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1 The settingNot a great deal is known about the omplexity of obtaining approximate so-lutions to ounting problems. A few problems are known to admit an eÆientapproximation algorithm or \FPRAS" (de�nition below). Some others areknown not to admit an FPRAS under some reasonable omplexity-theoretiassumptions. In light of the sarity of absolute results, we propose to examinethe relative omplexity of approximate ounting problems through the mediumof approximation-preserving reduibility. Through this proess, a provisionallandsape of approximate ounting problems begins to emerge. Aside from theexpeted lasses of interreduible problems that are \easiest" and \hardest"within the ounting omplexity lass #P, we identify an interesting lass ofnatural interreduible problems of apparently intermediate omplexity.A randomised approximation sheme (RAS) for a funtion f : �� ! N is aprobabilisti Turing mahine1 (TM) that takes as input a pair (x; ") 2 ���(0; 1)and produes as output an integer random variable Y satisfying the onditionPr(e�" � Y=f(x) � e") � 3=4. A randomised approximation sheme is saidto be fully polynomial if it runs in time poly(jxj; "�1). The unwieldy phrase\fully polynomial randomised approximation sheme" is usually abbreviated toFPRAS.Suppose f; g : �� ! N are funtions whose omplexity (of approximation)we want to ompare. An approximation-preserving redution from f to g is aprobabilisti orale TM M that takes as input a pair (x; ") 2 �� � (0; 1), andsatis�es the following three onditions: (i) every orale all made by M is ofthe form (w; Æ), where w 2 �� is an instane of g, and 0 < Æ < 1 is an errorbound satisfying Æ�1 � poly(jxj; "�1); (ii) the TMM meets the spei�ation forbeing a randomised approximation sheme for f whenever the orale meets thespei�ation for being a randomised approximation sheme for g; and (iii) therun-time of M is polynomial in jxj and "�1. If an approximation-preservingredution from f to g exists we write f �AP g, and say that f is AP-reduibleto g. If f �AP g and g �AP f then we say that f and g are AP-interreduible,and write f �AP g.In arriving at a preise de�nition of AP-reduibility a number of issues hadto be resolved. Should the redution be deterministi or randomised? Should itbe Turing or many-one/Karp? Should " enter expliitly into the time bound forthe redution? As a general priniple, we have always hosen the most liberaloption, i.e., the one leading to the largest lass of redutions.2 However, weshall only rarely make use of the full generality of our de�nition, preferring inthe main to work within a more restrited lass of redutions.Two ounting problems play a speial role in this artile.Name. #Sat.Instane. A Boolean formula ' in onjuntive normal form (CNF).1All our Turing mahines will be transduers, i.e., equipped with a write-only output tape.In what follows, we shall not mention this fat expliitly.2At the other extreme, Saluja, Subrahmanyam and Thakur [16℄ propose a very demandingnotion of approximation-preserving redution, whih is probably not suitable for our purposes.2



Output. The number of satisfying assignments to '.Name. #BIS.Instane. A bipartite graph B.Output. The number of independent sets in B.The problem#Sat is the ounting version of the familiar deision problem Sat,so its speial role is not surprising. The (apparent) signi�ane of #BIS willonly emerge from an extended empirial study using the tool of approximation-preserving reduibility. This is not the �rst time the problem #BIS has ap-peared in the literature. Provan and Ball show it to be #P-omplete [14℄, while(in the guise of \2BPMonDNF") Roth raises, at least impliitly, the questionof its approximability [15℄. An independent set of a graph G is a subset I ofthe verties of G suh that no two verties in I are adjaent. Suh a set issometimes alled a stable set of G.Three lasses of AP-interreduible problems are studied in this paper. The�rst is the lass of ounting problems (funtions �� ! N) that admit anFPRAS. These are trivially AP-interreduible, sine all the work an be em-bedded into the redution (whih delines to use the orale). The seond isthe lass of ounting problems AP-interreduible with #Sat. As we shallsee, these inlude the \hardest to approximate" ounting problems within thelass #P. The third is the lass of ounting problems AP-interreduible with#BIS. These problems are naturally AP-reduible to funtions in#Sat, but wehave been unable to demonstrate the onverse relation. Moreover, no funtionAP-interreduible with #BIS is known to admit an FPRAS. Sine a num-ber of natural and reasonably diverse ounting problems are AP-interreduiblewith #BIS, it remains a distint possibility that the omplexity of this lassof problems in some sense lies stritly between the lass of problems admittingan FPRAS and #Sat. Perhaps signi�antly, #BIS and its relatives an beharaterised as the hardest to approximate problems within a logially de�nedsublass of #P that we name #RH�1.2 Problems that admit an FPRASA very few non-trivial ombinatorial strutures may be ounted exatly using apolynomial-time deterministi algorithm; a fortiori, they may be ounted usingan FPRAS. The two key examples are spanning trees in a graph (Kirhho�),and perfet mathings in a planar graph (Kasteleyn). Intriguingly, both of thesealgorithms rely on a redution to a determinant, whih may be omputed inpolynomial time by Gaussian elimination. Details of both algorithms may befound in Kasteleyn's survey artile [13℄.There are some additional speimens that are more interesting in the ontextof this artile: problems that admit an FPRAS despite being omplete (withrespet to usual Turing reduibility) in #P. These are more ommon thanexatly solvable ounting problems, but still not numerous. Two representativeexamples are: 3



Name. #Math.Instane. A graph G.3Output. The number of mathings (of all sizes) in G.Name. #DNF.Instane. A Boolean formula ' in disjuntive normal form (DNF).Output. The number of satisfying assignments to '.#Math may be approximated in the FPRAS sense by \Markov hainMonte Carlo" (Jerrum and Sinlair [9℄), and #DNF by a more diret samplingtehnique (Karp, Luby and Madras [12℄).3 Problems AP-interreduible with #SatSuppose f; g : �� ! N. A parsimonious redution (Simon [17℄) from f to gis a funtion % : �� ! �� satisfying (i) f(w) = g(%(w)) for all w 2 ��, and(ii) % is omputable by a polynomial-time deterministi Turing mahine. In theontext of ounting problems, parsimonious redutions \preserve the number ofsolutions." The generi redutions used in the usual proofs of Cook's theoremare parsimonious, i.e., the number of satisfying assignments of the onstrutedformula is equal to the number of aepting omputations of the given Turingmahine/input pair. Sine a parsimonious redution is a very speial instaneof an approximation-preserving redution, we see that all problems in #P areAP-reduible to #Sat. Thus #Sat is omplete for #P w.r.t. (with respet to)AP-reduibility. Zukerman[22℄ has shown that #Sat annot have an FPRASunless NP = RP. The same is obviously true of any problem in #P to whih#Sat is AP-reduible. In fat, Zukerman proves a stronger result | there isno FPRAS for the logarithm of #Sat(') unless NP = RP. AP-redutions donot in general preserve this stronger form of inapproximability.Let A : �� ! f0; 1g be some deision problem in NP. One way of ex-pressing membership of A in NP is to assert the existene of a polynomial pand a polynomial-time omputable prediate R (witness-heking prediate)satisfying the following ondition: A(x) i� there is a word y 2 �� suh thatjyj = p(jxj) and R(x; y). The ounting problem, #A : �� ! N, orrespondingto A is de�ned by#A(x) = �� �y �� jyj = p(jxj) and R(x; y)	 ��:Formally, the ounting version #A of A depends on the witness-heking pred-iate R and not just on A itself; however, there is usually a \natural" hoiefor R, so our notation should not onfuse. Note that our notation for #Satand Sat is onsistent with the onvention just established, where we take \y isa satisfying assignment to formula x" as the witness-heking prediate.3Note that the graph G is no longer restrited to be planar.4



Many \natural" NP-omplete problems A have been onsidered, and inevery ase the orresponding ounting problem #A is omplete for #P withrespet to (onventional) polynomial-time Turing reduibility. No ounterex-amples to this phenomenon are known, so it remains a possibility that thisempirially observed relationship is atually a theorem. If so, we seem to befar from proving it or providing a ounterexample. Strangely enough, the or-responding statement for AP-reduibility is a theorem.Theorem 1 Let A be an NP-omplete deision problem. Then the orrespond-ing ounting problem, #A, is omplete for #P w.r.t. AP-reduibility.Proof. That #A 2 #P is immediate. The fat that #Sat is AP-reduible to#A is more subtle. Using the bisetion tehnique of Valiant and Vazirani, weknow [21, Cor. 3.6℄ that #Sat an be approximated (in the FPRAS sense) bya polynomial-time probabilisti TMM equipped with an orale for the deisionproblem Sat.4 Furthermore, the deision orale for Sat may be replaed byan approximate ounting orale (in the RAS sense) for #A, sine A is NP-omplete, and a RAS must, in partiular, reliably distinguish none from some.(Note that the failure probability may be made negligible through repeated tri-als [11, Lemma 6.1℄.) Thus the TMM , with only slight modi�ation, meets thespei�ation for an approximation-preserving redution from #Sat to #A. Weonlude that the ounting version of every NP-omplete problem is ompletefor #P w.r.t. AP-reduibility.The following problem is a useful starting point for redutions.Name. #LargeIS.Instane. A positive integer m and a graph G in whih every independent sethas size at most m.Output. The number of size-m independent sets in G.The deision problem orresponding to #LargeIS is, given an instane(m;G) of #LargeIS, to determine whether or not G has a size-m independentset. Garey et al. [7℄ have shown that this deision problem is NP-omplete.Therefore, Theorem 1 implies the following:Observation 2 #LargeIS �AP #Sat.Another insight that omes out of the proof of Theorem 1 is that the set offuntions AP-reduible to#Sat has a \strutural" haraterisation as the lassof funtions that may be approximated (in the FPRAS sense) by a polynomial-time probabilisti Turing mahine equipped with an NP orale. Informally, ina omplexity-theoreti sense, approximate ounting is muh easier than exatounting: the former lies \just above" NP [19℄, while the latter lies above theentire polynomial hierarhy [20℄.4Only a sketh of the proof of this fat is presented in [21℄; for a detailed proof, onsultGoldreih's leture notes [8℄. 5



Theorem 1 shows that ounting versions of NP-omplete problems are allAP-interreduible. Simon, who introdued the notion of parsimonious redu-tion [17℄, noted that many of these ounting problems are in fat parsimoniouslyinterreduible with #Sat. In other words, many of the problems overed byTheorem 1 are in fat related by diret redutions, often parsimonious, as op-posed to the rather arane redutions impliit in that theorem. Sine we areinterested in investigating exatly when the full power of AP-reduibility isneessary, we also o�er a proof of Observation 2 by diret redution, in Ap-pendix A.5An interesting fat about exat ounting, disovered by Valiant, is that aproblem may be omplete for #P w.r.t. usual Turing reduibility even thoughits assoiated deision problem is polynomial-time solvable. So it is with ap-proximate ounting. A ounting problems may be omplete for #P w.r.t. AP-reduibility when its assoiated deision problem is not NP-omplete, and evenwhen it is trivial, as in the next example.Name. #IS.Instane. A graph G.Output. The number of independent sets (of all sizes) in G.Theorem 3 #IS �AP #Sat.Proof. We need only demonstrate that #Sat �AP #IS, sine the oppositediretion omes from the generi redution of Cook's theorem. We'll atuallyshow #LargeIS �AP #IS, whih is suÆient by Observation 2. The \boost-ing" tehnique we use was presented by Sinlair [18℄, but is repeated here witha view to providing a simple, onrete example of an approximation-preservingredution.Let m and G = (V;E) be an instane of #LargeIS, and set n = jV j.Construt an instane G0 = (V 0; E0) of #IS as follows:V 0 = V � [r℄;and E0 = n�(u; i); (v; j)	 : fu; vg 2 E and i; j 2 [r℄o;where r is a suÆiently large number, to be hosen later, and [r℄ = f0; : : : ; r�1gdenotes the set ontaining the �rst r natural numbers. Informally, verties in Gare transformed to r-independent sets in G0, and edges to omplete bipartitegraphs on r + r verties.5In Appendix A, we give a parsimonious redution from#Sat to#LargeIS. This providesa (diret) proof of Observation 2. It turns out that Observation 2 remains true even when thede�nition of #LargeIS is modi�ed so that a \witness" is provided along with every probleminstane. In partiular, along with m and G, a proper m-vertex-olouring of the omplementof G is provided. The olouring serves as a witness that every independent set of G has sizeat most m. The redution in Appendix A shows how suh witnesses an be inorporated intothe onstruted problem instane. 6



An independent set I 0 in G0 projets to an independent set I = �(I 0) in Gin the following natural wayI = �(I 0) = �v 2 V : there exists i 2 [r℄ suh that (v; i) 2 I 0	:Furthermore, every independent set of size k in G arises in exatly (2r � 1)kways as a projetion of this kind. Thus, denoting by Im(G) the set of all size-mindependent sets in G and by I(G0) the set of all independent sets in G0,jI(G0)j � (2r � 1)m � jIm(G)j:On the other hand, at most (2r � 1)m�1 independent sets I 0 in G0 projet toeah independent set I = �(I 0) in G of size stritly less than m. ThusjI(G0)j � (2r � 1)m � jIm(G)j + (2r � 1)m�12n:It follows from the two inequalities thatjIm(G)j = � jI(G0)j(2r � 1)m� ; (1)provided we hoose r � n+ 3. In fat, for this hoie of r we havejIm(G)j � jI(G0)j(2r � 1)m � jIm(G)j + 14 ;so taking the oor of Q = jI(G0)j=(2r � 1)m is the same as rounding Q to thenearest integer. The signi�ane of this is expanded upon below. Thus we haveonstruted an AP-redution from #LargeIS to #IS: use an orale for #ISto approximate jI(G0)j, divide by (2r � 1)m, and round to the nearest integer.(The redution is of a rather degenerate form, with one orale all and no useof randomisation.)As this is the �rst onrete example of an approximation-preserving re-dution, we add some tehnial details onerning the hoie of the aurayparameter Æ in the de�nition of redution. If it were not for the oor funtionin (1), we ould simply set Æ = ", sine division by a onstant preserves relativeerror. The disontinuous oor funtion ould spoil the approximation when itsargument is small. However, we shall only apply the oor funtion in situationswhere its argument is in the range (say) [N;N + 1=4℄ for some integer N (aswe have done above, with N = jIm(G)j). This avoids tehnial problems, as wenow see.Suppose more generally that the true result N is obtained by rounding afration Q with jQ � N j � 1=4. Suppose further that the orale provides anapproximation bQ to Q satisfying Qe�Æ � bQ � QeÆ (as it is required to do withprobability at least 3=4). Set Æ = "=21, where " is the auray parametergoverning the �nal result. There are two ases. If N � 2=", then a shortalulation yields j bQ �Qj < 1=4 implying that the result returned is exat. IfN > 2=", then the result returned is in the range [(N � 1=4)e�Æ � 1=2; (N +1=4)eÆ + 1=2℄ whih, for the hosen Æ, is ontained in [Ne�"; Ne"℄.Going bak to the urrent proof, we have shown that the argument of theoor funtion, jI(G0)j(2r�1)m , is in the range [jIm(G)j; jIm(G)j+1=4℄. Thus, it suÆesto use Æ = "=21 as the auray parameter for the orale all.7



Other ounting problems an be shown to be omplete for #P w.r.t. AP-reduibility using similar \boosting redutions." There is a pauity of examplesthat are omplete for some more \interesting" reason. One result that mightqualify is the following:Theorem 4 #IS remains omplete for #P w.r.t. AP-reduibility even whenrestrited to graphs of maximum degree 25.Proof. This follows from a result of Dyer, Frieze and Jerrum [4℄, though ratherindiretly. In the proof of Theorem 2 of [4℄ it is demonstrated that an FPRAS forbounded-degree #IS ould be used (as an orale) to provide a polynomial-timerandomised algorithm for an NP-omplete problem, suh as the deision versionof satis�ability. Then #Sat �AP #IS follows, as before, via the bisetiontehnique of Valiant and Vazirani.Let H be any �xed, q-vertex graph, possibly with loops. An H-olouring ofa graph G is simply a homomorphism from G to H. If we regard the vertiesof H as representing olours, then a homomorphism from G to H indues aq-olouring of G that respets the struture of H: two olours may be adjaentin G only if the orresponding verties are adjaent in H. Some examples:Kq-olourings, where Kq is the omplete q-vertex graph, are simply the usual(proper) q-olourings; K12 -olourings, where K12 is K2 with one loop added,orrespond to independent sets; and S�q -olourings, where S�q is the q-leaf starwith loops on all q + 1 verties, are on�gurations in the \q-partile Widom-Rowlinson model" from statistial physis.Name. #q-Partile-WR-Configs.Instane. A graph G.Output. The number of q-partile Widom-Rowlinson on�gurations in G, i.e.,S�q -olourings of G, where S�q denotes the q-leaf star with loops on all q+1verties.We will return to the problem of ounting Widom-Rowlinson on�gurationslater in the paper. In partiular, we will show (in x4) that #2-Partile-WR-Configs is AP-interreduible with#BIS and (in x6) that #3-Partile-WR-Configs is at least as hard as #BIS in the sense that #BIS �AP#3-Partile-WR-Configs. We will also show (in x7) that for q � 4, #q-Partile-WR-Configs is AP-interreduible with #Sat.Aside from ontaining many problems of interest, H-olourings provide anexellent setting for testing our understanding of the omplexity landsape of(exat and approximate) ounting. To initiate this programme we onsideredall 10 possible 3-vertex onneted Hs (up to symmetry, and allowing loops).The omplexity of exatly ounting H-olourings was ompletely resolved byDyer and Greenhill [5℄. Aside from H = K�3 (the omplete graph with loopson all three verties) and H = K1;2 = P3 (Pn will be used to denote thepath of length n � 1 on n verties), whih are trivially solvable, the problemof ounting H-olourings for onneted three-vertex Hs is #P-omplete. Ofthe eight Hs for whih exat ounting is #P-omplete, seven an be shown8



to be omplete for #P w.r.t. AP-reduibility using redutions very similar tothose appearing elsewhere in this artile. The remaining possibility for H isS�2 (i.e, 2-partile Widom-Rowlinson on�gurations) whih we return to in thenext setion. Other omplete problems ould be mentioned here but we preferto press on to a potentially more interesting lass of ounting problems.4 Problems AP-interreduible with #BISThe redution desribed in the proof of Theorem 3 does not provide usefulinformation about#BIS, sine we do not have any evidene that the restritionof #LargeIS to bipartite graphs is omplete for #P w.r.t. AP-reduibility.6The fat that #BIS is interreduible with a number of other problems notknown to be omplete (or to admit an FPRAS) prompts us to study #BIS andits relatives in some detail. The following list provides examples of problemsAP-interreduible with #BIS; more will be added later.Name. #P4-Col.Instane. A graph G.Output. The number of P4-olourings of G, where P4 is the path of length 3.Name. #Downsets.Instane. A partially ordered set (X;�).Output. The number of downsets in (X;�).Name. #1p1nSat.Instane. A Boolean formula ' in onjuntive normal form (CNF), with atmost one unnegated literal per lause, and at most one negated literal.Output. The number of satisfying assignments to '.Name. #BeahConfigs.Instane. A graph G.Output. The number of \Beah on�gurations" in G, i.e., P �4 -olourings of G,where P �4 denotes the path of length 3 with loops on all four verties.Note that an instane of #1p1nSat is a onjuntion of Horn lauses, eahhaving one of the restrited forms x) y, :x, or y, where x and y are variables.Theorem 5 The problems #BIS, #P4-Col, #2-Partile-WR-Configs,#BeahConfigs, #Downsets and #1p1nSat are all AP-interreduible.6Note that this statement does not ontradit the general priniple, enuniated in x3, thatounting-analogues of NP-omplete deision problems are omplete w.r.t. AP-reduibility,sine a maximum ardinality independent set an be loated in a bipartite graph using networkow. 9



Proof. The problems#BIS and #P4-Col are essentially the same. A graph Gis P4-olourable i� it is bipartite, in whih ase two of the olours (the endones) point out an independent set. Conversely, eah independent set in aonneted bipartite graph G arises from one of two distint P4 olourings inthis manner.7 The orrespondene between independent sets and P4-olourings(trivially) onstitutes a mathing pair of approximation-preserving redutionsbetween the two problems.The problems #Downsets and #1p1nSat are also very lose; indeed,#Downsets is a restrited version of #1p1nSat in whih (a) all lauses havetwo literals, i.e., are of the form x ) y, and (b) there are no yli hains ofimpliations x0 ) x1 ) � � � ) x`�1 ) x0. But, given an arbitrary instaneof #1p1nSat, any fored variables as in (a) may be removed by substitutingFALSE or TRUE and then simplifying; and any set of ` variables forming ayli hain as in (b) may be replaed by a single variable. So #Downsetsand #1p1nSat are ertainly AP-interreduible.AP-interreduibility of all the problems other than#P4-Col and#1p1nSatfollows from the yle of redutions#BIS �AP #2-Partile-WR-Configs�AP #BeahConfigs�AP #Downsets�AP #BISwhih are presented in Lemmas 6, 7, 8 and 9. Note that a redution from#2-Partile-WR-Configs to #BIS was already known [1℄.Lemma 6 #BIS �AP #2-Partile-WR-Configs.Proof. Suppose B = (X;Y;A) is an instane of #BIS, where A � X � Y .For onveniene, X = fx0; : : : ; xn�1g and Y = fy0; : : : ; yn�1g. Construt aninstane G = (V;E) of #2-Partile-WR-Configs as follows. Let Ui : 0 �i � n� 1 and K all be disjoint sets of size 3n. Then de�neV = [i2[n℄Ui [ fv0; : : : ; vn�1g [KandE = [i2[n℄U (2)i [ �fv0; : : : ; vn�1g �K� [K(2) [[�Ui � fvjg : (xi; yj) 2 A	;where U (2)i , et., denotes the set of all unordered pairs of elements from Ui. SoUi and K all indue liques in G, and all vj are onneted to all of K. Let theWidom-Rowlinson (W-R) olours be red, white and green, where white is theentre olour. Say that a W-R on�guration (olouring) is full if all the setsU0; : : : ; Un�1 and K are bihromati. (Note that eah set is either monohro-mati, or bihromati red/white or green/white.) We shall see presently that7The symmetry of P4 allows a renaming of olours; in general, the orrespondene betweenolourings and independent sets is 2� : 1, where � is the number of onneted omponentsof G. 10



full W-R on�gurations aount for all but a vanishing fration of the set of allW-R on�gurations.Consider a full W-R on�guration C : V ! fred;white; greeng of G. As-sume C(K) = fred;whiteg; the other possibility, with green replaing red issymmetri. Every full olouring in G may be interpreted as an independent setin B as follows: I = �xi : green 2 C(Ui)	 [ �yj : C(vj) = red	:Moreover, every independent set in B an be obtained in this way from exatly(23n � 2)n+1 full W-R on�gurations of G satisfying the ondition C(K) =fred;whiteg. So jW 0(G)j = 2(23n � 2)n+1 � jI(B)j;where W 0(G) denotes the set of full W-R on�gurations of G, and the fator oftwo omes from symmetry between red and green.Crude ounting estimates providejW(G) n W 0(G)j � 3(n+ 1)(2 � 23n)n3n;where W(G) denotes the set of all W-R on�gurations of G. (One of the n+ 1sets in fU0; : : : ; Un�1;Kg is not bihromati, and has at most 3 olourings.Eah of the other sets has at most 2 � 23n olourings. There are at most 3nways to olour v0; : : : ; vn�1.) Sine3(n+ 1)(2 � 23n)n3n2(23n � 2)n+1 < 14for n suÆiently large (atually n � 17) we havejI(B)j = � jW(G)j2(23n � 2)n+1�and the result follows as in the proof of Theorem 3.Lemma 7 #2-Partile-WR-Configs �AP #BeahConfigs.Proof. Let G = (V;E) be an instane of #2-Partile-WR-Configs, withjV j = n. Construt an instane G0 = (V 0; E0) of #BeahConfigs as follows:V 0 = V [ fsg [ [r℄;and E0 = E [ (V � fsg) [ (fsg � [r℄);where r is a suÆiently large number, to be hosen later. There are four possibleolours that an be applied to the vertex s, but only two distint ones, up tosymmetry. If one of the \end" olours is used to olour s, then all the otherverties must reeive one of two olours, and any assignment of the two oloursis permissible; thus there are 2n+r ways to omplete the olouring of G0. Ifone of the \middle" olours is used to olour s, then the indued olouring11



on V is a W-R on�guration, and the remaining r verties may be trioloured.Combining these ounts,jB(G0)j = 2 � 3r � jW(G)j + 2 � 2n+r;where B(G0) denotes the set of all beah on�gurations of G0. HenejW(G)j = � jB(G0)j2 � 3r � ;provided r is large enough. In fat r = 2n will do, as then 2n+r=3r = (8=9)n,whih is less than 1=4 when n � 12.Lemma 8 #BeahConfigs �AP #Downsets.Proof. Let G = (V;E) be an instane of #BeahConfigs, with jV j = n. Weonstrut, as an instane of #Downsets, a partial order on the 3n-element setV �[3℄. For eah vertex v, we impose the relationships (v; 0) � (v; 1) � (v; 2); foreah edge (u; v), the relationships (v; 0) � (u; 1), (v; 1) � (u; 2), (u; 0) � (v; 1)and (u; 1) � (v; 2). Given a downsetD and a vertex v, there are four possibilitiesfor the set D \ f(v; 0); (v; 1); (v; 2)g: these are the four olours of a Beahon�guration. So there is a 1-1 orrespondene between Beah on�gurationsin G and downsets in (V � [3℄;�).Lemma 9 #Downsets �AP #BIS.Proof. Let (X;�) be an instane of #Downsets. For onveniene, identify Xwith [n℄. De�ne a bipartite graph B = (U; V;E) as follows. Let fUi; Vi : i 2 Xgbe a olletion of disjoint sets with jUij = jVij = 2n. Then de�ne U = Si2X Ui,V = Si2X Vi, and E = �(u; v) : u 2 Ui ^ v 2 Vj ^ i � j	:(Note that equality is allowed between i and j, so that Ui[Vi indues a ompletebipartite graph on 2n+ 2n verties.) Call an independent set I 2 I(B) full i�I \ (Ui [ Vi) 6= ; for all i 2 X. Denote by I 0(B) the set of all full independentsets in B, and by D(X;�) the set of all downsets in the partial order (X;�).Every full independent set I 2 I 0(B) orresponds to a downset D = fi 2 X :I \ Vi 6= ;g, and every downset D 2 D(X;�) arises from exatly (22n� 1)n fullindependent sets I in this way; thusjI 0(B)j = (22n � 1)n � jD(X;�)j:By a rude estimation of non-full independent sets,jI(B) n I 0(B)j � 3n(22n � 1)n�1:Sine 3n(22n � 1)n�1(22n � 1)n < 1412



(at least for n � 5), jD(X;�)j = � jI(B)j(22n � 1)n�and the result follows as in the proof of Theorem 3#2-Partile-WR-Configs and#BeahConfigs are in fat the �rst twoexamples in an in�nite sequene of #BIS-equivalent problems. Consider thefollowing sequene of ounting problems, parameterised by a positive integerparameter q:Name. #P �q -Col.Instane. A graph G.Output. The number of P �q -olourings of G, where P �q is the path of length q�1with loops on all q verties.Observe that #2-Partile-WR-Configs and #BeahConfigs are thespeial ases q = 3 and q = 4, respetively. The redutions presented in theproofs of Lemmas 7 and 8 easily generalise to higher q so we immediately obtain.Theorem 10 #P �q -Col �AP #BIS, for all q � 3.Clearly, the ase q = 2 is trivially solvable.5 A logial haraterisation of #BIS and its relativesSaluja, Subrahmanyam and Thakur [16℄ have presented a logial haraterisa-tion of the lass #P (and of some of its sublasses), muh in the spirit of Fagin'slogial haraterisation of NP [6℄. In their framework, a ounting problem isidenti�ed with a sentene ' in �rst-order logi, and the objets being ountedwith models of '. By plaing a syntati restrition on ', it is possible to iden-tify a sublass #RH�1 of #P whose omplete problems inlude all the onesmentioned in Theorem 5.We follow as losely as possible the notation and terminology of [16℄, anddiret the reader to that artile for further information and lari�ation. Avoabulary is a �nite set � = f eR0; : : : ; eRk�1g of relation symbols of aritiesr0; : : : ; rk�1. A struture A = (A;R0; : : : ; Rk�1) over � onsists of a universe(set of objets) A, and relations R0; : : : ; Rk�1 of arities r0; : : : ; rk�1 on A; nat-urally, eah relation Ri � Ari is an interpretation of the orresponding relationsymbol eRi.8 We deal exlusively with ordered �nite strutures; i.e., the sizejAj of the universe is �nite, and there is an extra binary relation that is in-terpreted as a total order on the universe. Instead of representing an instaneof a ounting problem as a word over some alphabet �, we represent it as astruture A over a suitable voabulary �. For example, an instane of #IS is a8We have emphasised here the distintion between a relation symbol eRi and its interpreta-tion Ri. From now on, however, we simplify notation by referring to both as Ri. The meaningshould be lear from the ontext. 13



graph, whih an be regarded as a struture A = (A;�), where A is the vertexset and � is the (symmetri) binary relation of adjaeny.The objets to be ounted are represented as sequenes T = (T0; : : : ; Tr�1)and z = (z0; : : : ; zm�1) of (respetively) relations and �rst-order variables. Wesay that a ounting problem f (a funtion from strutures over � to numbers)is in the lass #FO if it an be expressed asf(A) = ���(T; z) : A j= '(z;T)	��;where ' is a �rst-order formula with relation symbols from � [ T and (free)variables from z. For example, by enoding an independent set as a unaryrelation I, we may express #IS quite simply asfIS(A) = ���(I) : A j= 8x; y: x � y ) :I(x) _ :I(y)	��:Indeed, #IS is in the sublass #�1 � #FO (so named by Saluja et al.), sinethe formula de�ning fIS ontains only universal quanti�ation. Saluja et al. [16℄exhibit a strit hierarhy of sublasses#�0 = #�0 � #�1 � #�1 � #�2 � #�2 = #FO = #Pbased on quanti�er alternation depth. Among other things, they demonstratethat all funtions in #�1 admit an FPRAS.9All the problems introdued in x4, in partiular those mentioned in Theo-rem 5, lie in a syntatially restrited sublass #RH�1 � #�1 to be de�nedpresently. Furthermore, they haraterise #RH�1 in the sense of being om-plete for #RH�1 with respet to AP-reduibility (and even, as we shall see,with respet to a muh more demanding notion of reduibility). We say that aounting problem f is in the lass #RH�1 if it an be expressed in the formf(A) = ���(T; z) : A j= 8y:  (y; z;T)	��; (2)where  is an unquanti�ed CNF formula in whih eah lause has at most oneourrene of an unnegated relation symbol from T, and at most one ourreneof a negated relation symbol from T. The rationale behind the naming of thelass #RH�1 is as follows: \�1" indiates that only universal quanti�ation isallowed, and \RH" that the unquanti�ed subformula  is in \restrited Horn"form. Note that the restrition on lauses of  applies only to terms involvingsymbols from T; other terms may be arbitrary.For example, suppose we represent an instane of #Downsets as a stru-ture A = (A;�), where � is a binary relation (assumed to be a partial order).Then #Downsets 2 #RH�1 sine the number of downsets in the partiallyordered set (A;�) may be expressed asfDS(A) = ���(D) : A j= 8x 2 A; y 2 A:D(x) ^ y � x) D(y)	��; (3)where we have represented a downset in an obvious way as a unary relation Don A. The problem #1p1nSat is expressed by a formally idential expression,9The lass #�1 is far from apturing all funtions admitting an FPRAS. For example,#DNF admits an FPRAS even though it lies in #�2 n#�1 [16℄.14



but with � interpreted as an arbitrary binary relation (representing lauses)rather than a partial order.10The main result of this setion isTheorem 11 #1p1nSat is omplete for #RH�1 under parsimonious reduibil-ity.Proof. Consider the generi ounting problem in #RH�1, as presented in equa-tion (2). SupposeT = (T0; : : : ; Tr�1), y = (y0; : : : ; y`�1) and z = (z0; : : : ; zm�1),where (Ti) are relations of arity (ti), and (yj) and (zk) are �rst-order variables.Let L = jAj` and M = jAjm, and let (�0; : : : ; �L�1) and (�0; : : : ; �M�1) beenumerations of A` and Am. ThenA j= 8y:  (y; z;T) i� A j= L�1̂q=0  (�q; z;T);and f(A) = M�1Xs=0 ���nT : L�1̂q=0  q;s(T)o���; (4)where  q;s(T) is obtained from  (�q; �s;T) by replaing every subformula that istrue (resp., false) in A by TRUE (resp., FALSE). Now VL�1q=0  q;s(T) is a CNFformula with propositional variables Ti(�i) where �i 2 Ati . Moreover, there isat most one ourrene of an unnegated propositional variable in eah lause,and at most one of a negated variable. Thus, expression (4) already providesan AP-redution to #1p1nSat, sine f(A) is the sum of the numbers of satis-fying assignments to M (i.e. polynomially many) instanes of #1p1nSat. (Toobtain a preise orrespondene we must add, in eah instane, trivial lausesTi(�i)) Ti(�i) for every propositional variable Ti(�i) not already ourring inVL�1q=0  q;s(T), otherwise the number of models T will be underestimated by afator 2u where u is the number of unrepresented variables Ti(�i).)The above redution is not yet parsimonious. To aomplish this, let usdistinguish the variables in the above set of instanes of #1p1nSat as Tis(�i)(s = 0; 1; : : : ;M�1). Also, write 	 s = VL�1q=0  q;s(Ts) (s = 0; 1; : : : ;M�1). Wemay assume that 	 s ontains no one-literal lauses, sine the truth setting ofany suh literal is fored, and the orresponding variable may be set to TRUEor FALSE. Let w1; w2; : : : ; wM�1 be new propositional variables, and supposew0 = FALSE, wM = TRUE for the sake of exposition. Let�s = r�1̂i=0 ^�i2Ati(Tis(�i)) ws+1 ) (s = 0; 1; : : : ;M � 2)and �s = r�1̂i=0 ^�i2Ati(ws ) Tis(�i) ) (s = 1; 2; : : : ;M � 1);10To be absolutely preise, one also needs two unary relations, U and N say, to ode theone-literal lauses. 15



and onsider the formula' = M�1ŝ=0 	 s ^M�2ŝ=0 �s ^M�1ŝ=1 �s:Observe that ' is an instane of #1p1nSat. We laim that it has exatly f(A)satisfying assignments. To see this note that if, for a given s, Tis(�i) is assignedTRUE for some i, then for all p > s, Tjp(�j) must be assigned TRUE for everyj. This is fored by the �s; �s formulae. Thus there an only be one s suhthat the Tis(�i) reeive both truth assignments. This is the unique s suh thatws is assigned FALSE and ws+1 is assigned TRUE. Any s = 0; 1; : : : ;M � 1is possible but, one it is �xed, it is easy to see that ' is satis�ed if and onlyif 	 s is satis�ed. The satisfying assignments are learly disjoint for di�erent s,and the laim follows.Corollary 12 The problems #BIS, #P4-Col, #P �q -Col (for q � 3, inlud-ing as speial ases #2-Partile-WR-Configs and #BeahConfigs) and#Downsets are all omplete for #RH�1 with respet to AP-reduibility.Proof (sketh). Hardness is immediate from Theorems 5, 10 and 11. That eahof the problems is in the lass #RH�1 an be established by onstrutingsuitable logial formulas along the lines of (3). Suppose we represent an instaneof #P �q -Col as a struture A = (A;�) where A is the vertex set and � is abinary relation (assumed to represent adjaeny). We an express the numberof P �q -olourings as follows, where, for 1 � j < q, the unary relation Cj is \true"for a vertex i� its olour is in f1; : : : ; jg.fP �q (A) = ���(C1; : : : ; Cq�1) : A j= 8x 2 A; y 2 A:(C1(x)) C2(x)) ^ � � � ^ (Cq�2(x)) Cq�1(x)) ^(C1(x) ^ x � y ) C2(y)) ^ � � � ^ (Cq�2(x) ^ x � y ) Cq�1(y))	��:We an represent an instane of #BIS as a struture A = (A;L;�), whereA is the vertex set, L is the set of \left" verties and � is a binary relation(assumed to represent adjaeny). We an express the number of independentsets as follows, where the unary relation X is \true" for left-verties whih arein the independent set, and for right-verties whih are not in the independentset.fBIS(A) = ���(X) : A j= 8x 2 A; y 2 A:L(x) ^ x � y ^X(x)) X(y)	��:Corollary 12 tells us something about the omplexity lass #RH�1. Inpartiular, it is likely to be a strit subset of #�1. Indeed, sine #IS 2 #�1,#RH�1 = #�1 would imply #IS �AP #BIS (i.e., it would imply that #BISis omplete for #P with respet to AP-reduibility). It is lear that #RH�1 isnot a subset of the previous lass in the hierarhy of Saluja et al. In partiular,#1p1nSat 2 #RH�1 n #�1 (this an be proved using arguments similar to16



those used by Saluja et al. to show that ounting satisfying assignments ofa 3CNF formula is not in #�1). Every problem in #�1 is (trivially) AP-reduible to the omplete problems in #RH�1, but we do not know whether#�1 � #RH�1.Clearly, Corollary 12 ontinues to hold even if \AP-reduibility" is replaedby a more stringent reduibility. In fat, most of our results remain true formore stringent reduibilities than AP-reduibility. One suh tightening is to \re-strited approximation-preserving redution". The de�nition of RAP-redutionfollows losely that of AP-redution, but the operation of the Turing mahineMis greatly restrited. On input (x; "), the mahine M may make a single oraleall (w; Æ) 2 ���R+ , and ompute a positive rational q 2 Q+ without reourseto the orale. Suppose the result from the orale all is y 2 N. Then the resultreturned by M is the integer losest to qy.All the results based on expliit redutions in this artile (not just Theo-rem 11 and Corollary 12) hold with \RAP-reduibility" replaing \AP-redu-ibility." The results that appeal to the bisetion tehnique of Valiant and Vazi-rani [21℄ seem to require a more liberal notion of reduibility.6 Problems to whih #BIS is reduibleThere are some problems that we have been unable to plae in any of the threeAP-interreduible lasses onsidered in this artile even though redutions from#BIS an be exhibited. The existene of suh redutions may be onsideredas weak evidene for intratability, at least provisionally while the omplexitystatus of the lass #RH�1 is unlear. Two examples are #3-Partile-WR-Configs (the speial ase of #q-Partile-WR-Configs with q = 3) and#Bipartite q-Col:Name. #Bipartite q-Col.Instane. A bipartite graph B.Output. The number of q-olourings of B.Three observations onerning #Bipartite q-Col: (i) the speial aseq = 2 is trivially solvable; (ii) the speial ase q = 3 has an alternative hara-terisation as ounting C6-olourings of a general graph, where C6 is the yleon six verties; and (iii) #Bipartite q-Col inludes the q-state ferromagnetiPotts model as a speial ase. Observation (ii) follows from a similar argumentto that used to relate #BIS and #P4-Col in the proof of Theorem 5.To interpret observation (iii), suppose G is a graph on n verties, and setq = 3 (say). The on�gurations of the 3-state ferromagneti Potts system basedon G are the 3n possible 3-olourings, not neessarily proper, of the graph G.De�ne the weight of a on�guration � to be 2m(�), where m(�) is the numberof edges of G that are monohromati under the 3-olouring �. Consider theproblem of omputing the total weight of on�gurations: this is a simpli�edformulation of the problem of evaluating the partition funtion of the 3-stateferromagneti Potts model at a ertain non-zero temperature. The redution17



of this (weighted) ounting problem to #Bipartite3-Col is aomplished bymapping G to its \2-streth," i.e., the graph G0 obtained from G by subdivid-ing eah edge by a single additional vertex. An antiferromagneti system isobtained by giving weight �m(�) to on�guration �, where � < 1. Notie that(usual) graph olouring is obtained in the \zero temperature limit" as � ! 0;notie also that an antiferromagnet (repulsive) Potts system on the bipartitegraph G0 e�etively models a ferromagneti (attrative) Potts system on thegeneral graph G.An intermediate problem that features in our redutions is:Name. #BipartiteMaxIS.Instane. A bipartite graph B.Output. The number of maximum independent sets in B.Theorem 13 #BIS is AP-reduible to all three problems: #BipartiteMaxIS,#3-Partile-WR-Configs and #Bipartite q-Col for q � 3.Proof. Follows from the redutions guaranteed by Lemmas 15, 16 and 17.The �rst of the three problems is atually AP-interreduible with #BIS, as thefollowing lemma shows:Lemma 14 #BipartiteMaxIS �AP #BIS.Proof. Sine the maximum size, m, of an independent set in a bipartite graphan be determined in polynomial time, the redution from the proof of Theo-rem 3 may be used.We now give the lemmas whih we use to prove Theorem 13. We will usethe following de�nition.De�nition: Let f(a; b) denote the number of onto funtions from a set ofsize a to a set of size b.Lemma 15 #BIS �AP #BipartiteMaxIS.Proof. Let G be an instane of #BIS, with vertex set fv0; : : : ; vn�1g. Weonstrut an instane, G0 of #BipartiteMaxIS as follows. The verties of G0are fv0; : : : ; vn�1g[fv00; : : : ; v0n�1g. The edges of G0 are the edges of G togetherwith f(vi; v0i)g. Now there is a bijetion between the independent sets of G andthe maximum independent sets of G0.Lemma 16 #BipartiteMaxIS �AP #3-Partile-WR-Configs.Proof. Let B = (X;Y;A) be an instane of #BipartiteMaxIS, where X =fx0; : : : ; xn�1g and Y = fy0; : : : ; yn�1g. Let M be the size of a maximumindependent set in B. (Note that M an be determined from B in polynomialtime.) Construt an instane G = (V;E) of #3-Partile-WR-Configs asfollows, where s and t are integers to be hosen below. Let Ui : 0 � i � n�1 be18



disjoint sets of size s, and Vj : 0 � j � n� 1 be disjoint sets of size s. Further,let K be a set of size t. Then setV = K [ [i2[n℄Ui [ [j2[n℄Vjand E = K(2) [ [j2[n℄(Vj �K) [[�Ui � Vj : (xi; yj) 2 A	:Thus K is a lique, and there is a omplete bipartite graph between Sj Vjand K. An S�3 -olouring orresponds to a olouring of G with olours b, r1, r2and r3 in whih, for % 6= �, there are no edges between verties oloured r% andverties oloured r�. A olouring is full if, for some %, K has verties oloured band r% (and no other olours). Every full olouring points out an independentset in B. The vertex yj is in the independent set if Vj ontains at least onevertex oloured r%. The vertex xi is in the independent set if Ui ontains atleast one vertex whose olour is not b or r%. The number of times that anindependent set with k ui's and ` vi's omes up (as a full olouring) is3(2t � 2)(4s � 2s)k(2s)n�k(2s � 1)`= 3(2t � 2)2sn(2s � 1)k+`:Let Z = 3(2t�2)2sn(2s � 1)M . Let N denote the number of maximum indepen-dent sets in B. We will say that a full olouring is M -large if the independentset that it points out has size M , and M -small otherwise. The number ofM -small full olourings is at most22n3(2t � 2)2sn(2s � 1)M�1 � 22nZ2s � 1 � Z=8;if s is suÆiently large with respet to n. The number of non-full olourings isat most 4 � 42sn, whih is at most Z=8 if t is suÆiently large with respet to sand n. Let Y denote the number of olourings. ThenN = �YZ � ;and the result follows.Lemma 17 For q � 3, #BipartiteMaxIS �AP #Bipartite q-Col.Proof. Let B = (X;Y;A) be an instane of #BipartiteMaxIS, where X =fx0; : : : ; xn�1g and Y = fy0; : : : ; yn�1g. Let M be the size of a maximumindependent set in B. Construt an instane G = (V;E) of #Bipartite q-Colas follows, where r, s and ` are integers to be hosen below. Let Ui : 0 � i � n�1be disjoint sets of size r, and Vi : 0 � i � n�1 be disjoint sets of size s. Further,19



let I1 be a set of size (q� 2)` and I2 be a set of size 2`. Let i0 be a vertex thatis not in any of these sets. Then setV = fi0g [ I1 [ I2 [ [i2[n℄Ui [ [j2[n℄Vjand E = (fi0g � I1) [ (I1 � I2) [ [i2[n℄(fi0g � Ui) [ [j2[n℄(Vj � I1)[ [�Ui � Vj : (xi; yj) 2 A	:Note that G is indeed bipartite, so it is an instane of #Bipartite q-Col.A q-olouring ofG is full if exatly q�2 olours are used to olour the vertiesin I1. Every full olouring points out an independent set in B. Consider a fullolouring in whih blue is not used to olour any verties in I1[fi0g. Vertex xiis in the independent set if Ui ontains at least one blue vertex and vertex yi isin the independent set if Vi ontains at least one blue vertex. Reall that f(a; b)denotes the number of onto funtions from a set of size a to a set of size b. Letz = lg((q � 1)=(q � 2)). The number of times that an independent set with kxi's and j yi's omes up (as a full olouring) is2� qq � 2� f((q � 2)`; q � 2) 22` (q � 2)rn (2s � 1)j+k�2zr � 12s � 1 �k: (5)The � qq�2� in (5) orresponds to the hoie of the q � 2 olours for I1. The 2orresponds to the hoie of a remaining olour for i0. The f((q � 2)`; q � 2)fator ounts the number of ways to olour I1 with the hosen olours. Thereare 22` ways to olour I2. If vertex xi is out of the independent set, then thereare (q � 2)r ways to olour Ui. Otherwise, there are (q � 1)r � (q � 2)r ways.Thus, the number of ways to olour the Ui's is(q � 2)rn�(q � 1)r � (q � 2)r(q � 2)r �k = (q � 2)rn(2zr � 1)k:Finally, the number of ways to olour the Vi's is (2s � 1)j.Let N denote the number of maximum independent sets in B. LetZ = 2� qq � 2� f((q � 2)`; q � 2) 22` (q � 2)rn (2s � 1)M :As in the proof of Lemma 16, we wish to show that the total ontributionof the non-full olourings is small. To this end, let%(y) = �qy� f((q � 2)`; y) (q � y)2`:%(y) is the number of olourings of I1 [ I2 in whih I1 is oloured with exatlyy olours. Thus, %(y) = 0 unless y 2 f1; : : : ; q � 1g. We will hoose ` to besuÆiently large that, for a positive onstant ,%(q � 2) � q�1Xy=1 %(y) � %(q � 2)(1 + exp(�`)): (6)20



(We will show later that equation (6) holds for an appropriate hoie of `.)Equation (6) implies that the total ontribution of the non-full olourings is atmost %(q � 2) exp(�`)q1+rn+sn:If ` is at least a suÆiently large polynomial in q, n, r, and s then this is atmost %(q � 2) exp(�`=2) whih is at most Z=8. As in the proof of Lemma 16,the number of M -small full olourings is also at most Z=8.Let Y be the number of olourings. Now we are almost �nished exept that1. we still need to show that equation (6) holds as long as ` is suÆientlylarge with respet to the onstant q, and2. unlike the situation in the proof of Lemma 16, the number of M -largefull olourings is not preisely NZ. That is, we have ignored the extrafator of �2zr�12s�1 �k in equation (5). To �nish, we must show that theparameters r and s an be hosen suh that for any k 2 [0; n℄e�" � �2zr � 12s � 1 �k � e"; (7)where " is a given auray parameter.Now we show that equation (6) holds as long as ` is suÆiently large withrespet to the onstant q. In partiular, we show that for suÆiently large `there is a positive onstant  suh that for all y 2 f1; : : : ; q� 3; q� 1g, we have%(y) � %(q � 2) exp(�`).First, onsider y 2 f1; : : : ; q � 3g. In this ase (as long as ` is at least2(q� 2) ln(q� 2)), Lemma 18 (whih follows) and the de�nition of % show that%(q � 2)%(y) � � qq�2��qy� �q � 2y �(q�2)`(1� exp(�`=2))� 2q � y�2`:If ` is suÆiently large then this is at least exp(`), sine�q � 2y �(q�2)=2 = �1 + q � 2� yy �(q�2)=2 � 1 +�q � 22 ��q � 2� yy �= 1 +�q � 2� y2 ��q � 2y � > 1 + q � 2� y2 = q � y2 :Finally, onsider y = q � 1. As before,%(q � 2)%(q � 1) � � qq�2�� qq�1��q � 2q � 1�(q�2)`(1� exp(�`=2))22`:This is at least exp(`), sine�q � 1q � 2�q�2 = �1 + 1q � 2�q�2 < 22:21



We now onlude the proof by showing that the parameters r and s an behosen suh that, for any k 2 [0; n℄ equation (7) holds. Note that we want rand s to be at most polynomial in n and "�1. Also, we must make s at least asuÆiently large multiple of n (say 1000n) so that the number of M -small fullolourings stays below Z=8. Let W be be a positive integer suh that bzW  isat least 1000n. Let R = d(16(ln 2)Wn)=(7")e. Finally, let r = Wx, where x ishosen from Corollary 20 whih is to follow.There are two ases. If zr � bzr � W=R then we set s = bzr. Otherwise,we set s = dzre. To �nish, we just need to show that equation (7) is satis�edeither way. Let Æ = "=n. For the �rst ase,(ln 2)(zr � bzr) � (ln 2)W=R � 7Æ=16 � ln(1 + Æ=2);where the rightmost inequality relies on the fat that Æ < 1=2. Exponentiatingboth sides, 2zr � 2bzr(1 + Æ=2) � 2bzr + Æ(2bzr � 1):Thus, 2zr � 2bzr2bzr � 1 � Æ:Adding 1 to both sides, 2zr � 12bzr � 1 � 1 + Æ � eÆ:The seond ase is analogous.We end the setion by stating and proving some tehnial lemmas whih weused in the proof of Lemma 17.Reall that f(a; b) denotes the number of onto funtions from a set of size ato a set of size b.Lemma 18 If a and b are positive integers and a � 2b ln b thenba (1� exp(�a=(2b))) � f(a; b) � ba:Proof. The right-hand inequality is straightforward, and the left-hand inequal-ity an be derived as follows.f(a; b) � ba � b(b� 1)a = ba�1� b�1� 1b�a�� ba(1� b exp(�a=b)) = ba�1� exp��a�1b � ln ba ���� ba�1� exp��a2b �� :
22



Lemma 19 For any positive integer R there is an x 2 [1; : : : ; R℄ suh thatmin(zx� bzx; dzxe � zx) � 1=R:Proof. For i 2 [1; : : : ; R℄, let �i denote zi� bzi. If there is an i suh that �i �1=R then take x = i. Otherwise, there are i 6= j suh that 0 � �i � �j � 1=R,so take x = ji� jj.Corollary 20 For any positive integer W and any positive integer R, there isan x 2 [1; : : : ; R℄ suh thatmin(zWx� bzWx; dzWxe � zWx) �W=R:7 An errati sequene of problemsIn this setion, we onsider a sequene of H-olouring problems. Let Wrq bethe graph with vertex set Vq = fa; b; 1; : : : ; qg and edge setEq = f(a; b)g [ f(b; b)g [[i f(b; i)g [[i f(i; i)g:Wr0 is just K2 with one loop added. Wr1 is alled \the wrenh" in [2℄. Considerthe problem #q-Wrenh-Col, whih is de�ned as follows.Name. #q-Wrenh-Col.Instane. A graph G.Output. The number of Wrq-olourings of G.In this setion, we prove the following theorem.Theorem 21� For q � 1, #q-Wrenh-Col is AP-interreduible with #Sat.� #2-Wrenh-Col is AP-interreduible with #BIS.� For q � 3, #q-Wrenh-Col is AP-interreduible with #Sat.Theorem 21 indiates that either (i) #BIS is AP-interreduible with #Sat(whih would be surprising) or (ii) the omplexity of approximately ountingH-olourings is \non-monotoni": when H is hosen from a regularly onstrutedsequene, the omplexity may jump down and then up again. The statementabout Wr0-olourings follows from Theorem 3 beause Wr0-olourings are inde-pendent sets. The statement about Wr1-olourings will be proved in Lemma 22.The easiness result for Wr2-olourings follows from Lemma 23 and from Theo-rem 5. The hardness result for Wr2-olourings follows from Lemma 24 and fromLemma 15. The statement for Wrq-olourings for q � 3 follows from Lemma 25.As starting points for our redutions, we will use the following problems.23



Name. #LargeIS-Cubi.Instane. A positive integer m and a onneted ubi graph G in whih everyindependent set has size at most m.Output. The number of size-m independent sets in G.Name. #LargeCut.Instane. A positive integer k and a onneted graph G in whih every ut11has size at most k.Output. The number of size-k uts of G.Garey et al. [7℄ have shown that the deision problems orresponding tothese ounting problems are NP-omplete. Therefore, Theorem 1 shows that theounting problems are AP-interreduible with#Sat. A diret (nearly parsimo-nious) redution from #Sat to #LargeIS-Cubi appears in Appendix A anda diret parsimonious redution from #Sat to #LargeCut appears in [10℄.12Lemma 22 #LargeCut �AP #1-Wrenh-Col.Proof. Let k and G = (V;E) be an instane of #LargeCut. Construt aninstane G0 = (V 0; E0) of #1-Wrenh-Col as follows, where the size of V is nand s and t are integers to be determined below. For every vertex u of G letAu and A0u be disjoint sets of size 2s, let Bu and B0u be disjoint sets of size 7s,and let Vu = Au [ Bu [ B0u [ A0u. Let Bu[i℄ denote the ith element of Bu. Forevery edge e of G let Se and S0e be disjoint sets of size t. Then setV 0 =  [u2V Vu! [ [e2E Se [ S0e!and E0 =  [u2V Au �Bu [A0u �B0u [ [i2f1;:::;7sgf(Bu[i℄; B0u[i℄)g![ [e=(u;v)2EBu � Se [B0v � Se [B0u � S0e [Bv � S0e!:In a wrenh-olouring of G0, every edge is oloured with one of the sixolourings (a; b), (b; a), (b; b), (b; 1), (1; b) and (1; 1). A wrenh-olouring isfull if, for every vertex u of G, the set of olourings assigned to edges between Bu11Reall that a \ut" of a graph is a partition of its vertex set into two subsets and that thesize of the ut is the number of edges whih span the two subsets.12Reall that it was possible to modify the de�nition of #LargeIS so that a \witness"was provided along with the instane. Similarly, it is possible to modify the de�nitions of#LargeIS-Cubi and #LargeCut so that witnesses are provided along with the input. Forexample, a witness for #LargeCut ould be used to hek that the instane has no uts ofsize exeeding k. 24



andB0u is either exatly C1 = f(a; b); (b; b); (b; 1); (1; b); (1; 1)g or exatly C2 =f(b; a); (b; b); (1 ; b); (b; 1); (1; 1)g. Note that in the �rst ase Au is oloured band A0u has no a. In the seond ase, A0u is oloured b and Au has no a. Everyfull wrenh-olouring points out a ut of G. The vertex u of G is in the left sideof the partition in the �rst ase and in the right side in the seond ase. Reallthat f(x; y) denotes the number of onto funtions from a set of size x to a setof size y. The number of times that a size-j ut omes up (as a full olouring)is 2(f(7s; 5)22s)n2jt:Let Z = 2(f(7s; 5)22s)n2kt. Let N denote the number of k-uts. We say thata full olouring is k-large if the ut that it points out has size k and k-smallotherwise. The number of k-small full olourings is at most 2nZ=2t whih is atmost Z=8 as long as t � n + 3. We onlude the proof by showing that thenumber of non-full olourings is at most Z=8. In partiular, let C denote theset of olourings assigned to edges between Bu and B0u. In eah ase (below)the number of olourings is exponentially smaller (as a funtion of s) than Z.In our alulations, we use Lemma 18 and we assume that s is suÆiently largeompared to t, so we do not have to worry about any additional fator (up to32t(n2)) whih might arise due to having more possibilities for olouring vertiesin Se or S0e (for any e).1. jCj � 5 but C 6= C1 and C 6= C2: Au and A0u are oloured b, so thereare at most 67s possibilities for olouring the verties in Vu, whih isexponentially fewer than f(7s; 5)22s (sine 67 < 5722).2. jCj = 4: Au and A0u have no verties with olour a, so there are at most47s22s22s possibilities for olouring the verties in Vu, whih is exponen-tially fewer than f(7s; 5)22s (sine 472222 < 5722).3. jCj � 3: There are at most 37s32s32s possibilities for olouring the vertiesin Vu, whih is exponentially fewer than f(7s; 5)22s (sine 373232 < 5722).Lemma 23 #2-Wrenh-Col �AP #Downsets.Proof. Let G = (V;E) be an instane of #2-Wrenh-Col. Following theproof of Lemma 8, we onstrut an instane of #Downsets, a partial order onthe 2n-element set V �[2℄. For eah edge (u; v) of G, we impose the relationships(u; 0) � (v; 1) and (v; 0) � (u; 1). Given a downset D and a vertex u of G, thereare four possibilities for the set Du = D \ f(u; 0); (u; 1)g. These possibilitiesorrespond to the four olours of an Wr2-olouring of G. If Du = f(u; 1)g then uis mapped to vertex a of Wr1 and if Du = f(u; 0)g then u is mapped to vertex bof Wr1. Now there is a 1-1 orrespondene between Wr1-olourings of G anddownsets in (V � [2℄;�).Lemma 24 #BipartiteMaxIS �AP #2-Wrenh-Col.Proof. Similar to the proof of Lemma 16.25



Lemma 25 For q � 3, #LargeIS-Cubi �AP #q-Wrenh-Col.Proof. Let m and G be an instane of #LargeIS-Cubi. Let n be the num-ber of verties of G. First, onstrut a graph G0 from G. For every ver-tex u of G, let V [u℄ be the graph with vertex set fu1; u2; u3; u4; u5g and edgeset f(u1; u4); (u2; u4); (u3; u4); (u1; u5); (u2; u5); (u3; u5)g. G0 will be onstrutedfrom the graphs V [u℄ and from some additional edges. In partiular, if v is thei'th smallest neighbour of u in G and u is the j'th smallest neighbour of v in G,then we add (ui; vj) to G0. Next, onstrut a graph G00 from G0. Let r besuÆiently large with respet to n and let s = 1:1 r. Every vertex u1, u2, oru3 in G0 orresponds to an independent set in G00 of size r. Every vertex u4 oru5 in G0 orresponds to an independent set in G00 of size s. Every edge of G0orresponds to a omplete bipartite graph in G00.A G0-map is is a olouring whih maps eah of the 5n verties of G0 to anon-empty subset of the vertex set Vq = fa; b; 1; : : : ; qg in suh a way that1. if verties � and � of G0 are adjaent and the olour of � inludes a thenthe olour of � is fbg, and2. if verties � and � of G0 are adjaent and the olour of � inludes i (forany i 2 f1; : : : ; qg) then the olour of � is a subset of fb; ig.We will say that a G0-map is \independent" if, for every vertex u of G either1. u1, u2 and u3 are oloured Vq and u4 and u5 are oloured fbg, or2. u1, u2 and u3 are oloured fbg and u4 and u5 are oloured Vq.There is a 1-1 orrespondene between independent sets of G and independentG0-maps. (u is in the independent set i� u1 is oloured Vq.) Furthermore,every Wrq-olouring of G00 points out a G0-map and every size-M independentset of G orresponds to f(r; q + 2)3Mf(s; q + 2)2(n�M) Wrq-olourings of G00,where f(x; y) denotes the number of onto funtions from a set of size x toa set of size y, as in the proof of Lemma 17. Let N denote the number ofsize-m independent sets in G. Let Y denote the number of Wrq-olourings ofG00. We will say that an independent G0-map is \full" if the independent setthat it points out has size m. Claim 3 (below) shows that if C is a non-fullG0-map then the fration of Wrq-olourings of G00 whih orrespond to C isexponentially small (as a funtion of r). This implies thatN = $ Yf(r; q + 2)3mf(s; q + 2)2(n�m)% :We say that a G0-map C is \exponentially unlikely" when the fration ofWrq-olourings of G00 whih orrespond to C is exponentially small (as a fun-tion of r). We now omplete the proof of the lemma by proving Claims 1{3. Ineah ase, the fat that the spei�ed fration is exponentially large in r followsfrom Lemma 18. 26



Claim 1 If, in G0-map C, some, but not all, of the verties in V [u℄ are olouredfb; ig (for some vertex u of G and some i 2 f1; : : : ; qg) then C is exponentiallyunlikely.Proof of Claim 1.1. Suppose that u1 is oloured fb; ig and both u4 and u5 are oloured fbg.Then theG0-map C 0 obtained by reolouring u1 with Vq and all neighboursof u1 with fbg orresponds to a fator of f(r; q + 2)=f(r; 2)2 more Wrq-olourings of G00 than C. (Note that u4 and u5 are already oloured fbg,and u1 has at most one other neighbour.) This fator is exponentiallylarge in r sine q > 2. If r is suÆiently large with respet to n then itexeeds the number of G0-maps, so C is exponentially unlikely.2. Suppose that u1 and u4 are oloured fb; ig and u5 is oloured fbg. Thenthe G0-map C 0 obtained by reolouring u5 with fb; ig orresponds to afator of f(s; 2) more Wrq-olourings of G00 than C.3. Suppose that u1 and u4 and u5 are oloured fb; ig and u3 is oloured fbg.Then the G0-map C 0 obtained by reolouring u4 and u5 with Vq and u1, u2and u3 with fbg orresponds to a fator of f(s; q + 2)2=(f(s; 2)2f(r; 2)2)more Wrq-olourings of G00 than C.4. Suppose that u4 is oloured fb; ig and all of its neighbours are olouredfbg. Then the G0-map C 0 obtained by reolouring u4 with Vq orrespondsto a fator of f(s; q + 2)=f(s; 2) more Wrq-olourings of G00 than C.By symmetry, these are the only ases.Claim 2 If, in G0-map C, some vertex of G0 has a olour other than Vq or fbg,then C is exponentially unlikely.Proof of Claim 2. Suppose (for ontradition) that C is not exponentiallyunlikely and that it has a vertex z whose olour is not fbg or Vq. z must havea neighbour with a olour other than fbg (otherwise C would be exponentiallyunlikely, sine exponentially more Wrq-olourings orrespond to the G0-mapobtained from C by reolouring z with Vq). Sine the olour of z is not fig(otherwise C would be exponentially unlikely), it must be fb; ig (for some i 2f1; : : : ; qg). Now onsider the onneted omponent U 0 of G0 whih ontains zand has every vertex oloured fb; ig. Sine no vertex has olour fig, anyboundary surrounding U 0 must have olour fbg. By Claim 1, this orrespondsto a onneted omponent U of G, of size, say, `. We will show that C isexponentially unlikely. First, suppose that the maximum degree of a vertexin the subgraph of G indued by U is less than three. In this ase, obtain aG0-map C 0 from C by reolouring d`=2e of the verties in U with Vq and the restof them with fbg. (In this ase, the subgraph of G indued by U is a olletionof paths and yles, so every other vertex an be oloured with olour Vq andthe rest of them with fbg.) C 0 orresponds to a fator off(r; q + 2)3d`=2ef(s; q + 2)2b`=2f(r; 2)3`f(s; 2)2`27



more Wrq-olourings of G00 than C. If the subgraph of G indued by U hasmaximum degree three then, sine it is not equal to K4 (otherwise it would beall of G), it has an independent set of size I of size at least `=3. (This followsfrom Brooks' theorem [3℄, whih says that if a onneted graph � is not aomplete graph and has maximum degree � � 3, then it is �-olourable.) Nowobtain C 0 from C by re-olouring the verties in U 0 to enode the independentset I. (That is, if a vertex u is in the independent set, olour u1, u2 and u3with Vq as before.) Sine f(r; q + 2)3 � f(s; q+ 2)2, C 0 orresponds to a fatorof at least f(r; q + 2)(`=3)3f(s; q + 2)(2`=3)2f(r; 2)3`f(s; 2)2`more Wrq-olourings of G00 than C. This fator is exponentially large in r sineq > 2.Claim 3 If G0-map C is not full then it is exponentially unlikely.Proof of Claim 3. Suppose (for ontradition) that C is not exponentiallyunlikely and that for some vertex u of G, some but not all of the verties infu1; u2; u3g have olour Vq. (By Claim 2, the others and u4 and u5 have olourfbg.) Then, C orresponds to exponentially fewer Wrq-olourings of G00 (bya fator of f(s; q + 2)2=f(r; q + 2)2) than the G0-map C 0 obtained from C byreolouring u4 and u5 with Vq and u1, u2 and u3 with fbg. If all of u1, u2 and u3have olour fbg and C is not exponentially unlikely then u4 and u5 have olourVq. Thus, if C is not exponentially unlikely, it is independent. As we saw before,the number of Wrq-olourings of G00 orresponding to a size-M independentset of G is f(r; q + 2)3Mf(s; q + 2)2(n�M). Sine f(r; q + 2)3=f(s; q + 2)2 isexponentially large as a funtion of r, C is also full.Essentially the same redution yields:Lemma 26 For q � 4, #LargeIS-Cubi �AP #q-Partile-WR-Configs.8 ConlusionsWe have studied three lasses of ounting problems that are interreduible un-der approximation-preserving redutions: (i) those that admit an FPRAS, (ii)those that are AP-interreduible with #Sat (and therefore do not have anFPRAS unless NP=RP) and (iii) those that are AP-interreduible with #BIS.We show that the problems whih we study in the third lass are all ompletefor a logially-de�ned subset of #P with respet to AP-reduibility. An im-portant open problem is to resolve the omplexity of the third lass | that is,to determine whether #BIS admits an FPRAS. Another open problem is toresolve the omplexity of #Bipartite q-Col. We have shown that this is atleast as hard as #BIS, but we do not know whether #Bipartite q-Col is aseasy as #BIS. 28



Appendix A: A diret redution from #Sat to #LargeISGarey et al. [7℄ present a (onventional) many-one/Karp redution from 3-Sat(the deision version of #Sat restrited to formulas with three literals perlause) to LargeIS-Cubi (the deision version of #LargeIS-Cubi). Let' = C1 ^ � � � ^ Cr be an instane of 3-Sat in the variables x1; : : : ; xn. Foronveniene, assume that eah variable xi in ' ours ti times unnegated and(the same number) ti times negated; suh a formula will be alled balaned.A ubi graph G = G(') is onstruted that has an independent set of sizem = r +Pi ti = 5r=2 i� ' is satis�able. For eah variable xi there is a yleof length 2ti. For eah lause Cj there is a triangle (omplete graph on threeverties or K3); eah vertex in the triangle stands for a partiular literal in Cj .Thus the total number of verties in G is 3r +Pi 2ti = 6r. Note that G isthe omplement of a m-partite graph, with m = 5r=2, so there is ertainly noindependent set of size greater than m. (Eah variable-yle ontains ti disjointopies of K2, and eah lause-triangle is a K3.)To ahieve an independent set of size m it is neessary to hoose one oftwo possible independent sets of size ti in eah variable-yle. Interpret oneof these as xi = 0 and the other as xi = 1. Additional edges are added to Gjoining variable-yles to lause-triangles. These are plaed so as to allow avertex in a lause-triangle to be inluded in an independent set of size m i� theorresponding literal is true. Notie that this an be ahieved by a olletionof edges whih are pairwise vertex disjoint. Thus G is ubi. Refer to [7℄ for amore formal desription of G.The redution as it stands is not parsimonious: eah satisfying assignmentin ' orresponds to Qj �j independent sets in G, where �j is the number ofliterals in Cj made true by the assignment. Rather than hange Garey etal.'s onstrution, we instead massage the formula ' to avoid the problem justidenti�ed. Starting with an arbitrary CNF formula ' we �rst onstrut a 3-CNFformula '0 (i.e., one with three literals per lause) that has the same numberof satisfying assignments as '. Next, we onstrut from '0 positive integers r1,r2 and r3 and a 3-CNF formula '00 that1. has the same number of satisfying assignments as '0,2. is balaned, and3. has the property that in every satisfying assignment, exatly r1 lauseshave one true literal, exatly r2 lauses have two true literals, and exatlyr3 lauses have three true literals.Thus the omposite redution ' 7! '0 7! '00 7! G('00) expands the solution setby a onstant fator 2r23r3 : not a parsimonious redution, but the next bestthing.The transformation ' 7! '0 is based on the equivalene of the two formulas(a_ b, x) and (a_ b_:x)^ (a_:b_x)^ (:a_ b_x)^ (:a_:b_x): (8)This enables us to introdue a new variable x and fore it to be the disjuntionof two existing variables a and b. In partiular, for k > 3, a k-term lause29



`0 _ � � � _ `k�1 may be rewritten (`0 _ � � � _ `k�3 _ x) ^ (`k�2 _ `k�1 , x),where x is a new variable, and then rewritten further as a �ve-lause CNFformula using (8). By iterating this proess we may eÆiently transform anarbitrary CNF formula ' into a 3-CNF formula '0. The transformation islearly parsimonious.Let r0 denote the number of lauses in '0. Let r1 = 31r0, r2 = 16r0, andr3 = 5r0. We will onstrut '00 using the equivalene of (a _ b , x) and thefollowing expression, whih is a balaned version of (8):(a _ b _ :x) ^ (a _ :b _ x) ^ (:a _ b _ x) ^ (:a _ :b _ x)^ (x _ :x _ :x) ^ (x _ :x _ :x): (9)Suppose that a_b_ is a lause of '0. Let y; z1; z2; z3; z4; z5; z6 be new variables.The lause a _ b _  of '0 will be transformed into the following equivalentexpression. Note that y has the same truth value as a_ b_ , and it is requiredby the expression to be TRUE. Also, the variables z1{z6 are only there toestablish the third property required of '00. Their values are \ignored".(a _ b, x) ^ (a _ :b, z1) ^ (:a _ b, z2) ^ (:a _ :b, z3)^ (x _ , y) ^ (x _ :, z4) ^ (:x _ , z5) ^ (:x _ :, z6)^ (y _ y _ y) ^ (y _ :y _ :y) ^ (y _ :y _ :y) ^ (y _ :y _ :y): (10)Eah of the �rst eight lauses in (10) is further transformed using (9). Thereader may verify that the resulting 52-lause expression1. has exatly one satisfying assignment if a _ b _  is TRUE and noneotherwise (regarding the truth assignments to a, b and  as �xed),2. is balaned, and3. has the property that for every satisfying assignment, exatly 31 lauseshave one true literal, exatly 16 lauses have two true literals, and exatly5 lauses have three true literals.This ompletes the onstrution of '00.Appendix B: A glossary of problemsAs an aid to navigation, Table 1 ontains a omplete list of problems onsideredin this artile, with their omplexity status and a note of where to �nd them.AknowledgementsLemma 22 is due to Mike Paterson. We thank Domini Welsh for telling usabout referene [16℄ and Marek Karpinski for stimulating disussions on thetopi of approximation-preserving reduibility.30



Problem name Def'd in Status Refer to#BeahConfigs x4 �AP #BIS Thm. 5#Bipartite q-Col x6 �AP #BIS Thm. 13#P4-Col x4 �AP #BIS Thm. 5#P �q -Col x4 �AP #BIS (q � 3) Thm. 10#q-Wrenh-Col x7 �AP #Sat (q � 1) Thm. 21#2-Wrenh-Col x7 �AP #BIS Thm. 21#q-Wrenh-Col x7 �AP #Sat (q � 3) Thm. 21#Downsets x4 �AP #BIS Thm. 5#IS x3 �AP #Sat Thm. 3#BIS x1 (primal) Thm. 5#LargeIS-Cubi x7 �AP #Sat App. A#LargeIS x3 �AP #Sat Obs. 2#BipartiteMaxIS x6 �AP #BIS Thm. 13, Lem. 14#Math x2 FPRAS [9℄#Sat x1 (primal) Setion 3#DNF x2 FPRAS [12℄#1p1nSat x4 �AP #BIS Thm. 5#2-Partile-WR-Configs x3 �AP #BIS Thm. 5#3-Partile-WR-Configs x3 �AP #BIS Thm. 13#q-Partile-WR-Configs x3 �AP #Sat (q � 4) Lemma 26Table 1: A list of ounting problems
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