 - e.g. $P_{max=?}$ [(G¬hazard) \land (GF goal₁)] "maximum probability of avoiding hazard and visiting goal₁ infinitely often?"
 - e.g. $P_{max=?}$ [$\neg zone_3$ U ($zone_1 \land (Fzone_4)$] "max. probability of patrolling zones 1 then 4, without passing through 3".

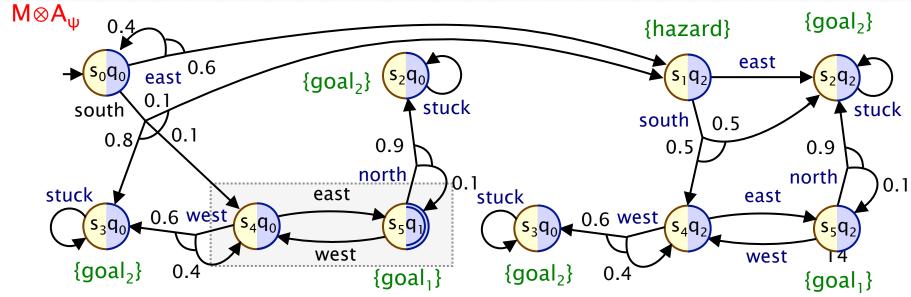
Probabilistic model checking

- convert LTL formula ψ to deterministic automaton A_{ψ} (Buchi, Rabin, finite, ...)
- build/solve product MDP M⊗A_ψ
- reduction to simpler problem
- optimal strategies are:
 - deterministic
 - finite-memory

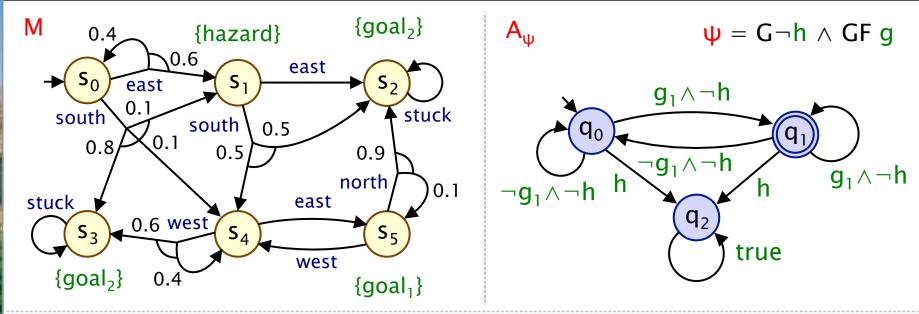


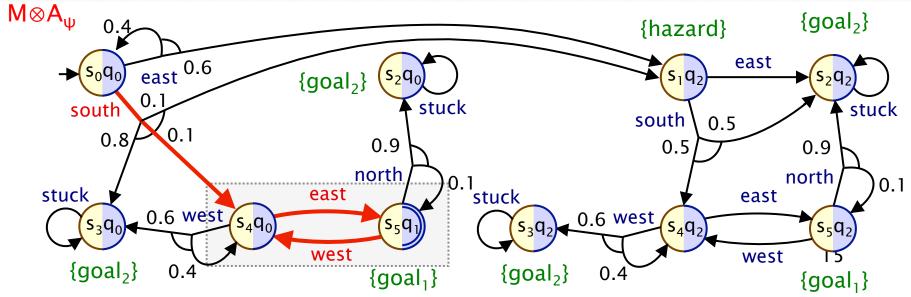
Example: Product MDP construction





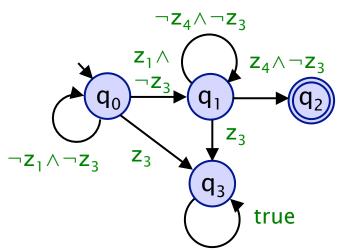
Example: Product MDP construction





Co-safe LTL (and expected cost)

- Often focus on tasks completed in finite time
 - can restrict to co-safe fragment(s) of LTL
 - (any satisfying execution has a "good prefix")
 - e.g. $P_{max=?}$ [$\neg zone_3$ U ($zone_1 \land (F zone_4)$]
 - for simplicity, can restrict to syntactically co-safe LTL
- Expected cost/reward to satisfy (co-safe) LTL formula
 - e.g. $R_{min=?}$ [$\neg zone_3$ U ($zone_1 \land (Fzone_4)$] "minimise exp. time to patrol zones 1 then 4, without passing through 3".
- Solution:
 - product of MDP and DFA
 - expected cost to reach accepting states in product



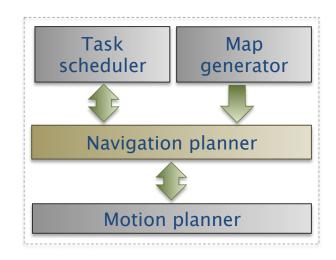
Overview

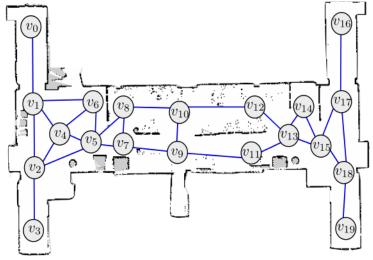
- Probabilistic model checking
 - verification vs. strategy synthesis
 - Markov decision processes (MDPs)
- Application: Robot navigation
 - probabilistic model checking + MDPs + LTL
- Strategy synthesis techniques
 - multi-objective probabilistic model checking
 - partially satisfiable task specifications
 - uncertainty + stochastic games
 - permissive controller synthesis

Application: Robot navigation

Navigation planning:

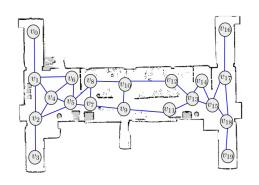
- MDP models navigation through an uncertain environment
- LTL used to formally specify tasks to be executed
- synthesise finite-memory strategies to construct plans/controllers





Application: Robot navigation

- Navigation planning MDPs
 - expected timed on edges + probabilities
 - learnt using data from previous explorations



- LTL-based task specification
 - expected time to satisfy (one or more) co-safe LTL formulas
- Benefits of the approach
 - LTL: flexible, unambiguous property specification
 - efficient, fully-automated techniques
 - LTL-to-automaton conversion, MDP solution
 - c.f. ad-hoc reward structures, e.g. with discounting
 - meaningful properties: probabilities, time, energy,...
 - guarantees on performance ("correct by construction")

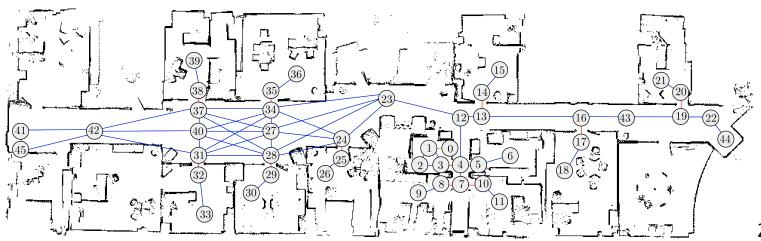
Implementation & deployment

Implementation

- MetraLabs Scitos A5 robot
- ROS module based on PRISM
- with extensions:
 - co-safe LTL expectation
 - efficient re-planning [IROS'14]

G4S Technology, Tewkesbury (STRANDS)

• Example deployment:



- Further use of probabilistic model checking...
 - (various probabilistic models, query languages)

Nested queries

- e.g. $R_{min=?}$ [safe U (zone₁ \wedge (F zone₄)] "minimise exp. time to patrol zones 1 then 4, passing only through safe".
- where safe denotes states satisfying $\langle\langle ctrl\rangle\rangle$ R_{<2} [F base] "there is a strategy to return to base with expected time < 2"

Analysis of generated controllers

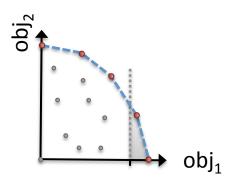
- expected power consumption to complete tasks?
- conditional expectation, e.g. expected time to complete task, assuming it is completed successfully?
- more detailed timing information (not just mean time)

Overview

- Probabilistic model checking
 - verification vs. strategy synthesis
 - Markov decision processes (MDPs)
- Application: Robot navigation
 - probabilistic model checking + MDPs + LTL
- Strategy synthesis techniques
 - multi-objective probabilistic model checking
 - partially satisfiable task specifications
 - uncertainty + stochastic games
 - permissive controller synthesis

Multi-objective model checking

- Multi-objective probabilistic model checking
 - investigate trade-offs between conflicting objectives
 - in PRISM, objectives are probabilistic LTL or expected costs
- Achievability queries: multi(P_{>0.95} [F send], R^{time}_{>10} [C])
 - e.g. "is there a strategy such that the probability of message transmission is > 0.95 and expected battery life > 10 hrs?"
- Numerical queries: multi(P_{max=?} [F send], R^{time}>10 [C])
 - e.g. "maximum probability of message transmission, assuming expected battery life-time is > 10 hrs?"
- Pareto queries:
 - multi(P_{max=?}[F send], R^{time}_{max=?}[C])
 - e.g. "Pareto curve for maximising probability of transmission and expected battery life-time"



Multi-objective model checking

- Multi-objective probabilistic model checking
 - investigate trade-offs between conflicting objectives
 - in PRISM, Djectives are probabilistic LTL or expected rewards
- Achievability queries: multi(P_{>0.95} [F send], R^{time}_{>10} [C])
 - e.g. "is there a strategy such that the probability of message transmission is > 0.95 and expected battery life > 10 hrs?"
- Numerical queries: multi(P_{max=?} [F sind], R^{time}>10 [C])
 - e.g. "maximum probability of mess et ransmission, assuming expected battery life-times > 10 hrs?"
- Pareto queries:
 - $multi(P_{max=?}[F]) \mapsto obj_1$
 - e.g. "Pareto curve for maximising probability of transmission and expected battery life-time"

Multi-objective model checking

Optimal strategies:

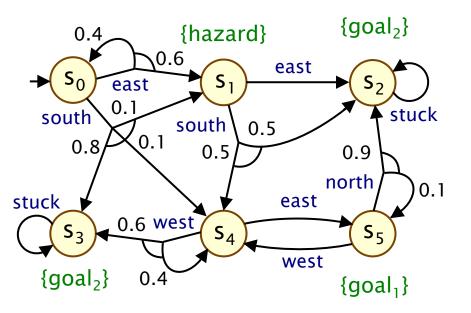
- usually finite-memory (e.g. when using LTL formulae)
- may also need to be randomised

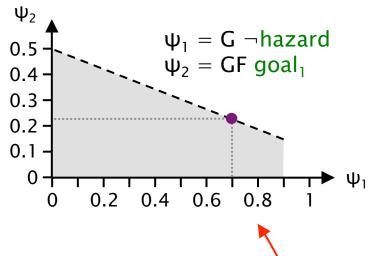
Computation:

- construct a product MDP (with several automata),
 then reduces to linear programming [TACAS'07,TACAS'11]
- can be approximated using iterative numerical methods,
 via approximation of the Pareto curve [ATVA'12]

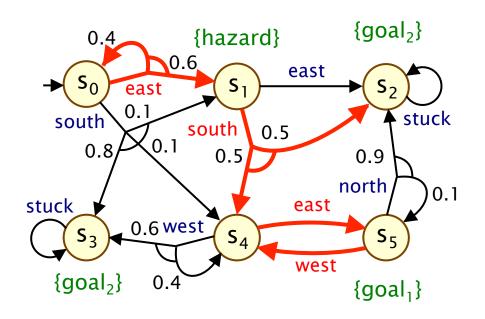
Extensions [ATVA'12]

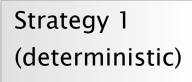
- arbitrary Boolean combinations of objectives
 - e.g. $\psi_1 \Rightarrow \psi_2$ (all strategies satisfying ψ_1 also satisfy ψ_2)
 - (e.g. for assume-guarantee reasoning)
- time-bounded (finite-horizon) properties





- Achievability query
 - $-P_{\geq 0.7}$ [G \neg hazard] $\wedge P_{\geq 0.2}$ [GF goal₁] ? True (achievable)
- Numerical query
 - $-P_{max=?}$ [GF goal₁] such that $P_{\geq 0.7}$ [G \neg hazard]? ~0.2278
- Pareto query
 - for $P_{max=?}$ [G ¬hazard] \land $P_{max=?}$ [GF goal₁]?





s₀: east

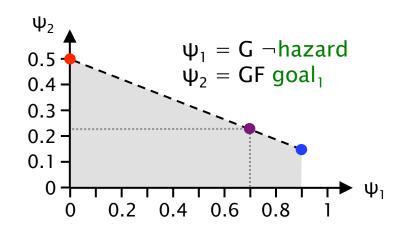
 s_1 : south

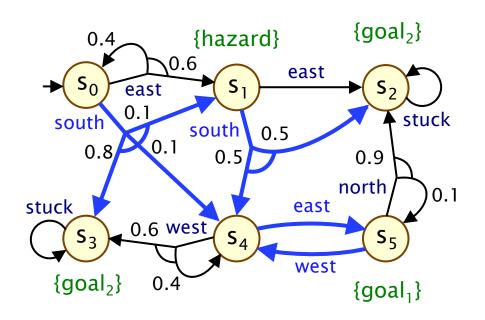
S₂: -

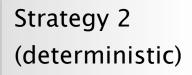
S₃: -

s₄: east

s₅: west







s₀: south

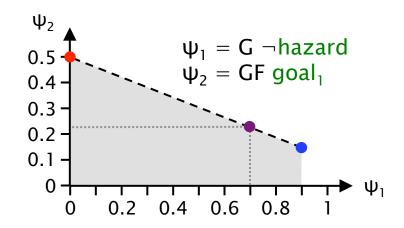
 s_1 : south

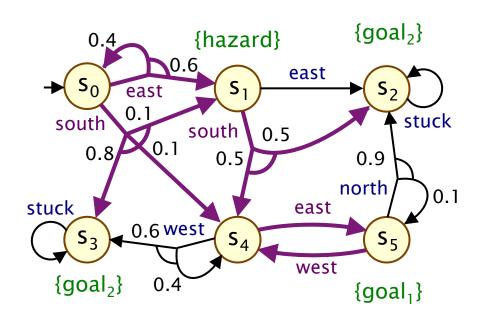
S₂: -

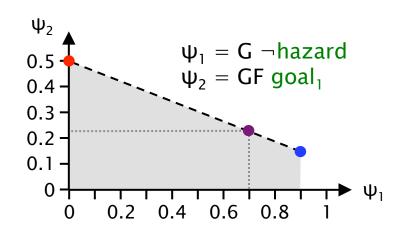
S₃: -

s₄: east

s₅: west







Optimal strategy: (randomised)

 s_0 : 0.3226 : east

0.6774: south

 $s_1 : 1.0 : south$

 S_2 : -

S₃: -

 s_4 : 1.0 : east

 s_5 : 1.0 : west

Application: Partially satisfiable tasks

- Partially satisfiable task specifications
 - via multi-objective probabilistic model checking [IJCAI'15]
 - e.g. $P_{max=?}$ [$\neg zone_3$ U ($room_1 \land (F room_4 \land F room_5)$] < 1
- Synthesise strategies that, in decreasing order of priority:
 - maximise the probability of finishing the task;
 - maximise progress towards completion, if this is not possible;
 - minimise the expected time (or cost) required
- Progress metric constructed from DFA
 - (distance to accepting states, reward for decreasing distance)
- Encode prioritisation using multi-objective queries:

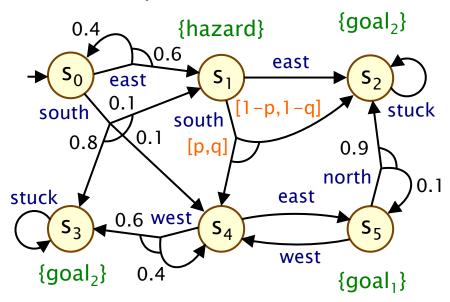
```
- p = P_{max=?} [ task ]
- r = multi(R_{max=?}^{prog} [ C ], P_{>=p} [ task ])
- multi(R_{min=?}^{time} [ C ], P_{>=p} [ task ] \land R_{>=r}^{prog} [ C ])
```

Overview

- Probabilistic model checking
 - verification vs. strategy synthesis
 - Markov decision processes (MDPs)
- Application: Robot navigation
 - probabilistic model checking + MDPs + LTL
- Strategy synthesis techniques
 - multi-objective probabilistic model checking
 - partially satisfiable task specifications
 - uncertainty + stochastic games
 - permissive controller synthesis

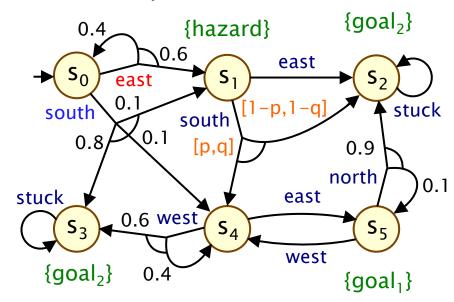
MDPs + uncertainty

- Modelling uncertainty
 - e.g., transitions probabilities (or costs) specified as intervals
- Worst-case analysis
 - i.e. adversarial choice of probability values
 - stochastic game:controller vs. environment
 - "min-max" analysis

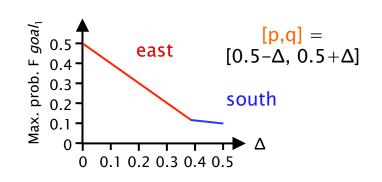


MDPs + uncertainty

- Modelling uncertainty
 - e.g., transitions probabilities (or costs) specified as intervals
- Worst-case analysis
 - i.e. adversarial choice of probability values
 - stochastic game:controller vs. environment
 - "min-max" analysis



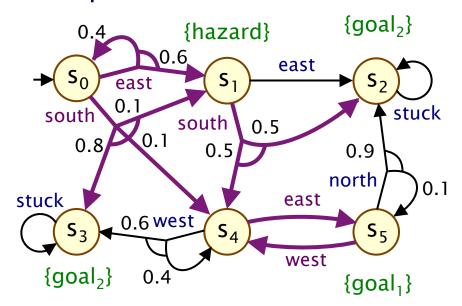
- PRISM-games [FMSD'13]
 - stochastic multi-player games
 - temporal logic queries (rPATL)
 - e.g. $\langle\langle ctrl \rangle\rangle$ $P_{max=?}$ [F goal₁]
 - reduces to solving 2-player game



Permissive controller synthesis

- Multi-strategy synthesis [TACAS'14]
 - for Markov decision processes and stochastic games
 - choose sets of actions to take in each state
 - controller is free to choose any action at runtime
 - flexible/robust (e.g. actions become unavailable or goals change)

Example



Multi-strategy: s₀: east or south s₁: south s₂: s₃: s₄: east s₅: west

Permissive controller synthesis

- Multi-strategies and temporal logic
 - multi-strategy Θ satisfies a property $P_{>p}$ [F goal] iff any strategy σ that adheres to Θ satisfies $P_{>p}$ [F goal]
- We quantify the permissivity of multi-strategies
 - by assigning penalties to each action in each state
 - a multi-strategy is penalised for every action it blocks
 - static and dynamic (expected) penalty schemes
- Permissive controller synthesis
 - \exists a multi-strategy satisfying $P_{\leq 0.6}$ [F goal₁] with penalty < c?
 - what is the multi-strategy with optimum permissivity?
 - reduction to mixed-integer LP problems
 - other applications: energy management, cloud scheduling, ...

Conclusion

- Probabilistic model checking & strategy synthesis
 - Markov decision processes, temporal logic, PRISM
- Robot navigation using MDPs & LTL
 - PRISM extension embedded in ROS navigation stack
- Recent extensions
 - multi-objective probabilistic model checking
 - uncertainty & stochastic games, permissive controller synthesis
- Challenges & directions
 - partial information/observability, e.g. POMDPs
 - probabilistic models with continuous time (or space)
 - scalability, e.g. symbolic methods, abstraction