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Abstract

We consider Glauber dynamics on finite spin systems. The mixing time of Glauber
dynamics can be bounded in terms of the influences of sites on each other. We consider
three parameters bounding these influences — α, the total influence on a site, as studied
by Dobrushin; α′, the total influence of a site, as studied by Dobrushin and Shlosman;
and α′′, the total influence of a site in any given context, which is related to the path-
coupling method of Bubley and Dyer. It is known that if any of these parameters is
less than 1 then random-update Glauber dynamics (in which a randomly-chosen site is
updated at each step) is rapidly mixing. It is also known that the Dobrushin condition
α < 1 implies that systematic-scan Glauber dynamics (in which sites are updated in a
deterministic order) is rapidly mixing. This paper studies two related issues, primarily
in the context of systematic scan: (1) the relationship between the parameters α, α′ and
α′′, and (2) the relationship between proofs of rapid mixing using Dobrushin uniqueness
(which typically use analysis techniques) and proofs of rapid mixing using path coupling.
We use matrix-balancing to show that the Dobrushin-Shlosman condition α′ < 1 implies
rapid mixing of systematic scan. An interesting question is whether the rapid mixing
results for scan can be extended to the α = 1 or α′ = 1 case. We give positive results for
the rapid mixing of systematic scan for certain α = 1 cases. As an application, we show
rapid mixing of systematic scan (for any scan order) for heat-bath Glauber dynamics for
proper q-colourings of a degree-∆ graph G when q ≥ 2∆.

1 Introduction

A spin system consists of a set of sites and a set of spins. In this paper, both sets will be
finite. We use [n] = {1, . . . , n} to denote the set of sites, and C to denote the set of spins. A
configuration is an assignment of spins to sites, and Ω+ denotes the set of all configurations.
∗Partially supported by the EPSRC grant Discontinuous Behaviour in the Complexity of Randomized

Algorithms. Some of the work was done while the authors were visiting the Mathematical Sciences Research
Institute in Berkeley. A preliminary version of this paper appeared in the Proceedings of the 10th International
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Sites interact locally, and these interactions specify the relative likelihood of possible
(local) sub-configurations. Taken together, these give a well-defined probability distribution,
π, on the set of configurations Ω+. Glauber dynamics is a random walk on configurations
that updates spins one site at a time, and converges to π. Before giving some examples, we
formalise these concepts in a way that will be useful for this paper.

We use the following notation. If x is a configuration and j is a site then xj denotes the
spin at site j in x. For each site j, Sj denotes the set of pairs of configurations that agree off
of site j. That is, Sj is the set of pairs (x, y) ∈ Ω+ ×Ω+ such that, for all i 6= j, xi = yi. For
each site j, we will have a transition matrix P [j] on the state space Ω+ which satisfies two
properties:

1. P [j] moves from one configuration to another by updating site j. That is, if P [j](x, y) >
0, then (x, y) ∈ Sj .

2. Also, π is invariant with respect to P [j].

Most theoretical results about Glauber dynamics consider random updates, in which the
random walk on configurations proceeds as follows. At each step, a site j is chosen uniformly
at random. The configuration is then updated according to transition matrix P [j]. Formally,
random-update Glauber dynamics corresponds to a Markov chain M with state space Ω+

and transition matrix P = (1/n)
∑n

j=1 P
[j].

For example, consider the spin system corresponding to proper q-colourings of an n-vertex
graph G with maximum degree ∆ ≤ q− 2. The sites are the vertices 1, . . . , n. C is the set of
colours C = {1, . . . , q}. The distribution π assigns equal probability to all proper colourings
(colourings with no monochromatic edges) and it assigns zero probability to all improper
colourings. In so-called “heat-bath” Glauber dynamics, the transition matrix P [j] makes the
following transition from a configuration x. Let Cx denote the set of colours that are not
assigned to neighbours of site j in x. Let x→jc denote the configuration obtained from x by
changing the spin at site j to c. P [j] makes a transition to a uniformly-chosen configuration
in {x→jc | c ∈ Cx}. Another example is the “Metropolis” Glauber dynamics for proper q-
colourings of G. In this case, the transition matrix P [j] makes the following transition from x.
A colour c ∈ C is chosen uniformly at random. If c ∈ Cx then a transition is made to x→jc
otherwise the new configuration is x. Further examples include corresponding dynamics for
the Potts model (see Section 2.3) and for the hard-core lattice gas model.

There has been much work on analyzing the mixing time of random-update Glauber
dynamics. The mixing time from a specified initial configuration x (as a function of the
deviation ε from stationarity) is

τx(M, ε) = min
{
t > 0 : dTV(P t(x, ·), π(·)) ≤ ε

}
,

where dTV denotes total variation distance. The mixing time ofM is τ(M, ε) = maxx∈Ω+ τx(M, ε).
M is said to be “rapidly mixing” if τ(M, ε) is at most a polynomial in n and log(ε−1).

It is well-known that the mixing time can be bounded in terms of the influences of
sites on each other. To be more precise, let µj(x, ·) be the distribution on spins at site j
induced by P [j](x, ·) and let ρi,j be the influence of site i on site j which is given by
ρi,j = max(x,y)∈Si

dTV(µj(x, ·), µj(y, ·)). We will be interested in three quantities. Let α
be the total influence on a site, defined by

α = max
j∈[n]

∑
i∈[n]

ρi,j .
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Let α′ be the total influence of a site, defined by

α′ = max
i∈[n]

∑
j∈[n]

ρi,j .

Finally, let α′′ be the total influence of a site in any given context, defined by

α′′ = max
i∈[n]

max
(x,y)∈Si

∑
j∈[n]

dTV(µj(x, ·), µj(y, ·)).

The Dobrushin condition α < 1, which says that the total influence on a site is small,
implies that M is rapidly mixing. In particular, τ(M, ε) = O( n

1−α log(nε−1)). Dobrushin’s
original result [7] was not stated in terms of rapid mixing — instead, he was concerned
with a closely related issue — uniqueness of the Gibbs measure for countable (not finite)
spin systems. For a proof that the condition implies rapid mixing see, for example, Weitz’s
paper[21].

An easy application of the path coupling method of Bubley and Dyer [2] shows that α′′ < 1
implies rapid mixing. In particular, τ(M, ε) = O( n

1−α′′ log(nε−1)). Path coupling can also be
used to show rapid mixing for the case α′′ = 1 provided the change in path length has enough
variance. For details, see Dyer and Greenhill’s survey paper [11].

An inspection of the definition of α′ reveals that

α′ = max
i

∑
j

max
(x,y)∈Si

dTV(µj(x, ·), µj(y, ·)) ≥ α′′.

Therefore, α′ < 1 implies τ(M, ε) = O( n
1−α′ log(nε−1)). Dobrushin and Shlosman [8] were

the first to derive uniqueness from the condition α′ < 1, which says that the total influence
of a site is small. (As Weitz points out [21], Dobrushin and Shlosman stated their result in
terms of the total influence on a site but they worked in a translation-invariant setting and
what they used is that the total influence of a site is small. In fact, Dobrushin and Shlosman
worked in a more general block-dynamics setting. This will be discussed below.)

While theoretical results about Glauber dynamics typically consider random updates,
experimental work is often carried out using systematic strategies that cycle through sites
in a deterministic manner, a dynamics we refer to as systematic scan. Formally, systematic
scan corresponds to a Markov chain M→ with state space Ω+ and transition matrix P→ =∏n
j=1 P

[j].
The Dobrushin condition implies that systematic scan is rapidly mixing. In particular,

τ(M→, ε) = O(
1

1− α
log(nε−1)).

A proof follows easily from the account of Dobrushin uniqueness in Simon’s book [19], some
of which is derived from the account of Föllmer [12].

This paper explores two related issues, primarily in the context of systematic scan.

1. What is the relationship between conditions bounding the influence on a site (upper
bounds on α) and conditions bounding the influence of a site (upper bounds on α′ or
α′′)? Do they imply rapid mixing in the same circumstances?
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2. What is the relationship between proofs of rapid mixing using Dobrushin uniqueness,
which typically use analysis techniques and proofs of rapid mixing using path coupling?
Can they be used to prove rapid mixing in the same circumstances?

The second of these issues was first raised by Sokal [20], who shows how to translate
a proof based on a Markovian coupling to analytic language. The first of these issues was
highlighted by Weitz [21] who elucidated the dual nature of the Dobrushin condition α < 1
and the Dobrushin-Shlosman condition α′ < 1.

A preliminary issue is the relationship between the parameters α, α′ and α′′. We have
observed above that the two “influence of a site” parameters, α′ and α′′ are related by α′′ ≤ α′.
Weitz [21, Section 5.3] gives an example in a block-dynamics context where the parameter
analogous to α′′ is less than one (allowing one to infer rapid mixing), but the other parameters
are greater than one. In Section 2.1 (Observation 6) we give a similar example in our (single-
site) context. In this example, α′′ can be made arbitrarily smaller than the other parameters.
In Section 2.2 (Observation 7) we give an example where the “influence of a site” parameters
α′ and α′′ are less than one but the “influence on a site” parameter α is greater. In Section 2.3
(Observation 8) we give an example where the “influence on a site” parameter α is less than
one but the other parameters are greater.

The primary motivation for our work was the observation that Dobrushin’s condition (the
influence on a site is small) implies rapid mixing for systematic scan. There are some known
coupling results for systematic scan using the fact that the influence of a site is small, but
only in very special circumstances, for example, proper colourings of a path, where the scan
is left-to-right along the path [9]. When Dobrushin’s condition is satisfied then systematic
scan is rapidly mixing regardless of the order in which vertices are scanned. In this paper we
show that rapid mixing also occurs (for every scan order) if the influence of a site is small.
In particular, we prove the following theorem.

Theorem 1 Suppose α′ < 1. Then

τ(M→, ε) ≤
2

1− α′
log(4n2(1− α′)−1

ε−1).

The main ingredient in the proof is matrix balancing. This enables us to translate the
Dobrushin-Shlosman condition (the influence of a site is small) into the Dobrushin condition
(the influence on a site is small). The matrix-balancing can be viewed as a generic way of de-
riving weights. Simon’s version of Dobrushin uniqueness corresponds to showing convergence
in the L1 norm of a particular vector. This convergence occurs for α < 1. The matrix-
balancing approach corresponds to showing convergence in a weighted L1 norm. Weights
have been used previously in mixing results, for example [2, 9, 21]. The point here is that the
weights are derived automatically by the balancing. Also, the contribution to the mixing-time
bound arising from the ratios between the weights is accounted for in the balancing, so does
not need to appear explicitly in the statement of the theorem. So rapid mixing holds for
α′ < 1. For a discussion of weighted Dobrushin conditions, see Section 3.6.

The statement of Theorem 1 can be generalised. In particular, the proof does not require
each of the sites to be updated the same number of times. All that is really required is that
the sequence of updates contains a subsequence of at least 2

1−α′ log(4n2(1− α′)−1ε−1) scans.
The same generalisation holds for the Dobrushin case. It will be useful to record the following
corollary. Let P← =

∏n
k=1 P

[n−k+1] and let P→← = P→P←. Let M→← be the Markov chain
with state space Ω+ and transition matrix P→←.
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Corollary 2 Suppose α′ < 1. Then

τ(M→←, ε) ≤
2

1− α′
log(4n2(1− α′)−1

ε−1).

The mixing time of a Markov chain is closely related to its spectral gap — the gap between
the largest eigenvalue of its transition matrix and the second-largest eigenvalue. We prove
the following theorem, which applies when the eigenvalues of the transition matrix are real.

Theorem 3 Suppose α′ < 1. Let β1 be the second-largest eigenvalue of P→. If β1 and its
associated eigenvector are real then 1− β1 ≥ (1− α′)/2.

Theorems 1 and 3 are proved in Section 3.
Having seen that the Dobrushin condition and the Dobrushin-Shlosman condition imply

rapid mixing for systematic scan, an interesting question is whether these results can be
extended to the α = 1 or α′ = 1 case. Section 4 (Observation 13) provides an example where
α = 1 and random-update Glauber dynamics is rapidly mixing, but systematic scan is not
even ergodic. Nevertheless, we give positive results for the rapid-mixing of systematic scan
for certain α = 1 cases, particularly some cases for which there are symmetric upper bounds
on the dependencies corresponding to a bound of 1, both on the total influence of a site, and
on the total influence on a site.

A dependency matrix for a spin system is an n × n matrix R in which Ri,j ≥ ρi,j (so
Ri,j is an upper bound on the influence of site i on site j. We will be particularly interested
in the case in which R is symmetric. In this case we can view R as a weighted adjacency
matrix, and we refer to the resulting (undirected) graph on sites as the dependency graph of
R. We say that R is connected if the resulting dependency graph is connected in the sense
that there is a positive-weight path from every site to every other. In Section 5.1 we prove the
following result, which says that systematic scan is rapidly mixing if there is a dependency
matrix which (1) is symmetric, (2) has row and column sums at most 1 (corresponding to
total influence at most 1 for every site), and (3) every connected component has a site with
a row sum less than 1 (corresponding to total influence less than 1).

The mixing bound given in the theorem is a function of n, the number of sites, and also
of N , the “precision” of R. We say that a dependency matrix R has precision N (for a positive
integer N) if every entry Ri,j can be expressed as a fraction of integers with denominator N .

Theorem 4 Suppose that a spin system has a precision-N symmetric dependency matrix R
with row sums and column sums at most 1. Suppose that every connected component has a
site whose row sum is less than 1. Then τ(M→, ε) = O(n3N log(n2ε−1)) and τ(M→←, ε) =
O(n3N log(n2ε−1)).

We now apply Theorem 4 to an example considered previously. Suppose that G is an
n-vertex connected graph with maximum degree ∆ ≥ 2. Let q = 2∆ and consider the spin
system corresponding to heat-bath Glauber dynamics for proper q-colourings of G. If G is not
∆-regular then there is a connected symmetric dependency matrix R in which some vertex s
of degree less than ∆ has small total influence so its row sum is less than 1. As we will see in
Section 5, Theorem 4 implies that systematic scan is rapidly mixing. Using the decomposition
method of Martin and Randall, we can extend the result to the case in which G is ∆-regular
(and every vertex has total influence 1), proving the following.
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Theorem 5 Let G be an n-vertex connected graph with maximum degree ∆ ≥ 2 and let
q = 2∆. Consider the spin system corresponding to heat-bath updates on proper colourings
and let x be any proper colouring. Then τx(M→←, ε) = O(n3 log(n) log((επ(x))−1)).

Theorem 5 is proved in Section 5.2 and a generalisation (to more general spin systems) is
stated and proved in Section 6.

It would be nice to have a full characterisation of the situations in which α = 1 (or α′ = 1)
implies rapid mixing for systematic scan. Another interesting open question is whether bounds
on the path-coupling parameter α′′ imply rapid mixing for systematic scan.

All of our mixing results build upon the methods used in Simon’s account of Dobrushin
uniqueness (using analysis techniques). Thus, we might ask the question whether path cou-
pling is a less useful technique for proving rapid mixing for systematic scan. In Section 7 we
show that this may not be the case. In particular, we provide an alternative proof that the
Dobrushin condition implies rapid mixing of systematic scan. This proof uses path coupling.

An issue that is not treated in this paper is how these methods generalise to dynamics
other than Glauber. Dobrushin and Shlosman’s result [8] actually applied to block-dynamics
rather than just to single-site dynamics, though only when the underlying dependency graph
is Zd. For random-update Glauber dynamics, Weitz [21] shows rapid mixing both when the
influence of a site is small and when the influence on a site is small. Weitz’s results apply
to ”block dynamics” and to an arbitrary dependency graph. Both results are proved using
coupling. Our results about systematic scan can be similarly generalised. This work, by
Pedersen [15], is in preparation.

2 Relationships between the influence parameters

This section gives some examples illustrating the relationships between the influence param-
eters. The “influence of a site” parameters α′ and α′′ are related by α′′ ≤ α′ and we give an
example in which this inequality is strict. We give examples showing that the influence on a
site can be either smaller than, or greater than, the influence of a site.

2.1 Example where the path-coupling parameter is smallest

Observation 6 There is a spin system for which α′′ < 1 but α > 1 and α′ > 1.

Let H be a uniform hypergraph with n vertices, which correspond to the sites of our spin
system. Let m be the size of the hyperedges and suppose that each vertex is contained in ∆
edges. We will have two spins, so a configuration x will correspond to a subset of sites, namely
the subset of sites with spin 1. The subset is said to be independent if it does not contain any
hyperedge. Let π be the distribution in which the probability of an independent set of size s
is proportional to λs and the probability of a non-independent set is zero. Let P [j] be the
“Metropolis” Glauber dynamics which makes the following transition from a configuration x.
If site j is in the set corresponding to x then move to a new configuration by deleting j with
probability 1/(1 + λ) and stay at configuration x with the remaining probability. If j is not
in the set corresponding to x, and the number of hyperedges contained in x ∪ {j} is at most
the number of hyperedges contained in x then move to the configuration corresponding to
x ∪ {j} with probability λ/(1 + λ) and stay at x with the remaining probability. If j is not
in the set corresponding to x but the number of hyperedges contained in x∪ {j} exceeds the
number of hyperedges contained in x then stay at x.
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Now consider (x, y) ∈ Si. Suppose for j 6= i that vertex j has dTV(µj(x, ·), µj(y, ·)) > 0.
First note that j is not in the set corresponding to x or y. So there is a hyperedge containing
both i and j such that every other vertex in the hyperedge (other than i and j) is contained
in x (and therefore in y). Note that there is at most one such j for this edge, since j is
not in the set corresponding to x or y. Also, dTV(µj(x, ·), µj(y, ·)) ≤ λ/(1 + λ). Since
dTV(µi(x, ·), µi(y, ·)) ≤ λ/(1 + λ), α′′ ≤ (∆ + 1)λ/(1 + λ). Thus α′′ < 1 if λ is sufficiently
small with respect to ∆. However, α is larger than α′′ by (approximately) a factor of m,
which can be arbitrarily large. In particular, α ≥ ∆(m− 1)λ/(1 + λ). To see this, consider a
site j. For each of the ∆ hyperedges containing j and for each of the m − 1 other vertices i
in the hyperedge, we can consider (x, y) ∈ Si such that j is not in the set corresponding
to x (or y) but every other vertex in the hyper-edge (other than i or j) is in x (hence in y).
dTV(µj(x, ·), µj(y, ·)) = λ/(1+λ) so α ≥ ∆(m−1)λ/(1+λ). The same analysis applies to α′.
Thus, we have an example where the path-coupling constant α′′ is less than one, but where
α and α′ are arbitrarily large.

2.2 Example where the influence of a site is small but the influence on a
site is large

Observation 7 There is a spin system for which α′ < 1 and α′′ < 1 but α > 1.

Suppose that G is an n-vertex star, i.e., a graph with n− 1 vertices adjacent to a central
one. Let q = n + 1. Consider heat-bath Glauber dynamics on proper colourings. If v is the
centre vertex and w is another vertex then ρv,w = 1/(q − 1). Now to calculate ρw,v, suppose
(x, y) ∈ Sw. Suppose xw = 1 and yw = 2. The simplest thing is to look at three cases,
depending on whether none, one, or both, of 1 and 2 appear in the set of colours assigned
to the other leaves by x (or equivalently, y). In the first case, suppose there are q′ distinct
colours at the other leaves. Then the number of available colours for v in both copies is
q− q′−1 and the variation distance is 1/(q− q′−1) which is maximised by setting q′ = q−3.
The other cases are better, so ρw,v = 1/2. Now α ≥

∑
w ρw,v = (q − 2)/2 > 1 but

α′ ≤ max
(∑
w 6=v

ρv,w, ρw,v

)
= max

(
q − 2
q − 1

,
1
2

)
< 1.

Theorem 1 implies that systematic scan is rapidly mixing for this spin system.

2.3 Example where the influence on a site is small but the influence of a
site is large

Observation 8 There is a spin system for which α < 1 but α′′ > 1 and α′ > 1

The spin system corresponds to the Ising model (2-state Potts model) on a length-2 path.
There are just 3 sites, w, v and w′. There are two spins, 1 and 2, and the weight of an
assignment x is λ` where λ < 1 is a parameter of the spin system and ` ∈ {0, 1, 2} is the
number of bichromatic edges in the colouring that x assigns to the path w, v, w′. π is the
distribution in which the probability of a configuration is proportional to its weight. The
dynamics is heat-bath: From a configuration x, P [j] transitions to a new configuration which
is either x→j1 or x→j2. The relative probabilities of these are proportional to the weights of
the two configurations.
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First, note that ρv,w = (1 − λ)/(1 + λ). (To see this, note that if xv = 1 then the
probability that colour 1 is chosen for w is 1/(1 + λ).) ρv,w′ is the same. Next, note that
ρw,v = 1/(1 + λ2) − 1/2. (To see this, assume without loss of generality that xw′ = 1. If
xw = 1 then the probability that 1 is chosen for v is 1/(1+λ2). If xw = 2 then the probability
is 1/2.)

Now α = max(ρv,w, 2ρw,v) which is less than one for any positive λ. Also

α′ = max(2ρv,w, ρw,v) = 2ρv,w

which is greater than 1 for λ < 1/3. Note that α′′ = α′.

3 Rapid mixing for α′ < 1.

In this section, we prove rapid mixing of systematic scan for the case α′ < 1. We prove
Theorem 1, Corollary 2, and Theorem 3. Consider a spin system with dependency matrix R.
Suppose that some entry of R is non-zero and that the row sums of R are less than 1. Let
γ = 1−maxi∈[n]

∑
j∈[n]Ri,j . Note that γ ∈ (0, 1]. Also, if a spin system is non-trivial in the

sense that it has sites i and j with ρi,j > 0 and it has α′ < 1 then it has such a dependency
matrix with γ = 1− α′.

3.1 Matrix balancing

In this section we prove the following lemma.

Lemma 9 There is an n×n diagonal matrix W such that, for every j ∈ [n], γ/(2n) < Wj,j <
1 and every column sum of WRW−1 is less than 1− γ/2.

Proof. Let R′ be the matrix which is the same as R except that we add a new column n+ 1
and a new row n+ 1. For i ∈ [n], let R′i,n+1 = (1− ri)/2 where ri is the row sum of R. Note
that R′i,n+1 ≥ γ/2 and that the row sums of R′ are at most 1 − γ/2. For j ∈ [n], let R′n+1,j

be (1 − γ/2)/n, and R′n+1,n+1 = 0, so
∑n+1

j=1 R
′
n+1,j = 1 − γ/2. Thus R′ is an irreducible

nonnegative matrix with largest eigenvalue at most 1 − γ/2 [17, Thm. 1.5, Cor. 1]. It follows
from the Perron-Frobenius Theorem [17, Thm. 1.6] that there exists π′ ∈ Rn+1, with π′ > 0
and

∑n
j=1 π

′
j = 1, such that

n+1∑
i=1

π′iR
′
i,j ≤ (1− γ/2)π′j (j ∈ [n+ 1]).

Now let W = diag(π′1, . . . , π
′
n+1) and let R′′ = WR′W−1. This multiplies row i by π′i and

divides column j by π′j . Now

n∑
i=1

R′′i,j =
n∑
i=1

R′i,j
π′i
π′j

<
1
π′j

n+1∑
i=1

π′iR
′
i,j ≤ 1− γ/2.

Thus, (if we move the extra row and column from W ) the column sums of WRW−1 are less
than 1− γ/2. Also π′n+1 > γ/2, since

π′n+1 > (1− γ/2)π′n+1 ≥
n∑
i=1

π′i(1− ri)/2 ≥ (γ/2)
n∑
i=1

π′i = γ/2.

8



Since π′j > 0 (j ∈ [n]) and
∑n

j=1 π
′
j = 1, we have Wj,j = π′j < 1 (j ∈ [n]). Finally, for j ∈ [n],

Wj,j = π′j ≥
1

1− γ/2
π′n+1

1− γ/2
n

>
γ

2n
.

3.2 The effect of a applying P [j] or P→.

Let M [j] be the matrix constructed from the identity matrix by replacing column j with the
jth column of R. For any function f from Ω+ to R, let δi(f) = max(x,y)∈Si

|f(x)− f(y)| and
let δ(f) be the column vector δ(f) = (δ1(f), . . . , δn(f)). Let P [j]f be the function from Ω+

to R given by P [j]f(x) =
∑

y P
[j](x, y)f(y). The following lemma is (a slight generalisation

of one) in Simon’s book [19]. The proof is included for completeness.

Lemma 10 The vector δ(P [j]f) is component-wise less than or equal to the vector M [j]δ(f).

Proof. Suppose (x, y) ∈ Si. Then

|P [j]f(x)− P [j]f(y)|

=

∣∣∣∣∣∑
c

f(x→jc)P [j](x, x→jc)−
∑
c

f(y →j c)P [j](y, y →j c)

∣∣∣∣∣
=

∣∣∣∣∣∑
c

f(x→j c)µj(x, c)−
∑
c

f(y →j c)µj(x, c) +
∑
c

f(y →j c)(µj(x, c)− µj(y, c))

∣∣∣∣∣
≤
∑
c

∣∣f(x→j c)− f(y →j c)
∣∣µj(x, c) +

∣∣∣∣∣∑
c

f(y →j c)(µj(x, c)− µj(y, c))

∣∣∣∣∣
≤ max

c
|f(x→j c)− f(y →j c)|+

(
max
c
f(y →j c)−min

c
f(y →j c)

)
dTV(µj(x, ·), µj(y, ·))

≤ 1i 6=jδi(f) +Ri,jδj(f).

Now let W be the matrix from Lemma 9. Let Q[j] = WM [j]W−1 and note that Q[j]

is the matrix constructed from the identity matrix by replacing column j with the vector
(q1,j , . . . , qn,j), where qi,j = Ri,jwi/wj . From Lemma 9,

∑n
i=1 qi,j ≤ 1− γ/2. Now let ki(f) =

wiδi(f) and let k(f) be the column vector k(f) = (k1(f), . . . , kn(f)). Let K(f) =
∑n

i=1 ki(f).
The following lemma is a weighted version of a lemma in Simon’s book (using the weights
from the matrix balancing).

Lemma 11 For any m ∈ {0, . . . , n},

K(P [1] · · ·P [m]f) ≤
m∑
i=1

(1− γ/2)ki(f) +
n∑

i=m+1

ki(f).

Proof. First note that lemma 10 implies that the vector k(P [j]f) is component-wise less than
or equal to the vector Q[j]k(f). Using this fact, the proof is by induction on m with base case
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m = 0. The proof now follows Simon’s. By the inductive hypothesis, K(P [1] · · ·P [m]f) is at
most

∑m−1
i=1 (1− γ/2)ki(P [m]f) +

∑n
i=m ki(P

[m]f). Applying our fact, this is at most

m−1∑
i=1

(1− γ/2)[Q[m]k(f)]i +
n∑

i=m

[Q[m]k(f)]i.

Then using the observation about the structure of Q[m] from above, we can re-write this as

m−1∑
i=1

(1− γ/2)(ki(f) + qi,mkm(f)) + qm,mkm(f) +
n∑

i=m+1

ki(f) + qi,mkm(f).

Re-arranging, this is

m−1∑
i=1

(1− γ/2)ki(f) +
n∑

i=m+1

ki(f) + km(f)

(
m−1∑
i=1

(1− γ/2)qi,m +
n∑

i=m

qi,m

)
,

and the result now follows since
∑n

i=1 qi,j ≤ 1− γ/2, for all j.

Corollary 12
K(P→f) ≤ (1− γ/2)K(f).

3.3 The bound on the mixing time - proof of Theorem 1 and Corollary 2

For a test function f , let ft(x) =
∑

z P
t
→(x, z)f(z). Thus, Corollary 12 gives K(ft) ≤ (1 −

γ/2)K(ft−1). Now let f be the indicator variable for being in some subset A of Ω+. Then

max
x

ft(x)−min
y
ft(y) ≤

∑
i

ki(ft)
wi

≤
(

1
miniWi,i

)
K(ft) ≤

4n
γ
K(ft)

≤ 4n
γ

(1− γ/2)tK(f0) ≤ 4n2

γ
(1− γ/2)t,

which is at most ε for t ≥ (2/γ) log(4n2γ−1ε−1). Also, miny ft(y) ≤ Eπft ≤ maxx ft(x) and
Eπft = π(A), which gives us

τ(M→, ε) ≤
2
γ

log(4n2γ−1ε−1).

This proves Theorem 1. Corollary 2 comes from the fact that the right-hand side of the
expression in Lemma 11 is at most K(f). Thus, extra updates do no harm.

3.4 The bound on the spectral gap - proof of Theorem 3

Let f be the eigenvector associated with the second-largest eigenvalue β1 of P→. Suppose β1

and f are real.

K(P→f) =
n∑
i=1

ki(P→f) = β1

n∑
i=1

ki(f) = β1K(f).

By Corollary 12, 1− β1 ≥ γ/2. This proves Theorem 3.
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3.5 Remarks - contraction in various norms

Lemma 10 tells us that δ(P [j]f) ≤ M [j]δ(f). We are interested in the effect of M on the
vector δ(f) where M =

∏n
j=1M

[j]. Lemma 11 shows that δ(f) is contracting in the weighted
L1 distance K(f). The contraction comes from the fact that the column sums of the weighted
matrix Q[j] are less than 1. Simon’s proof of Dobrushin’s result for α < 1 corresponds to
taking W to be the identity matrix (so it is L1 contraction). Our proof uses contraction in
weighted L1 distance, but there are other possibilities. For example, in Section 3.7 we revisit
the random-updates Markov chainM and we prove mixing by observing a contraction in the
L∞ norm. This is possible when the row sums of the appropriate weighted matrix are less
than 1.

3.6 Remark - weighted Dobrushin conditions

As mentioned in the introduction, the matrix balancing in the proof of Theorem 1 can be
viewed as a construction of weights under which the Markov chain exhibits convergence in a
weighted L1 norm. Another way to formalize this notion is to define weighted influences.

Thus, if w1,..,wn are weights of the n sites, we can define the weighted influence parameters

αw = max
j∈[n]

∑
i∈[n]

wi
wj
ρi,j

and
α′w = max

i∈[n]

∑
j∈[n]

wi
wj
ρi,j .

Lemma 9 can then be viewed as the statement that, if α′ < 1 (specifically, α′ ≤ 1 − γ),
then there is a weight vector w such that αw < 1 (specifically, αw < 1−γ/2). This statement
doesn’t in itself imply rapid mixing since the mixing rate depends upon the ratio of the
different weights wj and wj′ . However, crucially, the lemma ensures that this ratio is bounded,
since all weights are between γ/2n and 1. Note that, by transposition, the lemma also allows
the conclusion α′w < 1 from α < 1.

3.7 A similar proof for random updates

It is known that α′ < 1 implies a bound on the spectral gap of the random-updates Markov
chain M. For example, this can be obtained by path coupling. For completeness, here is a
proof in the Dobrushin framework.

Let
M ′ =

1
n

∑
j

M [j] =
n− 1
n

I +
1
n
R.

Now note that every row of M ′ has a row sum which is at most 1 − γ/n. Suppose that P
is reversible and let λ = 1 − β1 be its spectral gap. Recall that Pf(x) =

∑
z P (x, z)f(z).

Choose f to be the second-largest eigenvalue of P so Pf = (1−λ)f . Then since the maximum
component of δ(f) is shrunk by a factor of 1− γ/n when we multiply by M ′, we have

(1− λ) max
i
δi(f) = max

i
δi(Pf) ≤ (1− γ/n) max

i
δi(f),

so (1− λ) ≤ 1− γ/n and therefore λ ≥ γ/n.
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4 An α = 1 case where systematic scan does not mix

Having seen that the Dobrushin condition and the Dobrushin-Shlosman condition imply rapid
mixing for systematic scan, an interesting question is whether these results can be extended
to the α = 1 or α′ = 1 case. In this section we provide an example where α = 1 and random-
update Glauber dynamics is rapidly mixing, but systematic scan is not rapidly mixing.

Observation 13 There is a spin system with α = 1 for which random-update Glauber dy-
namics is rapidly mixing, but systematic scan is not ergodic.

To establish example 13, consider a spin system with n = 2m sites and spins 1 and 2.
For every odd number j, the transition matrix P [j] deterministically flips the spin at site j
(either from spin 1 to spin 2 or from spin 2 to spin 1). For every even number j, the transition
matrix P [j] moves from configuration x to configuration x1 · · ·xj−1xj−1xj+1 · · ·xn.

Note that for an odd number i, ρi,i = 1 and ρi,i+1 = 1. Every other ρi,j is 0. Thus, α = 1
but both α′ and α′′ are 2.

To see that systematic scan is not ergodic, note that it is periodic. For an odd number i,
sites i and i+ 1 cycle through configurations 00, 10, 11, 01.

To see that the random update dynamics is rapidly mixing, use path coupling. The
transitions on sites i and i+ 1 (for an odd number i) are the cycles above plus self-loops on
00 and 11 plus transitions from 10 to 00 and from 01 to 11.

Remark. Observation 13 indicates that perhaps Dobrushin-like arguments cannot be ex-
tended to the α = 1 case. The reason for this is that Dobrushin-like arguments imply rapid
mixing for systematic scan, as well as for random updates. But here is an example where
systematic scan is clearly not rapidly mixing.

Remark. The reader might argue that it is too much to expect a Dobrushin-like argument
to apply when α = 1. After all, path coupling does not apply to the α′ = 1 case unless there is
sufficient variance — a side-condition that has not been carried over to the Dobrushin setting.
This may be true, and a proof of rapid mixing must require additional considerations. It seems
unlikely that such conditions can be Dobrushin-like, i.e. based purely on the dependency
matrix. We have no example which directly supports this view, but the following shows
something weaker. Combined with Observation 13, it implies that any such conditions could
not be translated from α to α′, and vice versa, as they are in the contractive case.

Observation 14 Let R be the dependency matrix corresponding to Observation 13. Then
there is a spin system with α′ = 1 and dependency matrix RT such that systematic scan is
rapidly mixing.

To establish Observation 14, consider a spin system with n = 2m sites and spins 1, 2
and 3. For every odd number j, the transition matrix P [j] deterministically moves from a
configuration x with xjxj+1 = 11 to x→j2. If xjxj+1 is anything other than 11 then P [j]

moves to either x→j1 or x→j3 with equal probability. For every even number j, the transition
matrix P [j] moves to either x→j1 or x→j2 with equal probability. It can be checked that
this example has dependency matrix RT with α′ = 1. Coupling can be used to show that
systematic scan is rapidly mixing — each pair of sites (j, j+1) (where j is odd) can be coupled
independently.

12



Remark. Note that the (directed) dependency graph corresponding to R is not strongly
connected in the sense that there is not a positive-weight path from every site to every other.
It is worth considering whether Dobrushin-like arguments do apply when α = 1 and R is
strongly connected. Connectivity turns out to be useful in the proof of Theorem 4 below,
though it is not essential for the setting of that theorem (as is shown below).

5 Positive results for α = 1

5.1 Symmetric dependency matrices with a row sum less than 1

In this section we prove Theorem 4, which says that systematic scan is rapidly mixing if
there is a dependency matrix which (1) is symmetric, (2) has row and column sums at most 1
(corresponding to total influence at most 1 for every site), and (3) every connected component
has a site with a row sum less than 1 (corresponding to total influence less than 1). We start
with the connected case. Recall that a matrix has precision N if every entry in it can be
expressed as a fraction of integers with denominator N .

Theorem 15 Suppose that a spin system has a precision-N symmetric connected dependency
matrix R with row sums and column sums at most 1. Suppose that there is a site s with row
sum less than 1. Then τ(M→, ε) = O(n3N log(n2ε−1)) and τ(M→←, ε) = O(n3N log(n2ε−1)).

Remark. The dependence of the running time on the precision N is one way to express the
condition that the dependency matrix R needs to be sufficiently “mixing”. There are other
possible choices. See [4].

Proof. Without loss of generality assume that for i 6= s we have
∑

j Ri,j = 1. If this is not the
case then Ri,i can be increased until it is. Note that increasing Ri,i to make the row sum 1
does not increase the precision of the matrix.

Let γ = 1−
∑

j∈[n]Rs,j . Since the sum of row s is less than 1, γ is positive. Also, γ is less
than 1 (otherwise sites in [n] do not depend upon s, contradicting connectivity).

Construct R[2] from R by adding an extra row and column. Set R[2]
s,n+1 = R

[2]
n+1,s = γ

and R
[2]
n+1,n+1 = 1 − γ and make the rest of the entries in the new row and column equal

to zero. Note that the row and column sums of R[2] are 1. It is the transition matrix of an
ergodic Markov chain. Its stationary distribution, π[2], is uniform (by symmetry). Let H(i, j)
denote the hitting time of j from i and let H denote the maximum hitting time. Note that
H ≤ (n+ 1)2N . (To see this, view the Markov chain with transition matrix R[2] as a random
walk on a N -regular undirected graph (with multiple edges and loops allowed). Then H(G)
is at most the number of vertices times the number of (directed) edges [13].) Note also that
H(i, i) = 1/π[2]

i = (n+ 1).
Now let R[3] = R[2] − E, where E is the all-zero matrix except that row n + 1 of E is

(−ξ, . . . ,−ξ, nξ) where

ξ =
1

n(n+ 1)2N
.

Note that γ can be expressed as a fraction of integers with denominator N . Since it is
less than 1, γ ≤ N−1

N < 1− nξ, so R[3]
n+1,n+1 is non-negative. It is clear that the other entries
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of R[3] are also non-negative. Furthermore, R[3] is the transition matrix of an ergodic Markov
chain. Let π[3] be its stationary distribution. We now use Theorem 2.1 of [3]. This says that
for all j,

|π[2]
j − π

[3]
j | ≤

||E||∞
2

maxi 6=j H(i, j)
Hj,j

≤ 1
2(n+ 1)

.

Now let W = diag(π[3]
1, . . . , π

[3]
n+1) and let R[4] = WR[3]W−1 (this is multiplying row i

by π
[3]
i and dividing column j by π

[3]
j ). Note by stationarity of π[3] that the columns of R[4]

have sum 1. That is,
n+1∑
i=1

R
[3]
i,j

π
[3]
i

π
[3]
j

=
1

π
[3]
j

n+1∑
i=1

π
[3]
i R

[3]
i,j = 1.

Also for j ∈ [n], we have

R
[4]
n+1,j = R

[3]
n+1,j

π
[3]
n+1

π
[3]
j

≥ 1
3
R

[3]
n+1,j ≥

ξ

3
,

so
∑n

i=1R
[4]
i,j ≤ 1− ξ/3. Finally, observe that for i and j in [n],

R
[4]
i,j = R

[3]
i,j

π
[3]
i

π
[3]
j

= Ri,j
π

[3]
i

π
[3]
j

,

so W (with row and column n + 1 deleted) can be used as a weight matrix for R. Also
Wj,j = π

[3]
j ≥ 1/(2(n+ 1)).

Now we proceed as in Section 3 and to get the variation distance down to ε, this takes

3
ξ

log(2n(n+ 1)ε−1) = 3n(n+ 1)2N log(2n(n+ 1)ε−1)

scans. This proves the bound on τ(M→, ε) in the theorem. The bound on τ(M→←, ε) is
established in the same way as Corollary 2.

To prove Theorem 4, apply Theorem 15 to each connected component individually. Sup-
pose that t is the maximum, over the components, of τ(M→, ε/n). Then dTV(P t→(x, ·), π) ≤ ε.
The same argument applies to τ(M→←, ε).

5.2 Heat-bath updates and proper colourings with 2∆ colours

Let G be a connected graph with maximum degree ∆ ≥ 2 and let q = |C| = 2∆. Let Ω be
the set of proper q-colourings of G. Let π be the uniform distribution on Ω (so π(x) = 0 for
all configurations x ∈ Ω+ − Ω) . Let P [j] be the transition matrix for a “heat-bath” update
on site j. To be precise, µj(x, ·) is the uniform distribution on colours that are not used at
neighbours of site j in configuration x. For all edges (i, j) of G, ρi,j = 1/(q−d(j)), where
d(j) is the degree of site j, so we take Ri,j = 1/(q −∆) = 1/∆. If (i, j) is not an edge then
Ri,j = 0 ([16]).

Unlike the rest of the paper we now use the notation M→← to refer to the Markov chain
with transition matrix P→← but restricted to state space Ω.
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We now prove Theorem 5. If G is not ∆-regular, then the theorem follows from Theo-
rem 15. Some vertex has degree less than ∆, so has row sum less than 1. So assume from
now on that G is ∆-regular.

Note that on Ω, P [j] is reversible with respect to the uniform distribution, so P→(x, y) =
P←(y, x) which implies that M→← is reversible (with respect to the uniform distribution).

We now use the decomposition theorem of Martin and Randall [14]. For every spin c ∈ C,
let Ωc = {x ∈ Ω | xn = c}. Let P→←c be the restriction Markov chain on Ωc defined as
follows. If x 6= y and x and y are in Ωc then P→←c(x, y) = P→←(x, y). Finally, if x ∈ Ωc then
P→←c(x, x) = 1−

∑
y∈Ωc:y 6=x P→←c(x, y). Note by symmetry that π(Ωc) = 1/q. Let P be the

Markov chain on state space C whose transition matrix is defined by

P (c, c′) = q
∑

x∈Ωc,y∈Ωc′

π(x)P→←(x, y).

Note that P is reversible with respect to the uniform distribution on C.
Theorem 4.2 of [14] gives us

Gap(P→←) ≥ 1
2

Gap(P ) min
c∈C

Gap(P→←c), (1)

where Gap(P ) denotes the spectral gap of a reversible ergodic Markov chain with transition
matrix P .

5.3 A lower bound on Gap(P→←c).

Let P ∗c be the Markov chain on Ωc with transition matrix P1 · · ·Pn−1Pn−1 · · ·P1. Note that
both P ∗c and P→←c are reversible with respect to the uniform distribution on Ωc. Furthermore,
for any pair of distinct states x and y in Ωc,

1
q2
P ∗c (x, y) ≤ P→←c(x, y).

This inequality implies that there is a very straightforward comparison between P ∗c and P→←c
in which all of the flow corresponding to a transition of P ∗c uses the transition itself. The
same inequality holds in the case x = y (since every self-loop transition in P→←c occurs with
probability at least q−2). Thus, the flow is an odd-flow, and Gap(P→←c) ≥ q−2Gap(P ∗c ). (See
Lemma 4.3 of [14]. The requirement that the flow be an odd flow is necessary to bound the
gap between the smallest eigenvalue and −1. See [5, 10].)

The analysis in Section 5.1 can be used to upper bound the mixing time of P ∗c , which is
equivalent to lower-bounding its spectral gap. We will use the following inequality to convert
the mixing-time bound to a bound on spectral gap:

Gap(P ∗c ) ≥ 1
τ(P ∗c , ε) + ln(1/(2ε))

ln
(

1
2ε

)
.

This inequality is based on Proposition 1(ii) of [18] by Sinclair, which is based on a continuous
version by Aldous [1]. A proof is given (see Theorem 5) in [10]. The inequality holds for any
ε > 0. For example, we will take ε = 1/4.

We will now give an upper bound on τ(P ∗c , ε). The upper bound will actually be for the
state space Ω+

c consisting of all colourings (proper and improper) with xn = c. However,
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this implies an upper bound for Ωc. Recall that our O() notation suppresses terms that
depend upon q and ∆, but not terms which depend upon n. The dependency matrix R∗

for this chain can be obtained from R by deleting row n and column n. Every connected
component of the corresponding dependency graph contains a site s which is adjacent to n
in G.

∑n−1
j=1 Rs,j = (∆ − 1)(1/∆) = 1 − 1/∆. We can apply Theorem 4 to get the bound

τ(P ∗c , ε) = O(n3 log(nε−1)). Taking ε = 1/4, we get Gap(P→←c) = Ω(1/(n3 log(n))).

5.3.1 A lower bound on Gap(P ).

Let Q be the Markov chain on {1, . . . , q} such that for all c, Q(c, ·) is the uniform distribution.
We will compare P to Q. First note that∑

c 6=c′
P (c, c′) = q

∑
x,y:xn 6=yn

π(x)P→←(x, y) ≥ q
∑
x

π(x)
1
4
≥ q

4
.

By symmetry, P (c, c′) is the same for all pairs of distinct colours (c, c′) so P→←(c, c′) ≥
1

4(q−1) = q
4(q−1)Q(c, c′). Similarly,

∑
c

P (c, c) = q
∑

x,y:xn=yn

π(x)P→←(x, y) ≥ q
∑
x

π(x)
1
q
≥ 1,

so P (c, c) ≥ Q(c, c) by symmetry. This gives Gap(P ) ≥ q
4(q−1)Gap(Q) = q

4(q−1) .

5.3.2 Putting it all together

By decomposition, we now have Gap(P→←) = Ω(1/(n3 log(n))). Applying an inequality of Di-
aconis and Stroock [6, Proposition 3] and Sinclair [18, Proposition 1(i)], we get τx(M→←, ε) ≤
O(n3 log(n)) ln 1

επ(x) . Note that π(x) ≥ q−n so τx(M→←, 1/(2e)) ≤ O(n4 log(n)).

6 A generalised α = 1 case

The following is a generalisation of Theorem 5. Consider a general spin system. Let Ω =
{x ∈ Ω+ | π(x) > 0}. As in Section 5.2 let Ωc = {x ∈ Ω | xn = c} and let P→←c be the
Markov chain on Ωc defined by P→←c(x, y) = P→←(x, y) for distinct x and y in Ωc with
P→←c(x, x) = 1−

∑
y∈Ωc:y 6=x P→←c(x, y).

Theorem 16 Suppose that a spin system has a precision-N symmetric connected dependency
matrix R with row sums equal to 1. Suppose there is a positive real ξ such that

(1) For every site j, P [j] is reversible with respect to π.

(2) For every spin c, P→←c is irreducible.

(3) For every configuration x and every site j, P [j](x, xj) ≥ ξ.

(4) For every configuration x and every colour c, Pr(τn = c) ≥ ξ when τ is drawn from
P→←(x, ·).

Then τx(M→←, ε) ≤ O(ξ−3n3N log(n)) log(1/(επ(x))).
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Proof. The proof follows the proof of Theorem 5. Condition (1) implies that M→← is re-
versible with respect to π. The projection chain P is defined by

P (c, c′) =
1

π(Ωc)

∑
x∈Ωc,y∈Ωc′

π(x)P→←(x, y).

Note that P is reversible with respect to the distribution that chooses spin c with probability
π(Ωc). Condition (4) implies that P is irreducible and aperiodic. P→←c is reversible by
construction. It is aperiodic by Condition (3) and irreducible by Condition (2). Similarly,
(3) implies that P→← is aperiodic and (2) and (4) imply that it is irreducible. Since P , P→←
and P→←c are reversible and ergodic, we can apply the decomposition theorem.

By Condition (3), P→←c(x, y) ≥ ξ2P ∗c (x, y), so Gap(P→←c) ≥ ξ2Gap(P ∗c ). Applying
Theorem 4, we get Gap(P ∗c ) = Ω(1/(n3N log(n))).

Condition (4) gives P (c, c′) ≥ ξqQ(c, c′) so Gap(P ) ≥ ξqGap(Q) = ξq. The remainder of
the proof is unchanged.

Remark. It is easy to see that Theorem 16 implies Theorem 5, though the implicit constants
are slightly worse since Condition 4 gives a slightly worse analysis than the analysis given
in Section 5.3.1. The theorem also applies to Glauber-dynamics on spin systems such as the
Potts model or the hard-core lattice gas model.

Remark. The connectivity requirement in Theorem 16 can be removed by considering the
connected components separately as in the proof of Theorem 4.

7 Proving rapid mixing for systematic scan using path cou-
pling

All of the mixing results so far have built upon Dobrushin uniqueness. We conclude by
sketching an alternate proof, based on path coupling [2], that the Dobrushin condition α < 1
implies rapid mixing of systematic scan. Similar ideas are implicit in [21], though this does
not explicitly consider systematic scan

We consider coupled chains Xt, Yt. Let the (path) coupling be given by choosing the same
vertex wt in both chains, and then coupling the choice of spin maximally. Suppose the initial
states X0, Y0 have shortest path P0. The length of P0 is the Hamming distance H(X0, Y0).
Consider the evolution of this path at time t to P = (Z0, Z1, . . . , Z`−1, Z`), with length
` ≥ H(Xt, Yt). (Note that we do not optimise the path length after each step, but assume
instead that the path evolves naturally.) We will call any edge of P (Zr−1, Zr) (r ∈ [`]) an
edge in Si if (Zr−1, Zr) ∈ Si. Note that P0 has at most one edge in Si for each i = 1, 2, . . . , n.
Suppose νi is the total number of edges of P in Si. Clearly ` =

∑n
i=1 νi, so E[`] ≤ nmaxi E[νi].

Suppose wt = j. For every edge in Si (i 6= j), an edge in Si will persist, and a new edge
in Sj will appear with probability at most ρi,j . Every edge in Sj will either disappear, or
persist with probability at most ρj,j . Thus, denoting the quantities at time t+ 1 with primes,
E[ν ′i] = E[νi] (i 6= j) and

E[ν ′j ] ≤
n∑
i=1

ρi,j E[νi] ≤ αmax
i

E[νi].
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In a complete scan we have wt = j for every j and some t. Hence the resulting values −→ν i
after the scan will satisfy

max
i

E[−→ν i] ≤ αmax
i

E[νi].

Since maxi E[νi] ≤ 1 initially, after s complete scans maxi E[νi] ≤ αs, and thus

dTV(Xns, Yns) ≤ Pr(Xns 6= Yns) ≤ E[H(Xns, Yns)] ≤ E[`] ≤ nαs.
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