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Overview 

•  Probabilistic model checking 
−  verification vs. strategy synthesis 
−  Markov decision processes (MDPs) 
−  example: robot navigation 

•  Multi-objective probabilistic model checking 
−  examples: power management/team-formation 

•  Stochastic (multi-player) games 
−  example: energy management 
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Motivation 

•  Verifying probabilistic systems… 
−  unreliable or unpredictable behaviour 

•  failures of physical components 
•  message loss in wireless communication 
•  unreliable sensors/actuators 

−  randomisation in algorithms/protocols 
•  random back-off in communication protocols 
•  random routing to reduce flooding or provide anonymity 

•  We need to verify quantitative system properties 
−  “the probability of the airbag failing to deploy  

within 0.02 seconds of being triggered is at most 0.001” 

−  not just correctness: reliability, timeliness, performance, … 

−  not just verification: correctness by construction 
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Probabilistic model checking 

•  Construction and analysis of probabilistic models 
−  state-transition systems labelled with probabilities 

(e.g. Markov chains, Markov decision processes) 
−  from a description in a high-level modelling language 

•  Properties expressed in temporal logic, e.g. PCTL: 
−  trigger → P≥0.999 [ F≤20 deploy ] 
−  “the probability of the airbag deploying within 

20ms of being triggered is at at least 0.999” 
−  properties checked against models using 

exhaustive search and numerical computation 

0.5 
0.1 

0.4 
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Probabilistic model checking 

•  Many types of probabilistic models supported 

•  Wide range of quantitative properties, expressible in 
temporal logic (probabilities, timing, costs, rewards, …) 

•  Often focus on numerical results (probabilities etc.) 
−  analyse trends, look for system flaws, anomalies 

•  P≤0.1 [ F fail ] – “the probability of a 
failure occurring is at most 0.1” 

•  P=? [ F fail ] – “what is the probability 
of a failure occurring?” 
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Probabilistic model checking 

•  Many types of probabilistic models supported 

•  Wide range of quantitative properties, expressible in 
temporal logic (probabilities, timing, costs, rewards, …) 

•  Often focus on numerical results (probabilities etc.) 
−  analyse trends, look for system flaws, anomalies 

•  Provides "exact" numerical results/guarantees 
−  compared to, for example, simulation 

•  Combines numerical & exhaustive analysis 
−  especially useful for nondeterministic models 

•  Fully automated, tools available, widely applicable 
−  network/communication protocols, security, biology,  

robotics & planning, power management, … 
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Markov decision processes (MDPs) 

•  Markov decision processes (MDPs) 
−  widely used also in: AI, planning, optimal control, … 
−  model nondeterministic as well as probabilistic behaviour 

 

 

•  Nondeterminism for: 
−  control: decisions made by a controller or scheduler 
−  adversarial behaviour of the environment 
−  concurrency/scheduling: interleavings of parallel components 
−  abstraction, or under-specification, of unknown behaviour 
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Strategies 

•  A strategy (or “policy” or “adversary”) 
−  is a resolution of nondeterminism, based on history 
−  i.e. a mapping from finite paths to (distributions over) actions 
−  induces (infinite-state) Markov chain (and probability space) 

 
•  Classes of strategies: 

−  memory: memoryless, finite-memory, or infinite-memory 
−  randomisation: deterministic or randomised 
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Verification vs. Strategy synthesis 

•  1. Verification 
−  quantify over all possible  

strategies (i.e. best/worst-case) 
−  P≤0.1 [ F err ] : “the probability of an 

error occurring is ≤ 0.1 for all strategies” 
−  applications: randomised communication 

protocols, randomised distributed algorithms, security, … 

•  2. Strategy synthesis 
−  generation of "correct-by-construction" controllers 
−  P≤0.1 [ F err ] : "does there exist a strategy for which the 

probability of an error occurring is ≤ 0.1?” 
−  applications: robotics, power management, security, … 

•  Two dual problems; same underlying computation: 
−  compute optimal (minimum or maximum) values 
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Running example 

•  Example MDP 
−  robot moving through terrain divided in to 3 x 2 grid 
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Example - Reachability 
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Verify: P≤0.6 [ F goal1 ] 
     or 
Synthesise for: P≥0.4 [ F goal1 ] 
     ⇓ 
Compute: Pmax=?

 [ F goal1 ]     
 
Optimal strategies:  
memoryless and deterministic 
 
Computation:  
graph analysis + numerical soln.  
(linear programming, value  
iteration, policy iteration) 
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Example - Reachability 
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Optimal strategy: 
s0 : east 
s1 : south 
s2 : - 
s3 : - 
s4 : east 
s5 : - 
 

= 0.5 

Verify: P≤0.6 [ F goal1 ] 
     or 
Synthesise for: P≥0.4 [ F goal1 ] 
     ⇓ 
Compute: Pmax=?

 [ F goal1 ]     
 
Optimal strategies:  
memoryless and deterministic 
 
Computation:  
graph analysis + numerical soln.  
(linear programming, value  
iteration, policy iteration) 
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MDPs – Other properties 

•  Costs and rewards (expected, accumulated values) 
−  e.g. Rmin=? [ F goal2 ] - "what is the minimum expected number 

of moves needed to reach goal2?" 
−  optimal strategies: memoryless and deterministic 
−  similar computation to probabilistic reachability 

•  Probabilistic LTL (multiple temporal operators) 
−  e.g. Pmax=? [ (G¬hazard) ∧ (GF goal1) ] – "maximum probability 

of avoiding hazard and visiting goal1 infinitely often?" 
−  optimal strategies: finite-memory and deterministic 
−  build product MDP, graph analysis, probabilistic reachability 

•  Expected cost/reward to satisfy (co-safe) LTL formula 
−  e.g. Rmin=? [ ¬zone3 U (zone1 ∧ (F zone4)) ] – "minimise exp. 

time to patrol zones 1 then 4, without passing through 3". 
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Application: Robot navigation 

•  Navigation planning: [IROS'14] 
−  MDP models navigation through 

an uncertain environment 
−  LTL used to formally specify  

tasks to be executed 
−  synthesise finite-memory strategies 

to construct plans/controllers 
−  links to continuous-space planner 

 

Fig. 1. The robot in its environment, and the map and navigation graph used in the application example. Blue (bi-directional) edges represent possible
navigation actions between states.

where each state is labelled by an atomic proposition vi,
which corresponds to the navigation node that the state is
representing. We also take into account possible failures in
navigation. In this example, we consider that a failure occurs
when the robot fails to reach the target node of the navigation
action, for example due to an obstacle, and ends in a different
node. We model these failures by adding uncertainty to the
outcome of executing actions from some states. For example,
action goto11 from state v13 has probability 0.85 of ending
in state v11, 0.1 of ending in state v12 and 0.05 of finishing
in state v14. In order to define a cost function for the MDP,
we used the Euclidean distance between nodes.

For the execution of the policies obtained from our
approach, we used the Markov Decision Making library2

for ROS. In Fig. 2, we depict different moments in the
execution of our algorithms for 3 co-safe LTL tasks specified
dynamically during execution. The robot starts in node v0

with the task “visit v3 and v18, in any order”, i.e., F v3^F v18.
Algorithm 1 creates a finite-memory policy for this task and
the robot executes it, navigating towards v3 first, as depicted
in Fig. 2(a). Note that we have an optimal action defined for
each state, thus the choice of first node to be visited depends
on the current state of the robot. This means that even if there
are action failures, there is no need for replanning. When the
robot reaches v3, the “mode” of the policy changes, and the
optimal actions for each state are now directed towards node
v18, as seen in Fig. 2(b). Recall that the “mode” changes are
due to a change of one of the DFA state components in the
evolution of the MDP-DFA product.

While the robot is executing action goto11 from state v9,
we add a new task: “visit v9 and afterwards visit v14”, i.e.,
F(v9 ^ F v14)3. The dynamic replanning is executed, and a
new policy is generated. This policy takes into account that
we still need to visit v18, but also incorporates the fact that
v9 needs to be visited. Since the robot is closer to v9, it turns
back to visit it. This is seen in Fig. 2(c). After v9 is visited,
the policy changes “mode” again, now taking into account

2
https://github.com/larsys/markov_decision_making

3One could also make sure that v14 cannot be visited before state v9 by
changing the specification to (¬v14 U v9) ^ F v14.

the fact that v14 needs to be visited after v9, and that v18 is
still to be visited. The shortest path at this moment is moving
towards node v14, so the robot moves towards it (Fig. 2(d)).

When the robot reaches v14, we add a new task: “visit
v0, avoiding v8”, i.e., ¬v8 U v0. In practical terms, such
specifications, where given nodes are to be avoided, can be
used when it is known that a given area of the environment
is not safe, for example due to the presence of a crowd. If
this information is known beforehand it can be added to the
specification in order to prevent navigation problems that
might occur. With this new specification, a new policy is
computed. Node v0 becomes a node to be visited, and node
v8 a node to be avoided. However, given that the current
position of the robot is closer to v18, the policy drives the
robot towards it, as seen in Fig. 2(e).

Finally, when the robot reaches v18 the policy changes
“mode”, and starts driving the robot towards v0. However,
when trying to execute action goto11 from v13, an obstacle
makes the robot’s continuous navigation end on v12 instead.
Given that the optimal action from v12 is goto10, the robot
switches from its initial most expected trajectory (through
v11) to a new one, which is the optimal given the navigation
failure. After that, given that v8 is a forbidden node, the
policy makes the robot turn and avoid it, finally getting to
v0 and finishing execution, as all the LTL tasks have been
completed (Fig. 2(f)).

In Table I, we show, for the addition of each task described
above, the number of states and transitions of the current
product MDP, along with the computation time of the new
optimal policy4. We see that, for this small example, the
computation times are negligible. Furthermore, keeping track
of the current state of execution and only taking into account
the reachable fragment from the current state of the product
MDP when replanning keeps the size of the structures from
increasing greatly. To illustrate this fact, we also show the
size and computation time for the case where the initial task
is the conjunction of all 3 tasks used in the example.

4This includes building the DFA, building the product MDP, and finding
the optimal policy. All computations were performed on an Intel R� CoreTM

i7 quad-core CPU at 2.20GHz and 8GB of RAM.
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outcome of executing actions from some states. For example,
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we used the Euclidean distance between nodes.

For the execution of the policies obtained from our
approach, we used the Markov Decision Making library2

for ROS. In Fig. 2, we depict different moments in the
execution of our algorithms for 3 co-safe LTL tasks specified
dynamically during execution. The robot starts in node v0

with the task “visit v3 and v18, in any order”, i.e., F v3^F v18.
Algorithm 1 creates a finite-memory policy for this task and
the robot executes it, navigating towards v3 first, as depicted
in Fig. 2(a). Note that we have an optimal action defined for
each state, thus the choice of first node to be visited depends
on the current state of the robot. This means that even if there
are action failures, there is no need for replanning. When the
robot reaches v3, the “mode” of the policy changes, and the
optimal actions for each state are now directed towards node
v18, as seen in Fig. 2(b). Recall that the “mode” changes are
due to a change of one of the DFA state components in the
evolution of the MDP-DFA product.

While the robot is executing action goto11 from state v9,
we add a new task: “visit v9 and afterwards visit v14”, i.e.,
F(v9 ^ F v14)3. The dynamic replanning is executed, and a
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we still need to visit v18, but also incorporates the fact that
v9 needs to be visited. Since the robot is closer to v9, it turns
back to visit it. This is seen in Fig. 2(c). After v9 is visited,
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the fact that v14 needs to be visited after v9, and that v18 is
still to be visited. The shortest path at this moment is moving
towards node v14, so the robot moves towards it (Fig. 2(d)).

When the robot reaches v14, we add a new task: “visit
v0, avoiding v8”, i.e., ¬v8 U v0. In practical terms, such
specifications, where given nodes are to be avoided, can be
used when it is known that a given area of the environment
is not safe, for example due to the presence of a crowd. If
this information is known beforehand it can be added to the
specification in order to prevent navigation problems that
might occur. With this new specification, a new policy is
computed. Node v0 becomes a node to be visited, and node
v8 a node to be avoided. However, given that the current
position of the robot is closer to v18, the policy drives the
robot towards it, as seen in Fig. 2(e).

Finally, when the robot reaches v18 the policy changes
“mode”, and starts driving the robot towards v0. However,
when trying to execute action goto11 from v13, an obstacle
makes the robot’s continuous navigation end on v12 instead.
Given that the optimal action from v12 is goto10, the robot
switches from its initial most expected trajectory (through
v11) to a new one, which is the optimal given the navigation
failure. After that, given that v8 is a forbidden node, the
policy makes the robot turn and avoid it, finally getting to
v0 and finishing execution, as all the LTL tasks have been
completed (Fig. 2(f)).

In Table I, we show, for the addition of each task described
above, the number of states and transitions of the current
product MDP, along with the computation time of the new
optimal policy4. We see that, for this small example, the
computation times are negligible. Furthermore, keeping track
of the current state of execution and only taking into account
the reachable fragment from the current state of the product
MDP when replanning keeps the size of the structures from
increasing greatly. To illustrate this fact, we also show the
size and computation time for the case where the initial task
is the conjunction of all 3 tasks used in the example.

4This includes building the DFA, building the product MDP, and finding
the optimal policy. All computations were performed on an Intel R� CoreTM
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Application: Robot navigation 

•  Navigation planning MDPs 
−  expected timed on edges + probabilities 
−  learnt using data from previous explorations 

•  LTL-based task specification 
−  expected time to satisfy (one or more) co-safe LTL formulas 
−  c.f. ad-hoc reward structures, e.g. with discounting 
−  also: efficient re-planning [IROS'14]; progress metric [IJCAI'15] 

•  Implementation 
−  MetraLabs Scitos A5 robot + ROS module based on PRISM 
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Overview 

•  Probabilistic model checking 
−  verification vs. strategy synthesis 
−  Markov decision processes (MDPs) 
−  example: robot navigation 

•  Multi-objective probabilistic model checking 
−  examples: power management/team-formation 

•  Stochastic (multi-player) games 
−  example: energy management 
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Multi-objective model checking 

•  Multi-objective probabilistic model checking 
−  investigate trade-offs between conflicting objectives 
−  in PRISM, objectives are probabilistic LTL or expected rewards 

•  Achievability queries: multi(P>0.95 [ F send ], Rtime
>10 [ C ]) 

−  e.g. “is there a strategy such that the probability of message 
transmission is > 0.95 and expected battery life > 10 hrs?” 

•  Numerical queries: multi(Pmax=? [ F send ], Rtime
>10 [ C ]) 

−  e.g. “maximum probability of message transmission, 
assuming expected battery life-time is > 10 hrs?” 

•  Pareto queries: 
−  multi(Pmax=? [ F send ], Rtime

max=? [ C ]) 
−  e.g. "Pareto curve for maximising 

probability of transmission and  
expected battery life-time” 

 

obj1	  

ob
j 2	  
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Multi-objective model checking 
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Multi-objective model checking 

•  Optimal strategies: 
−  usually finite-memory (e.g. when using LTL formulae) 
−  may also need to be randomised 

•  Computation: 
−  construct a product MDP (with several automata),  

then reduces to linear programming [TACAS'07,TACAS'11] 
−  can be approximated using iterative numerical methods,  

via approximation of the Pareto curve [ATVA'12] 

•  Extensions [ATVA'12] 
−  arbitrary Boolean combinations of objectives 

•  e.g. ψ1⟹ψ2 (all strategies satisfying ψ1 also satisfy ψ2) 
•  (e.g. for assume-guarantee reasoning) 

−  time-bounded (finite-horizon) properties 
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Example – Multi-objective 
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•  Achievability query 
−  P≥0.7 [ G ¬hazard ] ∧ P≥0.2 [ GF goal1 ] ? 

•  Numerical query 
−  Pmax=? [ GF goal1 ] such that P≥0.7 [ G ¬hazard ] ?  

•  Pareto query 
−  for Pmax=? [ G ¬hazard ] ∧ Pmax=? [ GF goal1 ] ? 
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Example – Multi-objective 
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s0 : east 
s1 : south 
s2 : - 
s3 : - 
s4 : east 
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Example – Multi-objective 

Strategy 2 
(deterministic) 
s0 : south 
s1 : south 
s2 : - 
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Example – Multi-objective 

Optimal strategy: 
(randomised) 
s0 : 0.3226 : east 

 0.6774 : south 
s1 : 1.0 : south 
s2 : - 
s3 : - 
s4 : 1.0 : east 
s5 : 1.0 : west 
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Multi-objective: Applications 

Synthesis of team 
formation strategies 
[CLIMA'11, ATVA'12] 
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Synthesis of controllers for  
dynamic power management [TACAS'11] 

IBM TravelStar VP disk drive 
•  switches between power modes: 
•  active/idle/idlelp/stby/sleep 

MDP model in PRISM: 
•  power manager 
•  disk requests 
•  request queue 
•  power usage 

Pareto curve: 
x="probability of 
completing task 1"; 
y="probability of 
completing task 2"; 
z="expected size of 
successful team" 

Multi-objective: 
"minimise energy consumption, 
 subject to constraints on: 
(i) expected job queue size; 
(ii) expected number of lost jobs 
 



26 

Overview 

•  Probabilistic model checking 
−  verification vs. strategy synthesis 
−  Markov decision processes (MDPs) 
−  example: robot navigation 

•  Multi-objective probabilistic model checking 
−  examples: power management/team-formation 

•  Stochastic (multi-player) games 
−  example: energy management 
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Stochastic multi-player games (SMGs) 

•  Stochastic multi-player games 
−  players control states; choose actions 
−  models competitive/collaborative behaviour 
−  applications: security (system vs. attacker),  

controller synthesis (controller vs. environment),  
distributed algorithms/protocols, … 

•  Property specifications: rPATL 
−  ⟨⟨{1,2}⟩⟩ P≥0.95 [ F≤45 done ] : "can nodes 1,2 collaborate so that 

the probability of the protocol terminating within 45 seconds 
is at least 0.95, whatever nodes 3,4 do?" 

−  formally: ⟨⟨C⟩⟩ψ : do there exist strategies for players in C 
such that, for all strategies of other players, property ψ holds? 

•  Model checking [TACAS'12,FMSD'13] 
−  zero sum properties: analysis reduces to 2-player games 
−  PRISM-games: www.prismmodelchecker.org/games 
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Example – Stochastic games 

•  Two players: 1 (robot controller), 2 (environment) 
−  probability of s1-south→s4 is in [p,q] = [0.5-Δ, 0.5+Δ] 
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Application: Energy management 

•  Energy management protocol for Microgrid 
−  randomised demand management protocol 
−  random back-off when demand is high 

•  Original analysis [Hildmann/Saffre'11] 
−  protocol increases "value" for clients 
−  simulation-based, clients are honest 

•  Our analysis 
−  stochastic multi-player game model 
−  clients can cheat (and cooperate) 
−  model checking: PRISM-games 
−  exposes protocol weakness (incentive  

for clients to act selfishly 
−  propose/verify simple fix using penalties 
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Results: Competitive behaviour 

•  Expected total value V per household 
−  in rPATL: ⟨⟨C⟩⟩RrCmax=? [F0 time=max time] / |C| 
−  where rC is combined rewards for coalition C 

All follow alg. 

No use of alg. 

Deviations of 
varying size 

Strong 
incentive to 
deviate 
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Results: Competitive behaviour 

•  Algorithm fix: simple punishment mechanism 
−  distribution manager can cancel some loads exceeding clim  

All follow alg. 

Deviations of 
varying size 

Better to 
collaborate 
(with all) 
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Conclusion 

•  Probabilistic model checking 
−  verification vs. strategy synthesis 
−  Markov decision processes, temporal logic, PRISM 

•  Recent directions and extensions 
−  multi-objective probabilistic model checking 
−  model checking for stochastic games 

−  Challenges 
−  stochastic games: multi-objective, equilibria, richer logics 
−  partial information/observability 
−  probabilistic models with continuous time (or space) 
−  scalability, e.g. symbolic methods, abstraction 

www.prismmodelchecker.org 


