
Doubly Logarithmic Communication Algorithmsfor Optical Communication Parallel Computers*Leslie Ann Goldberg, Sandia National Labs1Mark Jerrum, University of Edinburgh2Tom Leighton, MIT3Satish Rao, NEC Research Institute4Abstract In this paper we consider the problem of interprocessor communication onparallel computers that have optical communication networks. We consider the CompletelyConnected Optical Communication Parallel Computer (OCPC), which has a completelyconnected optical network and also the Mesh of Optical Buses Parallel Computer (MOB-PC), which has a mesh of optical buses as its communication network. The particularcommunication problem that we study is that of realizing an h-relation. In this problem,each processor has at most h messages to send and at most h messages to receive. It is clearthat any 1-relation can be realized in one communication step on an OCPC. However, thebest previously known p-processor OCPC algorithm for realizing an arbitrary h-relationfor h > 1 requires �(h+ log p) expected communication steps. (This algorithm is due toValiant and is based on earlier work of Anderson and Miller.) Valiant's algorithm is optimalonly for h =
(log p) and it is an open question of Ger�eb-Graus and Tsantilas whether* A preliminary version of this paper appeared in the proceedings of the 5th annualACM Symposium on Parallel Algorithms and Architectures.1 Algorithms and Discrete Math Department, Sandia National Labs, MS 1110, PO Box5800, Albuquerque, NM 87185-1110 USA, E-mail: lagoldb@cs.sandia.gov. This work wasperformed at Sandia National Laboratories and was supported by the U.S. Department ofEnergy under contract DE-AC04-76DP00789.2 Department of Computer Science, The University of Edinburgh, The King's Buildings,EdinburghEH9 3JZ United Kingdom, E-mail: mrj@dcs.ed.ac.uk. This work was performedwhile the author was visiting the NEC Research Institute at Princeton NJ, USA. The workwas supported by grant GR/F 90363 of the UK Science and Engineering Research Counciland by Esprit Working Group \RAND".3 Mathematics Department and Laboratory for Computer Science, MIT, Cambridge,MA 02139 USA, E-mail: ftl@math.mit.edu. Supported by Air Force contract AFOSR-F49620-92-J-0125 and DARPA contracts N00014-91-J-1698 and N00014-92-J-1799.4 NEC Research Institute, 4 Independence Way, Princeton, NJ 08540 USA, E-mail:satish@research.nj.nec.com 1

there is a faster algorithm for h = o(log p) . In this paper we answer this question in thea�rmative by presenting a �(h+ log log p) communication step randomized algorithmthat realizes an arbitrary h-relation on a p-processor OCPC. We show that if h � log pthen the failure probability can be made as small as p�� for any positive constant � . In the�nal section of our paper we use the OCPC algorithm as a sub-routine in a �(h+ log log p)communication step randomized algorithm that realizes an arbitrary h-relation on a p-processor MOB-PC. Once again, we show that if h � log p then the failure probabilitycan be made as small as p�� for any positive constant � .1. IntroductionThe p-processor Completely Connected Optical Communication Parallel Computer (p-OCPC) consists of p processors, each of which has its own local memory. The p processorscan perform local computations and can communicate with each other by message passing.A computation on this computer consists of a sequence of communication steps. Duringeach communication step each processor can perform some local computation and thensend one message to any other processor. If a given processor is sent one message duringa communication step then it receives this message successfully, but if it is sent more thanone message then the transmissions are garbled and it does not receive any of the messages.The OCPC was �rst introduced as a model of computation by Anderson andMiller [AM 88], who called this model the Local Memory PRAM. Since then it has beenstudied by Valiant [Val 90] (who called the model the S�PRAM), by Ger�eb-Graus andTsantilas [GT 92], and by Gerbessiotis and Valiant [GV 92] (who also called the modelthe S�PRAM). The feasibility of the OCPC from a engineering point of view is discussedin [AM 88, GT 92, and Rao 92]. See also the references in [McC 92].In the �rst part of this paper we study the problem of interprocessor communicationon an OCPC. In particular, we study the problem of realizing h-relations. An h-relation(see [Val 90]) is a communication problem in which each processor has up to h mes-sages that it wishes to send to other processors (assumed distinct). The destinations ofthese messages can be arbitrary except that each processor is the destination of at mosth messages. The goal is to design a fast p-OCPC algorithm that can realize an arbitraryh-relation. Anderson and Miller [AM 88] have observed that an h relation can easily berealized in h communication steps if all of the processors are given total information aboutthe h-relation to be realized.y A more interesting (and perhaps more realistic) situationy To see this, model the communications between the p processors viewed as sources,and the p processors viewed as destinations, as the edges of a bipartite graph of order 2p .Since the graph has maximum degree h , it is edge colorable with h colors, which can be2

arises if we assume that initially each processor only knows about the messages that itwants to send and the processors learn about the h-relation only by receiving messagesfrom other processors. This is the usual assumption, and the one that will be made here.An OCPC algorithm for realizing h-relations is said to be direct if it has the propertythat the only messages that are exchanged by the processors are the original messages ofthe h-relation and these messages are sent only to their destinations. In this paper weprove the following:1. The expected number of communication steps taken by any direct algorithm for real-izing h-relations on a p-OCPC is
(h+ log p) .2. An arbitrary h-relation can be realized on a p-OCPC in �(h+ log log p) commu-nication steps. (Valiant has shown that an arbitrary h-relation can be realized in�(h+ log p) communication steps. In this paper we describe a �(h+ log log p) com-munication step randomized algorithm that realizes an arbitrary h-relation on a p-OCPC and we show that if h � log p then the failure probability can be made assmall as p�� for any positive constant � .)It is easy to see that any 1-relation can be realized in one communication step on anOCPC. Anderson and Miller [AM 88] were the �rst to consider the problem of realizingh-relations for h > 1. They discovered a direct p-OCPC algorithm that runs for �(h)communication steps and delivers most of the messages in an arbitrary h-relation. In par-ticular, the expected number of messages remaining after Anderson and Miller's algorithmis run is O(p) . Anderson and Miller were interested in the special class of h-relations inwhich each of the messages with a given destination has a unique label ` in the range1 � ` � h . For this class of h-relations Anderson and Miller also discovered a deter-ministic �(h+ log p) communication step algorithm that delivers all of the messages inany h-relation that contains only O(p) messages. Thus, their algorithms can be combinedto obtain an algorithm that realizes an arbitrary h-relation from their special class in�(h+ log p) expected communication steps.Valiant [Val 90] considered the general problem of realizing h-relations for h > 1. Hediscovered a �(h+ log p) expected communication step p-OCPC algorithm that realizesan arbitrary h-relation. Valiant's algorithm consists of the �rst phase of Anderson andMiller's algorithm followed by a second phase which redistributes the remaining O(p)messages using parallel pre�x, sorts them, and then sends them to the correct destinations.The second phase of Valiant's algorithm takes �(h+ log p) communication steps.Prior to this work, Valiant's algorithm was the fastest known OCPC algorithm thatcan realize an arbitrary h-relation for h > 1. It is not direct, however. The fastestinterpreted as time steps. 3

known direct OCPC algorithm for realizing arbitrary h-relations is due to Ger�eb-Grausand Tsantilas [GT 92] and runs in �(h+ log p log log p) expected communication steps.In this paper we show that every direct OCPC algorithm for realizing h-relations takes
(h+ log p) expected communication steps. Furthermore, we describe a �(h+ log log p)communication step p-OCPC algorithm that can realize an arbitrary h-relation and weshow that if h � log p then the failure probability can be made as small as p�� for anypositive constant � . (The � notation does not hide any large constants in the runningtime of our algorithm.)In this paper we also consider a model of computation known as the Mesh of Opti-cal Buses Parallel Computer (MOB-PC). The p � p MOB-PC consists of p2 processors,organized in a p� p array. The processors can perform local computations and can com-municate with each other by message passing. As in the case of the OCPC, a computationon this computer consists of a sequence of communication steps. During each communica-tion step each processor can perform some local computation and then send one message.Unlike the OCPC, the MOB-PC has the restriction that the destination of each messagemust be in the row or the column of its sender. (The reason for considering the MOB-PCis that this restriction makes it much easier to build than a p-OCPC (see [Rao 92]).) Asin the case of the OCPC, if a given processor is sent one message during a communicationstep then it receives this message successfully, but if it is sent more than one message thenthe transmissions are garbled and it does not receive any of the messages.The p� p mesh of buses is a member of a class of networks studied by Wittie [Wit 81]and suggested by Dowd as a method for optical interconnects [Dow 91]. Rao studied theMOB-PC in [Rao 92] and used a result of Leighton and Maggs to show that for h � log pan arbitrary h-relation can be realized on a p� p MOB-PC in �(h) communication steps.In this paper we describe a �(h+ log log p) communication step randomized algorithmthat realizes an arbitrary h-relation on a p � p MOB-PC and we show that if h � log pthen the failure probability can be made as small as p�� for any positive constant � .In order to motivate both our lower bound for direct OCPC algorithms and ourOCPC algorithm (which is a sub-routine in our MOB-PC algorithm) consider the followingexperiment on an OCPC. Suppose that two processors Pi and Pj are both trying to sendmessages to a third processor Pd and that they adopt the following direct strategy. Duringeach communication step processors Pi and Pj both ip fair coins. If Pi 's coin comesup \heads" then Pi sends its message to Pd . Similarly, if Pj 's coin comes up \heads"then Pj sends its message to Pd . On any given communication step Pd has probability 12of successfully receiving a message. Therefore the probability that Pd has not receivedany messages after t communication steps is 2�t . Now suppose that we use a similarstrategy to realize a 2-relation in which each processor is the destination of two messages.After t communication steps we will expect to have p 2�t processors that have received4

no messages at all. Therefore it will take
(log p) communication steps to realize the2-relation.Intuitively, the reason that so much time is needed is that the events are \too inde-pendent". In particular, the fact that most of the other messages are already deliveredwill not make it easier for Pi and Pj to send their messages to Pd . In order to obtaina sub-logarithmic OCPC algorithm we adopt the following strategy. We divide the set ofp destinations into disjoint \target groups". During the �rst part of our algorithm we sendeach message in the h-relation to a randomly chosen processor within the target groupcontaining its destination. As more and more messages are delivered to a given targetgroup the probability that any remaining message is successfully delivered to the group inone communication step increases. Once all of the messages have been delivered to theirtarget groups we solve the smaller problem of realizing an h-relation within each targetgroup.Our OCPC algorithm consists of four procedures. The �rst three procedures deliverthe messages to their target groups and the last procedure realizes smaller h-relationswithin the target groups.The methods that we use to deliver messages to target groups rely upon the fact thatthe number of messages being sent to each group is small compared to the size of thegroup. The �rst procedure of our algorithm (the \thinning" procedure) establishes thiscondition by delivering most of the messages in the h-relation to their �nal destinations.The thinning procedure is a direct OCPC algorithm and it is based on Anderson andMiller's algorithm. Proving that it satis�es the appropriate conditions requires a proba-bilistic analysis of dependent events. To do the analysis we use the \method of boundeddi�erences" [McD 89, Bol 88].After the thinning procedure has terminated the number of messages remaining willbe O(p=(h log log p)) with high probability. The purpose of the second procedure (the\spreading" procedure) is to re-distribute these messages so that each sender has at most1 message to send. After the spreading procedure terminates the third procedure deliversthe remaining messages to their target groups. The bulk of the messages are deliveredusing a probabilistic tool called \approximate compaction". After the approximate com-paction terminates the number of messages that have not been delivered to their targetgroups will be O(p= log2 p) with high probability. Each remaining message is copied log ptimes and the processors are re-allocated so that log p processors can work together to sendeach message to its target group. (The approximate compaction technique and the copyingtechnique were �rst used in PRAM algorithms such as those described in [CDHR 89] andin [GM 91] and [MV 91]. In this work we require a smaller failure probability for approxi-mate compaction than previous authors because our target groups are only polylogarithmic5

in size and we need to bound the probability of failure in any group.)At the end of the third procedure the communication problem that remains con-sists of one h-relation within each target group. These h-relations could be realizedin �(h+ log log p) communication steps by simultaneously running the second phase ofValiant's algorithm within each target group, substituting a deterministic EREW sort-ing algorithm such as Cole's parallel merge sort (see [Col 88]) for the randomized sortingalgorithm that Valiant uses.Our fourth procedure is an alternative algorithm for realizing the h-relations withinthe target groups. It does not rely on e�cient deterministic O(log p)-time EREW sortingand it is therefore likely to be faster in practice. The algorithm is as follows. Each targetgroup is sub-divided into disjoint sub-groups. Our \thinning", \spreading", and \deliverto target group" procedures are run simultaneously in each target group to deliver the mes-sages in that group to the appropriate sub-groups. The communication problem remainingwith each sub-group is an h-relation and this h-relation is realized using the second phaseof Valiant's algorithm in which the sorting is done by Bitonic sort. With high probabilitythe proportion of target groups for which this strategy delivers all of the messages is atleast 1 � 1= logc p for a su�ciently large constant c . The processors from these targetgroups are then re-allocated and used to help the unsuccessful target groups �nish realiz-ing their h-relations. After the processors are re-allocated each unsuccessful target groupsorts its messages using an enumeration sort due to Muller and Preparata [MP 75] whichis fast in practice as well as in theory. The sorted messages are then delivered to theirdestinations.The structure of this paper is as follows. In Section 2 we describe the OCPC algorithmin detail. We demonstrate that it uses �(h+ log log p) communication steps and we provethat if h � log p then the probability that any messages are left undelivered can be made assmall as p�� for any positive constant � . In Section 3 we give the proof of the lower boundfor direct OCPC algorithms. Finally, in Section 4 we describe the MOB-PC algorithm.We demonstrate that it uses �(h+ log log p) communication steps and we prove that ifh � log p then the probability that any messages are left undelivered can be made as smallas p�� for any positive constant � .2. The OCPC AlgorithmBefore we can de�ne the OCPC algorithm we must describe the partition of the set of pprocessors into disjoint \target groups". The size of each target group will be a polynomialin log(p) . To be precise, let c1 denote a su�ciently large integer (the size of c1 will dependupon the failure probability that we wish to obtain) and let k denote dlogc1 pe . We willdivide the p processors into approximately p=k target groups, each of size about k . To6

simplify the presentation we will assume that k divides py and we will de�ne the `thtarget group, for ` in the range 0 � ` < n=k , to be the set fPk`; : : : ; Pk`+k�1g . Wewill de�ne the target group of any given message to be the target group containing thedestination of the message and we will say that the message is destined for that targetgroup.The algorithm consists of the following four procedures:� Thinning. At the beginning of the algorithm the number of messages destined forany given target group may be as high as hk . The goal of the thinning procedure isto deliver most of the messages to their �nal destinations so that by the end of theprocedure the number of undelivered messages destined for any given target group isat most k=(hdc2 log log pe) for a su�ciently large constant c2 . If h � log p then thiscan be done in �(h+ log(h) log log log(p)) steps with probability at least 1� p��where the constant in the running time depends upon � and c2 .� Spreading. At the end of the thinning procedure there will only be O(p=(h log log p))undelivered messages. However, some senders may have as many as h undeliveredmessages. The spreading procedure spreads these out so that each sender has atmost one to send. This can be done in �(h+ log log p) communication steps withprobability at least 1� p�� where the constant in the running time depends upon � .� Deliver to Target Groups. This procedure delivers all of the undelivered messagesto their target groups. After it terminates each sender will have at most 2 undeliveredmessages to send and the destination of each undelivered message will be within thetarget group containing its sender. The procedure can be implemented in �(log log p)communication steps with probability at least 1� p�� where the constant in therunning time depends upon � .� Deliver within Target Groups. This procedure delivers all messages to their �naldestinations. It can be implemented deterministically in �(h+ log log p) steps byrunning the second phase of Valiant's algorithm twice in each target group. Howeverthis implementation may be slow in practice. In section 2.4 we describe an alternateimplementation which runs in �(h+ log log p) communication steps and succeeds withprobability at least 1� p�� . (The constant in the running time depends upon � .)We will use the following tool in the implementation of our algorithm. (For similartools see [CDHR 89, GM 91, and MV 91].)De�nition 1. The (s; �;�) approximate compaction problem is de�ned as follows.y The case in which k does not divide p presents no real di�culty. In this case thetarget groups should be de�ned in such a way that all but one of the groups has size kand the size of the remaining group is between k and 2k .7

Given� a p-OCPC in which at most s senders each have one message to send,� a set of �s receivers which is known to all of the senders,deliver all but up to � of the messages to the set of receivers in such a way that eachreceiver receives at most one message. (During the delivery messages may only be sentfrom the original senders to the �s receivers.)Lemma 1. For any positive constant � there is a positive constant c2 such that the(s; dc2 log log pe; �) approximate compaction problem can be solved in O(log log p) com-munication steps with failure probability at most ��ps + s��(�+1)y.Using the (s; �;�) approximate compaction algorithm we can accomplish a varietyof tasks. For example (following [CDHR 89] and [GM 91]) we use the algorithm to allo-cate blog pc processors to each message once the number of undelivered messages is reducedto p=blog pc2 . We use the following de�nition in the proof of lemma 1.De�nition 2. The (s; �;�) approximate collection problem is de�ned to be the sameas the (s; �;�) approximate compaction problem except that we remove the requirementthat each receiver receives at most one message.Lemma 2. For any positive constant � there is a positive constant c02 such that the(s; 36;�) approximate collection problem can be solved in at most dc02 log log pe commu-nication steps with failure probability at most ��ps + s��(�+1) .Proof of Lemma 1. Let � be any positive constant and let c2 = 36c02 + 1, where c02is the constant associated with � in Lemma 2. Suppose that we are given an instance ofthe (s; dc2 log log pe; �) approximate compaction problem. Partition the set of receiversinto dc02 log log pe disjoint sets R1; R2; : : : , each of size at least 36s . Since the (s; 36;�)approximate collection problem can be solved in at most dc02 log log pe communication stepswith failure probability at most ��ps + s��(�+1) , there is an algorithm with this failureprobability that delivers all but up to � of the messages to the receivers in R1 in onlydc02 log log pe steps. To solve the (s; dc2 log log pe; �) approximate compaction problemsimply run this algorithm substituting the set Ri for R1 on the ith communication stepof the algorithm.Proof of Lemma 2. We say a sender is active initially if it contains a message. Ouralgorithm proceeds in a number of similar communication steps, where in step i eachy In fact there is a positive constant c2 such that the (s; c2;�) approximate compactionproblem can be solved in O(log log s) communication steps with small failure probabilitybut lemma 1 is su�cient for our purposes. 8

active sender sends its message to a random location in the set of receivers. Each senderthat successfully transmitted a message is considered inactive.Let m denote 36s . We must show that there are at most � active messages whenthe algorithm terminates. We use the following claim.Claim 1. Let c be a positive integer. If there at most m=r active senders left at step i ,then the probability that there will be f = maxfdm=r3=2e; �+ 1g or more active sendersleft at step i + 2c is at most (2e=pr)cf .We prove Claim 1 by imagining that in a certain step the m=r active senders maketheir random choice of destination in some �xed order. For there to be f active sendersthat do not transmit their message, there must be df=2e times at which a sender choosesthe same receiver as one chosen by a previous sender in this order. The probability ofchoosing the same receiver as a previous sender is at most (m=r)=m = 1=r . Thus, theprobability of df=2e such events occurring is bounded above by�bm=rcdf=2e ��1r�df=2e � �2emrf �df=2e�1r�df=2e� � 2emr2max�dm=r3=2e; �+ 1	�df=2e� � 2emr2(m=r3=2)�f=2� � 2epr�f=2We proceed by computing the probability that f active senders remain after 2c steps.It is easy to verify that the probability that f senders remain active after 2c steps inour algorithm is less than the probability that f senders remain active if each of the2c successive steps is implemented by sending from all the processors that were active atthe initial step. In this situation, the successive steps are independent thus the probabilitythat there are f senders that never got a message through on any of the steps is at mostthe probability above raised to the 2cth power. This proves Claim 1.Now we de�ne r0 = 36, rj = r3=2j�1 , fj = max ��m=r3=2j �; �+ 1	 , and t = minfj :fj = � + 1g . The algorithm will run for t + 1 \supersteps" 0; 1; : : : ; t , each superstepconsisting of 2c steps as described above, with c a constant to be chosen later. Observethat the number of supersteps, and hence the total number of steps, is O(log log s) and istherefore O(log log p) .We say that superstep j is successful if, starting with at most m=rj active senders,it �nishes with (strictly) fewer than fj active senders. Note that if supersteps 0; 1; : : : ; j9

are all successful, then the number of active senders remaining at the end of superstep jis strictly less than fj . If all t + 1 supersteps are successful then the number of activesenders remaining at the end is at most �, as required.Using Claim 1, we can bound the probability that some superstep fails bytXj=0 � 2eprj �cfj :Notice that each term where rj � m1=3 is at most (e=3)6cps , and every other term is atmost (16e6=(9s))c(�+1)=6 . Thus the probability that some superstep fails is at most(t+ 1)n� e3�6cps + �16e69s �c(�+1)=6o:Observe that t+ 1 = O(log log s) so if c is chosen to be big enough relative to � this isat most ��ps + s��(�+1) as required.We proceed by describing the implementation of the various steps of the algorithm.2.1 ThinningThe thinning procedure is a direct OCPC algorithm which is based on Anderson andMiller's algorithm [AM 88]. It consists of O(log h) phases. Intuitively, the goal of the ithphase is to reduce the problem of realizing a h=2i�1 -relation to the problem of realizinga h=2i -relation. That is, the ith phase should get so many of the messages deliveredthat the remaining communication problem is \essentially" a h=2i -relation. After the lastphase the h-relation will be mostly realized except that there will be small number (atmost k=(hdc2 log log pe)) of undelivered messages destined for each target group.Let c3 be a su�ciently large constant (depending on c1 and c2 and the constant � inthe desired failure probability) and let ti denote c3dh=2i�1 + log h+ log log log pe . (ti de-notes the number of communication steps in phase i .) Before phase i it will be the casethat each participating sender has at most h=2i�1 undelivered messages to send. Duringphase i each participating sender executes the following communication step ti times.Choose an integer j uniformly at randomfrom the set f1; : : : ; h=2i�1gIf there are at least j undelivered msgs. to be sentSend the j th undelivered msg. to its destinationAfter each communication step there is an acknowledgment step in which every receiverthat receives a message sends an acknowledgment back to the sender indicating that the10

message was delivered successfully. At the end of phase i any sender that has more thanh=2i undelivered messages left to send stops participating.We will prove the following theorem.Theorem 1. Suppose that h � log p . Then with probability at least 1 � p��the number of undelivered messages destined for any given target group is at mostk=(hdc2 log log pe) after the thinning procedure terminates.In order to prove theorem 1 we will use the following notation. We will say that agiven message is \participating" at any point in time if it is undelivered at that time andits sender is participating. We will say that a receiver is \overloaded" in phase i if atthe start of phase i the number of participating messages with that destination is morethan h=2i�1 . We will say that the receiver becomes overloaded in phase i if it is notoverloaded in phases 1 through i but it is overloaded in phase i+ 1. We will say that asender is \good" in phase i if it does not have a message to send to an overloaded receiver.For every target group T let S(T) denote the set containing all senders in the h-relationwith messages destined for T and let N(T) denote the set containing all destinations ofmessages from processors in S(T) . Finally, let S(N(T)) be the set containing all senderswith messages destined for members of N(T) . (Note that jS(T)j � h jT j , jN(T)j � h2jT j ,and jS(N(T))j � h3jT j .) The theorem follows from the following lemma.Lemma 3. Suppose that h � log p . Let i be an arbitrary phase of the thinning proce-dure and let T be any target group. With probability at least 1� p�(�+1)1. At most jN(T)j=(h6dc2 log log pe) receivers in N(T) become overloaded in phase i2. At most jS(T)j=(h6dc2 log log pe) good senders in S(T) stop participating at the endof phase i .Proof of Theorem 1. To see that the theorem follows from lemma 3 note that thenumber of target groups is at most p=k and the number of phases is O(log h) so withprobability at least 1� p�� (1.) and (2.) hold for all phases i and target groups T .Suppose that this is the case and consider any particular target group T . A messagethat is destined for T will be delivered by the thinning procedure unless either (1) thereis a phase in which its sender is not good (in which case the sender could possibly stopparticipating) or (2) its sender stops participating even though it is good. The number ofmessages that are destined for T and are not delivered is therefore at mostlog(h)� (h2jN(T)j=(h6dc2 log log pe) +hjS(T)j=(h6dc2 log log pe)) .This is at most k=(hdc2 log log pe) .The proof of lemma 3 will use the following \independent bounded di�erences inequal-11

ity" of McDiarmid [McD 89]. (The inequality is a development of the \Azuma martingaleinequality"; a similar formulation was also derived by Bollob�as as [Bol 88].)Theorem 2. [McDiarmid] Let x1; : : : ; xn be independent random variables, withxi taking values in a set Ai for each i . Suppose that the (measurable) function f :QAi ! R satis�es jf(x) � f(x0)j � ci whenever the vectors x and x0 di�er only in theith coordinate. Let Y be the random variable f(x1; : : : ; xn) . Then for any t > 0 ,Pr �jY � E(Y)j � t� � 2 exp �� 2t2�Pni=1 c2i �:Proof of Lemma 3. Suppose that h � log p , let i be an arbitrary phase of the thinningprocedure, and let T be any target group. Let xj denote the sequence of integers randomlychosen by processor Pj during phase i .We will start by proving that with probability at least 1� p�(�+2) at mostjN(T)j=(h6dc2 log log pe) receivers in N(T) become overloaded in phase i .Let Y = f(fxj j Pj 2 S(N(T))g) be the number of receivers in N(T) that becomeoverloaded during phase i . Let R be any receiver in N(T) that is not overloaded inphases 1 through i and let sj denote the number of participating messages that aredestined for R at the j th communication step of phase i . (Note that these messages arenot necessarily sent on the j th communication step.) The probability that R receives amessage on this step is sj (2i�1=h) (1 � 2i�1=h)sj�1 . There is a positive constant � suchthat this probability is greater than or equal to � for every sj that is greater than or equalto h=2i . (Note that R cannot become overloaded in phase i if sj is ever less than h=2i .)Therefore, the probability that R becomes overloaded is at mosth=2i�1Xj=0 �tij��j(1� �)ti�j :Furthermore, as long as c3 is su�ciently large (i.e., ti is su�ciently large compared to j)there is a constant c4 > 1 such that the above sum is at most c�ti4 . Therefore the expectednumber of processors in N(T) that become overloaded in phase i is at most N(T)c�ti4which is at most jN(T)j=(2h6dc2 log log pe) as long as c3 is su�ciently large.If the value of xj changes for any j then Y changes by at most h . Therefore, bythe bounded di�erences inequality of theorem 2, the probability that Y is greater thanjN(T)j=(h6dc2 log log pe) is at most2 exp(�2 jN(T)j2=(4h12 dc2 log log pe2 jS(N(T))jh2)):12

This is at most p�(�+2) as long as the constant c1 is su�ciently large (i.e., the targetgroups are su�ciently large). (Here we use the fact that h � log p .)We now prove that with probability at least 1� p�(�+2) at most jS(T)j=(h6dc2 log log pe)good senders in S(T) stop participating at the end of phase i .Let Y = f(fxj j Pj 2 S(N(T))g) be the number of good senders in S(T) that stopparticipating at the end of phase i .Let S be any good sender in S(T) that participates in phase i and let sj denote thenumber of participating messages that S has to send at the j th communication step ofphase i . Let d`;j denote the number of participating messages at the j th communicationstep that have the same destination as the `th message that S has to send. (Since S isgood each d`;j is less than or equal to h=2i�1 .) The probability that S sends a messagesuccessfully on the j th communication step is Psj`=1(2i�1=h) (1 � 2i�1=h)d`;j�1 . As before,there is a positive constant � such that this probability is greater than or equal to � forevery sj that is greater than or equal to h=2i . Therefore, the probability that S stopsparticipating is at most h=2i�1Xj=0 �tij��j(1� �)ti�j :As in the proof of the �rst part of the lemma, we conclude that the expected num-ber of good senders in S(T) that stop participating at the end of phase i is at mostjS(T)j=(2h6dc2 log log pe) .If the value of xj changes for any j then Y changes by at most h2 . Therefore, bythe bounded di�erences inequality of theorem 2, the probability that Y is greater thanjS(T)j=(h6dc2 log log pe) is at most2 exp(�2 jS(T)j2=(4h12 dc2 log log pe2 jS(N(T))jh4)):This is at most p�(�+2) as long as the constant c1 is su�ciently large (i.e., the targetgroups are su�ciently large). (Once again, we use the fact that h � log p .)2.2 SpreadingLet � be any positive constant and let c2 be the constant associated with � that is de�nedin lemma 1. At the end of the thinning procedure there will be at most p=(hdc2 log log pe)undelivered messages. We wish to spread these out so that each sender has at mostone to send. To do this we observe that there are at most p=(hdc2 log log pe) senderswith undelivered messages. Suppose (without loss of generality) that h divides p andpartition the set of p receivers into h disjoint sets R1; : : : ; Rh of size p=h . Perform13

a (p=(hdc2 log log pe); dc2 log log pe; 0) approximate compaction to send the �rst messagefrom each sender to a unique processor in R1 . (The probability that this will succeed isat least 1� ��pp=(hdc2 log log pe) � (p=(hdc2 log log pe))��:)Finally, send the remaining messages to R2; : : : ; Rh in �(h) communication steps with nocontention using the following strategy. If the 1st message of sender i was sent to the j thcell of R1 by the approximate compaction then send the `th message of sender i to thej th cell of R` for 1 < ` � h.2.3 Deliver to Target GroupsLet � be any positive constant and let c2 be the constant associated with � that isde�ned in lemma 1. At the end of the spreading procedure each sender will have at mostone undelivered message to send and each target group will have at most k=(hdc2 log log pe)undelivered messages to receive. Our goal is to deliver the messages to the target groups.After this procedure terminates each processor will have at most 2 undelivered messagesto send and the destination of each undelivered message will be within the target groupcontaining its sender.We have two methods for implementing this procedure in �(log log p) communicationsteps. The simpler method (which we describe here) involves making copies of messagesbut the other method does not. The simpler of the two methods consists of two phases.We �rst describe phase 1. Consider any target group T . At the start of the procedurethere are at most k=dc2 log log pe senders each of which has one message to send to thetarget group. Let ` denote blog pc . We send all but up to k=`2 of these messages to T inO(log log p) steps by doing a (k=dc2 log log pe; dc2 log log pe; k=`2) approximate compaction.We can do this in parallel for each target group and the probability that it fails for anytarget group is at mostpk (��pk=dc2 log log pe + (k=dc2 log log pe)��(k=`2+1))which is su�ciently small as long as the constant c1 in the de�nition of k is su�cientlylarge.We will use the phrase \completely undelivered" to describe all messages that wereundelivered before phase 1 and were not delivered to their target groups during phase 1.At the end of phase 1 each sender has at most one completely undelivered message to send,each member of each target group has received at most one message, and the number ofcompletely undelivered messages is at most p=`2 . Choose ` disjoint sets R1; : : : ; R` ofsize bp=`c from the set of p receivers and let Qj denote the set consisting of the j th14

receiver from each of R1; : : : ; R` . Next, send all of the completely undelivered messagesto R1 by performing a (p=`2; dc2 log log pe; 0) approximate compaction. (This fails withprobability at most ��pp=`2 + (p=`2)�� .) Finally (for each j in parallel) the processorsin Qj copy the message received at the j th receiver in R1 (if there is one) to the otherprocessors in Qj . (This takes �(log log p) communication steps.)At this point each completely undelivered message is stored at each of the ` processorsin Qj (for some j) and each processor stores at most one completely undelivered message.The following communication step is now performed in parallel by all processors. If theith processor in Qj has a completely undelivered message to send then it chooses aninteger uniformly at random from the set f j (1 � � k) and (mod ` = i)g and itsends the message to the th processor in its target group. The probability that theith processor in Qj is unsuccessful is at most 1=` and this probability is independent ofthe probability that the other processors in Qj succeed so the probability that there is acompletely undelivered message that is not delivered at least once to its target group inthis communication step is at most p`�` which is su�ciently small.For each j in parallel the processors in Qj perform parallel pre�x to select one ofthe delivered copies. They then send messages \cancelling" any other copies that weredelivered to their target group. This takes �(log log p) communication steps. Note thateach processor receives at most 2 messages during the procedure | one in phase 1 andone in phase 2.2.4 Deliver within Target GroupsWhen this procedure begins each sender has at most 2 undelivered messages to send andthe destination of each undelivered message is within the target group containing its sender.Our goal is to deliver all of the undelivered messages.This procedure can be implemented deterministically in �(h+ log log p) steps by run-ning the second phase of Valiant's algorithm [Val 90] twice within each target group. Thealgorithm within each target group is as follows. First we consider only one undeliveredmessage per sender. These messages are sorted by destination in �(log log p) communica-tion steps using an EREW sorting algorithm such as Cole's parallel merge sort [Col 88]y.Then the sorted messages are delivered to their destinations without contention in �(h)communication steps. Next the process is repeated for the remaining undelivered messages.In this section we describe an alternative implementation of the procedure. It doesnot rely on e�cient deterministic O(log p)-time EREW sorting and it is therefore likely toy Valiant uses a randomized parallel sorting algorithm instead of using parallel mergesort. We cannot do that here because we want to be able to claim that (with high proba-bility) the messages are successfully (and quickly) sorted in all of our target groups.15

be faster in practice.The main idea is as follows. We start by sub-dividing each target group into targetsub-groups. We then run the \thinning", \spreading", and \deliver to target group"procedures within each target group to deliver the messages to their target sub-groups.If these three procedures succeed within a target group then each sender in the groupwill have at most 2 undelivered messages to send and the destination of each undeliveredmessage will be within the target sub-group of its sender. We can now run the secondphase of Valiant's algorithm twice within each target sub-group to deliver the messages inthe target group to their �nal destinations. Since the sub-groups are very small we canuse Bitonic sort (which is fast in practice) to do the sorting. With high probability theproportion of target groups for which the \thinning", \spreading", or \deliver to targetgroup" procedures fail will be O(k�3) . We now allocate a group of k2 extra processors toeach of these target groups and we use these extra processors to sort the messages using acounting sort that is fast in practice as well as in theory.We now describe the procedure in more detail. The communication problem withineach target group can be viewed as the problem of realizing an h-relation on a k -OCPC.Therefore we can run the \thinning", \spreading", and \deliver to target group" proceduressimultaneously within each target group. Before we can do that we must partition eachtarget group into target sub-groups. Let the size of the target sub-groups be k0 = dlogc5 kewhere c5 is a constant that is su�ciently large that the probability that the \thinning",\spreading", and \deliver to target group" procedures fail within a target group is atmost k�3 . (In order to simplify the presentation in this section we will assume that k0divides k . The case in which k0 does not divide k is no more di�cult { it is simplymessier. Similarly, we will assume that k3 divides p .) After the \deliver to target group"procedure terminates within each target group run the second phase of Valiant's algorithmtwice within each target sub-group, using Bitonic sort to do the sorting. (This takes�(h+ log2 k0) communication steps.) If the \thinning", \spreading", and \deliver totarget group" procedures succeeded within a target group then all of its messages are nowdelivered. (This will happen with probability at least 1� k�3 .)We now describe the second part of the procedure | the allocation of extra processorsto help target groups that have not �nished. Partition the set of target groups into p=k2disjoint sets S1; : : : ; Sp=k2 . Each set S` contains k target groups and is called a targetsuper-group. Partition the set of target super-groups into k disjoint sets C1; : : : ; Ck . Eachset C` contains p=k3 target super groups (and therefore p=k2 target groups) and is calleda collection of target super-groups. Note that with probability at least 1� k exp(�p=3k5)each collection of target super-groups contains at most 2p=k5 un-�nished target groups.Suppose that this is the case. Each target group and each target super-group performsa parallel pre�x to determine whether or not it has �nished. (This takes �(log log p)16

communication steps.) Next each processor that is part of an un-�nished target groupattempts to �nd a �nished target super-group. In particular, if the processor is the j thmember of the target group then it chooses a target super-group uniformly at random fromCj and it sends a message to the �rst processor in the target super-group asking whether thetarget super-group is �nished. The probability that a given member of a given un�nishedtarget group fails to �nd a �nished super-group is at most 3=k (the probability that thesuper-group chosen is not �nished is at most 2=k2 and the probability that the queryis sent to the same destination as some other query is at most 2=k). Furthermore thequeries from any given target group are independent of each other so the probability thatevery processor in a given un�nished target group fails to �nd a �nished super-group is atmost (3=k)k and the probability that there exists an un�nished target group that fails to�nd a �nished super-group is at most p(3=k)k which is su�ciently small. Each un�nishedtarget group then performs a parallel pre�x to choose a single �nished super-group.At this point each un-�nished target group has identi�ed a single �nished super-groupcontaining k2 processors. Consider the k2 processors to be organized in a k by k matrix.We now run Valiant's algorithm twice in each un-�nished target group. The message aresorted using Muller and Preparata's algorithm [MP 75] which works as follows. The ithprocessor of the un-�nished target group sends its message (if it has one) to all of theprocessors in the ith row. (This takes �(log log p) communication steps.) If the processorin the ith row of the ith column gets a message then it sends this message to all of theprocessors in the ith column and the processors in the ith column perform parallel pre�xto determine its rank. (Again, this takes �(log log p) communication steps.) Finally (in 1communication step) the message with rank i is sent to the ith processor in the un-�nishedtarget group.3. A Lower Bound for Direct OCPC AlgorithmsThe algorithm described in the previous section often sends a message to a processor otherthan its �nal destination, i.e., the algorithm is not direct. Using a non-direct strategy in anetwork that allows direct routing may seem strange at �rst, and one might question its ne-cessity. In this section we prove a lower bound that demonstrates that any sublogarithmicOCPC algorithm must necessarily use non-direct routing.Theorem 3. Let A be any direct (randomized) OCPC algorithm that can realize any2-relation with success probability at least 12 . Then there is a 2-relation which A takes
(log p) communication steps to realize.Proof of Theorem 3. Consider any direct randomized OCPC algorithm that runs fort � b 13 log pc steps. We shall construct a 2-relation � such that the probability that thealgorithm successfully realizes � is exponentially small (in p). In the 2-relation � , each17

processor has at most one message to send.Consider a processor Pi that is not itself the destination of any messages and has asingle message to send to Pd , but is blocked every time it attempts to transmit. SincePi receives no external stimulus, we can imagine that Pi selects its transmission strategyat random in advance of the �rst time step. A strategy for Pi to transmit to Pd (underthe blocking regime) can be coded as a binary word of length t , where a 1 in position t0indicates that Pi is to attempt to send its message at time step t0 .For convenience, assume that p is divisible by 4. The 2-relation � is the union ofp=4 subrelations, each consisting of a pair of sending processors attempting to send asingle message each to a common destination. The 3p=4 processors in the 2-relation aredistinct. The p=4 subrelations will be selected sequentially. Note that at any stage therewill be f � p=4 \free" processors from which the next pair of senders may be selected. Tomake the selection, �rst choose a free destination processor Pd . Observe that, since thenumber of possible transmission strategies is 2t , there must exist a strategy � 2 f0; 1gtsuch that the expected number of free senders that choose strategy � to send to Pd underthe blocking regime is at least f2�t . Thus there is a free sender, say Pi , that choosesstrategy � with probability at least 2�t � p�1=3 ; and a di�erent free sender, say Pj , thatchooses � with probability at least(f2�t � 1)=(f � 1) � 2�t � f�1 � p�1=3 � 4p�1;which is at least 12p�1=3 for p � 24. Now add to � the subrelation that requires Pi and Pjeach to send a single message to Pd .Note that Pi and Pj select strategies independently, so the probability that theyboth select � is at least 12p�2=3 ; thus the probability that Pi and Pj fail to get rid oftheir messages is also at least 12p�2=3 . Since there are p=4 subrelations forming � , theprobability that � is successfully realized is at most (1 � 12p�2=3)p=4 , which is less thanexp(�p1=3=8).It may be observed from the proof that a direct algorithm requires a logarithmicnumber of steps to achieve even inverse polynomial success probability.4. The MOB-PC AlgorithmIn this section we describe a �(h + log log p) communication step algorithm that re-alizes an arbitrary h-relation on a p � p MOB-PC. We show that if h � log p then thefailure probability can be made as small as p�� for any positive constant � .As each row and each column of a p � p MOB-PC is itself a p-OCPC we start byconsidering a p-OCPC. As in Section 2, we divide the p processors into target groups of18

size k = dlogc1 pe . A target group h-relation is de�ned to be a communication problemin which each processor has up to h messages that it wishes to send. The destinationsof these messages are target groups, and each target group is the destination of at mosthk messages. We will use the following lemma.Lemma 4. Suppose that h � log p and let � be any positive constant. Then there is ap-OCPC algorithm that can realize an arbitrary target group h-relation in O(h+ log log p)steps with failure probability 3p�� .Proof of Lemma 4: Suppose that we are given a target group h-relation. As in Sec-tion 2, we will let S(T) denote the set containing all senders that have messages destinedfor target group T . Let M(S(T)) denote the set of messages that are to be sent by thesesenders. Let each message choose a destination uniformly at random from within its tar-get group. Let h0 = 8eh + log log p and let h00 = h0=2. We will say that a message isexternally bad with respect to a target group T if the message has the same destinationas at least h00 other messages that are not sent from senders in S(T) . We will say that amessage is internally bad with respect to a target group T if it has the same destination asat least h00 other messages that are sent from senders in S(T) . We will say that a senderis initially good unless one or more of its messages is (externally or internally) bad. Wewill prove the following claim.Claim 2. With probability at least 1 � p�� every set S(T) contains at mostk=(2h02dc2 log log pe) senders that are not initially good.Suppose that every set S(T) contains at most k=(2h02dc2 log log pe) senders that arenot initially good and that we start to deliver messages to their destinations by running thethinning procedure from Section 2.1 using h0 as the value of the variable \h". It is easyto see that we can modify the proof of Lemma 3 to obtain the following. (The followinglemma is the same as Lemma 3 except for the factor of 2 in the denominator.)Lemma 30 . Suppose that h0 � log p . Let i be an arbitrary phase of the thinning pro-cedure and let T be any target group. With probability at least 1� p�(�+1)1. At most jN(T)j=(2h06dc2 log log pe) receivers in N(T) become overloaded in phase i2. At most jS(T)j=(2h06dc2 log log pe) good senders in S(T) stop participating at theend of phase i .We conclude that with probability at least 1� 2p�� the number of messages that arenot delivered to a given target group is at most the sum of1. k=(2h0dc2 log log pe) (these messages may not be delivered because their sender is notinitially good) 19

2. k=(2h0dc2 log log pe) (these messages may not be delivered because their sender stopsparticipating or stops being good during the thinning).We conclude that with probability at least 1� 2p�� the number of undelivered mes-sages destined for any given target group is at most k=(h0dc2 log log pe) after the thinningprocedure terminates. Therefore, we can deliver the rest of the messages to their tar-get groups using the \Spreading" procedure from Section 2.2 and the \Deliver to TargetGroups" procedure from Section 2.3. In the remainder of this section it will be importantto have our algorithm for realizing target group h-relations behave symmetrically withrespect to the di�erent destinations within a target group. We can achieve this goal bymodifying the \Deliver to Target Group" procedure from Section 2.3 as follows.1. In the �rst part of the procedure we deliver messages to their target groups using\approximate collection" rather than \approximate compaction".2. In the second part of the procedure (the part involving copies) the \winner" is chosenuniformly at random (rather than arbitrarily) from amongst the successfully deliveredcopies.We now �nish the proof of Lemma 4 by proving Claim 2. Let T be any target group.We will show that the probability that M(S(T)) contains more than k=(4h02dc2 log log pe)externally bad messages is at most 12p�� (k=p) . Then we will show that the probabilitythat M(S(T)) contains more than k=(4h02dc2 log log pe) internally bad messages is at most12p�� (k=p) .First we consider externally bad messages. We will say that a processor P is externallycrowded with respect to a target group T if there are at least h00 messages which are notin M(S(T)) and have destination P . A set of b members of a target group are allexternally crowded only if at least bh00 messages have destinations in the set. Therefore,the probability that there is a set of b members of a target group that are all externallycrowded is at most �pk��kb�� khbh00�� bk�bh00 :We can use Stirling's approximation to show that for b = k=h006 this quantityis at most (p=k)2�k=h005 . Therefore, with probability at least 1 � (p=k)2�k=h005 ev-ery target group has at most k=h006 processors which are externally crowded withrespect the T . Suppose that this is the case. Then the probability that a mes-sage in M(S(T)) chooses a destination which is externally crowded with respect to Tis at most h00�6 . Using a Cherno� bound, we see that with probability at least1 � exp(�jM(S(T))j = (3 � h006)) at most 2 jM(S(T))j=h006 messages in M(S(T)) choose20

a destination which is externally crowded with respect to T . Note that as long asp is su�ciently large then 2 jM(S(T))j=h006 � k=(4h02dc2 log log pe) . Also, as long asjM(S(T))j � k=(4h02dc2 log log pe) and h0 � log p and the constant c1 is su�ciently largethe sum of (p=k)2�k=h005 and exp(�jM(S(T))j = (3 � h006)) is at most 12p�� (k=p) .We now consider internally bad messages. We start by calculating an upper boundon the probability that a message is internally bad. This probability is at mosthk�1Xj=h00�hk � 1j � 1kj �1� 1k�hk�1�j :We can use Stirling's approximation to show that this sum is O(2�h00) . So the expectednumber of messages in M(S(T)) which are internally bad is O(jM(S(T))j2�h00) .Let xi be a random variable which denotes the destination of the ith messagein M(S(T)) and let Y be a random variable denoting the number of internally bad mes-sages in M(S(T)) . (Y is a function of x1; : : : ; xjM(S(T))j .) If we change one of the xi 'sthen we change Y by at most h00 + 1. Therefore, by Theorem 2 (the bounded di�erencesinequality),Pr(Y � k=(4h02dc2 log log pe)) � 2 exp �2� k4h02dc2 log log pe � E(Y)�2 . (jM(S(T))j (h00 + 1)2)! :Since E(Y) � k8h02dc2 log log pe (for big enough p) the probability is at most2 exp(�k=(32h04dc2 log log pe2h2(h00 + 1)2)):This quantity is at most 12p�� (k=p) as long as c1 is su�ciently large and h0 is atmost log p .Now that we have proved Lemma 4 we are ready to describe our algorithm for realizingh-relations on a p� p MOB-PC. We have already observed that each row and each columnof a MOB-PC is a p-OCPC. We will divide each row and each column of the MOB-PC intotarget groups of size k . A block of the MOB-PC is de�ned to be a k � k sub-MOB-PCin which each row is a row target group of the original MOB-PC and each column is acolumn target group of the original MOB-PC. We will use the phrase column of blocks torefer to a collection of p=k blocks which together make up k columns of the MOB. Finally,we will sub-divide each column of blocks into p=k2 super-blocks in which each super-blockconsists of k blocks. (As in Section 2.4 we will simplify the presentation by assuming thatk3 divides p . We will also assume that h � log p .)21

The algorithm has �ve steps.1. On each Row: Each message picks a random row target group and the messages arerouted to the target groups.2. On each Column: Each message chooses as its immediate destination the columntarget group that intersects the row of its �nal destination. The messages are routedto the target groups.3. Within each Block: Each message chooses an immediate destination uniformly atrandom from its row. The messages are routed to their immediate destinations usingthe OCPC algorithm in each row. Each message that was successfully delivered to itsimmediate destination chooses as its new immediate destination the processor whichis in its column and in the row of its �nal destination. The messages are routedto their immediate destinations using the OCPC algorithm in each column. If theblock contains a message that was not successfully delivered to the row of its �naldestination then we say that the block failed. Every processor in the block is noti�edof the failure.4. If any block of a super-block failed then we say that the super-block failed. Everyprocessor in the super-block is noti�ed of the failure. Each failed block attempts toallocate a super-block which has not failed from within its column of blocks. Afterallocating a super-block, the failed block copies all of its messages to each of the blocksin the super-block. Each of these blocks then repeats Step 3. If there is a block inthe super-block which does not fail then the �rst such block copies the (delivered)messages back to the original failed block.5. On each Row: Each message is routed to its �nal destination.We will conclude the section by considering each of the �ve steps. For each step wewill discuss the method that is used to implement the step and also the failure probabilityof the method.At the beginning of Step 1 each processor has at most h messages. Each messagethen picks a random row target group. Using a Cherno� bound we see that the probabilitythat a given target group is the destination of more than 2hk messages is at most e�hk=3so the probability that there is such a target group is at most p � (p=k) � e�hk=3 whichis at most p�� as long as c1 is su�ciently large. Suppose that every target group is thedestination of at most 2hk messages. Then we can use the method described in the proofof Lemma 4 to deliver the messages to their target groups in O(h+ log log p) steps. Theprobability that this method fails is at most 3p�� for any positive constant � .At the beginning of Step 2 each processor has at most h2 messages where h2 is hplus the number of time-steps used in Step 1. If it is also true that every target group isthe destination of O(hk) messages in Step 2 then we can use the method described in the22

proof of Lemma 4 to deliver the messages to the target groups in O(h + log log p) steps.We will conclude our discussion of Step 2 by showing that with high probability each targetgroup is the destination of O(hk) messages.Let T be any column target group and let C be the column of T . There are atmost hkp messages which have �nal destinations in rows which intersect T . These arethe only messages which could be destined for T on Step 2. We will refer to them as theset of \potentially relevant" messages. Each potentially relevant message will be destinedfor T on Step 2 if and only if it is delivered to column C on Step 1. Therefore, our goalis to prove that with high probability only O(hk) of the potentially relevant messages aredelivered to column C on Step 1.We start out by using a Cherno� bound to prove that with probability at least 1 �exp(�hk2=3) only 2hk2 of the potentially relevant messages select target groups thatintersect C in Step 1. We refer to these messages as \relevant" messages. Our goal isto prove that with high probability only O(hk) of the relevant messages are delivered tocolumn C on Step 1.We will use the following theorem of Hoe�ding which is included in McDiarmid'spaper [McD 89].Theorem 4. [Hoe�ding] Let the random variables X1; : : : ;Xp be independent, with0 � Xi � 1 for each i . Let X = 1pPiXi and � = E[X] . Then for 0 � t < 1� � ,Pr(X � t+ �) � "� ��+ t��+t� 1� �1� �� t�1���t#p:To apply Hoe�ding's inequality, let Xi be h�12 times the number of relevant messagesthat are delivered to row i of column C on Step 1. Observe that 0 � Xi � 1 and that theXi 's are independent. Note that X is (h2p)�1 times the number of relevant messages thatare delivered to column C in Step 1. Recall that the algorithm for realizing target grouph-relations behaves symmetrically with respect to the destinations forming a particulartarget group; thus the expected number of relevant messages delivered to column C onStep 1 is k�1 times the expected number of relevant messages. Therefore, � is at most2hk=(h2p) . Let t denote 4hk=(h2p) . Observe that t � 2� and that 0 � t < 1 � � . ByHoe�ding's inequality, the probability that X is at least 6hk=h2p is at most"� ��+ t��+t� 1� �1� �� t�1���t#p � 3�tpetp = e�
(tp):We conclude that high probability at most 6hk messages are destined for any target23

group during Step 2. In this case the messages can be delivered in O(h+ log log p) stepsusing the method described in the proof of Lemma 4.At the beginning of Step 3 each processor has at most h3 messages where h3 is h plusthe number of time-steps used in Steps 1 and 2. Using a Cherno� bound (as in Step 1)we see that with probability at least 1 � p � (p=k) � e�hk=3 each row of each block isthe destination of at most 2hk messages in Step 3. We now consider each particularblock. Following Rao [Rao 92] we can use a Cherno� bound to show that with probabilityat least 1 � k2 exp(�h3=3) the communication problem on each row is a 2h3 relation.Similarly, with high probability the communication problem on each column is a 2h3 -relation. Therefore, the probability of failure can be made as small as k�3 . The processorsin the block use parallel pre�x to notify each other of failure. Similarly, the processors ineach super-block use parallel pre�x to notify each other of failure.The implementation and analysis of Step 4 closely follows that of Section 2.4. Theprobability that there is a failed block that fails to allocate a super-block is at most(p2=k2)(3=k)k . The probability that there is a super-block in which every block fails whenit repeats Step 3 is at most (p2=k3)(1=k3)k .If Steps 1 through 4 are successful then at the start of Step 5 all of the messages will bein the correct row. Furthermore, there will be at most h5 messages at any processor, whereh5 is h plus the number of time-steps used in steps 1{4. Since the communication problemis an h-relation, each processor will be the destination of at most h messages. Thereforethe p-OCPC algorithm described in Section 2 can be used to deliver the messages on eachrow. The probability that this algorithm fails is at most p (the number of rows) multipliedby the probability that the p-OCPC algorithm fails, which is at most p�� for any positiveconstant � .In the introduction to this paper we pointed out that the MOB-PC is easier to buildthan an OCPC because it restricts the number of processors that a given processor cansend to directly. Nevertheless, we have provided an algorithm for realizing h-relations ona MOB-PC which is asymptotically as fast as the fastest known algorithm for realizingh-relations on an OCPC. Similarly, we could de�ne a new machine by replacing each rowand each column of a p� p MOB-PC with a p1=2 � p1=2 MOB-PC. Our algorithm couldbe used recursively to realize h-relations in O(h + log log p) steps on the new machine.Clearly, this recursion could be carried out to any constant depth.References[AM 88] R. J. Anderson and G. L. Miller, Optical Communication for Pointer Based Algo-rithms, Technical Report CRI 88-14, Computer Science Department, University of24

Southern California, Los Angeles, CA 90089-0782 USA, 1988.[Bol 88] B. Bollob�as, Martingales, Isoperimetric Inequalities and Random Graphs, in Combi-natorics (eds A. Hajnal, L. Lov�asz, and V. T. S�os), Colloq. Math. Soc. J�anos Bolyai52 (North Holland 1988) 113{139.[CDHR 89] B. S. Chlebus, K. Diks, T. Hagerup, and T. Radzik, New Simulations between CRCWPRAMs, Proc. Foundations of Computation Theory 7 , Lecture Notes in ComputerScience 380 (Springer-Verlag 1989) 95{104.[Col 88] R. Cole, Parallel Merge Sort, SIAM Journal of Computing 17(4) (1988) 770{785.[Dow 91] P. W. Dowd, High Performance Interprocessor Communication Through OpticalWavelength Division Multiple Access Channels, Proceedings of the ACM InternationalSymposium on Computer Architecture 18 (1991) 96{105.[GT 92] M. Ger�eb-Graus and T. Tsantilas, E�cient Optical Communication in Parallel Com-puters, Proceedings of the ACM Symposium On Parallel Algorithms and Architectures4 (1992) 41{48.[GV 92] A. V. Gerbessiotis and L. G. Valiant, Direct Bulk-Synchronous Parallel Algorithms,Proceedings of the Scandinavian Workshop on Algorithm Theory 3 (1992).[GM 91] J. Gil and Y. Matias, Fast Hashing on a PRAM, Proceedings of the ACM-SIAMSymposium On Discrete Algorithms 2 (1991) 271{280.[MV 91] Y. Matias and U. Vishkin, Converting High Probability into Nearly-Constant Time| with Applications to Parallel Hashing, Proceedings of the ACM Symposium OnTheory of Computing 23 (1991) 307{316.[McC 92] W. F. McColl. General Purpose Parallel Computing, pre-print (1992).[McD 89] C. McDiarmid, On the Method of Bounded Di�erences, Surveys in Combinatorics,London Math. Soc. Lecture Notes Series 141 (Cambridge Univ. Press, 1989) 148{188.[MP 75] D. E. Muller and F. P. Preparata, Bounds to Complexities of Networks for Sortingand for Switching, Journal of the ACM 22 (1975) 195{201.[Rao 92] S. B. Rao, Properties of an Interconnection Architecture Based on Wavelength Di-vision Multiplexing, Technical Report TR-92-009-3{0054-2, NEC Research Institute,4 Independence Way, Princeton, NJ 08540 USA, 1992.[Val 90] L. G. Valiant, General Purpose Parallel Architectures, Chapter 18 of Handbook ofTheoretical Computer Science, Edited by J. van Leeuwen (Elsevier 1990) (see espe-cially p. 967)[Wit 81] L. D. Wittie, Communication Structures for Large Networks of Microcomputers, IEEETransactions on Computers C-30(4) (1981) 264{273.25

