

Probabilistic Model Checking: Advances and Applications

Dave Parker

University of Birmingham

Highlights'18, Berlin, September 2018

Overview

- Probabilistic model checking & PRISM
 - Markov decision processes (MDPs)
- Multi-objective probabilistic model checking
 - examples: robot navigation; task scheduling
- Partially observable models
 - POMDPs + real-time variants
 - examples: robot navigation; wireless scheduling
- Stochastic (multi-player) games
 - turn-based & concurrent games
 - examples: energy management, investor models

Probabilistic model checking

- Probabilistic model checking
 - formal construction/analysis of probabilistic models
 - "correctness" properties expressed in temporal logic
 - e.g. trigger \rightarrow P_{≥ 0.999} [F^{≤ 20} deploy]
 - mix of exhaustive & numerical/quantitative reasoning

- Trends and advances
 - improvement in scalability to larger models
 - increasingly expressive/powerful model classes
 - from verification problems to control problems
 - ever widening range of application domains

PRISM (and extensions)

- PRISM model checker: <u>www.prismmodelchecker.org</u>
- Wide range of probabilistic models
 - discrete states & probabilities: Markov chains
 - + nondeterminism: Markov decision processes (MDPs)
 - + real-time clocks: probabilistic timed automata (PTAs)
 - + partial observability: POMDPs and POPTAs
 - + multiple players: (turn-based) stochastic games
 - + concurrency: concurrent stochastic games
- Expressive property specification language
 - PCTL/CSL, LTL, costs/rewards, multi-objective, strategies, ...

Tool features

- modelling language, simulator, GUI, graph plotting, ...

PRISM (and extensions)

- Various verification engines
 - symbolic/explicit/hybrid, exact, parametric, statistical model checking, abstraction refinement, ...
- Open source development
 - github.com/prismmodelchecker/prism
 - incl. benchmark & testing suites

- Interfaces & connections
 - Java API
 - ModelGenerator interface: programmatic model construction
 - HOAF support for automata import/export

Markov decision processes

- Example Markov decision processes (MDP)
 - robot moving through terrain divided in to 3 x 2 grid
 - strategies represent possible ways to navigate grid

Example – Reachability

Synthesise strategy satisfying: $P_{\geq 0.4}$ [F goal₁]

or Find optimal strategy P_{max=?} [F goal₁]

Optimal strategies: memoryless and deterministic

Computation:

graph analysis + numerical soln. (value iteration, linear programs, policy iteration, interval iteration)

Example – Reachability

Synthesise strategy satisfying: $P_{\geq 0.4}$ [F goal₁]

or Find optimal strategy $P_{max=?}$ [F goal₁] = 0.5

Optimal strategies: memoryless and deterministic

Computation:

graph analysis + numerical soln. (value iteration, linear programs, policy iteration, interval iteration)

MDPs – Other core properties

- Costs and rewards (expected, accumulated values)
 - e.g. R_{min=?} [F goal₂] "what is the minimum expected time needed to reach goal₂?"
 - optimal strategies: memoryless and deterministic
 - similar computation to probabilistic reachability
- Probabilistic LTL (multiple temporal operators)
 - e.g. $P_{max=?}$ [(G¬hazard) \land (GF goal₁)] "maximum probability of avoiding hazard and visiting goal₁ infinitely often?"
 - optimal strategies: finite-memory and deterministic
 - build product MDP, graph analysis, probabilistic reachability
- Expected cost/reward to satisfy (co-safe) LTL formula
 - e.g. $R_{min=?}$ [$\neg zone_3 U (zone_1 \land (F zone_4))$] "minimise exp. time to patrol zones 1 then 4, without passing through 3".

Overview

- Probabilistic model checking & PRISM
 - Markov decision processes (MDPs)

Multi-objective probabilistic model checking

- examples: robot navigation; task scheduling
- Partially observable models
 - POMDPs + real-time variants
 - examples: robot navigation; wireless scheduling
- Stochastic (multi-player) games
 - turn-based & concurrent games
 - examples: energy management, investor models

Multi-objective model checking

- Multi-objective probabilistic model checking
 - investigate trade-offs between conflicting objectives
 - in PRISM, objectives are probabilistic LTL or expected rewards
- Achievability queries: multi(P_{≥0.95} [F send], R^{time}_{≥10} [C])
 - e.g. "is there a strategy such that the probability of message transmission is ≥ 0.95 and expected battery life ≥ 10 hrs?"
- Numerical queries: multi(P_{max=?} [F send], R^{time}_{≥10} [C])
 - e.g. "maximum probability of message transmission, assuming expected battery life-time is \geq 10 hrs?"

Pareto queries:

- multi(P_{max=?}[F send], R^{time}max=?[C])
- e.g. "Pareto curve for maximising probability of transmission and expected battery life-time"

11

Multi-objective model checking

- Multi-objective probabilistic model checking
 - investigate trade-offs between conflicting objectives
 - in PRISM, Djectives are probabilistic LTL or expected rewards
- Achievability queries: multi(P_{>0.95} [F send], R^{time}_{>10} [C])
 - e.g. "is there a strategy such that the probability of message transmission is > 0.95 and expected battery life > 10 hrs?"
- Numerical queries: Phulti(P_{max=?} [F *s* nd], R^{time}>10 [C])
 - e.g. "maximum probability of mess ge transmission, assuming expected battery life-tim s > 10 hrs?"

• Pareto queries:

- multi($P_{max=?}$ [F gend], $R^{time}_{max=?}$ [C])
- e.g. "Pareto curve for maximising probability of transmission and expected battery life-time"

obj₁

Example - Multi-objective

- Achievability query
 - $P_{\geq 0.7}$ [G ¬hazard] \land $P_{\geq 0.2}$ [GF goal₁] ? True (achievable)
- Numerical query
 - $P_{max=?}$ [GF goal₁] such that $P_{\geq 0.7}$ [G \neg hazard]? ~0.2278
- Pareto query
 - for $P_{max=?}$ [G ¬hazard], $P_{max=?}$ [GF goal₁]?

Example – Multi-objective

 Ψ_1

0.8

0.6

0.1

0

0

0.2

0.4

Strategy 1 (deterministic) s₀ : east s₁ : south s₂ : s₃ : s₄ : east s₅ : west

Example – Multi-objective

Strategy 2 (deterministic) s_0 : south s_1 : south s_2 : s_3 : s_4 : east s_5 : west

15

Example – Multi-objective

Optimal strategy: (randomised) s_0 : 0.3226 : east 0.6774 : south s_1 : 1.0 : south s_2 : s_3 : s_4 : 1.0 : east s_5 : 1.0 : west

Multi-objective model checking

- PRISM implements two distinct approaches
- 1. Linear programming
 - solve dual problem to classical LP formulation
- 2. Value iteration based weighted sweep
 - approximate exploration/construction of Pareto curve
 - e.g. $P_{\geq r1}$ [...] $\land P_{\geq r2}$ [...] for $r=(r_1,r_2)=(0.2,0.7)$

method 2 extends to step-bounded objectives

Applications - Multi-objective

Examples of multi-objective controller synthesis with PRISM

Minimise energy consumption, subject to constraints on: (i) expected job queue size; (ii) expected num. lost jobs

Partial task satisfaction; task progress metrics; efficient time bounded probabilistic guarantees Synthesis of team formation strategies

Pareto curve: x="probability of completing task 1"; y="probability of completing task 2"; z="expected size of successful team"

Application: Robot navigation

- Robot navigation planning: [IROS'14,IJCAI'15,ICAPS'17,IJRR'18]
 - learnt MDP models navigation through uncertain environment
 - co-safe LTL used to formally specify tasks to be executed by robot
 - synthesise finite-memory strategies to construct plans/controllers
 - ROS module based on PRISM
 - 100s of hrs of autonomous deployment

G4S Technology, Tewkesbury (STRANDS)

Application: Robot navigation

- Navigation planning MDPs
 - expected timed on edges + probabilities
 - learnt using data from previous explorations
- LTL-based task specification

- expected time to satisfy (one or more) co-safe LTL formulas

Benefits of the approach

- LTL: flexible, unambiguous property specification
- efficient, fully-automated techniques
 - · LTL-to-automaton conversion, MDP solution
- c.f. ad-hoc reward structures, e.g. with discounting
- meaningful properties: probabilities, time, energy,...
- generates guarantees on performance
 - · QoS guarantees fed into task planning

Multi-objective: Partial satisfiability

- Partially satisfiable task specifications
 - e.g. $P_{max=?}$ [$\neg zone_3 U (room_1 \land (F room_4 \land F room_5)] < 1$
- Synthesise strategies that, in decreasing order of priority:
 - maximise the probability of finishing the task;
 - maximise progress towards completion, if this is not possible;
 - minimise the expected time (or cost) required
- Progress function constructed from DFA
 - (distance to accepting states, reward for decreasing distance)
- Encode prioritisation using multi-objective queries:
 - $-\mathbf{p} = \mathbf{P}_{max=?} [task]$
 - $r = multi(R_{max=?}^{prog} [C], P_{>=p} [task])$
 - multi($R_{min=?}^{time}$ [task], $P_{>=p}$ [task] $\land R_{>=r}^{prog}$ [C])
- Or alternatively, using nested value iteration

Multi-obj: Time-bounded guarantees

- Often need probabilistic time-bounded guarantees
 - e.g. "probability of completing tasks within 5 mins is >0.99"
 - but verification techniques for these are less efficient/scalable
 - and often needed in conjunction with secondary objectives
- Efficient generation of time-bounded guarantees [ICAPS'17]
 implemented in the PRISM model checker
- Key ideas:
 - optimize secondary goal wrt. guarantee
 - two phase verification: initial exploration of Pareto front on coarser untimed model
 - then generate guarantee from pruned model
 - significant gains in scalability

Application: Task-graph scheduling

- Task-graph: tasks to complete + dependencies/ordering
 - e.g. for: real-time scheduling, embedded systems controllers
- Simple example: [adapted from BFLM11]
 - evaluate expression $D \times (C \times (A+B)) + ((A+B) + (C \times D))$
 - on multiple processors with differing time/energy usage
 - needs timing information
 - also probabilistic:
 uncertain delays + task failures

- Modelled using probabilistic timed automata (PTAs)
 - optimal strategy (wrt. time or energy) synthesised in PRISM and converted into optimal scheduling

PTA model components

- Faulty processors
 - third processor P_3 : faster, but may fail to execute task

- Probabilistic task execution times
 - simple example: (deterministic) delay of 3 in processor P_1 replaced by distribution: $\frac{1}{3}$:2, $\frac{1}{3}$:3, $\frac{1}{3}$:4

Schedulers (with faulty processor)

- Example (energy) optimal scheduling:
 - note responses to task failures (on processor P₃)

Multi-objective properties

- Multi-objective controller synthesis
 - explore trade-off between time/energy usage

Overview

- Probabilistic model checking & PRISM
 - Markov decision processes (MDPs)
- Multi-objective probabilistic model checking
 - examples: robot navigation; task scheduling
- Partially observable models
 - POMDPs + real-time variants
 - examples: robot navigation; wireless scheduling
- Stochastic (multi-player) games
 - turn-based & concurrent games
 - examples: energy management, investor models

Partial observability

- Partial observable Markov decision processes (POMDPs)
 - limit strategies ability to view precise states of the MDP
 - we assume an observation function from states to observations

Optimal strategies

- resolve actions based on observations only
- maintain belief state about the true state of the MDP

Motivation

- e.g. because robot can only make decisions based on sensors
- e.g. because scheduler cannot probe state of a component

Partial observability

- Developed as an extension of PRISM
 - <u>https://github.com/prismmodelchecker/prism-ext/tree/pomdps</u>
 - PRISM model variables declared as observable/hidden
 - properties in standard PRISM logic
- Implementation on top of PRISM's explicit engine
 - (basic problem is undecidable)
 - computes lower/upper bounds for optimal values and a (possibly sub-optimal) strategy with grid-based approximations
 - applied to a range of case studies (POMDPs up to 60k states)
- Also extended to partially observable PTAs
 - PTA models with hidden (non-clock) variables

Example: Robot maze

- Robot placed uniformly at random in a maze
 - i.e. uncertainty about start state (and subsequent states)
 - 4 actions: north/south/east/west
 - aim to reach target state (10)
- Partial observability
 - the robot cannot see its current location, only surrounding walls
 - e.g. locations 5,6,7 yield the same observation and are equivalent

- Controller synthesis for R^{steps}min=? [C])
 - optimal (minimum) expected num. steps to reach target is 4.3
 - for the fully observable model (i.e., an MDP), it is 3.9

POMDP/POPTA Case studies

- Task graph scheduling
 - processors have different speeds and energy consumption
 - scheduler cannot observe if a process is sleeping or idling
 - synthesize optimal schedulers
 - again, minimising expected execution time or energy usage
- Wireless network scheduling
 - schedule traffic to number of users/channels
 - packets have hard deadlines (packets not sent by their deadline are dropped) and priorities
 - status of channels is not available (unobservable)
 - generate optimal scheduling of packets, maximising priorities and minimising dropped packets
 - demonstrates that idling is sometimes the optimal choice

Overview

- Probabilistic model checking & PRISM
 - Markov decision processes (MDPs)
- Multi-objective probabilistic model checking
 - examples: robot navigation; task scheduling
- Partially observable models
 - POMDPs + real-time variants
 - examples: robot navigation; wireless scheduling
- Stochastic (multi-player) games
 - turn-based & concurrent games
 - examples: energy management, investor models

Stochastic multi-player games (SMGs)

- Stochastic multi-player games
 - competitive/collaborative + stochastic behaviour
 - for now: turn-based (players control states)
 - applications: security (system vs. attacker), controller synthesis (controller vs. environment), distributed algorithms/protocols, ...

Property specifications: rPATL

- $\langle\langle\{1,2\}\rangle\rangle P_{\geq 0.95}$ [F^{≤ 45} done] : "can nodes 1,2 collaborate so that the probability of the protocol terminating within 45 seconds is at least 0.95, whatever nodes 3,4 do?"
- formally: $\langle \langle C \rangle \rangle \psi$: do there exist strategies for players in C such that, for all strategies of other players, property ψ holds?

Model checking

- zero sum properties: analysis reduces to 2-player games
- PRISM-games: www.prismmodelchecker.org/games

а

b

Example – Stochastic games

- Two players: 1 (robot controller), 2 (environment)
 - − probability of s_1 −south→ s_4 is in [p,q] = [0.5-Δ, 0.5+Δ]

Example – Stochastic games

- Two players: 1 (robot controller), 2 (environment)
 - probability of s_1 -south \rightarrow s_4 is in [p,q] = [0.5- Δ , 0.5+ Δ]

{hazard}

rPATL: $\langle \langle \{1\} \rangle \rangle$ P_{max=?} [Fgoal₁]

Optimal strategies: memoryless and deterministic

Computation: graph analysis & numerical approximation

Example – Stochastic games

- Two players: 1 (robot controller), 2 (environment)
 - probability of $s_1\text{-south} \rightarrow s_4$ is in $[p,q] = [0.5 \Delta, 0.5 + \Delta]$

rPATL: $\langle \langle \{1\} \rangle \rangle P_{max=?} [Fgoal_1]$

Optimal strategies: memoryless and deterministic

Computation: graph analysis & numerical approximation

Application: Energy management

- Energy management protocol for Microgrid
 - randomised demand management protocol
 - random back-off when demand is high
- Original analysis [Hildmann/Saffre'11]
 - protocol increases "value" for clients
 - simulation-based, clients are honest

Our analysis

- stochastic multi-player game model
- clients can cheat (and cooperate)
- model checking: PRISM-games
- exposes protocol weakness (incentive for clients to act selfishly
- propose/verify simple fix using penalties

Results: Competitive behaviour

- Expected total value V per household
 - in rPATL: $\langle \langle C \rangle \rangle R^{r_{C_{max=?}}} [F^{0} time=max time] / |C|$
 - where $\mathbf{r}_{\mathbf{C}}$ is combined rewards for coalition \mathbf{C}

Results: Competitive behaviour

- Algorithm fix: simple punishment mechanism
 - distribution manager can cancel some loads exceeding c_{lim}

Concurrent stochastic games

- Concurrent stochastic games (CSGs) [QEST'18]
 - players choose actions concurrently
 - jointly determines (probabilistic) successor state
 - $-\delta : S \times (A_1 \times ... \times A_n) \rightarrow Dist(S)$, rather than $\delta_i : S_i \times A_i \rightarrow Dist(S)$
- Modelling & verification implemented in PRISM-games
 - modelling language assumes that each variable is under the control of exactly one module
- Model checking for (variant of) rPATL logic
 - reduces to finding optimal values of 2-player CSGs
 - basic problem is known to be PSPACE
 - we use value iteration + solution of matrix game for each state (LP problem of size |A|, where A = action set)
 - again, need randomised strategies for optimality

Application: CSGs

- Example: futures market investor
 - two investors i_1 , i_2 , operating in a (stochastic) market
 - market (third player) decides whether to bar investors
- Results (investors maximizing joint profit)

- with (left) and without (right) fluctuations

Other applications: intrusion detection, network protocols₄₁

Conclusions

- Probabilistic model checking & PRISM
 - Markov decision processes & related models

Recent extensions

- multi-objective model checking
- partially observable MDPs
- stochastic games

Challenges & directions

- managing model uncertainty + integration with learning
- partial information/observability: greater efficiency
- scalability, e.g. symbolic methods, abstraction
- stochastic games: multi-objective, equilibria, richer logics

Thanks for your attention

More info here: www.prismmodelchecker.org