

Probabilistic Model Checking and Strategy Synthesis

Dave Parker University of Birmingham

University of Southampton, November 2015

Probabilistic Model Checking and Strategy Synthesis

Dave Parker

University of Birmingham

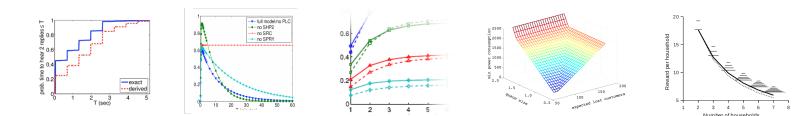
Joint work with: Marta Kwiatkowska, Vojtěch Forejt, Gethin Norman, Hongyang Qu, Aistis Simaitis, Taolue Chen, Bruno Lacerda, Nick Hawes

Overview

Probabilistic model checking

- verification vs. strategy synthesis
- Markov decision processes (MDPs)
- example: robot navigation

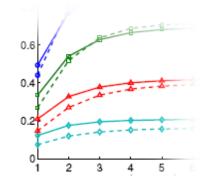
Multi-objective probabilistic model checking


- examples: power management/team-formation
- Stochastic (multi-player) games
 - example: energy management

Motivation

- Verifying probabilistic systems...
 - unreliable or unpredictable behaviour
 - · failures of physical components
 - message loss in wireless communication
 - unreliable sensors/actuators
 - randomisation in algorithms/protocols
 - random back-off in communication protocols
 - random routing to reduce flooding or provide anonymity
- We need to verify quantitative system properties
 - "the probability of the airbag failing to deploy within 0.02 seconds of being triggered is at most 0.001"
 - not just correctness: reliability, timeliness, performance, ...
 - not just verification: correctness by construction

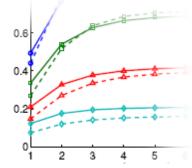
Probabilistic model checking


- Construction and analysis of probabilistic models
 - state-transition systems labelled with probabilities (e.g. Markov chains, Markov decision processes)
 - from a description in a high-level modelling language
- Properties expressed in temporal logic, e.g. PCTL:
 - trigger \rightarrow P_{≥ 0.999} [F^{≤ 20} deploy]
 - "the probability of the airbag deploying within 20ms of being triggered is at at least 0.999"
 - properties checked against models using exhaustive search and numerical computation

0.5 \$0.4

Probabilistic model checking

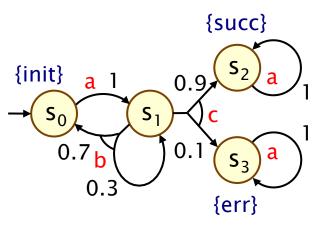
- Many types of probabilistic models supported
- Wide range of quantitative properties, expressible in temporal logic (probabilities, timing, costs, rewards, ...)
- Often focus on numerical results (probabilities etc.)
 - analyse trends, look for system flaws, anomalies
 - P_{≤0.1} [F *fail*] "the probability of a failure occurring is at most 0.1"



 P_{=?} [F fail] – "what is the probability of a failure occurring?"

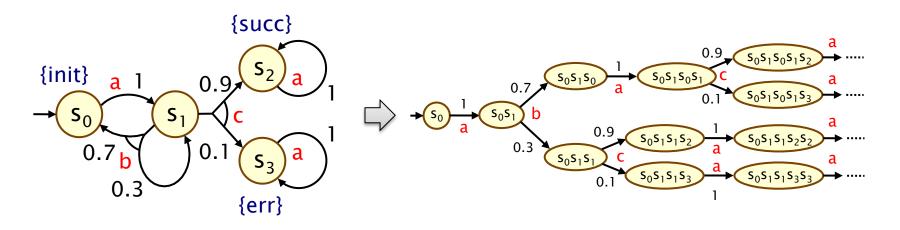
Probabilistic model checking

- Many types of probabilistic models supported
- Wide range of quantitative properties, expressible in temporal logic (probabilities, timing, costs, rewards, ...)
- Often focus on numerical results (probabilities etc.)
 analyse trends, look for system flaws, anomalies
- Provides "exact" numerical results/guarantees
 - compared to, for example, simulation
- Combines numerical & exhaustive analysis


 especially useful for nondeterministic models

- Fully automated, tools available, widely applicable
 - network/communication protocols, security, biology, robotics & planning, power management, ...

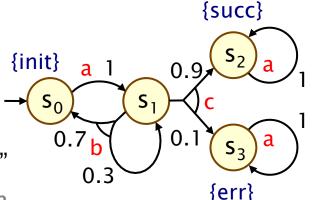
Markov decision processes (MDPs)


- Markov decision processes (MDPs)
 - widely used also in: AI, planning, optimal control, ...
 - model nondeterministic as well as probabilistic behaviour

- Nondeterminism for:
 - control: decisions made by a controller or scheduler
 - adversarial behaviour of the environment
 - concurrency/scheduling: interleavings of parallel components
 - abstraction, or under-specification, of unknown behaviour

Strategies

- A strategy (or "policy" or "adversary")
 - is a resolution of nondeterminism, based on history
 - i.e. a mapping from finite paths to (distributions over) actions
 - induces (infinite-state) Markov chain (and probability space)



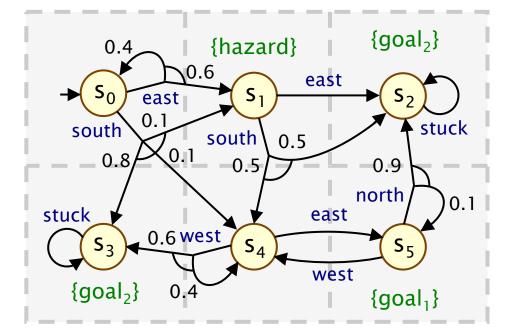
- Classes of strategies:
 - memory: memoryless, finite-memory, or infinite-memory
 - randomisation: deterministic or randomised

Verification vs. Strategy synthesis

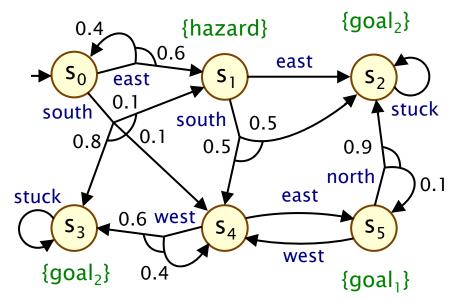
• 1. Verification

- quantify over all possible strategies (i.e. best/worst-case)
- $P_{\leq 0.1}$ [F *err*]: "the probability of an error occurring is ≤ 0.1 for all strategies"

 applications: randomised communication protocols, randomised distributed algorithms, security, ...


2. Strategy synthesis

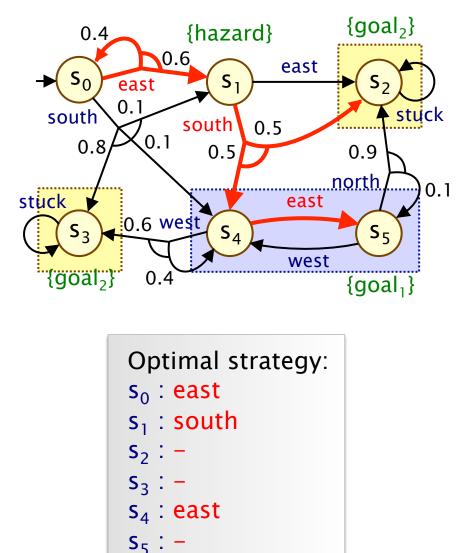
- generation of "correct-by-construction" controllers
- $P_{\leq 0.1}$ [F *err*]: "does there exist a strategy for which the probability of an error occurring is ≤ 0.1 ?"
- applications: robotics, power management, security, ...
- Two dual problems; same underlying computation:
 - compute optimal (minimum or maximum) values


Running example

• Example MDP

- robot moving through terrain divided in to 3 x 2 grid

Example – Reachability


Verify: $P_{\leq 0.6}$ [F goal₁] or Synthesise for: $P_{\geq 0.4}$ [F goal₁] \Downarrow Compute: $P_{max=?}$ [F goal₁]

Optimal strategies: memoryless and deterministic

Computation:

graph analysis + numerical soln. (linear programming, value iteration, policy iteration)

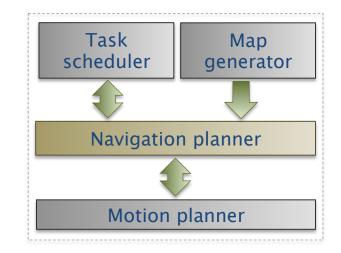
Example – Reachability

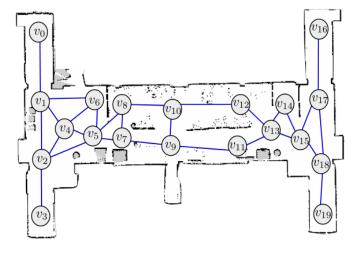
Verify: $P_{\leq 0.6}$ [F goal₁] or Synthesise for: $P_{\geq 0.4}$ [F goal₁] \Downarrow Compute: $P_{max=?}$ [F goal₁] = 0.5

Optimal strategies: memoryless and deterministic

Computation:

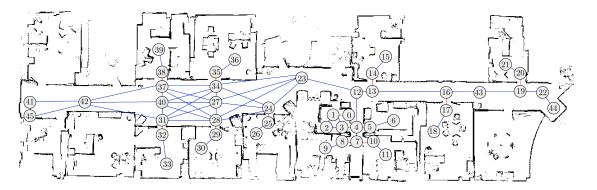
graph analysis + numerical soln. (linear programming, value iteration, policy iteration)


MDPs – Other properties


- Costs and rewards (expected, accumulated values)
 - e.g. R_{min=?} [F goal₂] "what is the minimum expected number of moves needed to reach goal₂?"
 - optimal strategies: memoryless and deterministic
 - similar computation to probabilistic reachability
- Probabilistic LTL (multiple temporal operators)
 - e.g. $P_{max=?}$ [(G¬hazard) \land (GF goal₁)] "maximum probability of avoiding hazard and visiting goal₁ infinitely often?"
 - optimal strategies: finite-memory and deterministic
 - build product MDP, graph analysis, probabilistic reachability
- Expected cost/reward to satisfy (co-safe) LTL formula
 - e.g. $R_{min=?}$ [$\neg zone_3 U (zone_1 \land (F zone_4))$] "minimise exp. time to patrol zones 1 then 4, without passing through 3".

Application: Robot navigation

- Navigation planning: [IROS'14]
 - MDP models navigation through an uncertain environment
 - LTL used to formally specify tasks to be executed
 - synthesise finite-memory strategies to construct plans/controllers
 - links to continuous-space planner



Application: Robot navigation

- Navigation planning MDPs
 - expected timed on edges + probabilities
 - learnt using data from previous explorations
- LTL-based task specification

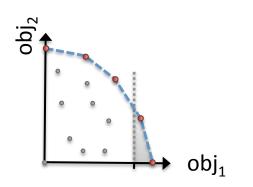
- expected time to satisfy (one or more) co-safe LTL formulas
- c.f. ad-hoc reward structures, e.g. with discounting
- also: efficient re-planning [IROS'14]; progress metric [IJCAI'15]
- Implementation
 - MetraLabs Scitos A5 robot + ROS module based on PRISM

Overview

Probabilistic model checking

- verification vs. strategy synthesis
- Markov decision processes (MDPs)
- example: robot navigation

Multi-objective probabilistic model checking


- examples: power management/team-formation
- Stochastic (multi-player) games
 - example: energy management

Multi-objective model checking

- Multi-objective probabilistic model checking
 - investigate trade-offs between conflicting objectives
 - in PRISM, objectives are probabilistic LTL or expected rewards
- Achievability queries: multi(P_{>0.95} [F send], R^{time}_{>10} [C])
 - e.g. "is there a strategy such that the probability of message transmission is > 0.95 and expected battery life > 10 hrs?"
- Numerical queries: multi(P_{max=?} [F send], R^{time}_{>10} [C])
 - e.g. "maximum probability of message transmission, assuming expected battery life-time is > 10 hrs?"

Pareto queries:

- multi(P_{max=?}[F send], R^{time}max=?[C])
- e.g. "Pareto curve for maximising probability of transmission and expected battery life-time"

Multi-objective model checking

- Multi-objective probabilistic model checking
 - investigate trade-offs between conflicting objectives
 - in PRISM, Ajectives are probabilistic LTL or expected rewards
- Achievability queries: multi(P_{>0.95} [F send], R^{time}_{>10} [C])
 - e.g. "is there a strategy such that the probability of message transmission is > 0.95 and expected battery life > 10 hrs?"
- Numerical queries: multi(P^e_{max=?} [F *sind*], R^{time}_{>10} [C])
 - e.g. "maximum probability of mess e transmission, assuming expected battery life-tim s > 10 hrs?"

• Pareto queries:

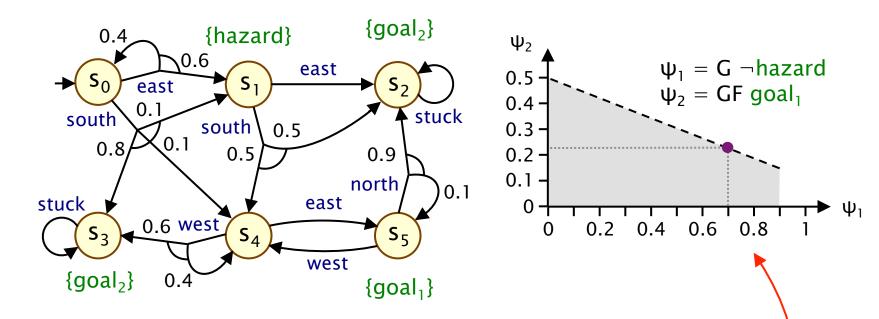
- multi(P_{max=?} [F **9***end*], R^{time}_{max=?} [C])
- e.g. "Pareto curve for maximising probability of transmission and expected battery life-time"

obj₁

Multi-objective model checking

Optimal strategies:

- usually finite-memory (e.g. when using LTL formulae)
- may also need to be randomised

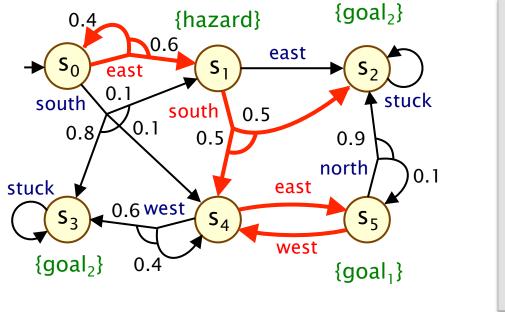

Computation:

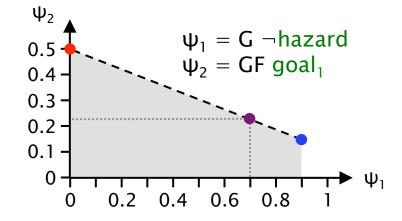
- construct a product MDP (with several automata), then reduces to linear programming [TACAS'07,TACAS'11]
- can be approximated using iterative numerical methods, via approximation of the Pareto curve [ATVA'12]

• Extensions [ATVA'12]

- arbitrary Boolean combinations of objectives
 - · e.g. $\psi_1 \Rightarrow \psi_2$ (all strategies satisfying ψ_1 also satisfy ψ_2)
 - (e.g. for assume-guarantee reasoning)
- time-bounded (finite-horizon) properties

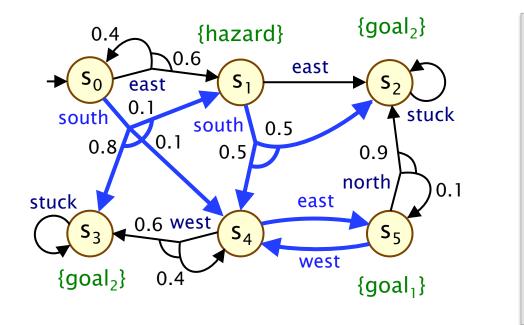
Example - Multi-objective

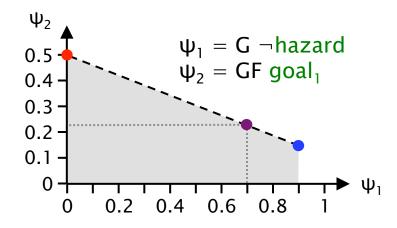



- Achievability query
 - $P_{\geq 0.7}$ [G ¬hazard] \land $P_{\geq 0.2}$ [GF goal₁] ? True (achievable)
- Numerical query

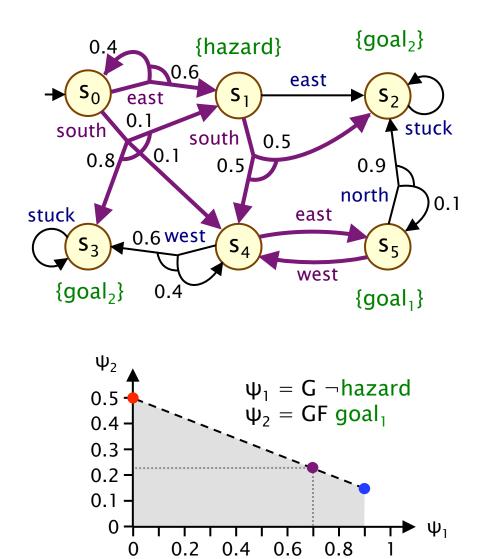
- $P_{max=?}$ [GF goal₁] such that $P_{\geq 0.7}$ [G \neg hazard]? ~0.2278

- Pareto query
 - for $P_{max=?}$ [G ¬hazard] \land $P_{max=?}$ [GF goal₁]?


Example – Multi–objective



Strategy 1 (deterministic) s_0 : east s_1 : south s_2 : s_3 : s_4 : east s_5 : west


Example – Multi–objective

Strategy 2 (deterministic) s_0 : south s_1 : south s_2 : s_3 : s_4 : east s_5 : west

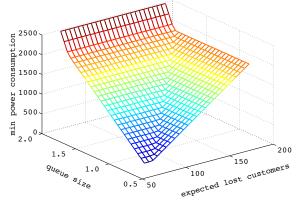
Example – Multi–objective

Optimal strategy: (randomised) $s_0 : 0.3226 : east$ 0.6774 : south $s_1 : 1.0 : south$ $s_2 :$ $s_3 :$ $s_4 : 1.0 : east$ $s_5 : 1.0 : west$

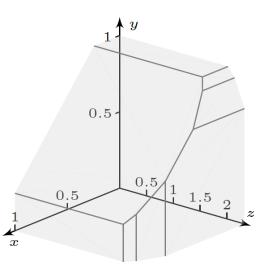
Multi-objective: Applications

Synthesis of controllers for dynamic power management [TACAS'11]

IBM TravelStar VP disk drive


- switches between power modes:
- active/idle/idlelp/stby/sleep

MDP model in PRISM[•]


- power manager
- disk requests •
- request queue
- power usage

Multi-objective:

"minimise energy consumption, subject to constraints on: (i) expected job queue size; (ii) expected number of lost jobs

Synthesis of team formation strategies [CLIMA'11, ATVA'12]

Pareto curve:

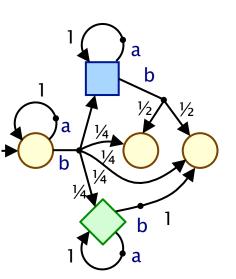
x="probability of completing task 1"; y="probability of completing task 2"; z="expected size of successful team" 25

Overview

Probabilistic model checking

- verification vs. strategy synthesis
- Markov decision processes (MDPs)
- example: robot navigation

Multi-objective probabilistic model checking

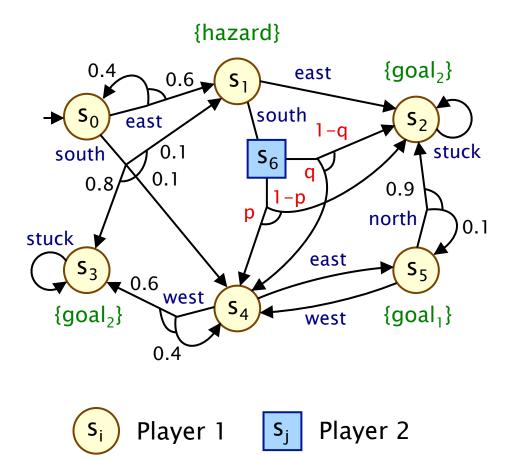

– examples: power management/team-formation

Stochastic (multi-player) games

– example: energy management

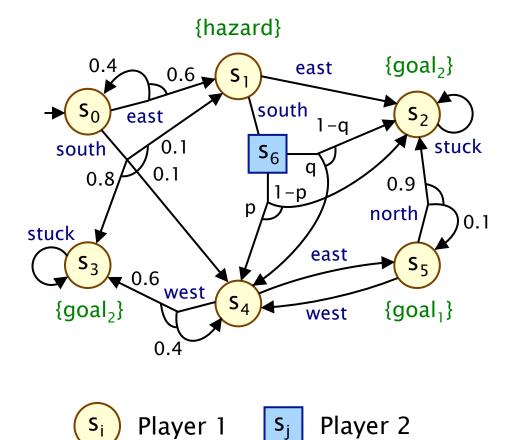
Stochastic multi-player games (SMGs)

- Stochastic multi-player games
 - players control states; choose actions
 - models competitive/collaborative behaviour
 - applications: security (system vs. attacker), controller synthesis (controller vs. environment), distributed algorithms/protocols, ...



Property specifications: rPATL

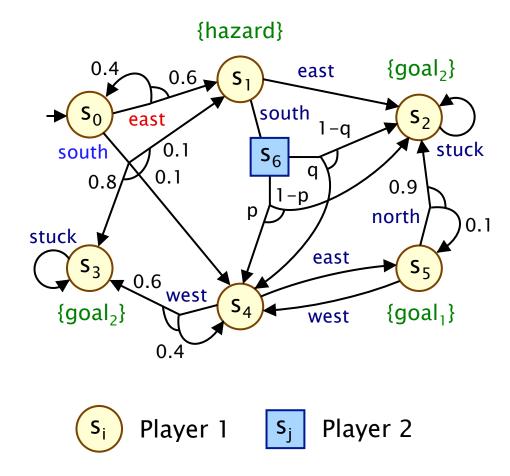
- $\langle\langle\{1,2\}\rangle\rangle P_{\geq 0.95}$ [$F^{\leq 45}$ *done*] : "can nodes 1,2 collaborate so that the probability of the protocol terminating within 45 seconds is at least 0.95, whatever nodes 3,4 do?"
- formally: $\langle\langle C \rangle\rangle \psi$: do there exist strategies for players in C such that, for all strategies of other players, property ψ holds?
- Model checking [TACAS'12,FMSD'13]
 - zero sum properties: analysis reduces to 2-player games
 - PRISM-games: <u>www.prismmodelchecker.org/games</u>


Example – Stochastic games

- Two players: 1 (robot controller), 2 (environment)
 - − probability of s_1 −south→ s_4 is in [p,q] = [0.5-Δ, 0.5+Δ]

Example – Stochastic games

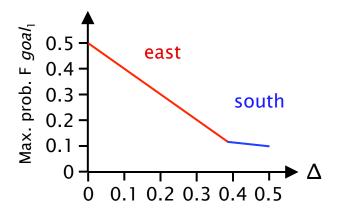
- Two players: 1 (robot controller), 2 (environment)
 - probability of s_1 -south $\rightarrow s_4$ is in [p,q] = [0.5- Δ , 0.5+ Δ]


rPATL: $\langle\langle \{1\}\rangle\rangle P_{max=?} [Fgoal_1]$

Optimal strategies: memoryless and deterministic

Computation: graph analysis & numerical approximation

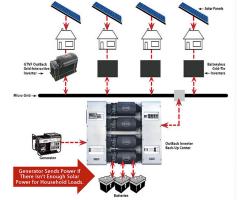
Example – Stochastic games


- Two players: 1 (robot controller), 2 (environment)
 - probability of s_1 -south $\rightarrow s_4$ is in [p,q] = [0.5- Δ , 0.5+ Δ]

rPATL: $\langle\langle \{1\}\rangle\rangle P_{max=?}[Fgoal_1]$

Optimal strategies: memoryless and deterministic

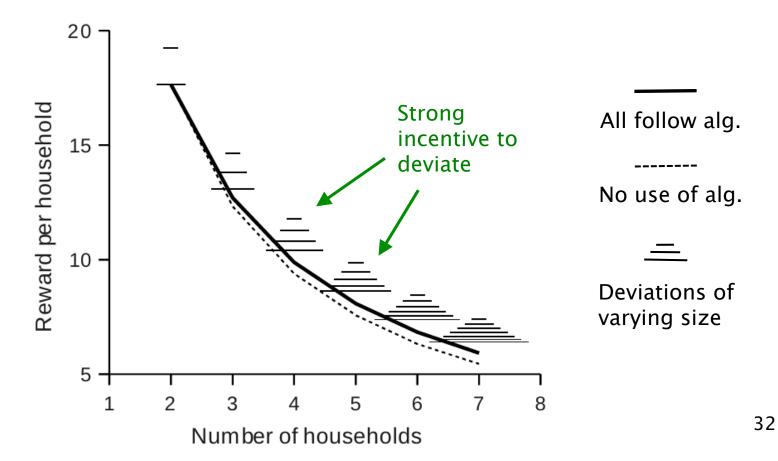
Computation: graph analysis & numerical approximation

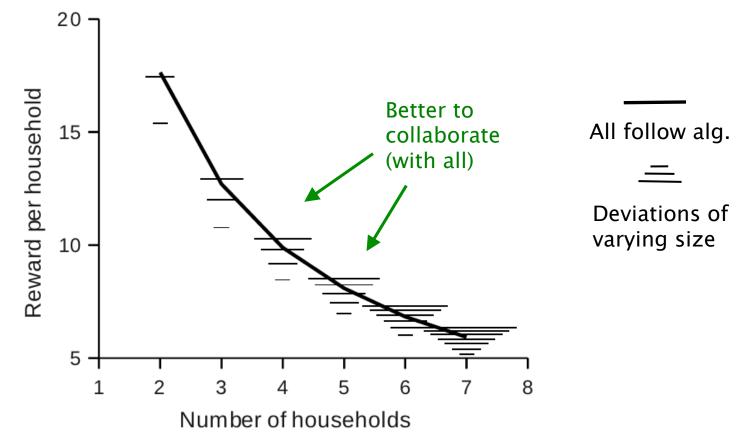



Application: Energy management

- Energy management protocol for Microgrid
 - randomised demand management protocol
 - random back-off when demand is high
- Original analysis [Hildmann/Saffre'11]
 - protocol increases "value" for clients
 - simulation-based, clients are honest

Our analysis


- stochastic multi-player game model
- clients can cheat (and cooperate)
- model checking: PRISM-games
- exposes protocol weakness (incentive for clients to act selfishly
- propose/verify simple fix using penalties


Results: Competitive behaviour

- Expected total value V per household
 - in rPATL: $\langle \langle C \rangle \rangle R^{r}C_{max=?}$ [F⁰ time=max time] / |C|
 - where r_c is combined rewards for coalition C

Results: Competitive behaviour

- Algorithm fix: simple punishment mechanism
 - distribution manager can cancel some loads exceeding c_{lim}

Conclusion

- Probabilistic model checking
 - verification vs. strategy synthesis
 - Markov decision processes, temporal logic, PRISM

Recent directions and extensions

- multi-objective probabilistic model checking
- model checking for stochastic games

- Challenges

- stochastic games: multi-objective, equilibria, richer logics
- partial information/observability
- probabilistic models with continuous time (or space)
- scalability, e.g. symbolic methods, abstraction