
Constructing Computer Virus PhylogeniesLeslie Ann Goldberg,1 Paul W. Goldberg,2Cynthia A. Phillips,3 and Gregory B. Sorkin41 University of Warwick, Coventry CV4 7AL, United Kingdomz2 Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdomx3 Sandia National Labs, P.O. Box 5800, Albuquerque NM 87185{4 IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights NY 10598Abstract. There has been much recent algorithmic work on the problemof reconstructing the evolutionary history of biological species. Computervirus specialists are interested in �nding the evolutionary history of com-puter viruses | a virus is often written using code fragments from one ormore other viruses, which are its immediate ancestors. A phylogeny fora collection of computer viruses is a directed acyclic graph whose nodesare the viruses and whose edges map ancestors to descendants and sat-isfy the property that each code fragment is \invented" only once. Toprovide a simple explanation for the data, we consider the problem ofconstructing such a phylogeny with a minimum number of edges. Thisoptimization problem is NP-hard, and we present positive and negativeresults for associated approximation problems. When tree solutions exist,they can be constructed and randomly sampled in polynomial time.1 IntroductionThere are now several thousand di�erent computer viruses in existence, withnew ones being written at a rate of 3 to 4 per day. Most of these are based uponprevious ones: someone copies and modi�es a virus, or creates a new virus withsubroutines borrowed from one or more ancestors.For most purposes, a computer virus can be regarded as a �xed string ofbytes, each byte consisting of eight bits. If one virus is based on another, longsubstrings of the ancestor, say 20 bytes or more, will appear in the descendant.Using probability models similar to those employed in speech recognition it ispossible to estimate the probability that a given byte string occurs in severalviruses by chance [15]; if the probability is low but the string does occur in severalz Part of this work was performed at Sandia National Laboratories and was supportedby the U.S. Department of Energy under contract DE-AC04-76AL85000. Part of thiswork was supported by the ESPRIT Basic Research Action Programme of the ECunder contract 7141 (project ALCOM-IT).x Part of this work was performed at Sandia National Laboratories and was supportedby the U.S. Department of Energy under contract DE-AC04-76AL85000.{ This work was performed under U.S. Department of Energy contract DE-AC04-76AL85000.

viruses then we conclude that it was written for one virus, and copied into theothers.We wish to infer an evolutionary or phylogenetic history for a set of computerviruses. As most phylogenetic literature to date has been based upon biologi-cal evolution, we adopt that terminology. Thus, the viruses in the input setS = fs1; :::; sng are called species. The species are de�ned by a set of binarycharacters C = fc1; : : : ; ckg. A binary character is a function c : S ! f0; 1g.(In general, the range of a character can be arbitrary, but the presence or ab-sence of byte strings can be modeled with binary characters.) Each character ccorresponds to a byte string, with c(s) = 1 if the string occurs in species s andc(s) = 0 otherwise. If c(s) = 1, we say that species s has or contains character c.In analogy with terminology from the logic synthesis area of computer circuitdesign, we de�ne the on-set Sc of a character c to be the set of all species onwhich its value is 1: Sc = fs 2 S j c(s) = 1g. A character c is trivial if jScj � 1.A trivial character can be ignored since it imposes no constraints on possiblesolutions.We assume that the input species are all related: that the bipartite graphjoining characters to species that have them is connected. Otherwise, the con-nected components can be considered independently.We also assume that each code fragment is invented only once. For su�cientlylong fragments this is justi�ed by di�erences in programming style, the manypossible orderings of unconstrained events, etc. We model the evolution of aset of viral species with a directed graph in which an edge si!sj indicates thatspecies si is an ancestor of species sj (i.e. sj inherited some character(s) from si).De�nition 1. A phyloDAG for input species S and characters C is a directedacyclic graph (DAG) with node set S. For each character c 2 C, the subgraphinduced by on-set Sc is connected, in the sense that from a single species ac 2 Sc,which we call the archetype, there is a directed path, within Sc, to every others 2 Sc.The phyloDAG model allows the possibility that a species may be derivedfrom several ancestors rather than from a single ancestor. We will explain themotivation behind this new degree of freedom right after some brief commentson the mathematics of the model.A phyloDAG exists for any inputs (S; C): for any chronology ascribed to thespecies (i.e. any total ordering of the species set), the directed graph with edgesfrom each species to all later species is a phyloDAG. However, every pair ofspecies is related by an edge in this graph. Since most virus species presumablyhave few ancestors, we seek a Minimum PhyloDAG, one with a minimumnumber of directed edges.We assume that the input is given in the following compact format: for eachspecies s 2 S, we are given a list of the characters c for which c(s) = 1.De�nition 2. The input length ` = `(S; C) =Pc2C jScj. The size is n = jSj.The number of characters is k = jCj.

Our approach to the evolution problem corresponds to a so-called restrictedmodel of evolution: one in which we are not allowed to introduce hypotheticalspecies outside of the input set. This model is well-suited to computer viruses,where because of good world-wide communications, sharing of data between anti-virus organizations, and the brief history involved, there are likely to be veryfew gaps in our viral database | a situation quite di�erent from that in biology.Previous work on restricted models of evolution will be discussed in Section 1.4.For our model, if additional species could be introduced into a phyloDAG, therewould always be a trivial sparse phyloDAG: a star graph with the center anadded species s such that c(s) = 1 for all c 2 C.1.1 Problem motivationSorkin's study of computer virus evolution [18] motivated our study of the phy-loDAG model. There are about 6,000 computer virus species in existence, ofwhich many are simple modi�cations of predecessors. The Jerusalem, Vienna,and Blackjack virus families, for instance, each contain from scores to hundredsof related species. The author of a computer virus can equally well incorporatecomputer code (instructions) from several existing viruses, which is how multi-ple ancestry arises. Experts disagree as to the frequency with which this occurs,and one of our eventual aims is to resolve this issue. (Another form of multipleancestry is well established, but not addressed here. It comes from virus \toolk-its": collections of mix-and-match software components from which viruses canbe assembled.)The evolutionary classi�cation of computer viruses can be helpful in severalways. First, a taxonomy provides a natural organization for the sizeable librariesof computer viruses that anti-virus organizations must maintain. Second, newviruses must be analyzed to tailor counter-measures, in a process that can bepartly but not completely automated. If a new virus is related to one that haspreviously been analyzed, the analysis may be simpli�ed.The most practical application of evolutionary information may be in increas-ing the e�ciency of virus scanners. In a slightly simpli�ed mathematical view,each of the 6,000 computer virus species is represented as a byte string, typically2,000 bytes long. When anti-virus programs \scan" for infected �les (and anti-virus programs do more than just this) they use a \signature" of about 20 bytesto stand in for each virus: the signature must always occur in the correspondingvirus, and must never occur in legitimate computer code. If one signature can beused for several viruses, savings (in space more than time) can be achieved: thescanner requires only a minimum-sized set of signatures which together \cover"all the computer virus species.In fact, the characters we will use to form a basis for computer virus phyloge-nies are such shared signatures. They are de�ned as, say, all strings of 20 bytesor more that occur in at least 2 viruses but in no legitimate programs. They canbe found, using linear space and time, by straightforward application of su�xtrees [7]. All viral and legitimate strings are concatenated together, separatedby a special character, and a su�x tree is constructed. Its leaves represent all

su�xes of the input string, and its internal nodes | viewed as paths from rootpart-way to leaf | denote pre�xes of su�xes, which is to say substrings of theinput string. Depth-�rst search can be used to propagate, from leaves to root,the number of times each substring appears, or in fact the number of times itappears in viruses and (separately) in legitimate strings.1.2 Biological applicationBeyond the computer virus realm for which it was conceived, the phyloDAGis also a plausible model for evolution of bacterial populations. Bacteria repro-duce through simple cell division. A single cell divides into two daughter cellswhich each receive an exact copy of the parent cell's genetic information (otherthan mutations that occur in transcription). However, there are at least threeknown methods whereby bacteria of di�erent populations can exchange geneticinformation: transformation, transduction, and conjugation [13].In transformation, a bacterium transports exogenous (outside the cell) DNAinto the cell, where it can become incorporated into the bacterium's DNA. Theexogenous DNA can come from another bacterium that has lysed (broken apart)and released its DNA into the medium. Only certain types of bacteria can dothis and only under certain circumstances; some bacteria only bring in DNAthat is quite similar to their own, while others will bring in any DNA, but willincorporate it only if it is suitably similar.Transduction involves the transfer of genes from one bacterium to another viaa bacteriophage (a virus that infects bacteria). Normally a virus infects a cell bybinding to the cell and injecting its DNA. The virus then takes over the cell andforces it to make many more viruses. The infected cell then lyses (breaks apart),releasing the new virus particles. There are two mechanisms whereby virusestransmit genetic information. The �rst is generalized transduction: sometimeswhen the bacterial cell is producing new viruses, the viral package is �lled withDNA from the host bacterium rather than the viral DNA. The process is randomand so any piece of DNA can be packaged this way. When this \virus" is released,it can \infect" a cell by injecting its contents, but these contents are just bacterialDNA. This DNA will not kill the cell, and can become incorporated into the newhost's DNA. The second mechanism is specialized transduction via lysogenicviruses. These viruses, upon infecting a bacterium, insert their DNA into thehost DNA at a particular spot and coexist. When given the proper stimuli, theviral DNA is excised from the host DNA to carry out the normal infection cycle.Sometimes this excision isn't done correctly, and pieces of the host DNA areexcised as well. They are then packaged into the new viruses and transmitted tonew hosts. Only genes near the attachment sites are transmitted this way, butthe transmission is very e�cient.Conjugation involves the direct contact of two bacteria and the transmissionof plasmids from one (donor) to the other (recipient). Plasmids are rings of DNAthat are much smaller than the bacterial genome. They exist in the bacterial cellindependently from the genome and are capable of replicating when the cell di-vides. Conjugative plasmids encode the proteins, etc, necessary for conjugation,

thus engineering their own transmission. Conjugative plasmids can bring othergenes with them into new cells, and can also allow the transmission of arbi-trary plasmids. These plasmids can become incorporated into the cell DNA; forexample, the genetic material of E. Coli's F plasmid, which allows sexual conju-gation, is incorporated into the host genome at a rate of 10�5 per cell division.This is an important mechanism, since it is the primary way bacteria transferdrug resistance.Since these mechanisms allow arbitrary exchange of genes from one popu-lation to another, bacterial evolution does not seem to follow the \divergentevolution" implied by a tree: populations can evolve from multiple sources.Bacteria reproduce very rapidly and some regions of their genome mutate fre-quently. Therefore, characters based on single-site mutations may not have asingle archetype. However, for genes with su�ciently large mutation di�erencesfrom any genes seen previously, it is reasonable to assume that as a rule there isunique evolution, and therefore a unique archetype.1.3 Paper organization and resultsWe will show in Section 3.3 that the Minimum PhyloDAG problem is \hard":in polynomial time, it cannot be solved exactly unless P = NP, nor canit approximated to within better than a logarithmic factor unless NP �DTIME(nO(log logn)). In fact, we know of no way to approximate Minimum Phy-loDAG to within a logarithmic factor: Section 3.3 shows that various naturalgreedy strategies (including randomized ones) do not even approximate withina factor of cn.Because of the di�culty of the phyloDAG problem, we consider two variants.In the �rst variant, we require that each species have just one ancestor, so thatthe phyloDAG is an arborescence (a tree with edges directed away from a root).If the arborescence's vertices are labeled with the values of one character, thepostulate that no character is \invented" twice corresponds to an assertion thatthere is at most one directed edge labeled 0!1. Thus the sequence of labels alongany source-to-leaf path is described by the regular expression 0*1*0*, that is,zero or more 0's, followed by zero or more 1's, and �nally zero or more 0's again.In Section 2 we de�ne a 0{1{0 phylogeny to be an arborescent phyloDAG's un-derlying undirected tree. Species S and characters C may be consistent with zero,one, or multiple 0{1{0 phylogenies. We give two polynomial-time algorithms torandomly sample 0{1{0 phylogenies if any exist.The �rst atomic-set algorithm (Section 2.1) computes a concise data struc-ture that represents all 0{1{0 phylogenies for the input data and can be used toselect a phylogeny uniformly at random in time O(n`). When no solution existsthe algorithm returns a witness set: a concise indication of why there can beno phylogenetic tree.The secondminimum spanning tree algorithm (Section 2.2) characterizesa 0{1{0 phylogeny of the input species set as a minimum spanning tree (MST)of a particular undirected edge-weighted graph. With it, 0{1{0 phylogenies canbe constructed in deterministic time O(` n+n2 logn) or (with high probability)

in randomized time O(` n), and sampled uniformly at random in time O(` n +M(n)), where M(n) is the time needed to multiply two n� n matrices. It doesnot produce a concise witness when there is no 0{1{0 phylogeny.The second variant of phyloDAG is simply its undirected analogue. A phy-lograph for species S and characters C is an undirected graph with vertex setS, with the property that the subgraph induced by the on-set of each characterc 2 C is connected. TheMinimumPhylograph problem is to �nd a phylographwith the minimum number of edges. Theorem 17 shows that it is hard to approx-imate Minimum Phylograph within a factor less than 14 ln `, while Theorem 18shows that approximating it within a factor of ln ` is easy.The model of computation used in this paper is the uniform-cost random-access machine.1.4 Related workPrevious work in phylogeny has focused on constructing phylogenetic trees. How-ever, the problem of modeling computer virus evolution is more suited to phy-lographs and phyloDAGs, in which undirected cycles may arise. As far as weknow, ours is the �rst phylogenetic work that allows cycles.There is substantial literature on character-based phylogenies where eachsubgraph induced by all species sharing a state for a character is required tobe connected. This problem is called the perfect phylogeny problem, and isNP-complete for the \unrestricted" case (where putative species may be added)with general characters [3, 19]. For the unrestricted case with binary charactersGus�eld gives an elegant O(nk) algorithm [12], and for the restricted case withgeneral characters Goldberg et al. [11] give an algorithm analogous to the MSTalgorithm of Section 2.2. (To clarify the relationship between perfect phylogenyand our problem, note that the restricted perfect phylogeny problem with binarycharacters could be called the \0{1 phylogeny problem".)Our 0{1{0 phylogeny problem is similar to a restricted version of the generalcharacter compatibility problem of Benham et al. [2]. There a character cmaps each species s to a subset c(s) � f0; 1; 2g rather than to a single value; theleaves of the tree are the species S; for each c and s a single value from c(s) ischosen as a label; and the goal is to �nd a rooted perfect phylogeny in whichthe sequence of labels along any root-to-leaf path is of the form 0! 1! 2. Theproblem is NP-hard [2].A preliminary version of this article appeared as [10].2 Computing a 0{1{0 phylogenyThe case in which each species has only one ancestor is of special interest, andcorresponds to cases in which the phyloDAG is an arborescence | a tree withall edges directed away from some root. There is a straightforward n:1 cor-respondence between arborescences and undirected trees: the undirected graph

underlying an arborescence is a tree; and each of the n possible rootings of a treeis an arborescence.8 Therefore we concentrate on undirected 0{1{0 phylogenies:De�nition 3. An (undirected) 0{1{0 phylogeny, or phylogenetic tree, is atree T on species S with characters C such that each on-set Sc induces a sub-treeof T .The requirement that each on-set induces a sub-tree corresponds to the re-quirement that each code fragment is invented only once. We allow the possibilitythat the code fragment may be dropped when one virus is used to create a newvirus. Thus, we are interested in 0{1{0 phylogenies and not in perfect phyloge-nies.If T is a phyloDAG whose underlying graph is a tree T , then T is a 0{1{0 phylogeny as de�ned above: as each on-set Sc was connected in T, it isconnected in T . Also, if T is a 0{1{0 phylogeny, any arborescence based on Tis a phyloDAG: the archetype of any character c is the species in Sc closestto the root. In this section, we will show how to generate 0{1{0 phylogenies,and how to generate them uniformly at random. Given a uniformly randomphylogenetic tree, choosing a root uniformly at random generates a uniformlyrandom arborescent phyloDAG.Because an arborescence can be rooted anywhere, a 0{1{0 phylogeny alonedoes not determine an evolutionary chronology, but it can be useful in com-bination with external information. For example if the �rst species' identity isknown, the rest of the evolutionary history follows.2.1 The atomic-set algorithm for computing 0{1{0 phylogeniesAs described in the Introduction, our atomic-set algorithm produces a data struc-ture, an AS-tree, which concisely represents all 0{1{0 phylogenies for species Sand characters C, and can be used to generate an arbitrary solution or a solutionchosen uniformly at random.Generalizing the de�nition of the on-set of a character, de�ne the on-set ofa collection of characters to be the species having all those characters: SC =Tc2CSc.De�nition 4. Let Ĉ � C be a maximal (not necessarily maximum) set of char-acters for which jSĈ j � 2. Then A = SĈ is an atomic set with de�ningcharacters Ĉ .Lemma5. For any atomic set A and character c, either Sc � A (c is a de�ningcharacter), or jSc \ Aj = 1 (c is a non-de�ning character owned by the solespecies s 2 Sc \ A), or Sc \ A = ; (c is an avoiding character).8 There exist phyloDAGs whose underlying graphs are trees but which are not arbores-cences. An example, for species with characters (a), (ab), and (b), is (a)! (ab) (b).But since such phyloDAGs imply multiple ancestors for some species, they are notespecially interesting.

Proof: The only logical possibility missing is that jSc\Aj � 2 but Sc\A 6= A,which would contradict the maximality of A's set of de�ning characters. 2An atomic set can be constructed in time O(kn): start with Ĉ = ; (soSĈ = S), sweep through all characters c 2 C in turn, reject c if jSĈ\Scj � 1, butotherwise add c to the de�ning set, so Ĉ := Ĉ[fcg. An O(`)-time implementationof this algorithm is described in the Appendix.Lemma6. Suppose all species in S are connected, i.e. the bipartite graph joiningcharacters to species that have them is connected. Then if s1; s2 2 S have nocharacters in common, no phylogeny contains the edge (s1; s2).Proof: Suppose a phylogenetic tree T contained (s1; s2), and delete (s1; s2) tocreate a forest T 0, consisting of two trees. For any character c and any s; s0 2 Sc,T has a path s; : : : ; s0 within Sc. The path does not include the edge (s1; s2),since not both s1 and s2 can be in Sc, so T 0 contains the same path. Thusin T 0 there is a path from any species having character c to any other. Giventhe connectedness of the species{character graph, a series of such paths joinsany species in S to any other, contradicting the fact that T 0 is not a connectedgraph. 2Lemma7. If A is an atomic set, then in any 0{1{0 phylogeny, A's inducedsubgraph is a subtree.Proof: In a 0{1{0 phylogenetic tree T , the on-set of any character c 2 C in-duces a connected subgraph, therefore a subtree. A is the intersection of thesubtrees corresponding to A's de�ning characters, and the intersection of sub-trees is itself a subtree. 2Lemma8. For any phylogeny T and atomic set A, if the subtree TA is replacedby any other tree T 0A on the set A, the resultant overall tree T 0 is also a phylogeny.Proof: For any character c and species s; s0 2 Sc, consider the (unique) paths; : : : ; s0 in T . If Sc \ A = ;, the path never enters A, so it is una�ected (i.e.the identical path exists in T 0). If jSc \ Aj = 1, the path touches at most onevertex in A, hence no edges within A, and is una�ected. Otherwise (by Lemma 5)Sc � A, and if the path through T included any sub-paths through TA (infact there can be at most one), those sections could be replaced by sub-pathsthrough T 0A (and thus still within Sc). So connectedness of all characters in Timplies the same for T 0, and T 0 is a phylogeny. 2Lemma9. For any phylogeny T and atomic set A, if A is collapsed| replacedby a single species \a" having all de�ning and non-de�ning characters of A(but not its avoiding characters), and the subtree TA is contracted to the singlespecies a, then the resultant overall tree T 0 is a phylogeny for S 0 = (S nA)[fag.

Proof: Same as previous. 2Lemma10. If (S; C) has an atomic set A, with species s1; s2 2 A owning non-de�ning characters c1; c2 respectively, and if Sc1 \ Sc2 6= ;, then there is no0{1{0 phylogeny for S.Proof: Suppose there is a phylogeny T for S. Root T at any s3 2 Sc1 \ Sc2 ,and let sx be the lowest common ancestor of s1 and s2. Then the path (allpaths in a tree are unique) from s1 to s2 passes through sx; the path from s3to s1 passes through sx (since sx is an ancestor of s1); and the path from s3to s2 passes through sx (since sx is an ancestor of s2). By Lemma 7, A inducesa subtree, so s1; s2 2 A implies that the s1|s2 path is contained in A, andin particular sx 2 A. Similarly s1; s3 2 Sc1 implies sx 2 Sc1 , and s2; s3 2 Sc2implies sx 2 Sc2 . Therefore sx 2 A\Sc1\Sc2 . But c1 and c2 are nonde�ningcharacters with distinct owners, so A\Sc1\Sc2 = ;, a contradiction. 2If the hypotheses of Lemma 10 are satis�ed, we say that the atomic set A,characters c1; c2, and species s1; s2 provide a witness attesting to the non-existence of any 0{1{0 phylogenetic tree.Lemma11. Let A be an atomic set, and suppose that no s1; s2; c1; c2 satisfy theconditions of Lemma 10. As before, \collapse" A to the single species a having allde�ning and non-de�ning characters of A. If S 0 = (S nA)[fag has a phylogeny,so does S.Proof: Let T 0 be a phylogeny for S 0. Delete a and its incident edges, andreplace them with the set A and any tree on A. Additionally, replace each edge(s; a) with a single edge as follows.By Lemma 6, s and a must share some character(s), which (since a hasthem) must be de�ning or nonde�ning characters of A. If s and a share anynon-de�ning characters, those characters must have a single owner s0 (or else A,these characters, and their owners are a negative witness), in which case addthe edge (s; s0). Otherwise, s and a only share de�ning characters of A, in whichcase add any edge (s; s0) with s0 2 A.Replacement of each edge (s; a) with an edge (s; s0), s0 2 A, means that thetree components created by a's deletion are all connected to the tree on A, creat-ing a single tree T . Using arguments similar to those in Lemma 8, all charactersinduce connected components in T as they did in T 0. 2In fact, the constructive nature of the proof of Lemma 11 immediately sug-gests the atomic-set algorithm. Starting from S0 := S, repeatedly, �nd anatomic set Ai and check for a witness as in Lemma 10. If one is found, terminatenegatively. Otherwise, collapse Ai to a single new species ai, and re-de�ne thespecies set to be Si := (Si�1 nAi)[faig. Since each atomic set contains at leasttwo species, this reduces the number of species, and needs to be performed atmost n� 1 times.We construct the AS-tree during this contraction phase. The leaves of theAS-tree are the species in S, and all elements of any set Ai have ai as their

parent. Equivalently, the �nal ai is the root of the AS-tree, and each aj has allspecies in Aj as children. This tree concisely represents all possible phylogenies.Now, starting at the root of the AS-tree, we expand any node ai whose parentis already expanded using the method suggested by the proof of Lemma 11:Replace ai with Ai and form any tree Ti on Ai. For each old edge (s; ai), if shas a nonde�ning character c of Ai, add edge (s; ownerAi(c)); otherwise s musthave only de�ning characters, in which case add any edge (s; s0), s0 2 Ai.Theorem12. The algorithm above produces a phylogeny for S; C if one exists,and otherwise produces a negative witness. The AS-tree that it constructs rep-resents all possible 0{1{0 phylogenies. Thus, if the algorithm is implemented tochoose trees Ti uniformly at random, and to choose s0 2 Ai uniformly at ran-dom for de�ning-character edges (s; s0), then it produces a uniformly randomundirected 0{1{0 phylogeny.Proof: The �rst assertion follows directly from the preceding sequence oflemmas. If we detect a negative witness, we correctly terminate negatively byLemma 10 coupled with Lemma 9. Otherwise, by Lemmas 9 and 11, we can col-lapse the atomic set, solve the problem on the new set, and \expand" the col-lapsed set to a 0{1{0 phylogeny. Lemmas 8 and 9 and the proof of Lemma 11show that all 0{1{0 phylogenies can be produced from the AS-tree obtainedby the algorithm. The choices made in the expansion phase are independentand lead to di�erent phylogenies. The uniform generation of phylogenies followsfrom this one-to-one correspondence between phylogenies, and choices in thealgorithm. 2Note that the order in which atomic sets are chosen by the algorithm a�ectsthe �nal AS-tree that is obtained, but that any AS-tree obtained by the algo-rithm is a concise representation of all possible 0{1{0 phylogenies. Furthermore,any AS-tree obtained by the algorithm can be used to randomly sample the0{1{0 phylogenies of the input.The atomic-set algorithm produces an AS-tree in time O(n`): in each of theO(n) collapsing iterations, we �nd an atomic set, check for a witness, and collapsethe set, each such operation taking time O(`). (See the Appendix.)The expansion can be completed in time O(n`). There are O(n) expansions.To expand node ai, we can produce a random tree on the set Ai in time O(jAij),since a labeled tree on r nodes can be selected uniformly at random in time O(r).(See, for example, [16].) If we store pointers to owners of non-de�ning characterswhen constructing the AS-tree, we can connect this tree to its neighbors in timeO(`).2.2 The Minimum Spanning Tree algorithmIn this section we give a second algorithm for computing 0{1{0 phylogenies. It isvery simple, and is based on the observation that 0{1{0 phylogenies for species Sand characters C correspond to minimum-weight spanning trees (MSTs) of a

particular undirected edge-weighted graph G(S; C). (This observation was alsoused in [11] to obtain an algorithm �nding restricted perfect phylogenies.)The graph G(S; C) is a complete graph on S, with edge weights w(s1; s2) =k � jfc 2 C j c(s1) = c(s2) = 1gj. It can be constructed in O(` n) time.Theorem13. 0{1{0 phylogenies for (S; C) are spanning trees of G(S; C) withweight nk � `. Furthermore, G(S; C) has no spanning trees of smaller weight.Proof: Every spanning tree of G(S) has weight at least nk � `, since thecontribution of each character c to the total weight is at least (n�1)� (jScj�1).Spanning trees of G(S) with weight nk � ` correspond to trees in which eachon-set Sc is connected (see [11]). 2Because of this correspondence, phylogenies can be constructed (or randomlysampled) by established algorithms for constructing (or randomly sampling)MSTs. Prim's algorithm [17, 9] constructs an MST of G in O(m logm) time,where m is the number of edges in G, and m = �n2� for G = G(S; C). If afaster algorithm is required, Karger, Klein and Tarjan's randomized algorithmconstructs an MST, with high probability, in O(m) time [14]. (Their model ofcomputation is a unit-cost random-access machine with the restriction that theonly operations allowed on edge weights are binary comparisons. See also theother algorithms discussed in [14].)Given an unweighted n-vertex graph, an algorithm of Colbourn, Myrvoldand Neufeld [5] selects a spanning tree uniformly at random in O(M(n)) time.9(Here M(n) = O(n2:376) is the time needed to multiply two n� n matrices [6].)Colbourn and Jerrum [4] note that the algorithm can be used to select an MST ofa weighted graph G uniformly at random in O(M(n)) time: construct a randomspanning tree on each connected component of the subgraph of G induced by theedges of minimum weight, put the spanning trees' edges into the �nal solution,contract the spanning trees, and repeat.Compared with the atomic-set algorithm, the MST approach has the advan-tage of using an unusually widely understood and simple paradigm, a bene�techoed in the availability and e�ciency of computer programs. However, it doesnot supply a structural representation of all possible phylogenies, nor a concisewitness when no phylogeny exists.3 Phylographs and phyloDAGsHaving considered the problem of constructing phylogenetic trees, we now turnto phylogenies that are not trees. In particular, we consider the phylograph andphyloDAG problems that were de�ned in the Introduction. In Section 3.1 weprove that it is hard to approximate the optimal phylograph within better thana logarithmic factor, and in Section 3.2 that the natural greedy algorithm gives9 Another randomized algorithm, due to Wilson [20], has an expected running timeequal to the mean hitting time of the graph; this is often smaller than M(n), butcan be larger.

an approximation within such a factor. In Section 3.3 we show both that it ishard to approximate the optimal phyloDAG within better than a logarithmicfactor, and that in this case the natural greedy algorithm can perform very badly,even on average.3.1 Hardness of approximation of phylographHardness results for Minimum Phylograph follow from those known for Mini-mum Set Cover and problems equivalent to it in terms of approximation ratio,notably Minimum Dominating Set.De�nition 14. The neighborhood of a vertex v of a graph G = (V;E) is theset N(v) = fvg [fw : (v; w) 2 Eg. A dominating set of G is a set of verticesD � V whose neighborhoods cover the graph: Sd2DN(d) = V .It is well known and easily proved that the natural greedy algorithm forMinimum Dominating Set (or the related problems) is a lnn approximation al-gorithm: for a graph G = (V;E), the dominating set produced by the greedyalgorithm is at most ln jV j times larger than the minimum dominating set. In [8],Feige shows that this is a threshold:Theorem15 Feige. Let c be a constant in the range 0 < c < 1. Unless NP �DTIME(nO(log log n)), there is no polynomial-time algorithm that takes as inputa graph G and outputs a dominating set D of G such that jDj is within a factorof c ln jV j of the minimum possible value.Feige's is the latest in (and contains a good review of) a sequence of works onthis problem. Another which is relevant here, because of its weaker hypothesis,is that of Bellare et al. [1]:Theorem16 BGLR. Unless P = NP, there is no polynomial-time algorithmthat approximates Minimum Dominating Set to within any constant factor.From these results we can show that Minimum Phylograph cannot be approx-imated to within any constant factor unless P = NP, and cannot be approxi-mated to better than a logarithmic factor unless NP � DTIME(nO(log log n)).Theorem17. Unless P = NP, for any constant c > 0, there is no polynomial-time algorithm that takes as input species S and characters C and outputs aphylograph G = (S; E) such that jEj is within a factor of c of the minimumpossible value.Similarly, for any c < 1=4, unless NP � DTIME(nO(log logn)), there is nopolynomial-time algorithm approximating Minimum Phylograph within a factorc ln ` (where ` is the input length de�ned earlier).Proof: We use an approximation-preserving reduction from Minimum Domi-nating Set to Minimum Phylograph. Given an input G = (V;EG) with jV j = �,

construct an instance P to Minimum Phylograph as follows: The species set isS = V [X where X is a set of �3 \auxiliary vertices". For each pair of verticesfv1; v2g 2 V (2), de�ne a character with on-set fv1; v2g. Thus any phylograph forP contains each edge in the complete graph on V . In addition, for each pair ofvertices (v; x) 2 V �X we de�ne a character with on-set fxg [N(v).If P0 = (S; E0) is an optimal phylograph for P , and D0 is a minimum domi-nating set for G, then jE0j = ��2�+jX j jD0j: To see this, observe that the completegraph on V added to X�D0 is a phylograph for P , so jE0j � ��2�+ jX j jD0j. Onthe other hand, every phylograph for P has at least ��2� edges connecting speciesin V and has at least jD0j edges adjacent to each x 2 X .Suppose we had an algorithm A that could produce a phylograph (S; EA) forP with jEAj � c ln(`)jE0j edges. By the construction of P , some vertex x 2 X isconnected to a dominating set D for G with jDj � jEAj=jX j � c ln(`)jE0j = jX jedges. Since jE0j = ��2�+ jX j jD0j, we havejDj � c ln(`) ��2�+ jX j jD0jjX j :Thus (since jX j = �3 and jD0j � 1), jDj � c(1 + o(1)) ln(`)jD0j. Now note that` = �(� � 1) + 2�jX j+ 2jEGj jX j = O(�5). Thus, jDj � 5c(1 + o(1)) ln(�)jD0j,which is contrary to Theorem 15 if c < 1=5, unless NP � DTIME(nO(log log n)).Using jX j = �2+� instead of �3 gives the constant 1=4.Similarly, a constant-approximation algorithm is forbidden by Theorem 16,unless P = NP. 23.2 Greedy algorithm for phylographThere is a natural greedy algorithm for the Minimum Phylograph problem. Ina phylograph, every character's induced subgraph consists of a single connectedcomponent, so the greedy algorithm \grows" a solution by iteratively adding anedge that maximally reduces the number of connected components.The same notation needed to de�ne the algorithm more precisely can be usedin the proof of its quality. Given species S and characters C, and a set of edgesE � S(2) de�ne the \cost" of E to bef(E) =Xc2C components(Sc)� jCj;where components(Sc) denotes the number of connected components in the sub-graph of (S; E) induced by the on-set of c. Thus f(;) =Pc2C jScj�jCj = `�jCj,and if E is a phylograph, f(E) =Pc2C 1� jCj = 0.For any edge set E and any edge e, let �E(e) = f(E) � f(E [feg) bethe amount by which e decreases the cost f . The greedy algorithm begins witheach species an isolated vertex, and iteratively adds the edge which maximallydecreases the cost, until the cost is 0. In pseudocode:

Let i := 0 and EG(0) := ;While f(EG(i)) > 0 dobeginLet i := i+ 1Let e be an edge maximizing �EG(i�1)(e)Let EG(i) := EG(i� 1) [fegendReturn the set EG = EG(i)Theorem18. Suppose that for species S and characters C, of total input length`, the minimum phylograph fe(1); : : : ; e(r)g has cardinality r. Then the greedyalgorithm produces a phylograph EG of size jEGj � r ln(`� jCj).Proof: If we have any partial solution, adding in all r edges of a minimumphylograph will certainly yield a phylograph. Since r more edges are enough tocomplete the job, some edge (one of these, even) must take care of at least 1=rthof the cost. If the initial cost was f(;), and the greedy algorithm reduces it by1� 1=r at each step, after r ln f(;) steps the cost must be reduced below 1, andthe algorithm must have terminated.10More formally, for any edge set E(0) de�ne a series of sets E(0) � � � � � E(r),where E(i) = E(0)[fe(1); : : : ; e(i)g and the edges e(i) are those of the minimumphylograph. Note that E(r) is a phylograph, since it contains the minimumphylograph. Because components (with respect to any character) only becomemore connected as i increases, for any e, if i � j then �E(i)(e) � �E(j)(e). Thusfor any starting set E0,r � maxe2S(2) �E(0)(e) � rXi=1�E(0)(e(i))� rXi=1�E(i�1)(e(i))= rXi=1 [f(E(i� 1))� f(E(i))]= f(E(0))� f(E(r))= f(E(0)):Comparing the �rst and last quantities, we conclude that there always exists anedge e for which �E(0)(e) � f(E0)=r.Therefore the greedy algorithm reduces the cost by a factor 1� 1=r at eachstep. Since the initial cost is ` � jCj, the cost after r ln(` � jCj) steps of thegreedy algorithm is at most (1�1=r)r ln(`�jCj)(`�jCj) � 1: The greedy algorithm10 The same approach will not work for phyloDAG. Since directed cycles are forbidden,chosen edges constrain the addition of future ones, and even if there was a solutionof size r initially, there may not be once some edges have been chosen sub-optimally.

therefore terminates within r ln(` � jCj) steps, producing a phylograph of thesame size. 2This complements the result of Theorem 17: Minimum Phylograph is ap-parently hard to approximate to better than a factor of 14 ln `, but easy to ap-proximate to a factor ln(` � jCj) � ln `. It would be of some interest to derivebetter bounds on the constant c, 14 < c � 1, for which (c ln `)-approximability ispossible.3.3 PhyloDAGsWe begin by observing that a phyloDAG cannot always be obtained by directingthe edges of a phylograph. Consider four species with s1 de�ned by characters(b; c; d), s2 by (a; c; d), s3 by (a; b; d), and s4 by (a; b; c). The cycle s1; s2; s3; s4; s1is a 4-edge phylograph, but there is no way to direct the edges of the cycle toobtain a phyloDAG: any acyclic orientation will create two archetypes for somecharacter's on-set.We now prove the following theorem, which is analogous to Theorem 17.Theorem19. Unless P = NP, for any constant c > 0, there is no polynomial-time algorithm that takes as input species S and characters C and outputs aphyloDAG G = (S; E) such that jEj is within a factor of c of the minimumpossible value.Similarly, for any c < 1=4, unless NP � DTIME(nO(log log n)), there is nopolynomial-time algorithm approximating within a factor c ln `.Proof: The proof uses the same reduction as the proof of Theorem 17. Let E0be the edge set in an optimal phyloDAG for P . We must show that jE0j = ��2�+jX j jD0j: The direction that di�ers from the proof of Theorem 17 is showing thatgiven a dominating set D0, we can construct a phyloDAG of size ��2�+jX j jD0j. Todo so, �rst construct a phylograph (as in the proof of Theorem 17). Then directedges having both end-points in V according to a total order on the verticesin V , and direct all remaining edges from vertices in V toward vertices in X .The resulting digraph has no directed cycles and each character has a uniquearchetype. Therefore, it is a phyloDAG. The rest of the proof is identical to thatof Theorem 17. 2As already noted, the natural greedy algorithm does not work well for phy-loDAGs: the phyloDAG problem seems to be more di�cult because the pro-hibition of cycles means that it is possible for the greedy algorithm to add a\bad" edge which prevents other \good" edges from being added later. In theremainder of this section, we give an example of a species set for which variousnatural greedy approaches for constructing a phyloDAG lead to an
(n) ratiobetween the size (number of edges) of the constructed phyloDAG and the sizeof the optimal phyloDAG. A randomized strategy has an
(n) expected ratioand has a ratio of
(n= logn) with high probability.We construct a species set as follows. There are n species s1; : : : ; sn, and twodistinguished species s0 and s00. Now we add

{ 2n characters shared by s0 and s00;{ 2 characters shared by s0 and si, for i = 1; :::; n{ 1 character shared by s00, si and sj , for 1 � i; j � n; i 6= j.Duplicating characters forces the order in which a greedy algorithm connectsspecies. We hide this duplication from an algorithm that checks for it by addinga set Sd of dummy species, where jSdj = dlog(4n)e. There are 2dlog(4n)e � 4ndistinct subsets of Sd. We add one such subset to each of the 4n nonuniquecharacters.11 An optimal solution has O(n) edges, consisting of an edge from s0to s00, edges from s0 and s00 to each of the si, and edges from s0 to each speciesin Sd.A phyloDAG has exactly one archetype for each character. A greedy algo-rithm begins with each species an isolated node, thus an archetype for eachcharacter it contains. A natural edge to add in a greedy fashion is one that max-imally reduces the number of archetypes (over all characters). Of course, we maynot introduce directed cycles.There may be times where we can choose the direction of the edge to beintroduced (for example at the �rst iteration) and we show that the algorithmperforms badly for any of the following strategies:{ The direction is chosen arbitrarily.{ The direction is chosen uniformly at random. (The expected performance ofthe algorithm is bad for this example, and the example can be modi�ed sothat the bad performance occurs with high probability.){ The edge is directed out from the node with the larger number of characters.(This a natural way of breaking ties, since we expect ancestral nodes to havemany characters.)A greedy algorithm starts by putting an edge between s0 and s00, and an edgebetween s0 (or possibly s00) and each species in Sd. Then it adds edges betweens0 and the si. If directions are chosen arbitrarily we may assume that these edgesare from s0 to s00, and from each of the si to s0. Hence it is now impossible toadd edges from s00 to any of the si, since they would create directed cycles. Thismeans that in order to prevent there being two archetypes for a character sharedby s00, si and sj , species si must be connected to sj by an edge. This results in(n2) edges.Now consider the variant where the direction of an edge is chosen uniformly atrandom whenever it is equally good to direct it either way. With high probability(i.e. with complement probability that is exponentially small in n), there will beat least n=4 edges directed from the si's to s0. If the edge between s0 and s0011 An algorithm may also check for domination, where sd contains a subset of thecharacters contained by s. We can remove the dominated species sd from the instanceand later direct an edge from s to sd in the phylogeny for the reduced set. To avoidthis situation here, we add a character fsd(i); sd(i + 1)g for i = 1; : : : ; d4ne, whichchains the dummies together. This does not change the asymptotic size of the optimalsolution.

is directed the wrong way (i.e. from s0 to s00) then these si nodes will have tobe connected in a clique, resulting in a quadratic number of edges. If we nowconsider a species set consisting of � log(n) copies of the species set as described(for a positive constant �), we see that the optimal solution has �(n logn) nodesand edges, and with probability at least 1 � n��, at least one of those copieswill have the edge between s0 and s00 directed the wrong way, resulting in �(n2)edges.If edges are directed away from nodes with higher numbers of characters,then the algorithm can be forced to take the \wrong" direction for the edgesby adding dummy characters at the nodes from which we want the edges to bedirected.Acknowledgements: We are grateful to Phil MacKenzie, Tom Martin,Baruch Schieber, Madhu Sudan, Luca Trevisan, and David Wilson for usefuldiscussions, and to Luca for directing us to [8]. We also thank the reviewers andreferees for their helpful comments.4 Appendix4.1 An O(`)-time algorithm to compute an atomic setWe presume that each species is described by a sorted list of the characters itcontains. From this, construct a description of each character, as a sorted list ofthe species containing it. This can be done in linear time: loop through speciesi; loop through characters j on i; add species i to character j's list.Now the basic algorithm is:Let A0 := S (0th atomic set contains all species)Let D := ; (set of de�ning characters is initially empty)Loop through characters i, and consider the list Si of species having character i:(1) size := jAi�1 \ Sij(2) If size < 2 then Ai := Ai�1(3) If size � 2 then Ai := Ai�1 \ Si, and D := D [fig(4) next iWe now show how to compute the intersection size (step 1) and the intersec-tion itself (step 3) in linear time. This implemention gives a linear-time algorithmoverall. Let all the sets A be represented doubly, as both a sorted linked list, andas a binary array of length k (with 1's for species present in A, 0's for speciesabsent from A).Computing the size of A \ Si can be done in time jSij: Over species s 2 Si,sum up the binary array elements A[s]. Thus all iterations of step 1, together,take time of orderPi jSij.Computing A0 := A\Si can be done in time jAj+ jSij: The ordered list for A0is constructed by stepping through the ordered lists for A and Si in synchrony,advancing in the list with the smaller current value, and augmenting the list

for A0 when the lists for A and Si have the same current value. The binary arrayfor A0 is formed by modifying that of A, which is no longer needed for any otherpurpose; the list for A is used to set all 1's in the array back to 0, and then thelist for A0 is used to set 1's appropriately.Thus over values i where step 3 is executed, the total time consumed is oforder Xi jAi�1j+Xi jSij � jA0j+Xi jAij+Xi jSij� jSj+ 2Xi jSij;since the execution of step 3 implies that jAij � jSij. Thus the total time con-sumed by all steps of the algorithm is at most of order jSj+Pi jSij = O(`).

References1. M. Bellare, S. Goldwasser, C. Lund, and A. Russell. E�cient probabilisticallycheckable proofs and applications to approximation. In Proceedings of the 25thAnnual ACM Symposium on the Theory of Computing, pages 294{304, 1993.2. C. Benham, S. Kannan, M. Paterson, and T. Warnow. Hen's teeth and whale'sfeet: Generalized characters and their compatibility. Journal of Mathematical Bi-ology, 2(4):515{525, 1995.3. H. Bodlaender, M. Fellows, and T. Warnow. Two strikes against perfect phy-logeny. In Proceedings of the 19th International Colloquium on Automata, Lan-guages, and Programming, Lecture Notes in Computer Science, pages 273{283.Springer Verlag, 1992.4. C. Colbourn and M. Jerrum, 1995. Personal communication.5. C. Colbourn, W. Myrvold, and E. Neufeld. Two algorithms for unranking arbores-cences. Journal of Algorithms. To appear.6. D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progres-sions. Journal of Symbolic Computation, 9:251{280, 1990.7. M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, 1994.8. U. Feige. A threshold of lnn for approximating set cover. In Proceedings of the28th Annual ACM Symposium on the Theory of Computing, pages 286{293, 1996.9. A. Gibbons. Algorithmic Graph Theory. Cambridge University Press, 1985.10. L. Goldberg, P. Goldberg, C. Phillips, and G. Sorkin. Constructing computervirus phylogenies. In Proceedings of Combinatorial Pattern Matching, pages 253{270, 1996.11. L. Goldberg, P. Goldberg, C. Phillips, E. Sweedyk, and T. Warnow. Computingthe phylogenetic number to �nd good evolutionary trees. Discrete Applied Math-ematics, 1996.12. D. Gus�eld. E�cient algorithms for inferring evolutionary trees. Networks, 21:12{28, 1991.13. W. Joklik, H. Willett, D. Amos, and C. Wilfert, editors. Zinsser Microbiology.Appleton and Lange, Norwalk, Connecticut, 20 edition, 1992.14. D. Karger, P. Klein, and R. Tarjan. A randomized linear-time algorithm to �ndminimum spanning trees. Journal of the Association for Computing Machinery,42(2), 1995.15. J. Kephart and W. Arnold. Automatic extraction of computer virus signatures.In R. Ford, editor, Proceedings of the 4th Virus Bulletin International Conference,pages 179{194. Virus Bulletin Ltd_, 1994.16. A. Nijenhuis and H. Wilf. Combinatorial Algorithms for Computers and Calcula-tors. Academic Press, 2nd edition, 1978.17. R. Prim. Shortest connection networks and some generalizations. Bell SystemTechnical Journal, 36:1389{1401, 1957.18. G. Sorkin. Gruoping related computer viruses into families. In Proceedings of theIBM Security ITS, October 1994.19. M. Steel. The complexity of reconstructing trees from qualitative characters andsubtrees. Journal of Classi�cation, 9:91{116, 1992.20. D. Wilson. Generating random spanning trees more quickly than the cover time.Submitted for publication, 1995.This article was processed using the LATEX macro package with LLNCS style

