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What is probabilistic model checking? 

•  Formal verification… 
−  is the application of rigorous,  

mathematics-based techniques 
to establish the correctness 
of computerised systems 

•  Probabilistic model checking… 
−  is an automated formal verification 

technique for modelling and analysis 
of systems with probabilistic behaviour 
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Why probability? 

•  Many real-world systems are inherently probabilistic… 

•  Unreliable or unpredictable behaviour 
−  failures of physical components 
−  message loss in wireless communication 

•  Use of randomisation (e.g. to break symmetry) 
−  random back-off in communication protocols 
−  in gossip routing to reduce flooding 
−  in security protocols, e.g. for anonymity 

•  And many others… 
−  biological processes, e.g. DNA computation 
−  quantum computing algorithms 
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Probabilistic real-time systems 

•  Many systems combine probability and real-time  
−  e.g. wireless communication protocols 
−  e.g. randomised security protocols 

•  Randomised back-off schemes 
−  Ethernet, WiFi (802.11), Zigbee (802.15.4) 

•  Random choice of waiting time 
−  Bluetooth device discovery phase 
−  Root contention in IEEE 1394 FireWire 

•  Random choice over a set of possible addresses 
−  IPv4 dynamic configuration (link-local addressing)  

•  Random choice of a destination 
−  Crowds anonymity, gossip-based routing  
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Verifying probabilistic systems 

•  We are not just interested in correctness 
−  “the probability of an airbag failing to deploy  

within 0.02 seconds of being triggered is at most 0.001” 

•  We want to be able to reason about: 
−  reliability, dependability 
−  performance, resource usage, e.g. battery life 
−  security, privacy, trust, anonymity, fairness 
−  and much more… 

•  We want to reason in a quantitative manner:  
−  how reliable is my car’s Bluetooth network? 
−  how efficient is my phone’s power management policy?  
−  how secure is my bank’s web-service? 
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Contents 

•  Case study: the FireWire protocol 

•  Discrete-time Markov chains + the logic PCTL 

•  Adding nondeterminism: Markov decision processes 

•  Adding real time: probabilistic timed automata 

•  Probabilistic model checking in practice: PRISM 
 
 
 

•  More here: http://www.prismmodelchecker.org/lectures/ 
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Case study: FireWire protocol 

•  FireWire (IEEE 1394) 
−  high-performance serial bus for networking 

multimedia devices; originally by Apple 
−  "hot-pluggable" - add/remove  

devices at any time 
−  no requirement for a single PC (but need acyclic topology) 

•  Root contention protocol 
−  leader election algorithm, when nodes join/leave 
−  symmetric, distributed protocol 
−  uses randomisation (electronic coin tossing) and timing delays 
−  nodes send messages: "be my parent" 
−  root contention: when nodes contend leadership 
−  random choice: "fast"/"slow" delay before retry 
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FireWire example 
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FireWire analysis 

•  Detailed probabilistic model: 
−  probabilistic timed automaton (PTA), including: 

•  concurrency: messages between nodes and wires 
•  timing delays taken from official standard 
•  underspecification of delays (upper/lower bounds) 

−  maximum model size: 170 million states 
 

•  Probabilistic model checking (with PRISM) 
−  verified that root contention always 

resolved with probability 1 
•  P≥1 [ F (end ∧ elected) ] 

−  investigated worst-case expected time  
taken for protocol to complete 

•  Rmax=? [ F (end ∧ elected) ] 
−  investigated the effect of using biased coin 
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FireWire: Analysis results 
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FireWire: Analysis results 
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FireWire: Analysis results 
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FireWire: Analysis results 
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Discrete-time Markov chains (DTMCs) 

•  Discrete-time Markov chains (DTMCs) 
−  state-transition systems augmented with probabilities 

•  States 
−  discrete set of states representing all possible  

configurations of the system being modelled 
•  Transitions 

−  transitions between states occur  
in discrete time-steps 

•  Probabilities 
−  probability of making transitions 

between states is given by  
discrete probability distributions 
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Discrete-time Markov chains 

•  Formally, a DTMC D is a tuple (S,sinit,P,L) where:  
−  S is a finite set of states (“state space”) 
−  sinit ∈ S is the initial state 
−  P : S × S → [0,1] is the transition probability matrix 
−  L : S → 2AP is function labelling states with atomic propositions 

•  A (finite or infinite) path through a DTMC  
−  is a sequence of states s0s1s2s3… such that P(si,si+1) > 0 ∀i 
−  represents an execution (i.e. one possible behaviour) of 

the system which the DTMC is modelling 

•  To reason formally about the DTMC 
−  we define a probability measure over paths, Prs 

−  via a sigma algebra over the set of all infinite paths 

s1 s2 s 
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PCTL 

•  PCTL: temporal logic for describing properties of DTMCs 
−  PCTL = Probabilistic Computation Tree Logic [HJ94,BdA95] 

•  Extension of (non-probabilistic) temporal logic CTL 
−  key addition is probabilistic operator P 
−  quantitative extension of CTL’s A and E operators 

•  Example 
−  send → P≥0.95 [ F≤10 deliver ] 
−  “if a message is sent, then the probability of it being delivered 

within 10 steps is at least 0.95” 
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PCTL syntax 

•  Syntax of PCTL formula φ: 

−  φ  ::=  true | a | φ ∧ φ | ¬φ | P~p [ ψ ]   (state formulae) 

−  ψ  ::=  X φ    |    φ U≤k φ     |   φ U φ   (path formulae) 

−  where a is an atomic proposition, used to identify states of 
interest, p ∈ [0,1] is a probability, ~ ∈ {<,>,≤,≥} and k ∈ ℕ 

•  Can derive other useful operators 
−  logical: false, φ1 ∨ φ2, φ1 → φ2 
−  F φ ≡ true U φ  ("eventually")  and  G φ ≡ ¬(F ¬φ)  ("always") 
−  bounded variants, e.g. F≤k φ ≡ true U≤k φ 

“until” 

 ψ is true with 
probability ~p 

“bounded 
until” “next” 
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PCTL semantics (for DTMCs) 

•  PCTL formulae interpreted over states of a DTMC 
−  s ⊨ φ  denotes φ is “true in state s” or “satisfied in state s” 

•  Semantics of logical operators: standard meanings 

•  Semantics of the probabilistic operator P 
−  informally,  s ⊨ P~p [ ψ ] means:  

“the probability, from state s,  
that ψ is true for outgoing paths 
satisfies the bound ~p” 

−  formally:  
s ⊨ P~p [ψ]  ⇔  Prob(s, ψ) ~ p 

−  where:  
Prob(s, ψ) = Prs { ω ∈ Path(s) | ω ⊨ ψ } 

s 

¬ψ 

ψ 
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Quantitative (numerical) properties 

•  Consider a PCTL formula P~p [ ψ ] 
−  if the probability is unknown, how to choose the bound p? 

•  We also allow the numerical form P=? [ ψ ] 
−  when the outermost operator of a PTCL formula is P 
−  “what is the probability that path formula ψ is true?” 

•  Model checking is no harder 
−  compute the values anyway 

•  Useful to spot patterns, trends 

•  Example 
−  P=? [ F err/total>0.1 ] 
−  “what is the probability  

that 10% of the NAND 
gate outputs are erroneous?” 
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Some real PCTL examples 

•  NAND multiplexing system 
−  P=? [ F err/total>0.1 ] 
−  “what is the probability that 10% of the NAND gate outputs are 

erroneous?” 

•  Bluetooth wireless communication protocol 
−  P=? [ F≤t reply_count=k ] 
−  “what is the probability that the sender has received k 

acknowledgements within t clock-ticks?” 

•  Security: EGL contract signing protocol 
−  P=? [ F (pairs_a=0 & pairs_b>0) ] 
−  “what is the probability that the party B gains an unfair 

advantage during the execution of the protocol?” 

reliability 

performance 

fairness 
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PCTL model checking for DTMCs 

•  Algorithm for PCTL model checking [CY88,HJ94,CY95] 
−  inputs:  DTMC D=(S,sinit,P,L),  PCTL formula φ 
−  output:  Sat(φ) = { s ∈ S | s ⊨ φ } = set of states satisfying φ 
−  or:  compute result of e.g.  P=? [ F≤k error ]  

•  Basic algorithm proceeds by induction on parse tree of φ 
−  e.g. φ = (¬fail ∧ try) → P>0.95 [ ¬fail U succ ] 
−  logical operators: straightforward 

•  For the P~p [ ψ ] operator  
−  need to compute probabilities 

Prob(s, ψ) for all states s ∈ S 
−  combination of graph algorithms 

and numerical computation 
•  Linear in |Φ| and polynomial in |S| 

∧ 

¬ 

→ 

P>0.95 [ · U · ] 

¬ 

fail fail 

succ try 
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PCTL model checking: Until 

•  Example: computation of probabilities for "until" formula 
−  i.e. Prob(s, φ1 U φ2) for all s ∈ S 

•  First, execute graph-based analysis to identify all states 
where the probability is exactly 1 or 0: 
−  Syes = Sat(P≥1 [ φ1 U φ2 ]) 
−  Sno = Sat(P≤0 [ φ1 U φ2 ]) 

•  Then, solve linear equation system for remaining states: 

−  solved with standard methods, e.g. Gaussian elimination 
(iterative numerical methods preferred in practice) 

  

€ 

Prob(s, φ1 U φ2)  =   
1
0

P(s,s' )⋅ Prob(s',  φ1 U φ2)
s'∈S

∑
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' 
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) 
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if s ∈ Sno

otherwise
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PCTL until - Example 

•  Example: P>0.8 [¬a U b ] 
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PCTL until - Example 

•  Example: P>0.8 [¬a U b ] 
Sno = 

Sat(P≤0 [¬a U b ]) 
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PCTL until - Example 

•  Example: P>0.8 [¬a U b ] 

•  Let xs = Prob(s, ¬a U b)  

•  Solve: 

x4 = x5 = 1 
x1 = x3 = 0 
x0 = 0.1x1+0.9x2  =  0.8 
x2 = 0.1x2+0.1x3+0.3x5+0.5x4 =  8/9 

Prob(¬a U b) = x = [0.8, 0, 8/9, 0, 1, 1] 
 
Sat(P>0.8 [ ¬a U b ]) = { s2,s4,s5 } 
 
 

Sno = 
Sat(P≤0 [¬a U b ]) 
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Limitations of PCTL 

•  PCTL, although useful in practice, has limited expressivity 
−  essentially: probability of reaching states in T, passing only 

through states in T' (and within k time-steps) 

•  More expressive logics can be used, for example: 
−  LTL [Pnu77] – linear-time temporal logic 
−  PCTL* [ASB+95,BdA95] - which subsumes both PCTL and LTL 
−  both allow temporal operators to be combined 

•  LTL properties: 
−  P≤0.01 [ (F tmp_fail1) ∧ (F tmp_fail2) ] – “both servers eventually 

fail with probability at most 0.01” 
−  P≥1 [ G F ready ] - “with probability 1, the server always 

eventually returns to a ready-state” 
−  P=? [ F G error ] – “probability of an irrecoverable error?” 
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Costs and rewards 

•  Another direction: extend DTMCs with costs and rewards… 
−  to measure: elapsed time, power consumption, number of 

messages successfully delivered, net profit, … 
−  add expected reward operator R to PCTL logic 

•  Cost/reward-based properties: 
−  Renergy

≤400 [ C≤60 ] - “the expected energy consumption over 60 
seconds is at most 40 J” 

−  Rtime
=? [ F end ] - “the expected time for protocol execution” 
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Contents 

•  Case study: the FireWire protocol 

•  Discrete-time Markov chains + the logic PCTL 

•  Adding nondeterminism: Markov decision processes 

•  Adding real time: probabilistic timed automata 

•  Probabilistic model checking in practice: PRISM 
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Nondeterminism 

•  Some aspects of a system may not be probabilistic and 
should not be modelled probabilistically; for example: 

•  Concurrency - scheduling of parallel components 
−  e.g. randomised distributed algorithms - multiple probabilistic 

processes operating asynchronously 

•  Unknown environments or controllers 
−  e.g. probabilistic security protocols - unknown adversary 
−  e.g. controller synthesis & planning 

•  Underspecification and abstraction 
−  e.g. a probabilistic communication protocol designed for 

message propagation delays of between dmin and dmax  
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Markov decision processes (MDPs) 

•  Markov decision processes (MDPs) 
−  extension of DTMCs which allow nondeterministic choice 

•  Like DTMCs: 
−  discrete set of states representing possible configurations of 

the system being modelled 
−  transitions between states occur in discrete time-steps 

•  Probabilities and nondeterminism 
−  in each state, a nondeterministic  

choice between several actions 
−  each of which gives a probability  

distributions over successor states 
−  formally: δ : S × Act → Dist(S) 
−  instead of P : S × S → [0,1] 

s1 s0 

s2 
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Adversaries 

•  How to reason about probabilities for MDPs? 
−  need to separate nondeterminism and probability  

 
•  An adversary resolves nondeterministic choice in an MDP 

−  based on the history of execution so far 
−  also known as “schedulers”, “strategies” or “policies” 
−  formally: an adversary σ of an MDP is a function mapping 

every finite path s0a0s1a1...sn to an action available in sn 

•  Adversary σ induces a probability measure Prs
σ over paths 

−  via construction of an (infinite-state) DTMC 
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Adversaries - Examples 

•  Consider the simple MDP below 
−  s1 is the only state for which an adversary makes a choice 

•  Adversary σ1 
−  picks action c the first time 
−  σ1(s0s1)=c 

•  Adversary σ2 
−  picks action b the first time, then c 

−  σ2(s0s1)=b, σ2(s0s1s1)=c, σ2(s0s1s0s1)=c 

s1 s0 

s2 

s3 

0.5 

0.5 0.7 

1 
1 

{heads} 

{tails} 

{init} 

0.3 

1 a 

b

c 
a 
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Adversaries - Examples 

•  Fragment of DTMC for adversary σ1 
−  σ1 picks action c the first time 
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0.5 
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Adversaries - Examples 

•  Fragment of DTMC for adversary σ2 
−  σ2 picks action b, then c 
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Model checking for MDPs 

•  Verification for MDPs quantifies over all adversaries 
−  e.g. PCTL: P≥0.95 [ F deliver ] - "the probability of the message 

being delivered is at least 0.95 for any possible adversary” 
−  formally:  s ⊨ P~p [ ψ ]  ⇔  Prs

σ(ψ) ~ p for all adversaries σ 

•  For model checking, we need min./max. probabilities: 
−  Prs

max(ψ) = supσ Prs
σ(ψ)  and  Prs

min(ψ) = infσ Prs
σ(ψ) 

•  Quantitative (numerical) queries 
−  Pmin=? [ ψ ] and Pmax=? [ ψ ] 
−  analyses best-case or worst-case  

behaviour of the system 
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PCTL model checking for MDPs 

•  Basic algorithm same as PCTL model checking for DTMCs 
−  recursive procedure, graph-based + numerical solution 
−  now: computation of min/max probabilities 
−  still linear in size of property, polynomial in size of model 
 

•  For example, for "until" formulae 
−  either: solve linear programming (LP) problem 
−  or: iterative numerical methods (dynamic programming) 
−  or: policy iteration 
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Probabilistic real-time systems 

•  Systems with probability, nondeterminism and real-time  
−  e.g. communication protocols, randomised security protocols 

•  Randomised back-off schemes 
−  Ethernet, WiFi (802.11), Zigbee (802.15.4) 

•  Random choice of waiting time 
−  Bluetooth device discovery phase 
−  Root contention in IEEE 1394 FireWire 

•  Random choice over a set of possible addresses 
−  IPv4 dynamic configuration (link-local addressing)  

•  Random choice of a destination 
−  Crowds anonymity, gossip-based routing  



48 

Probabilistic timed automata (PTAs) 

•  Probabilistic timed automata (PTAs) 
−  Markov decision processes (MDPs) + real-valued clocks 
−  or: timed automata + discrete probabilistic choice 
−  model probabilistic, nondeterministic and timed behaviour 
 

•  PTAs comprise: 
−  clocks (increase simultaneously) 
−  locations (labelled with invariants) 
−  transitions (action + guard + 

probabilities + resets) 

•  Semantics 
−   PTA represents an infinite-state MDP 
−  states are location/clock valuation pairs (l,v) ∈ Loc×ℝX 
−  nondeterminism: elapse of time + choice of actions 

init 

0.1 0.05 

x≤2 

0.9 

x≥2 
send 
 
x≥1 

x:=0 x:=0 

retry 

lost 
x≤3 

done 
true 

0.95 

x:=0 
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PTA - Example 

•  Example: 

invariant 

guard 

clock reset action 

init 

0.1 0.05 

x≤2 

0.9 

x≥2 
send 
 
x≥1 

x:=0 x:=0 

retry 

lost 
x≤3 

done 
true 

0.95 

x:=0 

location 



50 

PTA – Example execution 

(init,x=0) 

1.1 

(init,x=1.1) 

send 0.1 0.9 

(done,x=0) (lost,x=0) 

2.7 

(lost,x=2.7) 

retry 0.05 0.95 

(done,x=0) (lost,x=0) 

8.66 

(done,x=8.66) 
⋮ 

⋮ ⋮ 

PTA: Example  
execution: 

init 
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send 
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x:=0 x:=0 

retry 
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x≤3 

done 
true 

0.95 
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Properties of PTAs 

•  Temporal logic 
−  again, can use PCTL to represent properties 
−  e.g. P≥0.99 [ F≤5 deliv ] - “with probability 0.99 or greater,  

a data packet will always be delivered within 5 seconds” 
−  we verify behaviour over all possible adversaries 

(actually all time-divergent adversaries) 

•  Timed extensions 
−  can extend to the logic PTCTL (adds zones + formula clocks) 

•  In practice: 
−  (min/max) probabilistic reachability often suffices 
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PTA model checking  

•  Several different approaches developed 
−  basic idea: reduce to the analysis of a finite-state model 
−  in most cases, this is a Markov decision process (MDP) 

 
•  Region graph construction [KNSS02] 

−  shows decidability, but gives exponential complexity 
•  Digital clocks approach [KNPS06] 

−  (slightly) restricted classes of PTAs 
−  works well in practice, still some scalability limitations 

•  Zone-based approaches: 
−  (preferred approach for non-probabilistic timed automata) 
−  backwards reachability [KNSW07] 
−  game-based abstraction refinement [KNP09c] 
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The PRISM tool 

•  PRISM: Probabilistic symbolic model checker 
−  developed at Birmingham/Oxford University, since 1999 
−  free, open source (GPL), runs on all major OSs 

•  Support for: 
−  discrete-/continuous-time Markov chains (D/CTMCs) 
−  Markov decision processes (MDPs) 
−  probabilistic timed automata (PTAs) 
−  PCTL, CSL, LTL, PCTL*, costs/rewards, … 

•  Features: 
−  simple but flexible high-level modelling language 
−  user interface: editors, simulator, experiments, graph plotting 
−  multiple efficient model checking engines (e.g. symbolic) 
−  (mostly symbolic – BDDs; up to 1010 states, 107-108 on avg.) 

•  See: http://www.prismmodelchecker.org/ 
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Modelling PTAs in PRISM 

•  PTA example: message transmission over faulty channel 

“init” 
x≤2 

0.9 

retry 

“done” 
true 

“lost” 
x≤5 

“fail” 
true 

quit 

send 
x≥3 

x:=0 

0.1 
x≥1∧tries≤N 

tries:=0 

tries>N 

x:=0,  
tries:=tries+1 
 

States 
•  locations + data variables 

Transitions 
•  guards and action labels 

Real-valued clocks 
•  state invariants, guards, resets 
Probability 
•  discrete probabilistic choice 
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Modelling PTAs in PRISM 

•  PRISM modelling language 
−  textual language, based on guarded commands 

pta 
const int N; 
module transmitter 
    s : [0..3] init 0; 
    tries : [0..N+1] init 0; 
    x : clock; 
    invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariant 
    [send] s=0 & tries≤N & x≥1 
          → 0.9 : (s’=3) 
          +  0.1 : (s’=1) & (tries’=tries+1) & (x’=0); 
    [retry] s=1 & x≥3 → (s’ =0) & (x’ =0); 
    [quit]  s=0 & tries>N → (s’ =2); 
endmodule 
rewards “energy” (s=0) : 2.5; endrewards 
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Modelling PTAs in PRISM 

•  PRISM modelling language 
−  textual language, based on guarded commands 

pta 
const int N; 
module transmitter 
    s : [0..3] init 0; 
    tries : [0..N+1] init 0; 
    x : clock; 
    invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariant 
    [send] s=0 & tries≤N & x≥1 
          → 0.9 : (s’=3) 
          +  0.1 : (s’=1) & (tries’=tries+1) & (x’=0); 
    [retry] s=1 & x≥3 → (s’ =0) & (x’ =0); 
    [quit]  s=0 & tries>N → (s’ =2); 
endmodule 
rewards “energy” (s=0) : 2.5; endrewards 
 

Basic ingredients: 
•  modules 
•  variables 
•  commands 
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Modelling PTAs in PRISM 

•  PRISM modelling language 
−  textual language, based on guarded commands 

For PTAs: 
•  clocks 
•  invariants 
•  guards/resets 

Basic ingredients: 
•  modules 
•  variables 
•  commands 

Also: 
•  rewards 
  (i.e. costs, prices) 
•  parallel composition 

pta 
const int N; 
module transmitter 
    s : [0..3] init 0; 
    tries : [0..N+1] init 0; 
    x : clock; 
    invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariant 
    [send] s=0 & tries≤N & x≥1 
          → 0.9 : (s’=3) 
          +  0.1 : (s’=1) & (tries’=tries+1) & (x’=0); 
    [retry] s=1 & x≥3 → (s’ =0) & (x’ =0); 
    [quit]  s=0 & tries>N → (s’ =2); 
endmodule 
rewards “energy” (s=0) : 2.5; endrewards 
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PRISM – Case studies 

•  Randomised communication protocols 
−  Bluetooth, FireWire, Zeroconf, 802.11, Zigbee, gossiping, … 

•  Randomised distributed algorithms 
−  consensus, leader election, self-stabilisation, … 

•  Security protocols/systems 
−  pin cracking, anonymity, quantum crypto, contract signing, … 

•  Planning & controller synthesis 
−  robotics, dynamic power management, … 

•  Performance & reliability 
−  nanotechnology, cloud computing, manufacturing systems, … 

•  Biological systems 
−  cell signalling pathways, DNA computation, … 

•  See: www.prismmodelchecker.org/casestudies 
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Summary 

•  Probabilistic model checking 
−  automated verification of systems with probabilistic behaviour 
−  (randomisation, failures, message losses, …) 

•  Probabilistic models 
−  discrete-time Markov chains (fully probabilistic) 
−  Markov decision processes (plus nondeterminism) 
−  probabilistic timed automata (plus real-time) 

•  Property specification 
−  probabilistic temporal logics, e.g. PCTL 
−  wide range of quantitative properties 

•  Tool support: PRISM (http://www.prismmodelchecker.org/) 
−  demonstrations available 



 
 

More info here: 
www.prismmodelchecker.org 

Questions ? 


