
ETR'13, Toulouse, August 2013

Verification of Probabilistic  
Real-time Systems 

  
Dave Parker  

 
  

University of Birmingham

2

What is probabilistic model checking?

•  Formal verification…
−  is the application of rigorous,  

mathematics-based techniques 
to establish the correctness 
of computerised systems

•  Probabilistic model checking…
−  is an automated formal verification 

technique for modelling and analysis 
of systems with probabilistic behaviour

3

Model checking

Finite-state
model

Temporal logic
specification

Result
System

Counter-
example

System
 require-

ments

¬EF fail

Model checker
e.g. SMV, Spin

4

Probabilistic model checking

Probabilistic model
e.g. Markov chain

Probabilistic
temporal logic
specification

e.g. PCTL, CSL, LTL

Result

Quantitative
results

System

Counter-
example

System
 require-

ments

P<0.1 [F fail]

0.5
0.1

0.4

Probabilistic
model checker

e.g. PRISM

5

Why probability?

•  Many real-world systems are inherently probabilistic…

•  Unreliable or unpredictable behaviour
−  failures of physical components
−  message loss in wireless communication

•  Use of randomisation (e.g. to break symmetry)
−  random back-off in communication protocols
−  in gossip routing to reduce flooding
−  in security protocols, e.g. for anonymity

•  And many others…
−  biological processes, e.g. DNA computation
−  quantum computing algorithms

6

Probabilistic real-time systems

•  Many systems combine probability and real-time
−  e.g. wireless communication protocols
−  e.g. randomised security protocols

•  Randomised back-off schemes
−  Ethernet, WiFi (802.11), Zigbee (802.15.4)

•  Random choice of waiting time
−  Bluetooth device discovery phase
−  Root contention in IEEE 1394 FireWire

•  Random choice over a set of possible addresses
−  IPv4 dynamic configuration (link-local addressing)

•  Random choice of a destination
−  Crowds anonymity, gossip-based routing

7

Verifying probabilistic systems

•  We are not just interested in correctness
−  “the probability of an airbag failing to deploy  

within 0.02 seconds of being triggered is at most 0.001”

•  We want to be able to reason about:
−  reliability, dependability
−  performance, resource usage, e.g. battery life
−  security, privacy, trust, anonymity, fairness
−  and much more…

•  We want to reason in a quantitative manner:
−  how reliable is my car’s Bluetooth network?
−  how efficient is my phone’s power management policy?
−  how secure is my bank’s web-service?

8

Probabilistic models

Discrete
time

Continuous
time

Nondeterministic Fully probabilistic

Discrete-time
Markov chains

(DTMCs)

Continuous-time
Markov chains

(CTMCs)

Markov decision
processes (MDPs)  

(probabilistic automata)

CTMDPs/IMCs/…

Probabilistic timed
automata (PTAs)

9

Probabilistic models

Discrete
time

Continuous
time

Nondeterministic Fully probabilistic

Discrete-time
Markov chains

(DTMCs)

Continuous-time
Markov chains

(CTMCs)

Markov decision
processes (MDPs)  

(probabilistic automata)

CTMDPs/IMCs/…

Probabilistic timed
automata (PTAs)

10

Contents

•  Case study: the FireWire protocol

•  Discrete-time Markov chains + the logic PCTL

•  Adding nondeterminism: Markov decision processes

•  Adding real time: probabilistic timed automata

•  Probabilistic model checking in practice: PRISM

•  More here: http://www.prismmodelchecker.org/lectures/

11

Contents

•  Case study: the FireWire protocol

•  Discrete-time Markov chains + the logic PCTL

•  Adding nondeterminism: Markov decision processes

•  Adding real time: probabilistic timed automata

•  Probabilistic model checking in practice: PRISM

12

Case study: FireWire protocol

•  FireWire (IEEE 1394)
−  high-performance serial bus for networking 

multimedia devices; originally by Apple
−  "hot-pluggable" - add/remove  

devices at any time
−  no requirement for a single PC (but need acyclic topology)

•  Root contention protocol
−  leader election algorithm, when nodes join/leave
−  symmetric, distributed protocol
−  uses randomisation (electronic coin tossing) and timing delays
−  nodes send messages: "be my parent"
−  root contention: when nodes contend leadership
−  random choice: "fast"/"slow" delay before retry

13

FireWire example

14

FireWire leader election

R

Root
node

15

FireWire root contention

Root
contention

16

FireWire root contention

Root
contention

R

17

FireWire analysis

•  Detailed probabilistic model:
−  probabilistic timed automaton (PTA), including:

•  concurrency: messages between nodes and wires
•  timing delays taken from official standard
•  underspecification of delays (upper/lower bounds)

−  maximum model size: 170 million states 

•  Probabilistic model checking (with PRISM)
−  verified that root contention always 

resolved with probability 1
•  P≥1 [F (end ∧ elected)]

−  investigated worst-case expected time  
taken for protocol to complete

•  Rmax=? [F (end ∧ elected)]
−  investigated the effect of using biased coin

18

FireWire: Analysis results

“minimum probability
of electing leader

by time T”

19

FireWire: Analysis results

“minimum probability
of electing leader

by time T”

(short wire length)

Using a biased coin

20

FireWire: Analysis results

“maximum expected
time to elect a leader”

(short wire length)

Using a biased coin

21

FireWire: Analysis results

“maximum expected
time to elect a leader”

(short wire length)

Using a biased coin
is beneficial!

22

Contents

•  Case study: the FireWire protocol

•  Discrete-time Markov chains + the logic PCTL

•  Adding nondeterminism: Markov decision processes

•  Adding real time: probabilistic timed automata

•  Probabilistic model checking in practice: PRISM

23

Discrete-time Markov chains (DTMCs)

•  Discrete-time Markov chains (DTMCs)
−  state-transition systems augmented with probabilities

•  States
−  discrete set of states representing all possible  

configurations of the system being modelled
•  Transitions

−  transitions between states occur  
in discrete time-steps

•  Probabilities
−  probability of making transitions 

between states is given by  
discrete probability distributions

s1 s0

s2

s3

0.01
0.98

0.01

1

1

1

{fail}

{succ}

{try}

24

Discrete-time Markov chains

•  Formally, a DTMC D is a tuple (S,sinit,P,L) where:
−  S is a finite set of states (“state space”)
−  sinit ∈ S is the initial state
−  P : S × S → [0,1] is the transition probability matrix
−  L : S → 2AP is function labelling states with atomic propositions

•  A (finite or infinite) path through a DTMC
−  is a sequence of states s0s1s2s3… such that P(si,si+1) > 0 ∀i
−  represents an execution (i.e. one possible behaviour) of 

the system which the DTMC is modelling

•  To reason formally about the DTMC
−  we define a probability measure over paths, Prs

−  via a sigma algebra over the set of all infinite paths

s1 s2 s

25

PCTL

•  PCTL: temporal logic for describing properties of DTMCs
−  PCTL = Probabilistic Computation Tree Logic [HJ94,BdA95]

•  Extension of (non-probabilistic) temporal logic CTL
−  key addition is probabilistic operator P
−  quantitative extension of CTL’s A and E operators

•  Example
−  send → P≥0.95 [F≤10 deliver]
−  “if a message is sent, then the probability of it being delivered

within 10 steps is at least 0.95”

26

PCTL syntax

•  Syntax of PCTL formula φ:

−  φ ::= true | a | φ ∧ φ | ¬φ | P~p [ψ] (state formulae)

−  ψ ::= X φ | φ U≤k φ | φ U φ (path formulae)

−  where a is an atomic proposition, used to identify states of
interest, p ∈ [0,1] is a probability, ~ ∈ {<,>,≤,≥} and k ∈ ℕ

•  Can derive other useful operators
−  logical: false, φ1 ∨ φ2, φ1 → φ2
−  F φ ≡ true U φ ("eventually") and G φ ≡ ¬(F ¬φ) ("always")
−  bounded variants, e.g. F≤k φ ≡ true U≤k φ

“until”

 ψ is true with
probability ~p

“bounded
until” “next”

27

PCTL semantics (for DTMCs)

•  PCTL formulae interpreted over states of a DTMC
−  s ⊨ φ denotes φ is “true in state s” or “satisfied in state s”

•  Semantics of logical operators: standard meanings

•  Semantics of the probabilistic operator P
−  informally, s ⊨ P~p [ψ] means:  

“the probability, from state s,  
that ψ is true for outgoing paths 
satisfies the bound ~p”

−  formally:  
s ⊨ P~p [ψ] ⇔ Prob(s, ψ) ~ p

−  where:  
Prob(s, ψ) = Prs { ω ∈ Path(s) | ω ⊨ ψ }

s

¬ψ

ψ

28

Quantitative (numerical) properties

•  Consider a PCTL formula P~p [ψ]
−  if the probability is unknown, how to choose the bound p?

•  We also allow the numerical form P=? [ψ]
−  when the outermost operator of a PTCL formula is P
−  “what is the probability that path formula ψ is true?”

•  Model checking is no harder
−  compute the values anyway

•  Useful to spot patterns, trends

•  Example
−  P=? [F err/total>0.1]
−  “what is the probability  

that 10% of the NAND 
gate outputs are erroneous?”

29

Some real PCTL examples

•  NAND multiplexing system
−  P=? [F err/total>0.1]
−  “what is the probability that 10% of the NAND gate outputs are

erroneous?”

•  Bluetooth wireless communication protocol
−  P=? [F≤t reply_count=k]
−  “what is the probability that the sender has received k

acknowledgements within t clock-ticks?”

•  Security: EGL contract signing protocol
−  P=? [F (pairs_a=0 & pairs_b>0)]
−  “what is the probability that the party B gains an unfair

advantage during the execution of the protocol?”

reliability

performance

fairness

30

PCTL model checking for DTMCs

•  Algorithm for PCTL model checking [CY88,HJ94,CY95]
−  inputs: DTMC D=(S,sinit,P,L), PCTL formula φ
−  output: Sat(φ) = { s ∈ S | s ⊨ φ } = set of states satisfying φ
−  or: compute result of e.g. P=? [F≤k error]

•  Basic algorithm proceeds by induction on parse tree of φ
−  e.g. φ = (¬fail ∧ try) → P>0.95 [¬fail U succ]
−  logical operators: straightforward

•  For the P~p [ψ] operator
−  need to compute probabilities 

Prob(s, ψ) for all states s ∈ S
−  combination of graph algorithms 

and numerical computation
•  Linear in |Φ| and polynomial in |S|

∧

¬

→

P>0.95 [· U ·]

¬

fail fail

succ try

31

PCTL model checking: Until

•  Example: computation of probabilities for "until" formula
−  i.e. Prob(s, φ1 U φ2) for all s ∈ S

•  First, execute graph-based analysis to identify all states
where the probability is exactly 1 or 0:
−  Syes = Sat(P≥1 [φ1 U φ2])
−  Sno = Sat(P≤0 [φ1 U φ2])

•  Then, solve linear equation system for remaining states:

−  solved with standard methods, e.g. Gaussian elimination 
(iterative numerical methods preferred in practice)

€

Prob(s, φ1 U φ2) =
1
0

P(s,s')⋅ Prob(s', φ1 U φ2)
s'∈S

∑

&

'

(
(

)

(
(

if s ∈ Syes

if s ∈ Sno

otherwise

32

PCTL until - Example

•  Example: P>0.8 [¬a U b]

4

5 3

2 0

1
a

b
0.4 0.1

0.6

1 0.3

0.7 0.1
0.3

0.9
1 0.1

0.5

33

PCTL until - Example

•  Example: P>0.8 [¬a U b]
Sno =

Sat(P≤0 [¬a U b])

4

5 3

2 0

1
a

b
0.4 0.1

0.6

1 0.3

0.7 0.1
0.3

0.9
1

Syes =
Sat(P≥1 [¬a U b])

0.1
0.5

34

PCTL until - Example

•  Example: P>0.8 [¬a U b]

•  Let xs = Prob(s, ¬a U b)

•  Solve:

x4 = x5 = 1
x1 = x3 = 0
x0 = 0.1x1+0.9x2 = 0.8
x2 = 0.1x2+0.1x3+0.3x5+0.5x4 = 8/9

Prob(¬a U b) = x = [0.8, 0, 8/9, 0, 1, 1]

Sat(P>0.8 [¬a U b]) = { s2,s4,s5 }

Sno =
Sat(P≤0 [¬a U b])

4

5 3

2 0

1
a

b
0.4 0.1

0.6

1 0.3

0.7 0.1
0.3

0.9
1

Syes =
Sat(P≥1 [¬a U b])

0.1
0.5

35

Limitations of PCTL

•  PCTL, although useful in practice, has limited expressivity
−  essentially: probability of reaching states in T, passing only

through states in T' (and within k time-steps)

•  More expressive logics can be used, for example:
−  LTL [Pnu77] – linear-time temporal logic
−  PCTL* [ASB+95,BdA95] - which subsumes both PCTL and LTL
−  both allow temporal operators to be combined

•  LTL properties:
−  P≤0.01 [(F tmp_fail1) ∧ (F tmp_fail2)] – “both servers eventually

fail with probability at most 0.01”
−  P≥1 [G F ready] - “with probability 1, the server always

eventually returns to a ready-state”
−  P=? [F G error] – “probability of an irrecoverable error?”

36

Costs and rewards

•  Another direction: extend DTMCs with costs and rewards…
−  to measure: elapsed time, power consumption, number of

messages successfully delivered, net profit, …
−  add expected reward operator R to PCTL logic

•  Cost/reward-based properties:
−  Renergy

≤400 [C≤60] - “the expected energy consumption over 60
seconds is at most 40 J”

−  Rtime
=? [F end] - “the expected time for protocol execution”

37

Contents

•  Case study: the FireWire protocol

•  Discrete-time Markov chains + the logic PCTL

•  Adding nondeterminism: Markov decision processes

•  Adding real time: probabilistic timed automata

•  Probabilistic model checking in practice: PRISM

38

Nondeterminism

•  Some aspects of a system may not be probabilistic and
should not be modelled probabilistically; for example:

•  Concurrency - scheduling of parallel components
−  e.g. randomised distributed algorithms - multiple probabilistic

processes operating asynchronously

•  Unknown environments or controllers
−  e.g. probabilistic security protocols - unknown adversary
−  e.g. controller synthesis & planning

•  Underspecification and abstraction
−  e.g. a probabilistic communication protocol designed for

message propagation delays of between dmin and dmax

39

Markov decision processes (MDPs)

•  Markov decision processes (MDPs)
−  extension of DTMCs which allow nondeterministic choice

•  Like DTMCs:
−  discrete set of states representing possible configurations of

the system being modelled
−  transitions between states occur in discrete time-steps

•  Probabilities and nondeterminism
−  in each state, a nondeterministic  

choice between several actions
−  each of which gives a probability  

distributions over successor states
−  formally: δ : S × Act → Dist(S)
−  instead of P : S × S → [0,1]

s1 s0

s2

s3

0.01

0.99

1

1

1

1

{fail}

{succ}

{try}
start send

stop

wait

restart

40

Adversaries

•  How to reason about probabilities for MDPs?
−  need to separate nondeterminism and probability  

•  An adversary resolves nondeterministic choice in an MDP

−  based on the history of execution so far
−  also known as “schedulers”, “strategies” or “policies”
−  formally: an adversary σ of an MDP is a function mapping

every finite path s0a0s1a1...sn to an action available in sn

•  Adversary σ induces a probability measure Prs
σ over paths

−  via construction of an (infinite-state) DTMC

41

Adversaries - Examples

•  Consider the simple MDP below
−  s1 is the only state for which an adversary makes a choice

•  Adversary σ1
−  picks action c the first time
−  σ1(s0s1)=c

•  Adversary σ2
−  picks action b the first time, then c

−  σ2(s0s1)=b, σ2(s0s1s1)=c, σ2(s0s1s0s1)=c

s1 s0

s2

s3

0.5

0.5 0.7

1
1

{heads}

{tails}

{init}

0.3

1 a

b

c
a

a

42

Adversaries - Examples

•  Fragment of DTMC for adversary σ1
−  σ1 picks action c the first time

s1 s0

s2

s3

0.5

0.5 0.7

1
1

{heads}

{tails}

{init}

0.3

1 a

b

c
a

a

s0s1 s0

0.5
1 s0s1s2

s0s1s3

s0s1s2s2

s0s1s3s3 0.5

1

1

43

Adversaries - Examples

•  Fragment of DTMC for adversary σ2
−  σ2 picks action b, then c

s1 s0

s2

s3

0.5

0.5 0.7

1
1

{heads}

{tails}

{init}

0.3

1 a

b

c
a

a

s0

0.5

1

s0s1s0s1s2

s0s1s0s1s3 0.5
s0s1

0.7
s0s1s0

s0s1s1
0.3

1
s0s1s0s1

0.5 s0s1s1s2

s0s1s1s3 0.5

1

1

s0s1s1s2s2

s0s1s1s3s3

44

Model checking for MDPs

•  Verification for MDPs quantifies over all adversaries
−  e.g. PCTL: P≥0.95 [F deliver] - "the probability of the message

being delivered is at least 0.95 for any possible adversary”
−  formally: s ⊨ P~p [ψ] ⇔ Prs

σ(ψ) ~ p for all adversaries σ

•  For model checking, we need min./max. probabilities:
−  Prs

max(ψ) = supσ Prs
σ(ψ) and Prs

min(ψ) = infσ Prs
σ(ψ)

•  Quantitative (numerical) queries
−  Pmin=? [ψ] and Pmax=? [ψ]
−  analyses best-case or worst-case  

behaviour of the system

45

PCTL model checking for MDPs

•  Basic algorithm same as PCTL model checking for DTMCs
−  recursive procedure, graph-based + numerical solution
−  now: computation of min/max probabilities
−  still linear in size of property, polynomial in size of model

•  For example, for "until" formulae
−  either: solve linear programming (LP) problem
−  or: iterative numerical methods (dynamic programming)
−  or: policy iteration

46

Contents

•  Case study: the FireWire protocol

•  Discrete-time Markov chains + the logic PCTL

•  Adding nondeterminism: Markov decision processes

•  Adding real time: probabilistic timed automata

•  Probabilistic model checking in practice: PRISM

47

Probabilistic real-time systems

•  Systems with probability, nondeterminism and real-time
−  e.g. communication protocols, randomised security protocols

•  Randomised back-off schemes
−  Ethernet, WiFi (802.11), Zigbee (802.15.4)

•  Random choice of waiting time
−  Bluetooth device discovery phase
−  Root contention in IEEE 1394 FireWire

•  Random choice over a set of possible addresses
−  IPv4 dynamic configuration (link-local addressing)

•  Random choice of a destination
−  Crowds anonymity, gossip-based routing

48

Probabilistic timed automata (PTAs)

•  Probabilistic timed automata (PTAs)
−  Markov decision processes (MDPs) + real-valued clocks
−  or: timed automata + discrete probabilistic choice
−  model probabilistic, nondeterministic and timed behaviour

•  PTAs comprise:
−  clocks (increase simultaneously)
−  locations (labelled with invariants)
−  transitions (action + guard + 

probabilities + resets)

•  Semantics
−  PTA represents an infinite-state MDP
−  states are location/clock valuation pairs (l,v) ∈ Loc×ℝX
−  nondeterminism: elapse of time + choice of actions

init

0.1 0.05

x≤2

0.9

x≥2
send

x≥1

x:=0 x:=0

retry

lost
x≤3

done
true

0.95

x:=0

49

PTA - Example

•  Example:

invariant

guard

clock reset action

init

0.1 0.05

x≤2

0.9

x≥2
send

x≥1

x:=0 x:=0

retry

lost
x≤3

done
true

0.95

x:=0

location

50

PTA – Example execution

(init,x=0)

1.1

(init,x=1.1)

send 0.1 0.9

(done,x=0) (lost,x=0)

2.7

(lost,x=2.7)

retry 0.05 0.95

(done,x=0) (lost,x=0)

8.66

(done,x=8.66)
⋮

⋮ ⋮

PTA: Example  
execution:

init

0.1 0.05

x≤2

0.9

x≥2
send

x≥1

x:=0 x:=0

retry

lost
x≤3

done
true

0.95

x:=0

51

Properties of PTAs

•  Temporal logic
−  again, can use PCTL to represent properties
−  e.g. P≥0.99 [F≤5 deliv] - “with probability 0.99 or greater,  

a data packet will always be delivered within 5 seconds”
−  we verify behaviour over all possible adversaries 

(actually all time-divergent adversaries)

•  Timed extensions
−  can extend to the logic PTCTL (adds zones + formula clocks)

•  In practice:
−  (min/max) probabilistic reachability often suffices

52

PTA model checking

•  Several different approaches developed
−  basic idea: reduce to the analysis of a finite-state model
−  in most cases, this is a Markov decision process (MDP)

•  Region graph construction [KNSS02]

−  shows decidability, but gives exponential complexity
•  Digital clocks approach [KNPS06]

−  (slightly) restricted classes of PTAs
−  works well in practice, still some scalability limitations

•  Zone-based approaches:
−  (preferred approach for non-probabilistic timed automata)
−  backwards reachability [KNSW07]
−  game-based abstraction refinement [KNP09c]

53

Contents

•  Case study: the FireWire protocol

•  Discrete-time Markov chains + the logic PCTL

•  Adding nondeterminism: Markov decision processes

•  Adding real time: probabilistic timed automata

•  Probabilistic model checking in practice: PRISM

54

The PRISM tool

•  PRISM: Probabilistic symbolic model checker
−  developed at Birmingham/Oxford University, since 1999
−  free, open source (GPL), runs on all major OSs

•  Support for:
−  discrete-/continuous-time Markov chains (D/CTMCs)
−  Markov decision processes (MDPs)
−  probabilistic timed automata (PTAs)
−  PCTL, CSL, LTL, PCTL*, costs/rewards, …

•  Features:
−  simple but flexible high-level modelling language
−  user interface: editors, simulator, experiments, graph plotting
−  multiple efficient model checking engines (e.g. symbolic)
−  (mostly symbolic – BDDs; up to 1010 states, 107-108 on avg.)

•  See: http://www.prismmodelchecker.org/

55

Modelling PTAs in PRISM

•  PTA example: message transmission over faulty channel

“init”
x≤2

0.9

retry

“done”
true

“lost”
x≤5

“fail”
true

quit

send
x≥3

x:=0

0.1
x≥1∧tries≤N

tries:=0

tries>N

x:=0,  
tries:=tries+1

States
•  locations + data variables

Transitions
•  guards and action labels

Real-valued clocks
•  state invariants, guards, resets
Probability
•  discrete probabilistic choice

56

Modelling PTAs in PRISM

•  PRISM modelling language
−  textual language, based on guarded commands

pta
const int N;
module transmitter
 s : [0..3] init 0;
 tries : [0..N+1] init 0;
 x : clock;
 invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariant
 [send] s=0 & tries≤N & x≥1
 → 0.9 : (s’=3)
 + 0.1 : (s’=1) & (tries’=tries+1) & (x’=0);
 [retry] s=1 & x≥3 → (s’ =0) & (x’ =0);
 [quit] s=0 & tries>N → (s’ =2);
endmodule
rewards “energy” (s=0) : 2.5; endrewards

57

Modelling PTAs in PRISM

•  PRISM modelling language
−  textual language, based on guarded commands

pta
const int N;
module transmitter
 s : [0..3] init 0;
 tries : [0..N+1] init 0;
 x : clock;
 invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariant
 [send] s=0 & tries≤N & x≥1
 → 0.9 : (s’=3)
 + 0.1 : (s’=1) & (tries’=tries+1) & (x’=0);
 [retry] s=1 & x≥3 → (s’ =0) & (x’ =0);
 [quit] s=0 & tries>N → (s’ =2);
endmodule
rewards “energy” (s=0) : 2.5; endrewards

Basic ingredients:
•  modules
•  variables
•  commands

58

Modelling PTAs in PRISM

•  PRISM modelling language
−  textual language, based on guarded commands

pta
const int N;
module transmitter
 s : [0..3] init 0;
 tries : [0..N+1] init 0;
 x : clock;
 invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariant
 [send] s=0 & tries≤N & x≥1
 → 0.9 : (s’=3)
 + 0.1 : (s’=1) & (tries’=tries+1) & (x’=0);
 [retry] s=1 & x≥3 → (s’ =0) & (x’ =0);
 [quit] s=0 & tries>N → (s’ =2);
endmodule
rewards “energy” (s=0) : 2.5; endrewards

For PTAs:
•  clocks
•  invariants
•  guards/resets

Basic ingredients:
•  modules
•  variables
•  commands

59

Modelling PTAs in PRISM

•  PRISM modelling language
−  textual language, based on guarded commands

For PTAs:
•  clocks
•  invariants
•  guards/resets

Basic ingredients:
•  modules
•  variables
•  commands

Also:
•  rewards 
 (i.e. costs, prices)
•  parallel composition

pta
const int N;
module transmitter
 s : [0..3] init 0;
 tries : [0..N+1] init 0;
 x : clock;
 invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariant
 [send] s=0 & tries≤N & x≥1
 → 0.9 : (s’=3)
 + 0.1 : (s’=1) & (tries’=tries+1) & (x’=0);
 [retry] s=1 & x≥3 → (s’ =0) & (x’ =0);
 [quit] s=0 & tries>N → (s’ =2);
endmodule
rewards “energy” (s=0) : 2.5; endrewards

60

PRISM – Case studies

•  Randomised communication protocols
−  Bluetooth, FireWire, Zeroconf, 802.11, Zigbee, gossiping, …

•  Randomised distributed algorithms
−  consensus, leader election, self-stabilisation, …

•  Security protocols/systems
−  pin cracking, anonymity, quantum crypto, contract signing, …

•  Planning & controller synthesis
−  robotics, dynamic power management, …

•  Performance & reliability
−  nanotechnology, cloud computing, manufacturing systems, …

•  Biological systems
−  cell signalling pathways, DNA computation, …

•  See: www.prismmodelchecker.org/casestudies

61

Summary

•  Probabilistic model checking
−  automated verification of systems with probabilistic behaviour
−  (randomisation, failures, message losses, …)

•  Probabilistic models
−  discrete-time Markov chains (fully probabilistic)
−  Markov decision processes (plus nondeterminism)
−  probabilistic timed automata (plus real-time)

•  Property specification
−  probabilistic temporal logics, e.g. PCTL
−  wide range of quantitative properties

•  Tool support: PRISM (http://www.prismmodelchecker.org/)
−  demonstrations available

More info here:
www.prismmodelchecker.org

Questions ?

