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Abstract

Cooper, Dyer and Frieze studied the problem of sampling H-colourings
(nearly) uniformly at random. Special cases of this problem include
sampling colourings and independent sets and sampling from statist-
ical physics models such as the Widom-Rowlinson model, the Beach
model, the Potts model and the hard-core lattice gas model. Cooper
et al. considered the family of “cautious” ergodic Markov chains with
uniform stationary distribution and showed that, for every fixed con-
nected “nontrivial” graph H, every such chain mixes slowly. In this
paper, we give a complexity result for the problem. Namely, we show
that for any fixed graph H with no trivial components, there is un-
likely to be any Polynomial Almost Uniform Sampler (PAUS) for H-
colourings. We show that if there were a PAUS for the H-colouring
problem, there would also be a PAUS for sampling independent sets
in bipartite graphs and, by the self-reducibility of the latter prob-
lem, there would be a Fully-Polynomial Randomised Approximation

∗This work was partially supported by EPSRC grants GR/R44560/01 “Analysing
Markov-chain based random sampling algorithms” and GR/M96940 “Sharper Analysis of
Randomised Algorithms: a Computational Approach” and the IST Programme of the EU
under contract numbers IST-1999-14036 (RAND-APX) and IST-1999-14186 (ALCOM-
FT).
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Figure 1: Homomorphisms from G to this graph are independent sets of G.

Scheme (FPRAS) for #BIS — the problem of counting independent
sets in bipartite graphs. Dyer, Goldberg, Greenhill and Jerrum have
shown that #BIS is complete in a certain logically-defined complexity
class. Thus, a PAUS for sampling H-colourings would give an FPRAS
for the entire complexity class. In order to achieve our result we in-
troduce the new notion of sampling-preserving reduction which seems
to be more useful in certain settings than approximation-preserving
reduction.

1 Introduction

Let H = (V (H), E(H)) be any fixed graph. An H-colouring of a graph G =
(V (G), E(G)) is just a homomorphism from G to H : The vertices of H
correspond to “colours” and the edges of H specify which colours may be
adjacent. Thus, an H-colouring of G is a function C from V (G) to V (H)
such that for every edge (u, v) ∈ E(G), the corresponding edge (C(u), C(v))
is in E(H). Informally, colours C(u) and C(v) are allowed to be adjacent in
the colouring C of G because the edge (C(u), C(v)) is an edge of H .

Many combinatorial problems can be viewed as special cases ofH-colouring.
For example, if H is a k-clique with no self-loops then H-colourings of G cor-
respond to proper k-colourings of G. (In such a colouring, k colours are
available for colouring the vertices of G, but no colour may be adjacent to
itself.) Here is another example. If H is the graph depicted in Figure 1 then
H-colourings of G correspond to independent sets of G — vertices which
are coloured “a” are in the independent set, and vertices which are col-
oured “b” are not. Several models from statistical physics are special cases of
H-colouring including the Widom-Rowlinson model, the Beach model, and
(for weighted H-colourings) the Potts model and the hard-core lattice gas
model. See [2, 10] for details.

The complexity of H-colouring has been well-studied. Many papers con-
sidered the following problem: Given a fixed graph H , determine, for an
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input graph G, whether G has an H-colouring. Hell and Nešetřil [14] com-
pletely characterised the set of graphs for which this problem is NP-complete.
They observed that the problem is in P if H has a loop or is bipartite and
they showed that it is NP-complete for any other fixed H . See [14] for ref-
erences to earlier work on this question and [13] for extensions to the case
in which the maximum degree of G is bounded. See [4, 5] for extensions to
parameterised complexity.

Dyer and Greenhill [10] considered the problem of counting H-colourings.
Intriguingly, they were able to completely characterise the graphsH for which
this problem is #P-complete. A connected component of H is said to be
“trivial” if it is a complete graph with all loops present or a complete bipartite
graph with no loops present1. Dyer and Greenhill showed that counting H-
colourings is #P-complete if H has a nontrivial component and that it is
in P otherwise. They also extended their result to the case in which the
maximum degree of G is bounded.

Other work has focused on the complexity of sampling H-colourings
(nearly) uniformly at random2. Positive results for particular graphs H (spe-
cifically for the case in which H-colourings are independent sets and for the
case in which H-colourings are proper colourings) appear in works such as
[9, 15, 18]. A negative result for the independent-set case appears in [6]. The
first paper to study the complexity of sampling H-colourings in the general
case was Cooper, Dyer and Frieze [3]. They focused on connected graphs H
for which the decision problem “Is there an H-colouring?” is in P, but the
counting problem “How many H-colourings are there?” is #P-complete.
They showed that for any such H , H-colourings cannot be sampled effi-
ciently using “cautious” Markov chains, which are Markov chains which can
change only a constant fraction of the colours of the vertices in a single step.
In particular, the mixing time of all such chains is exponential in the number
of vertices of G. They also give positive results for certain weighted cases,
which are extended in [12]. In particular, [12] shows that for every fixed “dis-
mantleable” H and every degree bound ∆, there are positive vertex-weights

1Following the usual notation in the area, we will treat self-loops specially, so it makes
sense to refer to bipartite graphs with or without loops. The loop-free single-vertex is
viewed as a complete bipartite graph.

2Some of this work has been motivated by the well-known connection between almost-
uniform sampling and approximate counting [17, 8]. For some graphs H , it can be shown
that the problem of approximately counting H-colourings is equivalent to the problem of
sampling H-colourings (nearly) uniformly at random. See Section 8.
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which can be assigned to the vertices of H so that weighted H-colourings
can be sampled for degree-∆ graphs G. Borgs et al. [1] consider the problem
of sampling H-colourings on rectangular subsets of the hypercubic lattice.
They show that for every nontrivial connected H there is an assignments of
weights to colours for which cautious chains are slowly mixing.

In this work, we study the complexity of sampling H-colourings. We show
that if H has no trivial components then the problem of nearly-uniformly
sampling H-colourings is intractable in a complexity-theoretic sense. In par-
ticular, we show that for any fixed H with no trivial components, there
is unlikely to be any Polynomial Almost Uniform Sampler (PAUS) for H-
colourings. We show that if there were a PAUS for the H-colouring prob-
lem, there would also be a PAUS for sampling independent sets in bipartite
graphs and, by the self-reducibility of the latter problem, there would be
a Fully-Polynomial Randomised Approximation Scheme (FPRAS) for #BIS

— the problem of counting independent sets in bipartite graphs. Dyer, Gold-
berg, Greenhill and Jerrum have shown that #BIS is complete in a certain
logically-defined subclass of #P which includes problems such as counting
downsets in partial orders and counting satisfying assignments in “restricted
Horn” CNF Boolean formulas. Thus, a PAUS for sampling H-colourings
would give an FPRAS for the entire complexity class. In fact, our result
holds even if the input G is restricted to be a connected bipartite graph.

In order to achieve our result we introduce the new notion of sampling-
preserving reduction. The notion of approximation-preserving reduction
(AP-reducibility) from [11] seems to be too demanding. In particular, since
AP-reducibility is about counting (as opposed to sampling), an AP-reduction
is not allowed to inflate the size of the set of structures by a factor which
is difficult to compute. Sampling-preserving reductions allow this flexibility
while achieving the same final result. The definition of sampling reduction
(Section 2) is essentially many-one. Nevertheless the reductions get used in
a “Turing reduction” way. In particular, our reduction from SampleBIS

to SampleH-Col takes an instance of SampleBIS and constructs many
SampleH-Col instances. Since the resulting maps between H-colourings
and independent sets are many-one, several reductions can be combined even
though they may involve different amounts of inflation of the state space.

The paper is structured as follows. Section 2 gives the relevant defini-
tions including the definition of a sampling-preserving reduction. Section 3
presents some technical lemmas which we need in our proofs. Section 4
outlines a general proof technique for demonstrating the existence of an SP-

4



reduction. Section 5 uses the new proof technique to reduce SampleBIS to
a crucial intermediate problem, SampleFixedH-Col. Section 6 proves the
main result. Sections 7 and 8 discuss extensions.

2 Definitions

The total variation distance between two distributions π and π′ on a count-
able set Ω is given by

dTV(π, π′) =
1

2

∑

ω∈Ω

|π(ω) − π′(ω)| = max
A⊆ω

|π(A) − π′(A)|.

A sampling problem X maps each instance σ to a set of structures X(σ).
The goal is to produce a member of X(σ) uniformly at random. The size of
each structure in X(σ) is at most a polynomial in | σ |. For a given graph H ,
the sampling problem SampleH-Col will be defined as follows.

Name. SampleH-Col.

Instance. A loop-free graph G.

Output. An H-colouring of G chosen uniformly at random.

We will be particularly interested in the special case of this problem in which
the input graph, G, is connected and bipartite.

Name. SampleBH-Col.

Instance. A loop-free connected bipartite graph G.

Output. An H-colouring of G chosen uniformly at random.

The problem SampleBIS will be defined as follows.

Name. SampleBIS.

Instance. A loop-free connected bipartite graph G.

Output. An independent set of G chosen uniformly at random.

An almost uniform sampler [8, 16, 17] for X is a randomised algorithm
that takes input σ and accuracy parameter ǫ ∈ (0, 1] and gives an output
such that the variation distance between the output distribution of the al-
gorithm and the uniform distribution on X(σ) is at most ǫ. We will say that
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algorithm is a polynomial almost uniform sampler (PAUS) if its running time
is bounded from above by a polynomial in the size of the instance |σ| and 1/ǫ.

A sampling-preserving reduction (SP-reduction) from a sampling prob-
lem X to a sampling problem Y (denoted X ≤SP Y ) consists of

1. A function f which takes an input (σ, ǫ), in which σ is an instance
of X and ǫ ∈ (0, 1] is an accuracy parameter, and produces an instance
f(σ, ǫ) of Y . If X(σ) is non-empty then Y (f(σ, ǫ)) must be non-empty.

2. A function g which maps each tuple (σ, ǫ, y) with y ∈ Y (f(σ, ǫ)) to a
member of X(σ) ∪ {⊥} where “⊥” is an error symbol and for every
(σ, ǫ) and every x ∈ X(σ),

e−ǫ |Y (f(σ, ǫ))|

|X(σ)|
≤ |{y ∈ Y (f(σ, ǫ)) | g(σ, ǫ, y) = x}| ≤ eǫ |Y (f(σ, ǫ))|

|X(σ)|
.

(1)

Equation (1) says that for every x ∈ X(σ), the number of y ∈ Y (f(σ, ǫ))

which are mapped to x by g is roughly |Y (f(σ,ǫ))|
|X(σ)|

. Thus, each x ∈ X(σ) is

roughly equally represented and the error symbol ⊥ is represented by only
about an ǫ-fraction of Y (f(σ, ǫ)).

The functions f and g must be computable in time which is bounded by
a polynomial in |σ| and 1/ǫ.

The motivation for this definition is the following lemma.

Lemma 1 If X ≤SP Y and Y has a PAUS, then X has a PAUS.

Proof. Let (f, g) be the reduction from X to Y and let A be a PAUS for Y .
Here is a PAUS for X: On input (σ, ǫ), let y be the output of A when it is
run with inputs f(σ, ǫ/4) and ǫ/2; return g(σ, ǫ/4, y). We must show that the
variation distance between the output distribution of this algorithm and the
uniform distribution onX(σ) is at most ǫ. Let σ be an input with |X(σ)| ≥ 1.
Consider any subset Ax of X(σ). Let

Ay = {y ∈ Y (f(σ, ǫ/4)) | g(σ, ǫ/4, y) ∈ Ax}.
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Then the probability that A gives an output in Ay is at most

|Ay|

|Y (f(σ, ǫ/4))|
+
ǫ

2

≤
eǫ/4|Ax|

|X(σ)|
+
ǫ

2

≤
(1 + ǫ/2)|Ax|

|X(σ)|
+
ǫ

2

≤
|Ax|

|X(σ)|
+

(ǫ/2)|Ax|

|X(σ)|
+
ǫ

2

≤
|Ax|

|X(σ)|
+ ǫ.

Also, the probability that A gives an output in Ay is at least

|Ay|

|Y (f(σ, ǫ/4))|
−
ǫ

2

≥
e−ǫ/4|Ax|

|X(σ)|
−
ǫ

2

≥
(1 − ǫ/2)|Ax|

|X(σ)|
−
ǫ

2

≥
|Ax|

|X(σ)|
−

|Ax|(ǫ/2)

|X(σ)|
−
ǫ

2

≥
|Ax|

|X(σ)|
− ǫ.

The problem #BIS is defined as follows.

Name. #BIS.

Instance. A loop-free bipartite graph G.

Output. The number of independent sets of G.

A component of H is trivial if it is a complete graph with all loops present
or a complete bipartite graph with no loops present. Recall from Dyer and
Greenhill [10] that counting H-colourings is in P if H is trivial. The main
result of this paper is as follows.
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Theorem 2 Suppose that H is a fixed graph with no trivial components. If
SampleBH-Col has a PAUS then SampleBIS has a PAUS and #BIS

has an FPRAS. Thus, every problem which is AP-interreducible with #BIS

(see [11]) has an FPRAS.

3 Technical lemmas

Let ν(a, b) denote the number of onto functions from a set of size a to a set
of size b. We need to use the following lemma, which is Lemma 18 of [11].

Lemma 3 (DGGJ) If a and b are positive integers and a ≥ 2b ln b then

ba (1 − exp(−a/(2b))) ≤ ν(a, b) ≤ ba.

We also need the following technical lemma.

Lemma 4 Suppose c1 and c2 are fixed positive reals with c1 < c2. For any
δ > 0 and any non-negative integers q and a0, there are non-negative in-
tegers a and b with a ≥ a0 which are in O((a0 + q)/δ) and satisfy

e−δca+q
2 ≤ cb+q

1 ≤ eδca+q
2 .

Proof. First, note that it would suffice to find non-negative integers a′ and b′

which are in O(q′/δ) and satisfy

e−δca
′+q′

2 ≤ cb
′+q′

1 ≤ eδca
′+q′

2 ,

where q′ = q + a0 because we could simply set a = a′ + a0 and b = b′ + a0

which would imply a′ + q′ = a+ q and b′ + q′ = b+ q.
Taking logarithms, what we need is

∣

∣

∣

∣

b′ −
a′ log c2 + q′ log(c2/c1)

log c1

∣

∣

∣

∣

≤
δ

log c1
. (2)

Now let ρ be defined by c2 = c1+ρ
1 . Then we want

|b′ − (a′(1 + ρ) + q′ρ)| ≤
δ

log c1
. (3)
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For a positive integer r, we will choose a′ = q′r, so we want

|b′ − a′ − ρq′(r + 1)| ≤
δ

log c1
. (4)

Let R = ⌈2 log c1/δ⌉. Lemma 19 of [11] says: For any real z > 0 and any

positive integer R there is an x ∈ [1, . . . , R] such that

min(zx − ⌊zx⌋, ⌈zx⌉ − zx) ≤ 1/R.

Thus, there is an x ∈ [1, . . . , R] such that ρq′x is within 1/R of a non-
negative integer. If x > 1 we will set r + 1 = x. If x = 1 then note that ρq′2
is within 2/R of a non-negative integer, so we will set r = 1.

Now recall that a′ = q′r, so a′ ∈ O(q′/δ) as required.

4 Demonstrating the existence of SP-reductions:

a proof technique

When we introduce an SP-reduction from a sampling problemX to a sampling
problem Y , we will need to show that Equation (1) is satisfied. We will typ-
ically do this by partitioning Y (f(σ, ǫ)) into disjoint sets Y0, . . . , Yk. We will
show that each of Y1, . . . , Yk is fairly representative of X(σ). In particular,
for every x ∈ X(σ) and every i ∈ [1, k],

e−ǫ/2 |Yi|

|X(σ)|
≤ |{y ∈ Yi | g(σ, ǫ, y) = x}| ≤ eǫ/2 |Yi|

|X(σ)|
. (5)

For every y ∈ Y0, we will have g(σ, ǫ, y) = ⊥ but we will show that Y0 is
a small part of Y (f(σ, ǫ)). In particular,

k
∑

i=1

|Yi| ≥ e−ǫ/2|Y (f(σ, ǫ))|. (6)

Together, (5) and (6) imply (1). Note that (6) follows from

|Y0| ≤ (ǫ/4)|Y (f(σ, ǫ))|, (7)

since (7) implies |Y | − |Y0| ≥ (1 − ǫ/4)|Y (f(σ, ǫ))| ≥ e−ǫ/2|Y (f(σ, ǫ))|.
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Quite often the reduction X ≤SP Y will involve several subproblems
Z1, Z2, . . . such that, for each of these, an SP-reduction (fi, gi) from X to Zi

is already known. The instance f(σ, ǫ) of Y is then formed by “gluing”
together instances f1(σ, ǫ/2) of Z1, f2(σ, ǫ/2) of Z2, and so on. Yi is (roughly)
the portion of Y (f(σ, ǫ)) for which, within each y ∈ Yi, we can “zoom in” on
a structure z ∈ Zi(fi(σ, ǫ/2)). Each structure in Zi(fi(σ, ǫ/2)) is represented
by an equal number of y ∈ Yi so we can get (5) by referring to the SP-
reduction fromX to Zi. Establishing (7) is essentially showing that, although
Y (f(σ, ǫ)) has some structures which don’t allow us to “zoom in” on an
appropriate sub-problem to find our sample, these aren’t so numerous.

Finally, let Yi(x) = {y ∈ Yi | g(σ, ǫ, y) = x}. Suppose that no y ∈ Yi

has g(σ, ǫ, y) = ⊥. In this case we can show (5) by showing that for all
x, x′ ∈ X(σ),

|Yi(x)| ≤ eǫ/2|Yi(x
′)|. (8)

To see this, note that

|Yi|

|X(σ)|
=

∑

x′∈X(σ) |Yi(x
′)|

|X(σ)|
≥ e−ǫ/2

∑

x′∈X(σ) |Yi(x)|

|X(σ)|
= e−ǫ/2|Yi(x)|.

5 Sampling fixed H-colourings

Suppose that H is connected, loop-free, and bipartite. Denote the vertex
partition of H by (VL(H), VR(H)). We will define the fixed H-colouring
problem as follows.

Name. SampleFixedH-Col

Instance. A loop-free connected bipartite graphG with vertex partition (VL(G), VR(G))

Output. An H-colouring of G chosen uniformly at random from the set of
H-colourings in which vertices of VL(G) receive colours from VL(H).

We will study the problem SampleFixedH-Col as an intermediate step on
the way to the proof of Theorem 2.

A vertex in VL(H) is said to be full if it is adjacent to every vertex in
VR(H). Similarly, a vertex in VR(H) is said to be full if it is adjacent to every
vertex in VL(H). The graph H is said to be full if both VL(H) and VR(H)
contain at least one full vertex. The following lemma is the key ingredient
in the proof of Theorem 2.
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Lemma 5 Suppose that H is a connected nontrivial full loop-free bipartite
graph. Then SampleBIS ≤SP SampleFixedH-Col.

Proof. We’ll prove the lemma by induction on the number of vertices in H .
For the base case, suppose that H has at most 4 vertices. The only connected
nontrivial full loop-free bipartite graph H with at most 4 vertices is the
path of length 3. Let G be an input to SampleBIS. There is a one-to-one
correspondence between independent sets of G and fixed H-colourings of G:
The endpoints of H point out the vertices which are in the independent set
(see the proof of Theorem 5 of [11]).

We will now move on to the inductive step. The high-level idea is the fol-
lowing. By considering the graphH , we will construct several graphsHS1

, . . . , HSj+k
,

each of which is smaller thanH and satisfies certain conditions. By induction,
for each i, there is an SP-reduction from SampleBIS to SampleFixedHSi

-

Col. If we apply this reduction to our instance G of SampleBIS, we
get an instance Gi of SampleFixedHSi

-Col. Our goal is to construct
an instance f(G, ǫ) of SampleFixedH-Col. We do this by “gluing to-
gether” the various Gi’s. Now consider the constructed instance f(G, ǫ)
of SampleFixedH-Col. When we sample from the output distribution
SampleFixedH-Col(f(G, ǫ)), we would like to recover the output distri-
bution of SampleBIS(G). Curiously, we can not determine during the re-
duction itself the relative weights of the sub-instances G1, G2, . . .. Neverthe-
less, once we have an output to SampleFixedH-Col(f(G, ǫ)), the output
itself tells us which Hi is relevant. From this, we can recover an output
to SampleFixedHSi

-Col(Gi) and from this we can recover an output to
SampleBIS(G). The main technical difficulty lies in showing that the distri-
butions are correct. In particular, since the sub-reductions are SP-reductions
(i.e., the equations in Section 4 are satisfied in the construction ofG1, G2, . . .),
the combined reduction is also an SP-reduction.

We now describe the details. Let FL be the set of full vertices in VL(H)
and let FR be the set of full vertices in VR(H). Let fL = |FL| and fR = |FR|
and vL = |VL(H)| and vR = |VR(H)|. For a subset S of VR(H), let N(S) be
the set of mutual neighbours of S:

N(S) = {v ∈ VL(H) | ∀u ∈ S, (u, v) ∈ E(H)}.

Note that FL ⊆ N(S) ⊆ VL(H). S is said to be left-reducing if FL ⊂ N(S) ⊂
VL(H). If S is left-reducing, let HS be the subgraph of H induced by vertex
partition (N(S), VR(H)). Note that HS has fewer vertices than H . Also, it
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Figure 2: The construction of f(G, ǫ) in the proof of Lemma 5.

is connected, full and nontrivial: The set of full vertices in VL(HS) is FL; the
set of full vertices in VR(HS) includes all of FR but it does not equal VR(H)
since N(S) ⊃ FL.

Similarly, a subset S of VL(H) is right-reducing if FR ⊂ N(S) ⊂ VR(H).
If S is right-reducing, letHS be the subgraph ofH induced by vertex partition
(VL(H), N(S)). HS has fewer vertices than H and is connected, full and
nontrivial.

Now, let S1, . . . , Sk be the left-reducing subsets of VR(H) and let Sk+1, . . . , Sk+j

be the right-reducing subsets of VL(H). (Either or both of k and j could
be zero.) For every i ∈ {1, . . . , k + j}, let (fi, gi) be an SP-reduction
from SampleBIS to SampleFixedHSi

-Col. Take the input (G, ǫ) to SampleBIS

and let Gi = fi(G, ǫ/2). Let ai = |VL(Gi)| and let bi = |VR(Gi)|. Let

q =
∑k+j

i=1 (ai + bi) and let n = |VL(G)| + |VR(G)|.
Let f(G, ǫ) be the graph which is constructed as follows, where a and b

will be chosen later to satisfy

a ≥ 2vL ⌈q ln(vR/fR) + ln(16n/ǫ)⌉ , (9)

and
b ≥ 2vR ⌈q ln(vL/fL) + ln(16n/ǫ)⌉ . (10)

See Figure 2. For every vertex u of G, put a size-a set L(u) into VL(f(G, ǫ))
and a size-b set R(u) into VR(f(G, ǫ)). Also, add edges L(u) × R(u) to
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E(f(G, ǫ)). If u ∈ VL(G) is connected to v ∈ VR(G) by an edge of G then
add edges R(u) × L(v) to E(f(G, ǫ)).

Also, for every vertex u of G and every i ∈ [1, . . . , k+ j], let Ai,u and Bi,u

be copies of Gi and let A′
i,u and B′

i,u be copies of Gi in which left-vertices
and right-vertices are switched (so the vertices in VL(A′

i,u) correspond to the
vertices in VR(Gi) and the vertices in VR(A′

i,u) correspond to the vertices in
VL(Gi)). Add edges L(u)×VR(Ai,u) and L(u)×VR(A′

i,u) and R(u)×VL(Bi,u)
and R(u) × VL(B′

i,u) to E(f(G, ǫ)).
Let

VL(f(G, ǫ)) =
⋃

u

L(u) ∪
⋃

u,i

{VL(Ai,u) ∪ VL(A′
i,u) ∪ VL(Bi,u) ∪ VL(B′

i,u)}

and let Y be the set of fixed H-colourings of f(G, ǫ). We will partition Y
into sets Y0, . . . , Yk+j+1.

For i ∈ [1, . . . , k], Yi is the set of colourings which are not in Y1, . . . , Yi−1

but in which some u ∈ VL(G) has R(u) coloured with (exactly) the colours
in Si. For i ∈ [k + 1, . . . , k + j], Yi is the set of colourings which are not in
Y1, . . . , Yi−1 but in which some v ∈ VR(G) has L(v) coloured with Si.

The high-level structure of our construction is as follows. For every i ∈
{1, . . . , k + j}, we will use the colourings in Yi by focusing on the induced
colourings of the subgraph Gi. These are HSi

-colourings of Gi and from these
we can (by induction) recover a random independent set of G. As usual, the
colourings in Y0 are not useful for pointing out independent sets, but there
are not too many of these. Every colouring in Yk+j+1 has a special form —
Every vertex u of G either has R(u) coloured VR(H) or has L(u) coloured
VL(H). These colourings point out independent sets of G in a natural way,
and each independent set comes up about the same number of times in this
way.

We now look at the details. Note that for any colourings in Y0 or Yk+j+1,
we have the following property — every vertex u ∈ VL(G) has R(u) coloured
with a set S of colours such that N(S) is either FL or VL(H). Similarly,
every vertex v ∈ VR(G) has L(v) coloured with a set S of colours such that
N(S) is either FR or VR(H).

Consider a colouring y. Vertex u ∈ VL(G) satisfies Condition (A) if
R(u) is coloured with a set S of colours with N(S) = FL but S ⊂ VR(H). It
satisfies Condition (B) if R(u) is coloured with a set S of colours with N(S) =
VL(H) but L(u) is coloured with a proper subset of VL(H). Vertex v ∈ VR(G)
satisfies Condition (C) if L(v) coloured with a set S of colours with N(S) =
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FR but S ⊂ VL(H). It satisfies Condition (D) if L(v) is coloured with a set
S of colours with N(S) = VR(H) but R(v) is coloured with a proper subset
of VR(H).

We now define

Y0 = {y ∈ Y−{Y1∪· · ·∪Yk+j} | some vertex satisfies Condition A or B or C or D}.

Now note that colourings in Yk+j+1 have the following property. Every
vertex u of G either has R(u) coloured VR(H) or has L(u) coloured VL(H).

We will first work on establishing Equation (7). Let Yu,A denote the
subset of Y in which u satisfies (A). Define Yu,B, Yu,C and Yu,D similarly.
We will show that the size of each of Yu,A, Yu,B, Yu,C and Yu,D is at most
(ǫ/(16n))|Y |. Equation (7) follows since

|Y0| ≤
∑

u∈V (G)

|Yu,A| + |Yu,B| + |Yu,C| + |Yu,D|.

First, let’s show that |Yu,A| ≤ (ǫ/(16n))|Y |. Consider the set of colourings
in Y in which all neighbours of vertices in R(u) have colours from FL and
let ψ be the number of induced colourings on vertices other than the vertices
of R(u). If ψ = 0 then |Yu,A| = 0, so the claim is trivial. Otherwise,
|Yu,A| ≤ ψ(vb

R − ν(b, vR)) which is at most ψvb
R exp(−b/(2vR)) by Lemma 3.

On the other hand, |Y | ≥ ψvb
R, so the claim follows from Equation (10). The

proof that |Yu,C| is sufficiently small is similar.

Next, let’s show that |Yu,B| ≤ (ǫ/(16n))|Y |. Consider the set of colourings
in Y in which R(u) is coloured with a subset of FR and let ψ be the number of
induced colourings on all vertices except those in L(u) and Ai,u and A′

i,u (for
i ∈ [1, . . . , j+k]). If ψ = 0 then |Yu,B| = 0, so the claim is trivial. Otherwise,
|Yu,B| ≤ ψ(va

L − ν(a, vL))vq
Rv

q
L which is at most ψva

L exp(−a/(2vL))vq
Rv

q
L by

Lemma 3. On the other hand, |Y | ≥ ψva
Lf

q
Rv

q
L, so the claim follows from

Equation (9). The proof that |Yu,D| is sufficiently small is similar.

We will now work on establishing Equation (5). First consider i ∈
[1, . . . , k]. Let Yu,i be the set of colourings in Yi for which u ∈ VL(G) is
the first vertex in VL(G) with R(u) coloured Si. Let Γ be the set of in-
duced colourings on Bi,u. Note that Γ is the set of fixed HSi

-colourings
of Gi = fi(G, ǫ/2). Also, each colouring in Γ comes up ψ times in Yu,i

for some ψ. (In particular, ψ is the number of colourings of vertices other
than Bi,u which are induced by colourings in Yu,i.) For colouring y ∈ Yu,i we
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will let g(G, ǫ, y) = gi(Gi, ǫ/2, y
′) where y′ is the induced colouring on Bi,u.

Then for every independent set x in the set I(G) of independent sets of G,

|{y ∈ Yu,i | g(G, ǫ, y) = x}| = ψ |{y′ ∈ Γ | gi(Gi, ǫ/2, y
′) = x}|. (11)

Since (fi, gi) is an SP-reduction, Equation (1) gives

e−ǫ/2 |Γ|

|I(G)|
≤ |{y′ ∈ Γ | gi(Gi, ǫ/2, y

′) = x}| ≤ eǫ/2 |Γ|

|I(G)|
(12)

and Equation (5) follows for Yu,i from Equations (11) and (12) since |Yu,i| =
ψ |Γ|. Colourings in Yk+1, . . . , Yk+j are handled similarly except that we look
at induced colourings of Ai,u rather than Bi,u.

It remains to satisfy Equation (5) for i = k+j+1. Note that any colouring
y in Yk+j+1 points out an independent set of G. A vertex u ∈ VL(G) is in
the independent set if R(u) is coloured VR(H). A vertex v ∈ VR(G) is in
the independent set if L(v) is coloured VL(H). We will define g(G, ǫ, y) to
be this independent set. Let us focus attention on a given independent set
containing wL vertices in VL(G) and wR vertices in VR(G). We will now
calculate how many colourings in Yk+j+1 correspond to this independent set.

For any bipartite graph G′ with vertex partition (VL(G′), VR(G′)), let
φH(G′) denote the number of fixed H-colourings of G′. Then the number
of times that this independent set comes up as a colouring in Yk+j+1 is the
product of the following two quantities.

(

ν(b, vR)fa
L

k+j
∏

i=1

φH(Ai,u)φH(A′
i,u)f

ai+bi

L vai+bi

R

)wL+vR−wR

,

(

f b
Rν(a, vL)

k+j
∏

i=1

φH(Bi,u)φH(B′
i,u)v

ai+bi

L fai+bi

R

)vL−wL+wR

.

Now note that φH(Ai,u) = φH(Bi,u) and φH(A′
i,u) = φH(B′

i,u). So if we
let

Z =

(

k+j
∏

i=1

φH(Ai,u)φH(A′
i,u)

)vL+vR

(fa
Lν(b, vR)f q

Lv
q
R)vR

(

f b
Rν(a, vL)vq

Lf
q
R

)vL
,

the contribution of the independent set becomes
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Z(ν(b, vR)fa
Lf

q
Lv

q
R)

wL−wR
(

f b
Rν(a, vL)vq

Lf
q
R

)wR−wL
,

which is

Z

(

ν(b, vR)va
L

vb
Rν(a, vL)

)wL−wR

(

(

vR

fR

)b+q(
fL

vL

)a+q
)wL−wR

.

To get Equation (8) we will show that a and b can be chosen so that

e−ǫ/(8n) ≤

(

ν(b, vR)va
L

vb
Rν(a, vL)

)

≤ eǫ/(8n), (13)

and

e−ǫ/(8n) ≤

(

vR

fR

)b+q(
fL

vL

)a+q

≤ eǫ/(8n). (14)

This guarantees that the contribution of this independent set is in the
range [e−ǫ/4Z, eǫ/4Z], and Equation (8) follows for Yk+j+1. To establish Equa-
tion (13), use Lemma 3 to observe that

(

ν(b, vR)va
L

vb
Rν(a, vL)

)

≤
1

1 − exp(−a/(2vL))
.

Since Equation (9) gives 1 − exp(−a/(2vL)) ≥ 1 − ǫ/(16n) ≥ e−ǫ/(8n), the
right-hand inequality of (13) follows. The left-hand inequality is similar.

We will now show how to choose the values of a and b to satisfy Equa-
tion (14). If vR/fR = vL/fL then simply choose a = b and make them
large enough to satisfy Equation (9) and Equation (10). Suppose that
vR/fR < vL/fL. Then use Lemma 4 with c1 = vR/fR, c2 = vL/fL, δ = ǫ/(8n),
and

a0 = 2vL ⌈q ln(vR/fR) + ln(16n/ǫ)⌉ + 2vR ⌈q ln(vL/fL) + ln(16n/ǫ)⌉ .

The lemma gives values of a and b which are in O((a0+q)/δ), which is not too
large. Thus, our reduction is sampling-preserving. Note that the reduction
can be done in polynomial time — the calculation of a and b does not involve
computing Z. The case where vL/fL < vR/fR is similar.
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6 The proof of Theorem 2

We start with some definitions. First, for every graph H , we will define
a loop-free bipartite graph B[H ] (this construction was used in [10]). Let
the vertices of H be v1, . . . , vh. The vertex set of B[H ] is {x1, . . . , xh} ∪
{y1, . . . , yh}. The edge set of B[H ] is

{(xi, yj) | (vi, vj) ∈ E(H)}.

Thus, a loop (vi, vi) in H corresponds to the edge (xi, yi) in B[H ] and a
non-loop (vi, vj) in H (for which i 6= j) corresponds to two edges (xi, yj)
and (yi, xj) in B[H ]. For every edge (vi, vj) of H , let

VL(Hi,j) = {xℓ | (vℓ, vj) ∈ E(H)}

and

VR(Hi,j) = {yℓ | (vi, vℓ) ∈ E(H)}

and letHi,j be the subgraph of B[H ] induced by vertex set VL(Hi,j)∪VR(Hi,j).
Note that xi ∈ VL(Hi,j) and yj ∈ VR(Hi,j) and xi is adjacent to all of VR(Hi,j)
in Hi,j and yj is adjacent to all of VL(Hi,j). Thus, Hi,j is connected and full.
Let ∆1(H) be the degree of H . That is,

∆1(H) = max{deg(v) | v ∈ V (H)}.

Similarly, let ∆2(H) be the maximum degree amongst neighbours of vertices
with degree ∆1(H):

∆2(H) = max{deg(v) | for some u ∈ V (H) with deg(u) = ∆1(H), (u, v) ∈ E(H)}.

Let

R(H) = {(vi, vj) | ((vi, vj) ∈ E(H) and deg(vi) = ∆1(H) and deg(vj) = ∆2(H)}.

We will start with the following lemma.

Lemma 6 Let H be any fixed graph with no trivial components. Then R(H)
is non-empty and ∆1(H) > 1 and ∆2(H) > 1. Also, for all (vi, vj) ∈ R(H),
Hi,j is connected, loop-free, bipartite, full and nontrivial.
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Proof. Since H has no trivial components, R(H) is non-empty and ∆1(H) >
1 and ∆2(H) > 1. Suppose (vi, vj) ∈ R(H). Recall that Hi,j is connected,
loop-free, bipartite and full. Suppose for contradiction that Hi,j is a complete
bipartite graph (so vertices in VL(Hi,j) have degree ∆1(H) inHi,j and vertices
in VR(Hi,j) have degree ∆2(H) in Hi,j).

This assumption guarantees that Hi,j is a connected component of B[H ]:
B[H ] cannot have an edge with exactly one endpoint in VL(Hi,j) — the
endpoint would then have degree exceeding ∆1(H) in B[H ], which is a con-
tradiction; similarly, B[H ] cannot have an edge with exactly one endpoint
in VR(Hi,j).

Thus, for any xℓ ∈ VL(Hi,j),

{vr | (vℓ, vr) ∈ E(H)} = {vr | yr ∈ VR(Hi,j)}. (15)

Similarly, for any yℓ ∈ VR(Hi,j),

{vr | (vℓ, vr) ∈ E(H)} = {vr | xr ∈ VL(Hi,j)}. (16)

Now if H has a vertex vℓ such that (vi, vℓ) ∈ E(H) and (vj , vℓ) ∈ E(H)
then xℓ ∈ VL(Hi,j) and yℓ ∈ VR(Hi,j) so Equations (15) and (16) imply that

{vr | yr ∈ VR(Hi,j)} = {vr | xr ∈ VL(Hi,j)}.

Thus, Hi,j corresponds to a component of H and that component is a looped
clique, which contradicts the fact that H has no trivial component.

On the other hand, if there is no vℓ with (vi, vℓ) ∈ E(H) and (vj , vℓ) ∈
E(H) then Hi,j corresponds to a connected component of H which is a com-
plete bipartite graph, again giving a contradiction.

We can now prove the main lemma.

Lemma 7 Suppose that H is a fixed graph with no trivial components. Then
SampleBIS ≤SP SampleBH-Col.

Proof. Let (G, ǫ) be an input to SampleBIS. For each (vi, vj) ∈ R(H),
Lemma 6 and Lemma 5 guarantee that there is a sampling-preserving re-
duction (fi,j, gi,j) from SampleBIS to SampleFixedHi,j-Col. Let Gi,j =
fi,j(G, ǫ/2). Let f(G, ǫ) be the graph which is constructed as follows. See
Figure 3. Let q =

∑

(vi,vj)∈R(H) |VL(Gi,j)| + |VR(Gi,j)|. Let
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Figure 3: The construction of f(G, ǫ) in the proof of Lemma 7.

VL(f(G, ǫ)) = A ∪ {wL} ∪
⋃

(vi,vj)∈R(H)

VL(Gi,j),

and

VR(f(G, ǫ)) = B ∪ {wR} ∪
⋃

(vi,vj)∈R(H)

VR(Gi,j),

where A and B are sets of vertices with

|A| =

⌈

q ln(|V (H)|) + ln(8|E(H)|/ǫ)

ln(∆2(H)/(∆2(H) − 1))

⌉

and

|B| =

⌈

(q + |A| + 1) ln(|V (H)|) + ln(8|V (H)|/ǫ)

ln(∆1(H)/(∆1(H) − 1))

⌉

.

Note that there is no division by zero, since ∆1(H) and ∆2(H) are bigger
than one (by Lemma 6). In addition to the edges in the graphs Gi,j, we add
edge (wL, wR) and wL × B and wR × A and, for all (vi, vj) ∈ R(H), we add
edges wL × VR(Gi,j) and wR × VL(Gi,j).

Let Y be the set of H-colourings of f(G, ǫ). Y0 will be the set of colourings
in Y in which (wL, wR) is not coloured with an edge (vi, vj) from R(H). We
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will now establish Equation (7). For every v ∈ V (H) with deg(v) < ∆1(H)
let Y0(v) be the set of colourings in Y in which wL is coloured v. Now

|Y0(v)| ≤ (∆1(H) − 1)|B||V (H)|q+|A|+1.

Now consider any (vi, vj) ∈ R(H). There are at least ∆2(H)|A|∆1(H)|B| col-
ourings of f(G, ǫ) with (wL, wR) coloured (vi, vj) (for example, the colourings
in which all of the vertices of the graphs Gi,j are coloured with either vi or vj).
Thus, |Y | ≥ ∆2(H)|A|∆1(H)|B| ≥ ∆1(H)|B|. We conclude that

|Y0(v)| ≤ (ǫ/(8|V (H)|))|Y |. (17)

Now consider any edge (vi, vk) ∈ E(H) such that deg(vi) = ∆1(H) but
deg(vk) < ∆2(H). Let Y0(vi, vk) be the set of colourings in Y in which
(wL, wR) is coloured (vi, vk). Now

|Y0(vi, vk)| ≤ ∆1(H)|B|(∆2(H) − 1)|A||V (H)|q.

Also, from before |Y | ≥ ∆2(H)|A|∆1(H)|B| so

|Y0(vi, vk)| ≤ (ǫ/(8|E(H)|))|Y |. (18)

Equation (17) and (18) imply Equation (7) since |Y0| ≤
∑

v∈V (H) Y0(v) +
∑

(vi,vk) |Y0(vi, vk)|.

For an edge (vi, vj) ∈ R(H), let Yi,j be the set of colourings of f(G, ǫ)
with (wL, wR) coloured (vi, vj). Let Γ be the set of induced colourings on Gi,j .
Note that Γ is the set of fixed Hi,j-colourings of Gi,j. Also, each colouring in
Γ comes up ψ times in Yi,j where ψ is the number of induced colourings on
the vertices other than Gi,j . For a colouring y ∈ Yi,j we will set g(G, ǫ, y) =
gi,j(Gi,j, ǫ/2, y

′) where y′ is the induced colouring on Gi,j . Then Equation (5)
follows from the fact that (fi,j, gi,j) is an SP-reduction.

Theorem 2 follows from Lemma 1 and Lemma 7 and from Lemma 8 below.
Recall the following definitions. A randomised approximation scheme (RAS)
for a counting problem F is a randomised algorithm that takes input σ and
accuracy parameter ǫ ∈ (0, 1) and produces as output an integer random
variable Y satisfying the condition Pr(e−ǫF (σ) ≤ Y ≤ eǫF (σ)) ≥ 3/4. It is a
“fully polynomial” randomised approximation scheme (FPRAS) if it runs in
time poly(|σ|, ǫ−1). The problem #BIS is “self-reducible” so the following
lemma follows from [17].
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Lemma 8 (JVV) If SampleBIS has a PAUS then #BIS has an FPRAS.

Proof. The lemma is a special case of Theorem 6.4 of [17]. In order to apply
Theorem 6.4 directly we would need to define “self-reducible” formally and
to deal with some easy (though annoying) issues:

(i) Inputs to #BIS may be disconnected but inputs to SampleBIS may
not.

(ii) In order to apply Theorem 6.4 we technically need a fully polynomial al-
most uniform sampler (FPAUS) for SampleBIS. This can be obtained
from a PAUS as [17] explains.

Rather than dealing with these issues, we prefer to simply provide a proof
for the lemma. The details given here are from the proof of Proposition 3.4
of [16]. Technically, Jerrum’s proof from [16] is about counting matchings but
the few changes that are needed to yield our lemma are completely routine.

Let (G, ǫ) be an input to #BIS. Suppose thatG has componentsG1, . . . , Gk.
For each i, let the two parts of the vertex set be VL(Gi) and VR(Gi) and let the
sizes of these parts be ℓi and ri, respectively. Let Ni = ℓiri and let E(Gi) =
{ei(1), . . . , ei(mi)}. Denote the non-edges of Gi by {ei(mi + 1), . . . , ei(Ni)}.
For j ∈ {1, . . . , Ni}, let Gi(j) be the graph (V (Gi), {ei(1), . . . , ei(j)}). For
any graph G′, let I(G′) denote the set of independent sets of G′. Let

ρi(j) =
|I(Gi(j + 1))|

|I(Gi(j))|
.

Note that

|I(Gi)| = (ρi(mi)ρi(mi + 1) · · ·ρi(Ni − 1))−1|I(Gi(Ni))|.

Also, the number of independent sets of the complete bipartite graph Gi(Ni)
is 2ℓi + 2ri − 1, so

|I(Gi)| = (2ℓi + 2ri − 1)

Ni−1
∏

j=mi

ρi(j)
−1. (19)

Furthermore,

|I(G)| =

k
∏

i=1

|I(Gi)| =

k
∏

i=1

(2ℓi + 2ri − 1)

Ni−1
∏

j=mi

ρi(j)
−1. (20)
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Now let z =
∑k

i=1(Ni−mi). In order to estimate |I(G)|, we need to estimate
the z ratios ρi(j).

For each ratio ρi(j) we can make some observations.

(i) ρi(j) ≤ 1, since I(Gi(j + 1)) ⊆ I(Gi(j))

(ii) ρi(j) ≥ 1/2, since I(Gi(j))\I(Gi(j + 1)) can be mapped injectively
into I(Gi(j + 1)) by removing the lexicographically-least endpoint of
ei(j + 1).

(iii) Let A be a PAUS for SampleBIS. For i ∈ [1, . . . , k] and j ∈ [mi, . . . , Ni−
1], let Zi(j) be the indicator variable for the event that, when we run A
with input Gi(j) and accuracy parameter δ, the output is an independ-
ent set of Gi(j + 1). Note that ρi(j) − δ ≤ E[Zi(j)] ≤ ρi(j) + δ. This
follows immediately from the definition of PAUS, but it is important
to note that the input to A, Gi(j), is connected (since all inputs to
SampleBIS must be connected).

Let Zi(j) be the result obtained by calling A ⌈74ǫ−2z⌉ times with input
Gi(j) and accuracy parameter δ = ǫ/(6z) and averaging the value of Zi(j)
which occurs each time. Jerrum shows in his proof that with probability at
least 3/4,

e−ǫ
k
∏

i=1

Ni−1
∏

j=mi

ρi(j) ≤

k
∏

i=1

Ni−1
∏

j=mi

Zi(j) ≤ eǫ
k
∏

i=1

Ni−1
∏

j=mi

ρi(j).

Thus, the quantity

k
∏

i=1

(2ℓi + 2ri − 1)

Ni−1
∏

j=mi

Zi(j)
−1

is a sufficiently accurate estimate of |I(G)|.

For each of the z pairs (i, j), O(ǫ−2z) samples were needed, each of which

is produced in time poly(|G|, z/ǫ). Since z ≤ |V (G)|2, the total running time
is poly(|G|, ǫ−1) and we have an FPRAS.
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Figure 4: An H with a nontrivial component for which SampleH-Col has
a PAUS.

7 The presence of trivial components

Theorem 2 shows that sampling H-colourings is difficult if every component
of H is nontrivial. Recall from [10] that exactly counting H-colourings is #P-
complete if H has even one nontrivial component. Thus, it might appear that
Theorem 2 can be improved. In this section, we show that the existence of
a single nontrivial component is not enough to make sampling difficult. In
particular, we give an example of a graph H with a nontrivial component, for
which SampleH-Col has a PAUS. Specifically, let H be the graph depicted
in Figure 4.

Observation 9 Suppose that H is the graph depicted in Figure 4. SampleH-

Col has a PAUS.

Proof. Here is a PAUS for SampleH-Col. The input is an instance (G, ǫ)
where G has n vertices and, without loss of generality3, is connected. If ǫ <
2n/(2n +3n) then the algorithm simply runs for 5n steps, constructs all of the
H-colourings of G (and counts them) and selects one uniformly at random.
Note that the running time is at most poly(1/ǫ) in this case. Otherwise, the
algorithm chooses i uniformly at random from 1, . . . , 3n + 2n. If i ≤ 3n, then
the algorithm outputs the i’th colouring from the 3n colourings with colours
“a”, “b”, and “c”. Otherwise, let C be the (i− 3n)th of the 2n (proper and

3We can assume that the input is a connected graph without losing generality because
we can obtain an H-colouring of a k-component graph G by independently calling our
PAUS for each component, specifying accuracy parameter ǫ/k. The final variation distance
(between the output distribution and the uniform distribution on H-colourings of G) is at
most ǫ.
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improper) colourings with colours “d” and “e”. If C is a legal H-colouring
ofG, then the algorithm outputs it. Otherwise, it outputs the error symbol ⊥.
The variation distance between the output distribution of the algorithm and
the uniform distribution on H-colourings of G is at most the probability that
the algorithm outputs ⊥, which is at most 2n/(2n + 3n) ≤ ǫ.

8 Sampling and Counting

Let #BH-Col be defined as follows.

Name. #BH-Col.

Instance. A loop-free connected bipartite graph G.

Output. The number of H-colourings of G.

For certain graphs H , the problem #BH-Col can be expressed as the
counting problem associated with a “self-reducible p-relation”. For such
an H , Theorem 6.3 of Jerrum, Valiant and Vazirani’s paper [17] guaran-
tees that if there is an FPRAS for #BH-Col then there is a PAUS for
SampleBH-Col. If H has no trivial components, this in turn guarantees
(by Theorem 2) an FPRAS for #BIS. Dyer and Greenhill [8] have given a
more general framework in which these ideas work: If, for a given graph H ,
the problem #BH-Col is “self-partitionable” then an FPRAS for #BH-

Col can be turned into a PAUS for SampleBH-Col. It is not clear for
which graphs H these ideas can be applied, and this is an interesting open
question.

A related problem (which is also open) is to determine for which graphs H
an FPRAS for countingH-colourings can be turned into a PAUS for SampleH-

Col. Dyer, Goldberg and Jerrum [7] have shown that for every fixed H a
PAUS for SampleH-Col can be turned into an FPRAS for counting H-
colourings.
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