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Verifying stochastic systems 

•  Quantitative verification 
−  probability, time, costs/rewards, … 
−  in particular: systems with stochastic behaviour 
−  e.g. due to unreliability, uncertainty, randomisation, … 
−  often: subtle interplay between probability/nondeterminism 

•  Automated verification 
−  probabilistic model checking 
−  tool support: PRISM model checker 
−  techniques for improving efficiency, scalability 

•  Practical applications 
−  wireless communication protocols, security protocols,  

systems biology, DNA computing, robotic planning, … 



Adding competitive behaviour 

•  Open systems 
−  need to account for the behaviour of components not under 

our control, possibly with differing/opposing goals 
−  giving rise to competitive behaviour 

•  Many occurrences in practice 
−  e.g. security protocols, algorithms for distributed consensus, 

energy management or sensor network co-ordination 

•  Natural to adopt a game-theoretic view 
−  widely used in computer science, economics, … 

•  This talk 
−  verifying systems with competitive and stochastic behaviour 
−  stochastic multi-player games 
−  temporal logic, model checking, tool support, case studies 



Overview 

•  Probabilistic model checking 
−  probabilistic models, property specifications 

•  Stochastic multi-player games (SMGs) 
−  the model, probability spaces, rewards 

•  Property specification: rPATL 
−  syntax, semantics, subtleties 

•  rPATL model checking 
−  algorithm, numerical computation, tool support 

•  Case study: energy management in microgrids 
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Probabilistic model checking 

•  Property specifications based on temporal logic 
−  PCTL, CSL, probabilistic LTL, PCTL*, … 

•  Simple examples: 
−  P≤0.01 [ F “crash” ] – “the probability of a crash is at most 0.01” 
−  S>0.999 [ “up” ] – “long-run probability of availability is >0.999” 

•  Usually focus on quantitative (numerical) properties: 
−  P=? [ F “crash” ]  

“what is the probability  
of a crash occurring?” 

−  then analyse trends in 
quantitative properties 
as system parameters vary 



Probabilistic model checking 

•  Typically combine numerical + exhaustive aspects 
−  Pmax=? [ F≤10 “fail” ] – “worst-case probability of a failure 

occurring within 10 seconds, for any possible scheduling of 
system components” 

−  P=? [ G≤0.02 !“deploy” {“crash”}{max} ] - “the maximum 
probability of an airbag failing to deploy within 0.02s,  
from any possible crash scenario” 

−  model checking: graph analysis + numerical solution + … 

•  Reward-based properties (rewards = costs = prices) 
−  R{“time”}=? [ F “end” ] – “expected algorithm execution time” 

−  R{“energy”}max=? [ C≤7200 ] – “worst-case expected energy 
consumption during the first 2 hours” 



Stochastic multi-player games 

•  Stochastic multi-player game (SMGs)  
−  probability + nondeterminism + multiple players 

•  A (turn-based) SMG is a tuple (Π, S, ⟨Si⟩i∈Π, A, Δ, L): 
−  Π is a set of n players 
−  S is a (finite) set of states 
−  ⟨Si⟩i∈Π is a partition of S 
−  A is a set of action labels 
−  Δ : S × A → Dist(S) is a (partial) 

 transition probability function 
−  L : S → 2AP is a labelling with 

 atomic propositions from AP 

•  Notation: 
−  A(s) denotes available actions in state A 
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Paths, strategies + probabilities 

•  Path: is an (infinite) sequence of connected states in SMG 
−  represents a system execution (i.e. one possible behaviour) 

•  Strategy for player i: resolves choices in Si states 
−  based on execution history, i.e. σi : (SA)*Si → Dist(A) 
−  Σi denotes the set of all strategies for player i 

•  Strategy profile: strategies for all players: σ=(σ1,…,σn) 
−  can be: deterministic (pure),  

memoryless, finite-memory, … 

•  Probability measure over paths: Prs
σ 

−  for strategy profile σ, over set of all paths Paths from s 
−  any (ω-)regular property over states/actions is measurable 
−  Es

σ [X] : expected value of measurable function X : Paths → ℝ≥0 

s1 s2 s 



Rewards 

•  Rewards (or costs)  
−  real-valued quantities assigned to states (and/or transitions) 

•  Wide range of possible uses: 
−  elapsed time, energy consumption, size of message queue, 

number of messages successfully delivered, net profit, … 
•  We use: 

−  state rewards: r : S → ℕ     (but can generalise to ℚ≥0) 
−  expected cumulative reward until a target set T is reached 

•  3 interpretations of rewards 
−  3 reward types ⋆ ∈ {∞,c,0}, differing where T is not reached 
−  reward is assumed to be infinite, cumulated sum, zero, resp. 
− ∞: e.g. expected time for algorithm execution 
−  c: e.g. expected resource usage (energy, messages sent, …) 
−  0: e.g. reward incentive awarded on algorithm completion 



Property specification: rPATL 

•  New temporal logic rPATL: 
−  reward probabilistic alternating temporal logic 

•  CTL, extended with: 
−  coalition operator ⟨⟨C⟩⟩ of ATL 
−  probabilistic operator P of PCTL 
−  generalised version of reward operator R from PRISM 

•  Example: 
−  ⟨⟨{1,2}⟩⟩ P<0.01 [ F≤10 error ] 
−  “players 1 and 2 have a strategy to ensure that the probability 

of an error occurring within 10 steps is less than 0.01, 
regardless of the strategies of other players” 



rPATL syntax 

•  Syntax: 
   φ ::= ⊤ | a | ¬φ | φ ∧ φ | ⟨⟨C⟩⟩P⋈q[ψ] | ⟨⟨C⟩⟩Rr

⋈x [F⋆φ] 
   ψ ::= X φ | φ U≤k φ | F≤k φ | G≤k φ 

•  where: 
−  a∈AP is an atomic proposition, C⊆Π is a coalition of players, 

 ⋈∈{≤,<,>,≥}, q∈[0,1]∩ℚ, x∈ℚ≥0, k ∈ ℕ∪{∞} 
 r is a reward structure and ⋆∈{0,∞,c} is a reward type  

•  ⟨⟨C⟩⟩P⋈q[ψ]  
−  “players in coalition C have a strategy to ensure that the 

probability of path formula ψ being true satisfies ⋈ q,  
regardless of the strategies of other players” 

•  ⟨⟨C⟩⟩Rr
⋈x [F⋆φ] 

−  “players in coalition C have a strategy to ensure that the 
expected reward r to reach a φ-state (type ⋆) satisfies ⋈ x, 
regardless of the strategies of other players” 



rPATL semantics 

•  Semantics for most operators is standard 
•  Just focus on P and R operators… 

−  present using reduction to a stochastic 2-player game 
−  (as for later model checking algorithms) 

•  Coalition game GC for SMG G and coalition C⊆Π 
−  2-player SMG where C and Π\C collapse to players 1 and 2 

•  ⟨⟨C⟩⟩P⋈q[ψ] is true in state s of G iff: 
−  in coalition game GC: 
−  ∃σ1∈Σ1 such that ∀σ2∈Σ2 . Prs

σ1,σ2 (ψ) ⋈ q 

•  Semantics for R operator defined similarly… 
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Equivalences + extensions 

•  Two useful equivalences: 

•  ⟨⟨C⟩⟩P≥q[¬ψ] ≡ ⟨⟨C⟩⟩P≤1−q[ψ] 
−  negation to derive path properties e.g. G a ≡ ¬F¬a 
−  model checking essentially just focuses on reachability 

•  ⟨⟨C⟩⟩P≥q[ψ] ≡ ¬⟨⟨Π \ C⟩⟩P<q[ψ] 
−  thanks to standard determinacy results 
−  model checking focuses on min/max values for P1/P2 

•  Quantitative (numerical) properties: 
−  best/worst-case values 

•  e.g. ⟨⟨C⟩⟩Pmax=? [ψ] = supσ1∈Σ1
 infσ2∈Σ2

 Prs
σ1,σ2 (ψ) 



Independence of strategies 

•  Strategies for each coalition operator are independent 
−  for example, in: ⟨⟨1⟩⟩ P≥1[ G ( ⟨⟨1,2⟩⟩ P≥¼[ F ✓ ] ) ] 
−  no dependencies in player 1 strategies in quantifiers 
−  branching-time temporal logic (like ATL, PCTL, …) 

•  Introducing dependencies is problematic 
−  e.g. subsumes existential semantics for PCTL on 

Markov decision processes (MDPs), which is undecidable 
−  (does there exist a single adversary satisfying one formula?) 
−  ⟨⟨1⟩⟩ P≥1[ G ⟨⟨1⟩⟩ P≥¼[ F ✓ ] ] 

•  But nested properties still have natural applications 
−  e.g. sensor network, with players: sensor, repairer 
−  ⟨⟨sensor⟩⟩ P<0.01[ F (¬⟨⟨repairer⟩⟩ P≥0.95[ F “operational” ] ) ] 



Why do we need multiple players? 

•  SMGs have multiple (>2) players 
−  but semantics (and model checking) reduce to 2-player case 
−  due to (zero sum) nature of queries expressible by rPATL 
−  so why do we need multiple players? 

•  1. Modelling convenience 
−  and/or multiple rPATL queries on same model 

•  2. May also exploit in nested queries, e.g.: 
−  players: sensor1, sensor2, repairer 
−  ⟨⟨sensor1⟩⟩ P<0.01[ F (¬⟨⟨repairer⟩⟩ P≥0.95[ F “operational” ] ) ] 



Model checking rPATL 

•  Basic algorithm: as for any branching-time temporal logic 
−  recursive descent of formula parse tree 
−  compute Sat(φ) = { s∈S | s⊨φ } for each subformula φ 

•  Main task: checking P and R operators 
−  reduction to solution of stochastic 2-player game GC 

−  e.g. ⟨⟨C⟩⟩P≥q[ψ]  ⇔  supσ1∈Σ1
 infσ2∈Σ2

 Prs
σ1,σ2 (ψ) ≥q 

−  complexity: NP ∩ coNP  (without any R[F0] operators) 
−  compared to, e.g. P for Markov decision processes 
−  complexity for full logic: NEXP ∩ coNEXP  (due to R[F0] op.) 

•  In practice though: 
−  evaluation of numerical fixed points (“value iteration”) 
−  up to a desired level of convergence 
−  usual approach taken in probabilistic model checking tools 



Probabilities for P operator 

•  E.g. ⟨⟨C⟩⟩P≥q[ F φ ] : max/min reachability probabilities 
−  compute supσ1∈Σ1

 infσ2∈Σ2
 Prs

σ1,σ2 (F φ) for all states s 
−  deterministic memoryless strategies suffice 

•  Value is: 
−  1 if s ∈ Sat(φ), and otherwise least fixed point of: 

•  Computation: 
−  start from zero, propagate probabilities backwards 
−  guaranteed to converge 
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Rewards for R[Fc] operator 

•  E.g. ⟨⟨C⟩⟩Rr
≥q[ Fc φ ] : max/min expected rewards for P1/P2 

−  again: deterministic memoryless strategies suffice 

•  Value is: 
− ∞ if s ∈ Sat( ⟨⟨C⟩⟩P>0[ G F “pos_rew” ] ), 
−  0 if s ∈ Sat(φ), and otherwise least fixed point of: 
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Rewards for R[F∞] operator 

•  E.g. ⟨⟨C⟩⟩Rr
≥q[ F∞ φ ] : max/min expected rewards for P1/P2 

−  again: deterministic memoryless strategies suffice 

•  Value is: 
− ∞ if s ∈ Sat( ⟨⟨C⟩⟩P>0[ G F “pos_rew” ] ), 
−  0 if s ∈ Sat(φ), and otherwise greatest fixed point over ℝ of: 

•  Computation: 
−  1. set zero rewards to ε, compute least fixed point 
−  2. evaluate greatest fixed point, downwards from step 1 
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Example: Finite memory for R[F0] 

•  E.g. ⟨⟨C⟩⟩Rr
≥q[ F0 φ ] : max/min expected rewards for P1/P2 

−  now: deterministic memoryless strategies do not suffice 
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Rewards for R[F0] operator 

•  E.g. ⟨⟨C⟩⟩Rr
≥q[ F0 φ ] : max/min expected rewards for P1/P2 

−  now: deterministic memoryless strategies do not suffice 

•  There exists a finite-memory optimal strategy for P1 
−  there exists a bound B, beyond which strategy is memoryless 
−  B is exponential in worst-case, but can be computed… 

•  Computation: 
−  compute bound B (using simpler rPATL queries) 
−  perform value iteration for each level 0,…,B; combine results 



Tool support: PRISM-games 

•  Prototype model checker for stochastic games 
−  integrated into PRISM model checker 
−  using new explicit-state model checking engine 

•  SMGs added to PRISM modelling language 
−  guarded command language, based on Reactive Modules 
−  finite data types, parallel composition, proc. algebra op.s, … 

•  rPATL added to PRISM property specification language 
−  implemented value iteration based model checking 

•  Available now: 
−  http://www.prismmodelchecker.org/games/ 



Case studies 

•  Evaluated on several case studies: 
−  team formation protocol [CLIMA’11] 
−  futures market investor model [McIver & Morgan] 
−  collective decision making for sensor networks [TACAS’12] 
−  energy management in microgrids [TACAS’12] 



Energy management in microgrids 

•  Microgrid: proposed model for future energy markets 
−  localised energy management 

•  Neighbourhoods use and  
store electricity generated  
from local sources 
−  wind, solar, … 

•  Needs: demand-side 
management 
−  active management 

of demand by users 
−  to avoid peaks 



Microgrid demand-side management 

•  Demand-side management algorithm [Hildmann/Saffre’11] 
−  N households, connected to a distribution manager 
−  households submit loads for execution 
−  load submission probability: daily demand curve 
−  load duration: random, between 1 and D steps 
−  execution cost/step = number of currently running loads 

•  Simple algorithm: 
−  upon load generation, if cost is below an agreed limit clim,  

execute it, otherwise only execute with probability Pstart 

•  Analysis of [Hildmann/Saffre’11] 
−  define household value as V=loads_executing/execution_cost 
−  simulation-based analysis shows reduction in peak demand 

and total energy cost reduced, with good expected value V 
−  (if all households stick to algorithm) 



Microgrid demand-side management 

•  The model 
−  SMG with N players (one per household) 
−  analyse 3-day period, using piecewise  

approximation of daily demand curve 
−  fix parameters D=4, clim=1.5 
−  add rewards structure for value V 

•  Built/analysed models 
−  for N=2,…,7 households 

•  Step 1: assume all households 
follow algorithm of [HS’11] (MDP) 
−  obtain optimal value for Pstart  

•  Step 2: introduce competitive behaviour (SMG) 
−  allow coalition C of households to deviate from algorithm 

N States Transitions 
5 743,904 2,145,120 
6 2,384,369 7,260,756 
7 6,241,312 19,678,246 



Results: Competitive behaviour 

•  Expected total value V per household 
−  in rPATL: ⟨⟨C⟩⟩RrCmax=? [F0 time=max time] / |C| 
−  where rC is combined rewards for coalition C 
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Results: Competitive behaviour 

•  Algorithm fix: simple punishment mechanism 
−  distribution manager can cancel some loads exceeding clim  

All follow alg. 

Deviations of 
varying size 

Better to 
collaborate 
(with all) 



Conclusions 

•  Conclusions 
−  verification for stochastic systems with competitive behaviour 
−  modelled as stochastic multi-player games 
−  new temporal logic rPATL for property specification 
−  rPATL model checking algorithm based on num. fixed points 
−  prototype model checker PRISM-games 
−  case studies: energy management for microgrid 

•  Future work 
−  more realistic classes of strategy, e.g. partial information 
−  further objectives, e.g. multiple objectives, Nash equilibria, … 
−  new application areas, security, randomised algorithms, … 


