

Automatic Verification of Competitive Stochastic Systems

Dave Parker

University of Birmingham

Joint work with:

Taolue Chen, Vojtěch Forejt, Marta Kwiatkowska, Aistis Simaitis

University of Liverpool, May 2012

Verifying stochastic systems

Quantitative verification

- probability, time, costs/rewards, ...
- in particular: systems with stochastic behaviour
- e.g. due to unreliability, uncertainty, randomisation, ...
- often: subtle interplay between probability/nondeterminism

Automated verification

- probabilistic model checking
- tool support: PRISM model checker
- techniques for improving efficiency, scalability

Practical applications

 wireless communication protocols, security protocols, systems biology, DNA computing, robotic planning, ...

Adding competitive behaviour

Open systems

- need to account for the behaviour of components not under our control, possibly with differing/opposing goals
- giving rise to competitive behaviour

Many occurrences in practice

- e.g. security protocols, algorithms for distributed consensus, energy management or sensor network co-ordination
- Natural to adopt a game-theoretic view
 - widely used in computer science, economics, ...
- This talk
 - verifying systems with competitive and stochastic behaviour
 - stochastic multi-player games
 - temporal logic, model checking, tool support, case studies

Overview

- Probabilistic model checking
 - probabilistic models, property specifications
- Stochastic multi-player games (SMGs)
 - the model, probability spaces, rewards
- Property specification: rPATL
 - syntax, semantics, subtleties
- rPATL model checking
 - algorithm, numerical computation, tool support
- Case study: energy management in microgrids

Probabilistic model checking

Probabilistic model checking

- Property specifications based on temporal logic
 - PCTL, CSL, probabilistic LTL, PCTL*, ...
- Simple examples:
 - $P_{\leq 0.01}$ [F "crash"] "the probability of a crash is at most 0.01"
 - $S_{>0.999}$ ["up"] "long-run probability of availability is >0.999"

Usually focus on quantitative (numerical) properties:

- P_{=?} [F "crash"]
 "what is the probability of a crash occurring?"
- then analyse trends in quantitative properties as system parameters vary

Probabilistic model checking

- Typically combine numerical + exhaustive aspects
 - $P_{max=?}$ [$F^{\leq 10}$ "fail"] "worst-case probability of a failure occurring within 10 seconds, for any possible scheduling of system components"
 - $P_{=?}$ [$G^{\leq 0.02}$!"deploy" {"crash"}{max}] "the maximum probability of an airbag failing to deploy within 0.02s, from any possible crash scenario"
 - model checking: graph analysis + numerical solution + ...
- Reward-based properties (rewards = costs = prices)
 - R_{{"time"}=?} [F "end"] "expected algorithm execution time"
 - $R_{\{"energy"\}max=?}$ [$C^{\leq 7200}$] "worst-case expected energy consumption during the first 2 hours"

Stochastic multi-player games

- Stochastic multi-player game (SMGs)
 - probability + nondeterminism + multiple players
- A (turn-based) SMG is a tuple (Π , S, $\langle S_i \rangle_{i \in \Pi}$, A, Δ , L):
 - Π is a set of **n** players
 - **S** is a (finite) set of states
 - $-\langle S_i \rangle_{i \in \Pi}$ is a partition of S
 - A is a set of action labels
 - $-\Delta: S \times A \rightarrow Dist(S)$ is a (partial) transition probability function
 - $L : S \rightarrow 2^{AP}$ is a labelling with atomic propositions from AP
- Notation:
 - A(s) denotes available actions in state A

Paths, strategies + probabilities

- Path: is an (infinite) sequence of connected states in SMG
 represents a system execution (i.e. one possible behaviour)
- Strategy for player i: resolves choices in S_i states
 - based on execution history, i.e. $\sigma_i : (SA)^*S_i \rightarrow Dist(A)$
 - $\ \Sigma_i$ denotes the set of all strategies for player i
- Strategy profile: strategies for all players: $\sigma = (\sigma_1, ..., \sigma_n)$
 - can be: deterministic (pure), memoryless, finite-memory, ...
- Probability measure over paths: Pr_s^σ
 - for strategy profile σ , over set of all paths Path_s from s
 - any (ω -)regular property over states/actions is measurable
 - $E_s^{\sigma}[X]$: expected value of measurable function $X : Path_s \rightarrow \mathbb{R}_{\geq 0}$

Rewards

- Rewards (or costs)
 - real-valued quantities assigned to states (and/or transitions)
- Wide range of possible uses:
 - elapsed time, energy consumption, size of message queue, number of messages successfully delivered, net profit, ...
- We use:
 - state rewards: $r : S \rightarrow \mathbb{N}$ (but can generalise to $\mathbb{Q}_{\geq 0}$)
 - expected cumulative reward until a target set T is reached
- 3 interpretations of rewards
 - 3 reward types $* \in \{\infty, c, 0\}$, differing where T is not reached
 - reward is assumed to be infinite, cumulated sum, zero, resp.
 - $-\infty$: e.g. expected time for algorithm execution
 - c: e.g. expected resource usage (energy, messages sent, ...)
 - 0: e.g. reward incentive awarded on algorithm completion

Property specification: rPATL

- New temporal logic rPATL:
 - reward probabilistic alternating temporal logic

CTL, extended with:

- coalition operator $\langle\langle \textbf{C}\rangle\rangle$ of ATL
- probabilistic operator P of PCTL
- generalised version of reward operator R from PRISM

• Example:

- $\left<\!\left<\!\left\{1,2\right\}\!\right>\!\right>$ $P_{<0.01}$ [$F^{\le10}\,error$]
- "players 1 and 2 have a strategy to ensure that the probability of an error occurring within 10 steps is less than 0.01, regardless of the strategies of other players"

rPATL syntax

• Syntax:

$$\begin{split} \varphi &::= \top \mid a \mid \neg \varphi \mid \varphi \land \varphi \mid \langle \langle C \rangle \rangle P_{\bowtie q}[\psi] \mid \langle \langle C \rangle \rangle R^{r}_{\bowtie x} \ [F^{\star}\varphi] \\ \psi &::= X \ \varphi \mid \varphi \ U^{\leq k} \ \varphi \mid F^{\leq k} \ \varphi \mid G^{\leq k} \ \varphi \end{split}$$

- where:
 - a∈AP is an atomic proposition, C⊆Π is a coalition of players, $\bowtie \in \{\le, <, >, \ge\}, q \in [0,1] \cap \mathbb{Q}, x \in \mathbb{Q}_{\ge 0}, k \in \mathbb{N} \cup \{\infty\}$

r is a reward structure and $\star \in \{0, \infty, c\}$ is a reward type

- $\langle \langle C \rangle \rangle P_{\bowtie q}[\psi]$
 - "players in coalition C have a strategy to ensure that the probability of path formula ψ being true satisfies $\bowtie q$, regardless of the strategies of other players"
- $\langle \langle C \rangle \rangle R^{r}_{\bowtie x} [F^{\star} \varphi]$
 - "players in coalition C have a strategy to ensure that the expected reward r to reach a ϕ -state (type *) satisfies $\bowtie x$, regardless of the strategies of other players"

rPATL semantics

- Semantics for most operators is standard
- Just focus on P and R operators...
 - present using reduction to a stochastic 2-player game
 - (as for later model checking algorithms)
- Coalition game G_C for SMG G and coalition $C \subseteq \Pi$
 - 2-player SMG where C and $\Pi \backslash C$ collapse to players 1 and 2
- $\langle \langle C \rangle \rangle P_{\bowtie q}[\psi]$ is true in state s of G iff:
 - in coalition game G_C :
 - $\ \exists \sigma_1 {\in} \Sigma_1 \text{ such that } \forall \sigma_2 {\in} \Sigma_2 \text{ . } Pr_s^{\sigma_1, \sigma_2}(\psi) \bowtie q$
- Semantics for R operator defined similarly...

Examples

 $\langle \langle \bigcirc \rangle \rangle P_{\geq \frac{1}{4}} [F \checkmark]$ true in initial state

 $\langle \langle \bigcirc \rangle \rangle P_{\geq \mathscr{V}_3} \left[\begin{array}{c} \mathsf{F} \checkmark \end{array} \right]$

 $\langle \langle \bigcirc, \square \rangle \rangle \mathsf{P}_{\geq \frac{1}{3}} \left[\begin{array}{c} \mathsf{F} \checkmark \end{array} \right]$

Examples

 $\langle \langle \bigcirc \rangle \rangle P_{\geq \frac{1}{4}} [F \checkmark]$ true in initial state

 $\langle \langle \bigcirc \rangle \rangle P_{\geq \frac{1}{3}} [F \checkmark]$ false in initial state

 $\langle \langle \bigcirc, \square \rangle \rangle P_{\geq \frac{1}{3}} \left[\begin{array}{c} \mathsf{F} \checkmark \end{array} \right]$

Examples

 $\langle \langle \bigcirc \rangle \rangle P_{\geq \frac{1}{4}} [F \checkmark]$ true in initial state

 $\langle \langle \bigcirc \rangle \rangle P_{\geq \frac{1}{3}} [F \checkmark]$ false in initial state

 $\langle \langle \bigcirc, \square \rangle \rangle P_{\geq \frac{1}{3}} [F \checkmark]$ true in initial state

Equivalences + extensions

- Two useful equivalences:
- $\boldsymbol{\cdot} \ \langle \langle C \rangle \rangle P_{\geq q}[\neg \psi] \equiv \langle \langle C \rangle \rangle P_{\leq 1-q}[\psi]$
 - negation to derive path properties e.g. G a $\equiv \neg F \neg a$
 - model checking essentially just focuses on reachability
- $\bullet \ \ \langle \langle C \rangle \rangle P_{\geq q}[\psi] \equiv \neg \langle \langle \Pi \ \backslash \ C \rangle \rangle P_{< q}[\psi]$
 - thanks to standard determinacy results
 - model checking focuses on min/max values for P1/P2
- Quantitative (numerical) properties:
 - best/worst-case values
- e.g. $\langle \langle C \rangle \rangle P_{max=?}[\psi] = sup_{\sigma_1 \in \Sigma_1} inf_{\sigma_2 \in \Sigma_2} Pr_s^{\sigma_1, \sigma_2}(\psi)$

Independence of strategies

- Strategies for each coalition operator are independent
 - for example, in: $\langle \langle 1 \rangle \rangle P_{\geq 1}[G(\langle \langle 1,2 \rangle \rangle P_{\geq \frac{1}{4}}[F \checkmark])]$
 - no dependencies in player 1 strategies in quantifiers
 - branching-time temporal logic (like ATL, PCTL, ...)
- Introducing dependencies is problematic
 - e.g. subsumes existential semantics for PCTL on Markov decision processes (MDPs), which is undecidable
 - (does there exist a single adversary satisfying one formula?)
 - $\langle \langle 1 \rangle \rangle P_{\geq 1} [\ G \langle \langle 1 \rangle \rangle P_{\geq \frac{1}{4}} [\ F \checkmark]]$
- But nested properties still have natural applications
 - e.g. sensor network, with players: sensor, repairer
 - $\langle\langle \text{sensor} \rangle \rangle P_{\langle 0.01} [F(\neg \langle \langle \text{repairer} \rangle \rangle P_{\geq 0.95} [F \text{ "operational"}])]$

Why do we need multiple players?

- SMGs have multiple (>2) players
 - but semantics (and model checking) reduce to 2-player case
 - due to (zero sum) nature of queries expressible by rPATL
 - so why do we need multiple players?
- 1. Modelling convenience
 - and/or multiple rPATL queries on same model
- 2. May also exploit in nested queries, e.g.:
 - players: sensor1, sensor2, repairer
 - $\langle\langle sensor1 \rangle \rangle P_{<0.01} [F (\neg \langle \langle repairer \rangle \rangle P_{\geq 0.95} [F "operational"])]$

Model checking rPATL

- Basic algorithm: as for any branching-time temporal logic
 - recursive descent of formula parse tree
 - compute $Sat(\phi) = \{ s \in S \mid s \models \phi \}$ for each subformula ϕ
- Main task: checking P and R operators
 - reduction to solution of stochastic 2-player game G_C
 - $\text{ e.g. } \langle \langle C \rangle \rangle P_{\geq q}[\psi] \ \Leftrightarrow \ \text{sup}_{\sigma_1 \in \Sigma_1} \text{ inf}_{\sigma_2 \in \Sigma_2} \text{ Pr}_s^{\sigma_1, \sigma_2}(\psi) \geq q$
 - complexity: NP \cap coNP (without any R[F⁰] operators)
 - compared to, e.g. P for Markov decision processes
 - complexity for full logic: NEXP \cap coNEXP (due to R[F⁰] op.)

In practice though:

- evaluation of numerical fixed points ("value iteration")
- up to a desired level of convergence
- usual approach taken in probabilistic model checking tools

Probabilities for P operator

- E.g. $\langle \langle C \rangle \rangle P_{\geq q}$ [F φ] : max/min reachability probabilities
 - compute $\sup_{\sigma_1 \in \Sigma_1} \inf_{\sigma_2 \in \Sigma_2} \Pr_s^{\sigma_1, \sigma_2}(F \varphi)$ for all states s
 - deterministic memoryless strategies suffice
- Value is:
 - -1 if $s \in Sat(\varphi)$, and otherwise least fixed point of:

$$f(s) = \begin{cases} \max_{a \in A(s)} \left(\sum_{s' \in S} \Delta(s, a)(s') \cdot f(s') \right) & \text{if } s \in S_1 \\ \min_{a \in A(s)} \left(\sum_{s' \in S} \Delta(s, a)(s') \cdot f(s') \right) & \text{if } s \in S_2 \end{cases}$$

• Computation:

- start from zero, propagate probabilities backwards
- guaranteed to converge

Example

rPATL: ⟨⟨○, □⟩⟩P_{≥⅓} [F ✓] Player 1: ○, □ Player 2: ◇ Compute: sup_{σ1∈Σ1} inf_{σ2∈Σ2} Pr_s^{σ1,σ2} (F ✓)

Rewards for R[F^c] operator

- E.g. $\langle\langle C \rangle\rangle R^{r}_{\geq q}$ [F^c φ] : max/min expected rewards for P1/P2
 - again: deterministic memoryless strategies suffice
- Value is:
 - ∞ if s \in Sat($\langle \langle C \rangle \rangle P_{>0}$ [G F "pos_rew"]),
 - 0 if s \in Sat(ϕ), and otherwise least fixed point of:

$$f(s) = \begin{cases} r(s) + \max_{a \in A(s)} \left(\sum_{s' \in S} \Delta(s, a)(s') \cdot f(s') \right) & \text{if } s \in S_1 \\ r(s) + \min_{a \in A(s)} \left(\sum_{s' \in S} \Delta(s, a)(s') \cdot f(s') \right) & \text{if } s \in S_2 \end{cases}$$

Rewards for $R[F^{\infty}]$ operator

- E.g. $\langle \langle C \rangle \rangle R^{r}_{\geq q} [F^{\infty} \varphi]$: max/min expected rewards for P1/P2
 - again: deterministic memoryless strategies suffice
- Value is:
 - $\infty \text{ if } s \in \text{Sat}(\langle \langle C \rangle \rangle P_{>0}[\ G \ F \text{ "pos_rew" }]),$
 - 0 if $s \in Sat(\phi)$, and otherwise greatest fixed point over \mathbb{R} of:

$$f(s) = \begin{cases} r(s) + \max_{a \in A(s)} \left(\sum_{s' \in S} \Delta(s, a)(s') \cdot f(s') \right) & \text{if } s \in S_1 \\ r(s) + \min_{a \in A(s)} \left(\sum_{s' \in S} \Delta(s, a)(s') \cdot f(s') \right) & \text{if } s \in S_2 \end{cases}$$

• Computation:

- 1. set zero rewards to ϵ , compute least fixed point
- 2. evaluate greatest fixed point, downwards from step 1

Example: Finite memory for R[F0]

- E.g. $\langle\langle C \rangle\rangle R^{r}_{\geq q}$ [F⁰ φ] : max/min expected rewards for P1/P2
 - now: deterministic memoryless strategies do not suffice

$$\langle \langle \bigcirc, \square \rangle \rangle R^{r}_{\geq \frac{1}{2}} [F^{0} \checkmark]$$

b: reward 0 a, b: expected reward 0.5 a, a, b: expected reward 0.5 a, a, a, b: expected reward 0.375

What if incoming reward is 2?

b: reward 2 a, b: expected reward 1.5

Rewards for R[F⁰] operator

- E.g. ((C)) R^r_{≥q}[F⁰ φ] : max/min expected rewards for P1/P2
 now: deterministic memoryless strategies do not suffice
- There exists a finite-memory optimal strategy for P1
 - there exists a bound B, beyond which strategy is memoryless
 - B is exponential in worst-case, but can be computed...

Computation:

- compute bound B (using simpler rPATL queries)
- perform value iteration for each level 0,...,B; combine results

Tool support: PRISM-games

- Prototype model checker for stochastic games
 - integrated into PRISM model checker
 - using new explicit-state model checking engine
- SMGs added to PRISM modelling language
 - guarded command language, based on Reactive Modules
 - finite data types, parallel composition, proc. algebra op.s, ...
- rPATL added to PRISM property specification language
 implemented value iteration based model checking
- Available now:
 - <u>http://www.prismmodelchecker.org/games/</u>

Case studies

- Evaluated on several case studies:
 - team formation protocol [CLIMA'11]
 - futures market investor model [Mclver & Morgan]
 - collective decision making for sensor networks [TACAS'12]
 - energy management in microgrids [TACAS'12]

Energy management in microgrids

- Microgrid: proposed model for future energy markets
 - localised energy management
- Neighbourhoods use and store electricity generated from local sources
 - wind, solar, ...
- Needs: demand-side management
 - active management of demand by users
 - to avoid peaks

Microgrid demand-side management

- Demand-side management algorithm [Hildmann/Saffre'11]
 - N households, connected to a distribution manager
 - households submit loads for execution
 - load submission probability: daily demand curve
 - load duration: random, between 1 and D steps
 - execution cost/step = number of currently running loads
- Simple algorithm:
 - upon load generation, if cost is below an agreed limit c_{lim} , execute it, otherwise only execute with probability P_{start}
- Analysis of [Hildmann/Saffre'11]
 - define household value as V=loads_executing/execution_cost
 - simulation-based analysis shows reduction in peak demand and total energy cost reduced, with good expected value V
 - (if all households stick to algorithm)

Microgrid demand-side management

- The model
 - SMG with N players (one per household)
 - analyse 3-day period, using piecewise approximation of daily demand curve
 - fix parameters D=4, c_{lim} =1.5
 - add rewards structure for value V
- Built/analysed models
 - for N=2,...,7 households
- Step 1: assume all households follow algorithm of [HS'11] (MDP)
 - obtain optimal value for P_{start}

0 3 6 9 12 15 18 21 24 Time of the day (hours)

Ν	States	Transitions
5	743,904	2,145,120
6	2,384,369	7,260,756
7	6,241,312	19,678,246

- Step 2: introduce competitive behaviour (SMG)
 - allow coalition C of households to deviate from algorithm

Results: Competitive behaviour

- Expected total value V per household
 - in rPATL: $\langle \langle C \rangle \rangle R^{r}C_{max=?}$ [F⁰ time=max time] / |C|
 - where r_{c} is combined rewards for coalition C

Results: Competitive behaviour

- Algorithm fix: simple punishment mechanism
 - distribution manager can cancel some loads exceeding c_{lim}

Conclusions

Conclusions

- verification for stochastic systems with competitive behaviour
- modelled as stochastic multi-player games
- new temporal logic rPATL for property specification
- rPATL model checking algorithm based on num. fixed points
- prototype model checker PRISM-games
- case studies: energy management for microgrid

Future work

- more realistic classes of strategy, e.g. partial information
- further objectives, e.g. multiple objectives, Nash equilibria, ...
- new application areas, security, randomised algorithms, ...