
Tight Size Bounds for Paket Headersin Narrow Meshes?Miah Adler1, Faith Fih2, Leslie Ann Goldberg3, and Mike Paterson31 miah�s.umass.edu, Department of Computer Siene, University ofMassahusetts, Amherst, MA 01003, USA.2 fih�s.toronto.edu, Department of Computer Siene, University of Toronto,Toronto, Canada, M5S 3G4.y3 (leslie,msp)�ds.warwik.a.uk, Department of Computer Siene, Universityof Warwik, Coventry CV4 7AL, UK.zAbstrat. Consider the problem of sending a single message from asender to a reeiver through an m � n mesh with asynhronous linksthat may stop working, and memoryless intermediate nodes. We provethat for m 2 O(1), it is neessary and suÆient to use paket headersthat are �(log log n) bits long.1 IntrodutionProtools that send information bundled into pakets over a ommuniationnetwork alloate some number of bits in eah paket for transmitting ontrolinformation. We here refer to suh bits as header bits. These bits might inludesequene numbers to ensure that pakets are reeived in the orret order, orthey might ontain routing information to ensure that a paket is delivered to itsdestination. When the number of message bits in a paket is small (for example,in aknowledgements), the header bits an make up a signi�ant fration of thetotal number of bits ontained in the paket. A natural question to ask is thefollowing: how large must paket headers be for reliable ommuniation?This problem is addressed in [AF99℄, part of a large body of researh on theend-to-end ommuniation problem [AAF+94℄, [AAG+97℄, [AG88℄, [AMS89℄,[APV96℄, [DW97℄, [KOR95℄, [LLT98℄. The end-to-end ommuniation problemis to send information from one designated proessor (the sender S) to anotherdesignated proessor (the reeiver R) over an unreliable ommuniation network.This is a fundamental problem in distributed omputing, sine (a) ommunia-tion is ruial to distributed omputing and (b) as the size of a network inreases,the likelihood of a fault ourring somewhere in the network also inreases.? Researh Report 366, Department of Computer Siene, University of Warwik,Coventry CV4 7AL, UKy This work was partly supported by grants from NSERC and CITO.z This work was partly supported by EPSRC grant GR/L60982 and ESPRIT LTRProjet ALCOM-FT.

Adler and Fih [AF99℄ studied the question of how many header bits arerequired for end-to-end ommuniation in the setting where there is a singlemessage to be sent from S to R. They prove that, for the omplete network ofn proessors or any network that ontains it as a minor (suh as the n2-inputbuttery or the n�n� 2 mesh), any memoryless protool that ensures deliveryof a single message using headers with fewer than dlog2 ne� 3 bits, generates anin�nite amount of message traÆ.If there is a path of live links from S to R in an n-node network, then thereis a simple suh path of length at most n � 1. Therefore, it suÆes to use thesimple \hop ount" algorithm: use paket headers of length dlog2(n�1)e to ountthe number of links that pakets have travelled [P81℄. Thus, for the ompletegraph, we have upper and lower bounds that math to within a small additiveonstant, and, for the n2-input buttery and the n � n � 2 mesh, to within asmall multipliative onstant.However, for several graphs there remains a large gap between the best upperand lower bounds. Planar graphs, inluding two-dimensional meshes, do notontain a omplete graph on more than 4 nodes as a minor [K30℄, and as a result,no previous work has demonstrated a lower bound larger than a onstant for anyplanar graph. Furthermore, for some networks it is possible to do better thanthe simple hop ount algorithm. For example, Adler and Fih [AF99℄ observedthat, for any feedbak vertex set F in a graph G, any simple path visits vertiesin F at most jF j times and they obtained a variant of the hop ount protoolthat uses paket headers of length dlog2(jF j+1)e. However, some graphs have nosmall feedbak vertex sets. In partiular, any feedbak vertex set for the m� nmesh has size at least bm=2 � bn=2. In this ase, this variant does not o�ersigni�ant improvement over the hop ount algorithm.Thus, we see that a network that has resisted both lower bound and upperbound improvements is the two-dimensional mesh. Prior to this work, there wasno upper bound better than O(logmn), nor lower bound better than
(1), forany m � n mesh with m;n > 2. Note that for m = 2, headers of length onesuÆe (to indiate whih neighbour sent the paket) [AF99℄. In [AF99℄, it isonjetured that
(logn) header bits are neessary for a protool to ensuredelivery of a single message in an n � n mesh without generating an in�niteamount of message traÆ.Here, we attak this open problem by onsidering m � n meshes, for on-stant m � 3. We prove the unexpeted result that �(log logn) bit headers areneessary and suÆient for suh graphs.1.1 Network ModelWe model a network by an undireted graph G, with a node orresponding toeah proessor and an edge orresponding to a link between two proessors.Spei�ally, we onsider the graphs G(m;n) with a sender node S and a reeivernode R in addition to the mn intermediate nodes, (i; j), for 0 � i < m and0 � j < n. There are links between 2

{ node S and node (i; 0), for 0 � i < m,{ node (i; j) and node (i; j + 1), for 0 � i < m and 0 � j < n� 1,{ node (i; j) and node (i+ 1; j), for 0 � i < m� 1 and 0 � j < n, and{ node (i; n� 1) and node R, for 0 � i < m.The graph G(3; 6) is illustrated in Figure 1.
(2,5)

S R

(0,0)Fig. 1. The graph G(3; 6)Proessors ommuniate by sending pakets along links in the network. Eahpaket onsists of data (i.e. the message) and a header. The proessor at anintermediate node may use information in the header to determine what paketsto send to its neighbours, but they annot use the data for this purpose. Fur-thermore, headers may be modi�ed arbitrarily; however, data must be treatedas a \blak box". This data-oblivious assumption is appropriate when one viewsend-to-end ommuniation protools as providing a reliable ommuniation layerthat will be used by many di�erent distributed algorithms. We also assume thata proessor annot detet from whih of its neighbours a paket was sent. Sinethe degree of the graphs is onstant, this is not important: when eah proessorsends a paket, it an indiate the diretion of travel using a onstant numberof header bits.Intermediate proessors are assumed to be memoryless, and thus proessorsan only send pakets as a result of reeiving a paket and must deide alongwhih link(s) to forward the message and how to hange the paket header,based only on the ontents of the header. This is an appropriate model for anetwork with simultaneous traÆ between many di�erent pairs of proessors,for example, the Internet, where no information onerning past traÆ is stored.The links of the network are either alive or dead. At any time, a live link maybeome dead. However, one a link beomes dead, it remains so. Proessors donot know whih subset of the links are alive.To simplify our protools, we will adopt the onvention that pakets \sent"to non-existent nodes are ignored.Live links deliver pakets in a �rst in, �rst out manner. However, the timefor a paket to traverse a link may di�er at di�erent times or for di�erent links.We assume that the time for a paket to traverse a link is �nite, but unbounded.Edges whih are dead an be thought of as having in�nite delay. In this asyn-3

hronous model, a proessor annot distinguish between an dead link and a linkwhih is just very slow.1.2 Summary of ResultsIn this paper, we onsider the problem of sending a single message from S to R.Our goal is to ensure that{ as long as there is some simple S{R path of live links, at least one opy ofthe message gets sent from S to R, and{ even if all links are alive, only a �nite number of pakets are generated.We say that a protool whih satis�es these requirements delivers a messagefrom S to R with �nite traÆ. In this paper, we provide an algorithm that doesthis using O(m log logn)-bit headers for any network G(m;n). For the ase ofG(3; n), this is improved to log2 log2 n+O(1). Furthermore, we demonstrate thatfor G(3; n), log2 log2 n�O(log log logn) bits are required. Thus, for any onstantm � 3, we have optimal bounds to within a onstant fator on the number ofheader bits that are neessary and suÆient to deliver a message from S to Rwith �nite traÆ in G(m;n). For the ase of G(3; n), our bounds are within anadditive term of O(log log logn) from optimal.Our upper bounds use a new tehnique to obtain an approximate ount ofhow many nodes a message has visited, whih is suÆient to guarantee that onlya �nite number of pakets are generated. This tehnique may have appliationsto other networks.Our upper bounds also provide upper bounds for any graphs that are mi-nors of G(m;n), for any onstant m. Similarly, we get lower bounds for anygraphs that ontain G(3; n) as a minor. These are onsequenes of the followingobservation from Adler and Fih [AF99℄.Proposition 1. Suppose G0 is a minor of G and S0 and R0 are the supernodesof G0 ontaining S and R, respetively. Then any protool for G that deliversa message from S to R with �nite traÆ gives a protool for G0 with the samepaket headers that delivers a message from S0 to R0 with �nite traÆ.The protool for G(3; n) is given in the next setion. Setion 3 extends thisresult to G(m;n) for any onstant m � 3. This is followed in Setion 4 by ourlower bound for G(3; n) and, hene, for G(m;n) with m > 3, whih ontainsG(3; n) as a minor.2 A Protool for G(3; n)In this setion, we present a protool using O(log logn) header bits that deliversa message from S to R with �nite traÆ in G(3; n). Throughout the protool,4

eah paket will ontain the message as its data. Consequently, we mention onlythe header bits in what follows.We desribe the protool in piees. We �rst onsider some simple paths inthe graph, and fous on paths that move \right", that is, on paths from (r1; 1)to (r2; 2) with 2 � 1. There are four types of paths: U, D, S, and Z. For eah ofthese paths, there is a simple ommuniation protool, suh that when a paketwith header \Ready" enters the �rst node (r1; 1) of the path, and all of theedges in the path are alive, the protool sends a paket with header \Ready"from the last node of the path to the node (r2; 2+1). The protool uses a �nitenumber of header bits.A U-path (D-path) onsists of zero, one or two upward (downward respe-tively) edges. The protool for a U-path is as follows.If (r;) reeives a paket with header \Ready" or \up", it sends a paketwith header \Ready"to (r; + 1), and a paket to (r + 1;) with header \up".Note that the U-path protool only generates a �nite number of pakets, andresults in a \Ready" paket at the end of the path. The protool for D-paths isanalogous, substituting \down" and r � 1 for \up" and r + 1.An S-path of extent j � 1 is a path from (0;) to (2; + j � 1). It onsists of� A left-to-right path of length j � 1 along the bottom row from (0;) to(0; + j � 1), followed by� the vertial edge from (0; + j � 1) to (1; + j � 1), followed by� a right-to-left path of length j � 1 along the middle row from (1; + j � 1)to (1;), followed by� the vertial edge from (1;) to (2;), followed by� a left-to-right path of length j�1 along the top row from (2;) to (2; +j�1).Thus, an S-path of extent j ontains 3(j � 1) horizontal edges and 2 vertialedges, for a total length of 3j�1. Similarly, a Z-path of extent j is a simple pathof total length 3j � 1 from (2;) to (2; + j � 1), to (1; + j � 1), to (1;), to(0;), and �nally to (0; + j � 1).Our ommuniation protool for an S-path of extent j has the property thatwhen a paket enters the �rst node (0;) with header \Ready", and all of theedges are alive, the protool sends a paket with header \Ready" from the lastnode to (2; + j). The protool will use O(log logn) header bits. Furthermore,it will only generate a �nite number of pakets. It may result in more than onenew paket with header \Ready", but eah of these new pakets will arrive ata node whih is to the right of olumn . Thus, only a �nite number of paketswill be generated overall, so we will be able to ombine the protool with ourother protools to ahieve our two goals.For any nonnegative integer k, we say that olumn is a k-ounter if andonly if = 0 mod 2k. In partiular, every olumn is a 0-ounter and olumn 0 isa k-ounter for all k � 0.The protool for S-paths of extent greater than one is as follows.5

{ If (0;) reeives a paket with header \Ready", then for eah value k 2f1; : : : ; dlog2 neg, it sends a paket to (0; +1) with header (S; k; \unmarked").{ If (0;) reeives a paket with header (S; k; \unmarked"), it sends a paketto (0; + 1) with header (S; k; x), where x = \marked" if is a k-ounterand x = \unmarked" otherwise. In addition, if is a k-ounter, then (0;)also sends a paket to (1;) with header (S; k; \up").{ If (0;) reeives a paket with header (S; k; \marked") and is not a k-ounter, it sends a paket to (1;) with header (S; k; \up"), and a paket to(0; + 1) with header (S; k; \marked").{ If (1;) reeives a paket with header (S; k; \up"), it sends a paket to (1; �1) with header (S; k; \unmarked") if is not a k-ounter and with header(S; k; \marked") if is a k-ounter.{ If (1;) reeives a paket with header (S; k; \unmarked"), it sends a paketto (1; � 1) with header (S; k; x), where x = \marked" if is a k-ounterand x = \unmarked" otherwise. In addition, if is a k-ounter then (1;)also sends a paket to (2;) with header (S; k; \up").{ If (1;) reeives a paket with header (S; k; \marked"), it sends a paket to(2;) with header (S; k; \up"). If is not a k-ounter, it also sends a paketto (1; � 1) with header (S; k; \marked").{ If (2;) reeives a paket with header (S; k; \up"), it sends a paket to (2; +1)with header (S; k; \unmarked").{ If (2;) reeives a paket with header (S; k; \unmarked"), it sends a paketto (2; +1) with header (S; k; x), where x = \marked" if is a k-ounter andx = \unmarked" otherwise. If is a k-ounter, (2;) it also sends a paketto (2; + 1) with header \Ready".{ If (2;) reeives a paket with header (S; k; \marked"), it sends a paket to(2; +1) with header \Ready". If is not a k-ounter, it also sends a paketto (2; + 1) with header (S; k; \marked").Lemma 1. Suppose that the S-path ommuniation protool is run as a resultof a paket with header \Ready" arriving at (0;). Then(A) For 1 < j � n � + 1, if all of the edges in the S-path of extent j from(0;) to (2; + j � 1) are alive, then a paket with header \Ready" is sentto (2; + j).(B) The only new pakets whih are generated with header \Ready" have desti-nations in olumns whih are to the right of olumn .Proof. We �rst prove (A). Suppose that there is a k 2 f1; : : : ; dlog2 neg suhthat exatly one olumn 0 in f + 1; : : : ; + j � 1g is a k-ounter. Then it isstraightforward to verify that pakets travel from (0;) to (0; 0) with header(S; k; \unmarked"), from there to (0; + j � 1) with header (S; k; \marked"),up to (1; + j � 1) with header (S; k; \up"), from there to (1; 0) with header(S; k; \unmarked"), from there to (1;) with header (S; k; \marked"), up to (2;)with header (S; k; \up"), from there to (2; 0) with header (S; k; \unmarked"),from there to (2; +j�1) with header (S; k; \marked"), and from there to (2; +j)6

with header \Ready". We will now verify that suh a k exists. Let k0 = blog2 j.Then there are either one or two k0-ounters in f+ 1; : : : ; + j � 1g. Supposethat there are two, in olumns m2k0 and (m+ 1)2k0 . Then one of m and m+ 1is even, so there is exatly one (k0 + 1)-ounter in f+ 1; : : : ; + j � 1g.We now prove (B). Let 0 be the �rst k-ounter to the right of and let 00 bethe �rst k-ounter to the left of 0. Then olumn 0 is the leftmost olumn in whiha paket an enter row 1 as a result of a paket with header \Ready" arrivingat (0;). By the time that a paket gets to olumn 00 in row 1, it is marked.Thus, the leftmost olumn in row 1 whih is reahed is olumn 00. These paketstravel right in row 2, but they are unmarked as they enter olumn 0. Thus, theleftmost olumn to whih a header \Ready" paket is sent is olumn 0 + 1. utThe ommuniation protool that we use for Z-paths is analogous to the onethat we use for S-paths. We now make the following observation.Lemma 2. Every simple path from S to R an be formed by onatenating pathsof types U, D, S, and Z, using left-to-right edges.Proof. Consider a simple path P from S to R. We �rst observe that any right-to-left edge in P an only be in row 1. For ontradition, suppose that ((1; +1); (1;)) is a right-to-left edge along row 1. It is easy to see that any path fromS to (1; + 1) must interset any path from (1;) to R. Sine P is simple, wehave a ontradition.Hene every right-to-left edge ours in row 1 with left-to-right edges imme-diately above and below it in rows 0 and 2. As a onsequene, every onseutivesequene of right-to-left edges ours as the entral setion of an S-path or aZ-path. Sine any subpath whih ontains no right-to-left edges is formed byonatenating zero or more U-paths and D-paths with left-to-right edges, theproof is omplete. utThus, using Lemma 1 (and the orresponding observation for Z-paths), wean prove Theorem 1.Theorem 1. There is a protool whih delivers a message from S to R inG(3; n) with �nite traÆ, using headers of length log2 log2 n+O(1).Proof. Consider the ommuniation protool that starts by sending a paketwith header \Ready" from S to eah of its neighbours (0; 0), (1; 0), and (2; 0),that performs the U, D, S, and Z protools at all intermediate nodes, and thatsends a paket to R from its neighbours (0; n � 1), (1; n � 1), and (2; n � 1),whenever they reeive a paket.Sine eah of the four types of protool ends by sending a paket withheader \Ready" to the right, a paket path an be regarded as a sequene of \ba-si" paths (of type U, D, S or Z) onatenated by horizontal edges along whihthese pakets are sent. Formally, we an prove that if there is a simple path of7

live edges from S to R, then R will reeive a paket. This is done by indutionon the number of basi paths whih get onatenated to form the simple path.Now suppose that all of the edges in the graph are alive. When a node(r;) reeives a paket of type \Ready", the result is a bounded number of newpakets of type \Ready" all of whih are sent to verties in olumns to the rightof olumn , and a bounded number of pakets of other types. Thus, only a �nitenumber of pakets are generated. ut3 A Protool for G(m;n)In this setion, we provide an upper bound on the header size required for sendinga single message from S to R in G(m;n). Sine G(m;n) is a minor of G(m;n0)for all n � n0, by Proposition 1, it suÆes to assume that n = 2h + 1 for somepositive integer h.We begin by giving a haraterization of ertain simple paths.De�nition 1. For r1 � r2 and 1 6= 2, a (1; 2; r1; r2)-bounded path is asimple path that starts in olumn 1, ends in olumn 2, and does not go throughany node in a olumn less than minf1; 2g, a olumn greater than maxf1; 2g,a row less than r1, or a row greater than r2.Note that every simple path from the �rst olumn of G(m;n) to the lastolumn of G(m;n) is a (0; n�1; 0;m�1)-bounded path. A (1; 2; r; r)-boundedpath is a simple path of horizontal edges.De�nition 2. For r1 < r2 and 1 6= 2, a (1; 2; r1; r2)-bounded loop is asimple path that starts and ends in olumn 1, and does not go through any nodein a olumn less than minf1; 2g, a olumn greater than maxf1; 2g, a row lessthan r1, or a row greater than r2.We fous attention on bounded paths between olumns whih are onseutivemultiples of some power of 2, i.e. from olumn 2k to olumn 02k, where 0 =� 1.Lemma 3. Let 1, 2, and 3 be onseutive nonnegative integers, with 2 odd,and let k be a nonnegative integer. Then every (12k; 32k; r1; r2)-bounded pathan be deomposed into a (12k; 22k; r1; r2)-bounded path, followed by a series ofr2�r1 or fewer (22k; 12k; r1; r2)- and (22k; 32k; r1; r2)-bounded loops, followedby a (22k; 32k; r1; r2)-bounded path.Proof. Consider any (12k; 32k; r1; r2)-bounded path. The portion of the pathuntil a node in olumn 22k is �rst enountered is the �rst subpath, the portionof the path after a node in olumn 22k is last enountered is the last subpath,and the remainder of the path is the series of loops. The bound on the numberof loops follows from the fat that the path is simple, so the �rst subpath andeah of the loops end on di�erent nodes in olumn 22k. ut8

This gives us a reursive deomposition of any simple path from the �rstolumn to the last olumn of G(m;n), where n is one more than a power of2. Spei�ally, suh a (0; n � 1; 0;m � 1)-bounded path onsists of a (0; (n �1)=2; 0;m � 1)-bounded path, followed by a series of at most m � 1 di�erent((n � 1)=2; n� 1; 0;m� 1) and ((n � 1)=2; 0; 0;m� 1)-bounded loops, followedby a ((n� 1)=2; n� 1; 0;m� 1)-bounded path. Eah of the bounded paths anthen be similarly deomposed. Furthermore, we an also deompose the boundedloops.Lemma 4. Let k, r1, r2, 1 and 2 be nonnegative integers, where 1 and 2are onseutive, 1 is odd, and r1 < r2. Then every (12k; 22k; r1; r2)-boundedloop an be deomposed into the pre�x of a (12k; 22k; r1 + 1; r2)-bounded path,followed by a downward edge, followed by the suÆx of a (22k; 12k; r1; r2 � 1)-bounded path, or the pre�x of a (12k; 22k; r1; r2 � 1)-bounded path, followed byan upward edge, followed by the suÆx of a (22k; 12k; r1 + 1; r2)-bounded path.Proof. Consider any (12k; 22k; r1; r2) bounded loop. Let be the olumn far-thest from 12k that this path reahes and let (r;) be the �rst node in this pathin olumn . Let p1 be the pre�x of this path up to and inluding node (r;).The next edge is vertial. Let p2 be the remainder of the bounded loop followingthat edge.Sine the loop is a simple path, paths p1 and p2 do not interset. Thus, eitherp1 is ompletely above p2, so p1 never uses row r1 and p2 never uses row r2, orp1 is ompletely below p2, so p1 never uses row r2 and p2 never uses row r1. utWe use this reursive deomposition of simple paths in our protool. Insteadof trying just the simple S{R paths in G(m;n), our protool tries all S{R pathsthat an be reursively deomposed in this way.Our basi building blok is a protool that sends a paket from olumn 1 toolumn 2, where 1 and 2 are onseutive multiples of some power of 2, usingsome set of r adjaent rows. The protool does this by �rst sending the paketfrom olumn 1 to the middle olumn (1 + 2)=2, reursively. Then it sends thepaket looping around the middle olumn at most r�1 times. Eah loop onsistsof a �rst half and a seond half, eah of whih uses at most r � 1 rows. Both ofthese subproblems are solved reursively. Finally, the protool reursively sendsthe paket from the middle olumn to olumn 2.It follows by Lemmas 3 and 4 that, if there is a simple path of live edges fromS to R, then our protool �nds it. Note that, at the lowest level of the reursion,a paket is always travelling in what is onsidered the forward diretion (whenthe bounded path is from right to left, this will be in the bakwards diretionof the original problem, but still in the forward diretion of the lowest levelsubproblem). Thus, the diÆult part of this protool is performing the boundedloops in suh a way that the paket does not travel in an in�nite loop.Let #2(0) =1 and for every positive integer , let #2() denote the largestpower of two that divides . Thus, if an be expressed as 12k for an odd9

number 1, then #2() = k. In our protool, the paket header is used to keeptrak of the olumn in whih the urrent loop started and the distane to theother olumn boundary. If we naively stored these numbers, then
(logn) headerbits would be required. However, beause our deomposition only uses boundedloops of the form (12k; (1 � 1)2k; r1; r2), where 1 is odd, it is suÆient tokeep trak of k (i.e., #2(12k)). Note that k an be represented using onlydlog2 log2(n � 1)e bits. Using the quantity k, a paket an tell when it reahesits boundary olumns. In partiular, while its urrent olumn is between theboundaries, #2() < k but when is at the boundaries #2() � k.When the algorithm is doing a bounded loop from olumn 12k the followingquantities are stored.{ power = #2(12k) (whih is equal to k),{ minRow, the smallest row that an be used,{ maxRow, the largest row that an be used,{ loopCounter, the number of loops that have already been done around ol-umn 12k in the urrent path,{ loopHalf (0 if the urrent paket is in the �rst bounded path that forms thisloop and +1 if it is in the seond),{ forward, the diretion in whih the paket is travelling on the urrent path(+1 if the paket is going from left to right and �1 it is going from right toleft).Although our path deomposition has log2(n�1) levels of reursion, at mostm loops an be ative at any one time. This follows from Lemma 4, sine thenumber of allowed rows dereases by 1 for eah ative loop. We shall thinkof the bits in the paket header as a stak and, for eah ative loop, the abovementioned variables will be pushed onto the stak. Finally, we use two additionalbits with eah transmission to ensure that any node reeiving a paket knowswhere that paket ame from. In total, our protool uses headers with at mostO(m(log logn+ logm)) bits.At the start, S sends a paket to eah node in olumn 0. The header ofeah paket ontains the following information in its only stak entry: power= log2(n � 1), minRow = 0, maxRow = m � 1, forward = 1, loopHalf = 1,and loopCounter = 0. (To be onsistent with other levels of reursion, we arethinking of the path from olumn 0 to olumn n� 1 as being the seond half ofa (n� 1; 0; 0;m� 1)-bounded loop.)We shall refer to the variable d = m � maxRow + minRow, whih is equalto the reursion depth. We desribe the ations of any node (r;) that does notappear in the �rst or last olumn of G(m;n). The ations of the nodes in the�rst (or last) olumn are idential, exept that they do not perform the spei�edforwarding of pakets to the left (or right, respetively). In addition, if a node inthe last olumn of G(m;n) ever reeives a paket, it forwards that paket to R.10

Protool DELIVEROn reeipt of a paket at node (r;) with (power,minRow,maxRow, loopCounter,loopHalf, forward) at the top of its stak/* The default move is to forward a paket up, down, and in the urrentdiretion of travel. */� If r < maxRow and the paket was not reeived from node (r + 1;), sendthe paket to node (r + 1;).� If r > minRow and the paket was not reeived from node (r � 1;), sendthe paket to node (r � 1;).� If power > #2(), then send the paket to node (r; + forward)./* In addition, we may hoose to start a set of loops starting at the urrentolumn. */� If power > #2(), d < m, and r > minRow, then, for f = �1, send thepaket to node (r; + f) with (#2();minRow + 1;maxRow; 0; 0; f) pushedonto its stak.� If power > #2(), d < m, and r < maxRow, then, for f = �1, send thepaket to node (r; + f) with (#2();minRow;maxRow � 1; 0; 0; f) pushedonto its stak./* If a loop is in its �rst half, it an swith to the seond half at any step. */� If loopHalf = 0, let minRow 0 denote the value of minRow at the previouslevel of reursion (i.e. in the reord seond from the top of the stak).If minRow = minRow 0� then send the paket to node (r+1;) with (power,minRow+1,maxRow+1,loopCounter,1,�forward) replaing the top reord on its stak.� else send the paket to node (r�1;) with (power, minRow�1,maxRow�1,loopCounter,1,�forward) replaing the top reord on its stak./* If a paket has returned to the olumn where it started its urrent set ofloops, it has two options. */� If #2() � power and loopHalf = 1 then/* Option 1: start the next loop in the set. Note that if the seond half ofthe previous loop allows the use of rows r1 to r2, then the previous level ofthe reursion allows the use of either rows r1 to r2 + 1 or rows r1 � 1 to r2.In the �rst ase, the �rst half of the next loop an use either rows r1 to r2or rows r1 + 1 to r2 + 1. In the seond ase, the �rst half of the next loopan use either rows r1 to r2 or rows r1 � 1 to r2 � 1. */� If loopCounter < maxRow�minRow� 1, then� For f = �1, send the paket to node (r; +f) with (power, minRow,maxRow, loopCounter+1, 0, f) replaing the top reord on its stak.11

� LetminRow 0 andmaxRow 0 denote the value ofminRow andmaxRowat the previous level of reursion (i.e. in the reord seond from thetop of the stak).� If minRow = minRow 0 and r > minRow then for f = �1, sendthe paket to node (r; + f) with (power, minRow+1, maxRow+1,loopCounter + 1, 0, f) replaing the top reord on its stak.� If maxRow = maxRow 0 and r < maxRow then for f = �1, sendthe paket to node (r; + f) with (power, minRow� 1, maxRow� 1,loopCounter + 1, 0, f) replaing the top reord on its stak./* Option 2: stop the urrent set of loops and return to the previous levelof the reursion. */� If d > 1, pop one reord o� the stak. Let forward 0 denote the value offorward at the new top level of the stak. Send the resulting paket tonode (r; + forward 0).End of protool.Lemma 5. The header of any paket produed by the Protool DELIVER hasa length of at most m(dlog2 log2(n� 1)e+ 3dlog2me+ 2) + 2 bits.Proof. It is easily veri�ed that the maximum depth of the reursion produedby Protool DELIVER is m. For eah suh level, the variable power an berepresented using dlog2 log2(n � 1)e bits, the variables maxRow, minRow, andloopCounter an be represented using dlog2me bits, and forward and loopHalfan eah be represented using a single bit. The �nal two bits ome from thefat that eah transmission informs the reipient of the diretion from whih thepaket ame. utLemma 6. Protool DELIVER transmits only a �nite number of pakets.Proof. We provide a potential funtion � for any paket in the system, suhthat there is a maximum value that � an attain and, every time a paket isforwarded, the orresponding value of � is inreased by at least 1. (That is, eahpaket P has a potential exeeding the potential of the paket whose arrivalaused P to be sent.) For eah level of reursion i, 1 � i � m, we de�ne threevariables: li, lhi, and disti. All of these variables are de�ned to be 0 if i > d. Fori � d, li and lhi are the loopCounter and loopHalf variables, respetively, forlevel i in the reursion. For i � d, the variable disti is the number of horizontalsteps taken by the paket starting from the time that the forward variable at thei'th level of reursion was last set, ounting only those steps that ourred whend = i. Note that a paket an only move horizontally in the diretion spei�edby the forward variable, and thus all of these steps will be in the same diretion.This means that disti � n. We also de�ne the variable vert to be the number ofsteps taken in a vertial diretion on the urrent olumn sine last moving therefrom another olumn. 12

The potential funtion � that we de�ne an be thought of as a (3m+1)-digitmixed radix number, where for t 2 f1; : : : ;mg, digit 3(t � 1) + 1 is lt, digit3(t � 1) + 2 is lht, and digit 3(t � 1) + 3 is distt. Digit 3m + 1 is vert. It iseasily veri�ed that when a paket is �rst sent, � � 0. Also, by heking eahof the possible ations of a node on the reeipt of a paket, we an verify thatevery time a paket is forwarded, � inreases by at least 1. We also see that �is bounded, sine vert � m � 1 and, for any i, li � m, disti � n, and lhi � 1.Sine eah paket reeipt auses at most a onstant number of new pakets to besent out, it follows that the total number of pakets sent as a result of ProtoolDELIVER is �nite. utIt follows from the deomposition of simple S{R paths given by Lemmas 3and 4 that, if there is a simple path of live edges from S to R, then ProtoolDELIVER �nds it. We ombine Lemmas 5 and 6 to get our main result.Theorem 2. Protool DELIVER delivers a message from S to R with �nitetraÆ using O(m(log logn+ logm))-bit headers .4 A Lower BoundIn this setion, we prove that
(log logn) header bits are neessary for ommuni-ating a single message in a 3�n grid. First, we onsider the graph G(3; n) withn = h!. The proof is similar in avour to the lower bound for ommuniating asingle message in a omplete graph [AF99℄.Our proof fousses attention on h partiular simple S{R paths, de�ned asfollows. For k = 1; : : : ; h, let Pk onsist of k! alternating S-paths and Z-paths,eah of extent h!=k!, onatenated using single horizontal edges. Figure 2 showspaths P1; P2, and P3 for the ase h = 3.
P1 P2 P3Fig. 2. Paths P1; P2, and P3 for h = 3For 0 � i < n, let i1; : : : ; ih be suh that i =Phk=1 ikn=k! where 0 � ik < k.In other words, (i1; � � � ; ih) is the mixed radix representation of i, where the k'thmost signi�ant digit is in base k. Note that i1 always has value 0. For example,if n = 24 = 4! and i = 20, then i1 = 0, i2 = 1, i2 = 2, and i3 = 0.Proposition 2. Let 0 � i < j < n. Node (1; j) appears before node (1; i) inpath Pk if and only if id = jd for d = 1; : : : ; k.13

Proof. In every S-path or Z-path, the nodes in row 1 appear in order fromlargest numbered olumn to smallest numbered olumn. Sine path Pk is theonatenation of S-paths and Z-paths, node (1; j) appears before node (1; i) ifand only if olumns i and j are in the same S-path or Z-path. Sine eah S-pathand Z-path omprising Pk has extent n=k!, it follows that i and j are in theS-path or Z-path if and only if bi=(n=k!) = bj=(n=k!), whih is true if and onlyif id = jd for d = 1; : : : ; k. utConsider any protool for G(3; h!) that delivers a message from S to R with�nite traÆ. Sine node (1;) is on path Pk, it reeives at least one paket whenonly the links on the simple S{R path Pk are alive. Let Hk() denote the headerof the last paket reeived by node (1;) in this situation that auses a paketto be reeived by R.Lemma 7. Consider any protool for G(3; h!) that delivers a message from Sto R with �nite traÆ. Then, for all path indies 1 � j < k � h and all olumns0 � < 0 < h! suh that (1; 2; : : : ; j) = (01; 02; : : : ; 0j) and (1; 2; : : : ; k) 6=(01; 02; : : : ; 0k), either Hj() 6= Hk() or Hj(0) 6= Hk(0).Proof. To obtain a ontradition, suppose that Hj() = Hk() and Hj(0) =Hk(0), for some path indies 1 � j < k � h and some olumns 0 � < 0 < h!suh that (1; 2; : : : ; j) = (01; 02; : : : ; 0j) and (1; 2; : : : ; k) 6= (01; 02; : : : ; 0k).Then, by Proposition 2, node (1; 0) appears before node (1;) in path Pj butafter node (1;) in path Pk.Consider the situation when the links on both paths Pj and Pk are alive.The protool forwards a paket along path Pk until a paket with header Hk(0)reahes node (1; 0). This auses a paket to be reeived by R. Sine Hk(0) =Hj(0) and node (1; 0) ours before node (1;) on path Pj , it also auses a paketwith header Hj() to be reeived at node (1;). Likewise, sine Hj() = Hk()and node (1;) ours before node (1; 0) on path Pk, this auses a paket withheader Hk(0) to be reeived at node (1; 0), and we have an in�nite loop. Eahtime suh a paket goes through the loop, it produes a new paket that is sentto the destination R. This ontradits the �nite traÆ assumption. utLemma 8. Consider any protool for G(3; h!) that delivers a message from Sto R with �nite traÆ. Then, for 1 � k � h, there exist nonnegative digitsi1 < 1; i2 < 2; : : : ; ik < k suh that the k headers H1(); : : : ; Hk() are distintfor eah olumn with (1; 2; : : : ; k) = (i1; i2; : : : ; ik).Proof. To obtain a ontradition, suppose the lemma is false. Consider the small-est value of k � h for whih the lemma is false. Sine there are no repetitionsin a sequene of length one, k > 1. Let i1 < 1; i2 < 2; : : : ; ik�1 < k � 1be suh that the k � 1 headers H1(); : : : ; Hk�1() are distint for eah ol-umn with (1; 2; : : : ; k�1) = (i1; i2; : : : ; ik�1). Then, for eah digit ik 2f0; : : : ; k � 1g, there exists a path index j 2 f1; : : : ; k � 1g and a olumn suh that (1; 2; : : : ; k�1; k) = (i1; i2; : : : ; ik�1; ik) and Hk() = Hj().14

Sine there are k hoies for ik and only k � 1 hoies for j, the pigeonholepriniple implies that there exist distint ik; i0k 2 f0; : : : ; k�1g whih give rise tothe same value of j and there exist olumns and 0 suh that (1; 2; : : : ; k�1) =(01; 02; : : : ; 0k�1), k = ik 6= i0k = 0k, Hk() = Hj(), and Hk(0) = Hj(0). Butthis ontradits Lemma 7. utTheorem 3. Any protool for G(3; n) that delivers a message from S to R with�nite traÆ uses headers of length at least log2 log2 n�O(log log logn).Proof. Let h be the largest integer suh that n � h!. Then n < (h+1)! < (h+1)h,so h log2(h+ 1) > log2 n and h 2
(logn= log logn).Consider any protool for G(3; n) that uses headers of length L. Sine G(3; h!)is a minor of G(3; n), it follows from Proposition 1 that there is a protool forG(3; h!) using headers of length L. Hene, by Lemma 8, L � log2 h = log2 log2 n�O(log log logn). utReferenes[AF99℄ Miah Adler and Faith E. Fih, The Complexity of End-to-End Communiationin Memoryless Networks, with Miah Adler, 8th Annual ACM Symposium onPriniples of Distributed Computing, May 1999, pages 239{248.[AAF+94℄ Afek, Attiya, Fekete, Fisher, Lynh, Mansour, Wang, and Zuk, ReliableCommuniation Over Unreliable Channels, JACM, vol. 41, no. 6, 1994, pages1267{1297.[AAG+97℄ Afek, Awerbuh, Gafni, Mansour, Ros�en, and Shavit, Slide{The Key toPolynomial End-to-End Communiation, Journal of Algorithms, vol. 22, no. 1,1997, pages 158{186.[AG88℄ Afek and Gafni, End-to End Communiation in Unreliable Networks, 7thPODC, 1988, pages 131{148.[AMS89℄ Awerbuh, Mansour, and Shavit, Polynomial End to End Communiation,30th FOCS, 1989, pages 358{363.[APV96℄ Awerbuh, Patt-Shamir, and Varghese, Self-stabilizing End-to-End Commu-niation,[DW97℄ Dolev and Welh, Crash Relient Communiation in Dynami Networks, IEEETransations of Computers, vol. 46, 1997, pages 14{26.[F98℄ Faith E. Fih, End-to-end Communiation, Proeedings of the 2nd InternationalConferene on Priniples of Distributed Systems, Amiens, Frane, 1998, pages37{43.[K30℄ K. Kuratowski, Sur le Probl�eme des Courbes Gauhes en Topologie, Fund.Math., vol. 15, 1930, pages 271{283.[KOR95℄ Kushilevitz, Ostrovsky, and Ros�en, Log-Spae Polynomial End-to-End Com-muniation, 28th STOC, 1995, pages 559{568.[LLT98℄ Ladner, LaMara, and Tempero, Counting Protools for Reliable End-to-EndTransmission, JCSS, vol. 56, no. 1, 1998, pages 96-111.[P81℄ Postel, Internet Protool, Network Working Group Request for Comments 791,September 1981. 15

